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ABSTRACT

We examine the influence of faculty patenting activity on the rate, quality, and content of public

research outputs in a panel dataset spanning the careers of 3,862 academic life scientists. Using

inverse probability of treatment weights (IPTW) to account for the dynamics of self-selection into

patenting, we find that patenting has a positive effect on the rate of publication of journal articles,

but no effect on the quality of these publications. Using several measures of the "patentability" of

the content of research papers, we also find that patenters may be shifting their research focus to

questions of commercial interest. We conclude that the often-voiced concern that patenting in

academe has a nefarious effect on public research output is, at least in its simplest form, misplaced.
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1 Introduction

In the past few decades, universities and other public-sector research organizations have

become much more proactive in their efforts to commercialize scientific discoveries (see Hen-

derson et al., 1998; Jaffe and Lerner, 2001; Jensen and Thursby, 2001; Mowery et al., 2001;

Thursby and Thursby, 2002). Underlying this well documented upswing in university patent-

ing has been a sharp increase in the number of individual academic scientists who are listed

as inventors on patents. As its incidence has increased, however, academic patenting has gen-

erated intense controversy, much of which has centered on the long-term effect of patenting

on the development of future scientific knowledge.

At this juncture, every available indicator suggests that a growing number of university

faculty will become involved in the commercialization of scientific research. As the literature

shifts to evaluating the consequences of faculty patenting for the traditional research process,

a number of questions will require investigation. In this paper, we focus on two issues that

have come to the fore in debates about academic patenting. First, in what direction and to

what degree does faculty patenting affect the rate of production of public scientific outputs?

Second, does patenting directly influence either the quality or the content of the subsequent-

to-the-patent research performed by the scientist?

These questions are important and, we believe, largely unresolved. On one hand, surveys

of academic scientists have found that patenting skews scientists’ research agendas toward

commercial priorities, causes delay in the public dissemination of research findings, and

crowds out effort devoted to producing public research (Blumenthal et al., 1996; Campbell

et al. 2002; Krimsky, 2003). In stark terms, this work has portrayed a tradeoff between

patenting and the progress of academic science. On the other hand, the few studies that have

econometrically assessed the scientist-level relationship between patenting and publishing

have come to a very different conclusion. Agrawal and Henderson (2002) estimated fixed-

effect regressions of the effect of patenting in a 15-year panel of 236 scientists in two MIT

departments. They found that patenting did not affect publishing rates. Fabrizio and

DiMinin (2005) constructed a sample of 166 academic patenters that were matched to an
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equivalent number of non-patenting scientists. In a fixed effects specification, they found

a statistically positive effect of researchers’ patent stocks on their publication counts. In

a third study, Stephan et al. (forthcoming) exploited a survey of doctorate recipients and

used instrumental variables to estimate the cross-sectional relationship between patenting

and publishing; they found that patenting and publishing relate positively.

Our findings concur with — and significantly extend — this latter set of results. With

careful adjustment for selection into patenting, we find that both the flow and the stock

of scientists’ patents are positively related to subsequent publication rates. Moreover, this

increase in output does not come at the expense of the quality of the published research;

we find some evidence that the average quality of patenters’ publications is higher than

that of non-patenters, but this effect is neither especially large in magnitude nor always

statistically significant. However, we present three distinct pieces of evidence which indicate

that patenting induces a moderate shift in the content of scientists’ research. First, fac-

ulty holding patents are more likely to coauthor papers with researchers in firms. Second,

patenters’ publications appear more frequently in journals that have a higher proportion of

company-affiliated authors. Finally, we develop a measure of the latent “patentability” of

research based on the title keywords of articles and find it to be significantly higher in the

subsequent-to-the-patent papers of patenting scientists.

At a minimum, we interpret our results as refuting the simple form of the claim that

academic patenting has a deleterious effect on the production of public science. However,

our findings do confirm that patenting has had real effects on the direction of scientific

progress. Although it is legitimate to ask whether the continued migration of commercial

interests into universities will further induce scientists to select research projects on the

basis of their perceived value in the private sector, assessing the welfare implications of

this change will require a more refined understanding of the relationship between research

outputs that are “applied” (i.e., less likely to become an important foundation for subsequent

scientific research) versus those that are “patentable” (i.e., focused on questions of industrial

usefulness). In the context of the life sciences, for example, it is not a priori clear that there
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is a trade-off between the academic influence and the patentability of a research project (see

Stokes, 1997).

In addition to presenting findings pertinent to an ongoing policy debate, our study makes

two other contributions. First, we have assembled a comprehensive, longitudinal dataset: it

is a prospective, 3,862-person random sample drawn from the population of life scientists

in academia between 1968 and 1999. For the individuals in the sample, we have reconsti-

tuted entire career histories, including patent and publication information, as well as many

employer-level variables. We believe that this is the most inclusive dataset available for as-

sessing the relationship between patenting and public research productivity among academic

scientists.

Second, we attempt to disentangle correlation from causality in the assessment of the

effect of patenting. As we will show, patent holders differ from other researchers on many

observable characteristics (see also Stephan et al., forthcoming). More accomplished re-

searchers are much more likely to patent, and controlling for the stock of past publications,

scientists with a recent good run are also more likely to patent. This evidence calls into

question the ability of traditional fixed-effect specifications to consistently estimate causal

effects, since patenters and non-patenters do not appear to follow similar trends in pub-

lication rates before the initiation of patenting. We use Inverse Probability of Treatment

Weighted (IPTW) estimation (Robins et al., 2000; Hernán et al., 2001) to account for the

dynamics of self-selection of researchers into patenting. This methodology, which general-

izes the propensity score to settings in which treatment is staggered over time, accounts for

selection into patenting on the basis of observable characteristics, including (in our case)

lagged productivity and the latent patentability of a scientist’s research trajectory. While

this approach naturally cannot rule out selection based on unobservable factors, we were

able to generate an extensive list of covariates to model the probability of selection into

patenting.

In addition to these two primary contributions, the paper indirectly relates to the lit-

erature on the tension between applied and basic research (Cohen and Levinthal, 1989;
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Rosenberg, 1990; Henderson and Cockburn, 1994; Ding, 2005). This group of studies has

sought to understand why for-profit firms fund basic research. It has generally concluded

that basic and applied research are complements, although several distinct mechanisms are

at play, and not all of them correspond to true spillovers of knowledge across activities

(Stern, 2004). This work bears an obvious similarity to our effort to assess the nature of

the relationship between basic and commercial scientific projects conducted by individual

scientists.

The rest of the paper proceeds as follows. In the next section, we provide an overview

of the controversies surrounding academic patenting. Section 3 presents our econometric

methodology. Section 4 describes the construction of the sample and data sources, presents

descriptive statistics, and reports our econometric results. Section 5 concludes.

2 Basic, Applied, and Commercializable Research: Where

Do We Stand?

Both the current level and the trend line for academic patenting leave little doubt that the

contemporary research university has become a locus of commercially-oriented innovation.

However, this development is not without controversy; many observers have decried the

emergence of academic patenting and other forms of commercial science for its potentially

adverse effects on the further advancement of science (Krimsky, 2003). Among critics’ con-

cerns, the most fundamental revolves around the potential effect of academic patenting on

the traditional incentives in science. It is commonly acknowledged that the reward system

in science is rooted in peers’ acknowledgment of important research advances (Merton, 1973;

Dasgupta and David, 1994). Scientists’ incentives to create and quickly publish research

findings are clear when promotions, salary increases, and professional accolades are awarded

on the basis of contributions to the corpus of public scientific findings. Seen in this light, the

relevant question about university patenting becomes, to what degree does the availability

of the option to patent alter the incentive or ability of scientists to contribute public (i.e.,

non-excludable) advances to the scientific literature?
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We are not persuaded that the presence of the option to patent meaningfully decreases

scientists’ incentives to invest in the production of public science. In fact, for two reasons we

foresee the possibility that patenting and publishing are complementary activities. First, an

academic researcher’s scientific reputation is his/her most important currency in the effort to

capitalize on intellectual property in the market for university-originated technology. Second,

with respect to the production of new scientific knowledge, there are likely to be (intra-

person) scope economies that emerge when a scientist is involved in the development of both

academic and commercial science. As we describe below, there are, though, more compelling

reasons to believe that the emergence of academic patenting has and will continue to cause

a shift in the content of scientists’ research.

Scientist reputation, patents, and the market for university inventions. Scientists

are thought to be strongly motivated by the intrinsic satisfaction of solving vexing problems

(Stern, 2004), the search for fame and status (Merton, 1973 [1942]), and the up-or-out pro-

motion rule inherent to the tenure system (Carmichael, 1988). How does patenting influence

these traditional incentives to produce academic research? While the direct effect of intel-

lectual property rights is probably small, academic patenting could still influence incentives

in subtle ways. In particular, the market for university inventions is rife with asymmetric

information. As the literature frequently notes, academic discoveries often require years of

additional development to yield marketable products; there is likely to be a great deal of

uncertainty surrounding the commercial and scientific merit of discoveries at this primitive

stage; and exhaustive due diligence regarding the value of a discovery is costly.

Because of these information problems, we argue that scientists’ reputations are essen-

tial in the market for university technology. By acting as a signal of invention quality, the

prominence of a patenting faculty in the community of science diminishes the search and

screening costs that potential licensees must incur in the process of identifying promising

university technology. Furthermore, university technology transfer officers are aware of the

certification role of scientific eminence. Other things equal, because the discoveries of promi-

nent scientists are more marketable in industry, TTOs are more likely to choose to file for
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patents on the discoveries of high-status scientists.1 Therefore, the ex post search, screening,

and contracting problems in the market for ideas increase faculty’s ex ante incentives to

maintain their reputation on the scientific labor market, as doing so enhances both the odds

of finding an industrial match for their inventions, and the value of their patents conditional

on a match.2

Non-pecuniary and pecuniary spillovers. A likely consequence of applying for a patent

is that academic scientists become acquainted with researchers in companies. As these

acquaintances develop into relationships, we expect that industry contacts might become

sources of ideas for new research projects. The notion that connections with researchers

in industry serve as fruitful sources for unearthing interesting research questions emerges

in Agrawal and Henderson’s (2002) interviews with MIT scientists. In addition, there is a

natural analogy to the complementarities observed between applied and basic research in

industrial firms. Rosenberg (1998), for example, documented that innovations born out of

contact with commercial enterprises in the applied field of chemical engineering ushered a

new era of basic discoveries in chemistry. The possibility of within-scientist economies of

scope is also consistent with evolutionary theories of technological and scientific progress

in which major advances are understood to represent insightful combinations of disparate

pieces of knowledge (e.g., Hull, 1988; Weitzman, 1998). Insofar as access to diverse infor-

mation facilitates the development of new and fruitful lines of scientific inquiry, patenting

1Along these lines, Shane and Khurana (2003) showed that startup firms are more likely to be founded
to capitalize on university technology if the intellectual property was created by full professors. Elfenbein
(2004) found that discoveries made by scientists with extensive publication records were more likely to find
a licensing partner.

2Some critics would counter that there is an automatic tradeoff between patenting and publishing because
it is time consuming to disclose inventions and flesh out patent applications. In addition, crowding out
would occur if faculty members devote a substantial block of time to conduct the research that leads to
patentable discoveries. However, two facts mitigate these concerns. First, scientists are assisted in the
patent application process by their university’s technology transfer office, whose existence enables a division
of labor between invention and commercialization activities (Hellman, 2005). Second, qualitative evidence
suggests that patent applications are often byproducts of traditional scientific efforts, and that patents and
scientific articles routinely encode related pieces of knowledge. For example, in her study of tissue engineering,
Murray (2002) shows that many scientists choose the path of dual-knowledge disclosure, a practice whose
output she labels “paper-patent pairs.” We therefore doubt the claim that patenting necessarily requires
substantial amounts of time and always crowds out traditional scientific research (also see Thursby et al.,
2005).
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may facilitate the creation of the professional ties that productively broaden researchers’

information networks.

Knowledge is not the only input to the research process that may transcend the university-

industry divide; it is also possible to envisage pecuniary spillovers between patenting and

publishing. Useful commercial discoveries often lead to industrial sources of funding for the

laboratory of the patenting scientist. Even without access to new pools of knowledge, the

ability to hire additional post-doctoral scientists or graduate students might result in higher

scientific output for a scientist’s lab. A related point is that many seminal scientific achieve-

ments have been made possible only by technological advances in instrumentation. In the

biomedical fields and other areas of science, technological and scientific advances are there-

fore interdependent: new understandings are often beholden to progress in instrumentation.

If patenting scientists are more likely to be in a position to negotiate access to state-of-

the-art equipment in corporate laboratories (Owen-Smith and Powell, 2001a), or if they are

more likely to have developed the technical expertise to understand and modify research

equipment, complementarities between the capital stock of their laboratory and that of their

industrial partners might also increase publication output.3

Patenting and the direction of scientific advance. While we expect to find that

patenting has at worst a neutral effect on the rate and quality of scientists’ publication

output, there is also a case to be made that it will influence the content of the output.

In formulating this argument, it is useful to begin with an over-simplified description of

the controversy surrounding the commercialization of university science. Suppose that there

are two types of academic scientists: purists, who disapprove of commercial encroachments

into the university and select research topics solely on the basis of scientific merit, and

commercialists, who participate in university patenting and frequently associate with firms

3Note that whether the relevant spillovers are technological or pecuniary, it is not the act of seeking
intellectual property rights that, in itself, changes the nature and quantity of output produced by a scientist.
Rather, patenting, by making the scientist’s research visible to new constituencies, will lead to collaborations
(intellectual or financial) that would not have occurred in the absence of the patent application, and be-
tween individuals with potentially complementary scientific backgrounds or access to non-overlapping social
networks. It should be clear that any spillovers of this type will arise over time, not contemporaneously.
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in industry. Scientists in this latter camp investigate two kinds of research questions: like

purists, they explore issues of basic scientific relevance. In addition, they allocate some

fraction of their time to investigating discoveries with patentable, commercial application.

Although this characterization may exaggerate the actual level of difference between purists

and commercialists in some institutions, Owen-Smith and Powell (2001b) present qualitative

evidence that there is in fact a division along these lines in many academic departments:

traditional scientists who, like Nobel Prize winner John Sulston, oppose the convergence of

academe and commerce represent the purist pole, and serial patenters and entrepreneurs

constitute the other (Sulston, 2003).

If this characterization is approximately accurate, scientists that choose to patent and

thereby shift into the commercialist camp will begin to allocate their research time across a

different, wider set of research questions than they had done when they were purists. Once a

scientist accepts the label of commercialist, we can expect a within-person change such that

a scientist will be more likely to pursue projects for which part of the pay-off for conducting

the research will be a patent or some other form of commercial recognition. We do not

anticipate that all or even a majority of a scientist’s work will shift, but rather that some

share of it will be focused on new (to the scientist) research questions. Thus, we expect

to discover that patenting is associated with a shift in scientists’ focus toward exploring

scientific questions with commercial application.

A second and possibly more meaningful mechanism for why patenting may result in a

shift in scientists’ research foci relates to our previous assertion that patents are a form

of translational publication that facilitates the formation of relationships between academic

scientists and members of the industrial research community. Through the university’s efforts

to commercialize their technologies, patenting scientists gain visibility in industry circles.

As this visibility leads to associations with researchers in corporate laboratories, academic

scientists become interested in and familiar with scientific questions of central importance

to industry. These contacts presumably expose university scientists to new (relative to

their previous work) areas of commercially-useful scientific inquiry. As we have argued

above, ceteris paribus, exposure to new and diverse information may enhance scientists’
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productivity. In addition, one should expect the nature of the work that arises after a

scientist bridges the university-industry divide to be different from what preceded it, if only

because academic scientists are likely to become intrigued by questions of interest to industry

researchers.4

We will remain agnostic regarding the welfare implications of this potential change in

research agenda. Among critics of the increasing dependence of universities on private-

sector funding, distortion in the choice of topics is a frequently assumed and vigorously

lamented consequence. An implicit assumption of these policy discussions is that engagement

with the world of commerce will necessarily produce applied research, in the sense that

future generations of researchers will be less likely to build on it because of its narrow

focus. Increasingly, however, scholars of technological change recognize that ideas might

simultaneously have high scientific value and important commercial potential (Stokes, 1997).

In the conclusion, we briefly discuss how the present study could be expanded to adjudicate

between the optimistic and pessimistic interpretations of the results we present below.

3 Econometric Considerations

Estimating the causal effect of academic patenting on research output must confront a basic

selectivity problem: researchers choose whether, when, and how much to patent. As a

result, traditional econometric techniques, which assume that exposure to “treatment” occurs

randomly, cannot recover causal effects. The standard econometric approach for this type

of problem is instrumental variable estimation. Yet, the credibility of IV estimates hinges

on the validity of the associated exclusion restriction(s). Unfortunately, academic science

is not a setting that provides many (or in fact any) sources of exogenous variation in the

costs of patenting across researchers and/or universities. For instance, characteristics of the

4Reliable evidence of a shift in research priorities is still scant. The most systematic data come from
Blumenthal et al. (1986). They surveyed academic life scientists, asking whether respondents had considered
commercial potential when choosing research projects. 30% of life science faculty with industry funding
replied affirmatively, compared to just 7% of faculty without private sector funding. This correlation suggests
that industry funding (often associated with patenting) skews scientists’ research agenda, but the causality
could just as easily flow in reverse, from researchers’ interests to funding sources.
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scientist’s university (such as the presence of a TTO, or the propensity of scientists to patent

in other departments) are certainly correlated with individual scientists’ decision to patent,

but might also affect their productivity directly. In what follows, we will simply assume that

a good instrument is not available.

An second approach is to rely on within-scientist variation to identify the effect of patent-

ing on publication output. Fabrizio and DiMinin (2005) use a fixed effects specification in a

panel dataset of matched patenting and non-patenting researchers. In so doing, they purge

their estimates from any influence of unobserved heterogeneity that is constant over time.

However, it is well-known that for difference-in-differences estimation to be valid, it must

be the case that the average outcome for the treated and control groups would have fol-

lowed parallel paths over time in the absence of treatment. This assumption is implausible

if pretreatment characteristics that are thought to be associated with the dynamics of the

outcome variable are unbalanced between treatment and control units. Below, we provide

strong evidence that selection into patenting is influenced by transitory shocks to scientific

opportunities. In this respect, estimating the causal effect of academic patenting on research

output presents similar challenges to that of estimating the effect of a job training program

on wages. In the job training example, treated individuals have lower earnings on average

(relative to their pre-treatment average) in the year immediately preceding enrollment into

the program; therefore, the fixed effects estimator is likely to overestimate the treatment ef-

fect. Conversely, we will show that patenting scientists have higher output (relative to their

average in the pre-patenting regime) in the year immediately preceding their first patent

application; as a result, the fixed effect estimator is likely to underestimate the effect of

patenting on publishing rates.

To overcome these challenges, we make use of a novel approach that has recently gained

acceptance in biostatistics: Inverse Probability of Treatment Weighted (IPTW) estimation

(Robins et al., 2000; Hernán et al., 2001). These estimators are akin to propensity-score

matching techniques (Rosenbaum and Rubin, 1983; Dehejia and Wahba, 2002) in that they

make the (untestable) assumption that selection into treatment is based on variables that

are observable to the econometrician, but extend it to the case of time-varying treatments.
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In particular, IPTW estimation allows one to recover average treatment effects even in the

presence of time-varying confounders, i.e., time-varying variables that (1) are correlated

with future values of the dependent variable; (2) predict selection into treatment; and (3)

are themselves predicted by past treatment history. As we will show below, this applies

to the case of academic patenting, since publication rates are strongly auto-correlated, the

probability of patenting increases after a recent flurry of publications, and past patenting

history influences future publication rates.

Consider a study in which treatment decisions are made in T + 1 distinct periods

0, 1, . . . , T. At each time t, for each individual i, “prognostic factors” Zit and an outcome

of interest yit are measured, and a discrete treatment TREATit ∈ {0, 1} is chosen. For any

variable W, denote W̃it its history up to time t.

Let yeait be the value of y that would have been observed at time t had i chosen treatment

sequence ãit = (ai0, ai1, . . . , ait) rather than his observed treatment history ˜TREAT it. Note

that, even if aik is dichotomous in each year k, there will be 2k treatment histories and thus

2k possible counterfactuals, only one of which is observed for each individual.

By definition, the average treatment effect of treatment history ã on the outcome y is

the difference E[yea]− E[y
e0], the average difference between outcomes when following ã and

outcomes when never treated. We model the mean of yea conditional on treatment and

exogenous covariates X as:

E[yeait| ˜TREAT it, Xit] = β0 + β
′

1Xit + β2Ψ( ˜TREAT it) (1)

where Ψ(.) is a “dose-response function.” For example, if Ψ(.) puts a weight of 1 on TREATit

in each time-period, then it is the stock of patents that influences publishing rates. Con-

versely, if Ψ(.) puts a weight of 1 on TREATit and a weight of 0 on TREATik, k = 0, . . . , t−1,

then only the instantaneous flow of patents has a causal effect on outcomes. In the empirical

work, we will experiment with various specifications for Ψ(.).

Following Robins (1999b), we introduce the Sequential Conditional Independence As-

sumption (SCIA), which provides a formal way to extend the assumption of selection on
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observables to the case of dynamic treatments:

yeait q TREATit|TREATi,t−1, Zi,t−1, Xit

for all i and t, where the q sign denotes statistical independence. Robins (1999b) shows that

under SCIA, the average treatment effect β2 is identified and can be recovered by estimating

yit = β0 + β
′

1Xit + β2Ψ( ˜TREAT it) + εit (2)

by weighted least squares, where the weights correspond to the inverse probability of following

actual treatment history ˜TREAT it up to time t for individual i. Note that (2) differs from (1)

in that the observed outcomes y have been substituted for the counterfactual outcomes yea.

Implementing IPTW estimation is relatively straightforward. Under SCIA, the selection

bias can be removed by weighting the regression by:

wit =
1

t∏
k=0

Prob(TREATik| ˜TREAT i,k−1, Z̃i,k−1, X̃ik)

Each factor in the denominator is the probability that the researcher received her own ob-

served treatment at time k, conditional on past treatment history and her past history

of “prognosis factors” for treatment, whether time-varying or fixed over time. Therefore,

the denominator of wit represents the conditional probability that an individual followed

his or her own history of treatment up to time t. Suppose that all relevant time-varying

confounders are observed and included in Zit. Then, weighting by wit effectively creates a

pseudo-population in which Zit no longer predicts selection into treatment and the causal

association between treatment and outcome is the same as in the original population. We

refer to β̂2 when eqn. (1) is weighted by wit as the Inverse Probability of Treatment Weighted

(IPTW) estimator of β2.

At this juncture, it is useful to pause and ask, why, if selection is assumed to depend

only on observables, would it be invalid to just include all determinants of selection on

the right-hand side of the outcome equation and to proceed with estimation by ordinary

least squares? The answer is twofold. First, weighting the outcome equation by the inverse
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probability of treatment controls for these factors without making strong functional form

assumptions; it can be thought of as regressing outcomes on treatment and a very flexible

function of the variables in the selection equation. In the presence of staggered treatments

and time-varying confounders, there is another important consideration. Under the usual

assumption regarding orthogonality of the regressors to the error term, β2 can be estimated

consistently. However, such an estimate will not correspond to any causal parameter of

interest, because the time-varying confounders are themselves affected by past treatment

history. In this situation, controlling directly for intermediate outcomes (for instance by

including a lagged dependent variable as a regressor) would lead to an underestimate of the

magnitude of the treatment effect.

The probabilities Prob(TREATik| ˜TREAT i,k−1, Z̃i,k−1, X̃ik) may vary greatly between

subjects when time-varying confounders are strongly associated with treatment. This vari-

ability can result in extremely large outlying values for wit. These outliers will contribute

heavily to the pseudo-population, and the resulting IPTW estimator will have a very large

variance. This problem can be alleviated by replacing wit by a “stabilized” weight swit:

swit =
t∏

k=0

Prob(TREATik| ˜TREAT i,k−1, X̃ik)

Prob(TREATik| ˜TREAT i,k−1, Z̃i,k−1, X̃ik)

Although this modification does not influence the consistency of IPTW estimators, it does

increase their efficiency (Hernán et al., 2000). Despite its simplicity and intuitiveness, IPTW

estimation also presents some significant drawbacks. First and foremost, the assumption of

no unobserved confounding is a strong one. Past research in the program evaluation literature

has shown that techniques assume selection on observables perform well (in the sense of

replicating an experimental benchmark) when (1) researchers use a rich list of covariates

to model the probability of treatment; (2) units are drawn from similar labor markets,

and (3) outcomes are measured in the same way for both treatment and control groups

(Dehejia and Waba, 2002; Smith and Todd, 2005). All of these conditions would appear to

be met in our setting and data, but this should not lead researchers to believe that IPTW

estimation represents a universal solution for endogeneity problems. A second limitation

is that IPTW estimates are just identified: the assumption of no unobserved determinants
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of selection into treatment cannot be tested; neither can misspecification of the selection

equation used to estimate the weights. Third, the causal effect estimated by IPTW models

is the population average treatment effect (ATE). In social science applications, however, the

average treatment effect on the treated (ATET) might also be of policy interest. However,

Lechner and Miquel (2005) show that ATET is not identified without further assumptions

on the joint distribution of the counterfactual outcomes.5

Informative censoring. Although we focused the first part of the discussion on the problem

of non-random selection into patenting, a second problem arises because some subjects might

exit the sample for endogenous reasons. For instance, scientists might leave academia because

of low scientific productivity, or because they receive attractive offers to join commercial

firms. Even if treatment was randomly allocated across units, this type of informative

censoring could jeopardize the validity of the statistical estimates. We deal with this problem

by treating censoring as just another time-varying treatment. As Robins et al. (2000)

note, from this point of view, adjusting for censoring is only to say that our interest lies

in estimating the causal effect of TREAT on y if, contrary to the fact, all subjects had

remained in the sample rather than having followed their censoring history. We model the

exit decision as a function of constant and time-varying observable factors, and compute

weights corresponding to the probability of exit given these observables:

sw∗
it =

t∏
k=0

Prob(EXITik| ˜TREAT i,k−1, Xik)

Prob(EXITik| ˜TREAT i,k−1, Z̃i,k−1, Xik)

sw∗
it is the inverse of the ratio of a scientist’s probability of exiting academia up to year t

divided by that probability calculated as if there had been no time-dependent determinants of

censoring except past treatment history and X. Hernán et al. (2001) shows that consistent

estimates for β2 can be obtained by combining the weight corresponding to the inverse

probability of treatment swit and the weight corresponding to the inverse probability of

censoring sw∗
it. The denominator of the final weight, sw∗

it × swit, is the probability that a

5One might worry about performing statistical inference using “second stage” IPTW estimates, since the
weights that are used as input in the outcome equation are themselves estimated. In contrast to two-step
selection correction methods, Wooldridge (2002) has shown that the standard errors obtained in this case
are conservative.
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subject would have followed his own treatment and censoring history up to year t, conditional

on observables. As a result, we label this methodology Inverse Probability of Treatment and

Censoring Weighted (IPTCW) estimation in the rest of the paper.

Estimation of the weights. The procedure followed to compute the weights depends on

the way in which treatment is defined. According to a first definition, treatment is a flow :

TREATit = 1 whenever researcher i applies for at least one patent in year t, and 0 otherwise.

This formulation implies that treatment does not necessarily have a lasting impact on the

individual. In contrast, the regime formulation defines TREATit = 1 for all years subsequent

to the first patent application. Defining treatment this way implies a one-time shift on the

outcome of interest, with subsequent treatment episodes having no effect on the dependent

variable.

In the flow formulation, the weights are computed by estimating pooled cross-sectional

logit specifications on the whole dataset. To compute the denominator of swit, one estimates

a logit model for:

Prob(TREATit = 1) = α0 + α1TREATi,t−1 + Φ(Z̃i,t−1, α2) + α3Xit + δt (3)

where Φ(Z̃i,t−1, α2) corresponds to a parametric function of past values for time-varying

confounders, Xit includes both time-varying and fixed-over-time characteristics of individuals

in the sample (such as years of experience, gender, characteristics of the Ph.D-granting

institution, etc.), and δt represents calendar year effects. In practice, we specify Φ as a linear

function of publication flow in year t−1 and stock of publications up to year t−2, the number

of past collaborations with industrial firms, patentability of the scientist’s flow of publication

in year t− 1 and its stock up to year t− 2, and employer characteristics. Let T1 denote the

set of years in which scientist i gets at least a patent and T2 the set of years during which i

gets no patents. The estimate of the denominator of swit is
∏

t∈T1
p̂it

∏
t∈T2

(1− p̂it), where p̂it

refers to the predicted probability obtained after estimating eqn. (3). The numerator of swit

stems from an almost identical specification, except that one omits the term Φ(Z̃i,t−1, α2)

from the list of covariates.
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This approach needs to be slightly modified when treatment is modeled as a regime shift

rather than as a flow, because the probability of getting treatment remains constant and

equal to one once a scientist enters the patenting regime. As a result, it is only necessary to

fit the model on a subset of the data, that of scientist-year observations up to the year when

the scientist applies for his/her first patent. In this risk set, TREATi,t−1 is uniformly 0. To

compute the denominator of swit we estimate a logit model for

Prob(TREATit = 1) = α0 + Φ(Z̃i,t−1, α2) + α3Xit + δt (4)

and to compute the numerator of swit we estimate a logit model for

Prob(TREATit = 1) = α0 + α3Xit + δt (5)

Our estimate of the denominator of swit for scientist i in year t is
∏t

k=0(1− p̂ik) if scientist i

did not apply for at least one patent by year t, and
∏t−1

k=0(1− p̂ik)× p̂it if scientist i applied

for his first patent in year t. Estimation of sw∗
it proceeds in the same fashion.

Relationship of IPTCW estimation with propensity-score matching methods.

Rosenbaum and Rubin (1983) refer to Prob(TREATi = 1|X, Z) as the propensity score,

and show how to use this probability to estimate treatment effects when selection into treat-

ment depends only on observables. Recently, Heckman et al. (1997) have combined the

propensity score with difference-in-differences to estimate the causal effect of undergoing

a job training program. Abadie (2005) proposes a semiparametric difference-in-differences

estimate that weights observations by the inverse probability of (own) treatment. Although

the goals of these earlier papers resemble ours, we follow a different approach because the

structure of our data differs significantly from the typical program evaluation setup. Labor

econometricians generally study programs for which a “before” and “after” period can be

unambiguously delineated for both treated and untreated units. In contrast, in our setting

and many others, selection into treatment can occur at different times and/or in several

disjoint episodes. Matching on the propensity score is difficult in these cases. Intuitively,

an untreated individual might be a good control for a treated subject in one period (in the

sense that the difference in their propensity scores is close to 0) and a bad control for the
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same treated subject in another period. In contrast, IPTCW estimation readily generalizes

to the case of treatments that are staggered over time.

Robustness to unobserved heterogeneity. If our selection model does not capture some

relevant determinants of the patenting decision, and these omitted factors influence research

output directly, IPTCW estimates will be biased. Since there is overwhelming evidence of

positive selection in the cross-sectional dimension of the data (“better” scientists are both

more likely to patent and publish heavily), such unobserved heterogeneity likely leads us

to overestimate the treatment effect. Therefore, neither fixed effects nor the IPTCW ap-

proach provides a fully satisfactory solution to the problem of estimating the causal effect of

patenting on publishing rates. In combination, however, these estimators implicitly define a

confidence interval, with the fixed effects estimate providing a lower bound, and the IPTCW

estimate providing an upper bound. The evidence presented below will show that, in prac-

tice, these bounds are sufficiently tight to inform the policy debate surrounding academic

patenting.

4 Data and Sample Characteristics

We examine the association between patenting and publishing in a panel dataset of academic

life scientists employed at universities and non-profit research institutes. This area was

chosen because the biomedical fields have accounted for the preponderance of university

patenting and licensing activity (Mowery et al., 2001). While we have not selected scientists

because they have patented, we have sampled from scientific disciplines that we know to

have significantly contributed to a vibrant area of technological development. We began

by drawing 12,000 doctoral degree recipients from UMI Proquest Dissertations, which lists

Ph.D. recipients from more than one thousand universities. In forming the sample, we

randomly selected individuals, but only those with Ph.D.s in scientific disciplines that have
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informed commercial biotechnology.6 This assures a random sample of Ph.D.s in areas in

which academic research may have significant, short-term commercial value.

Given our focus on the life sciences, one might question whether our results generalize

to other academic fields, such as mechanical or electrical engineering. One should note,

however, that our definition of life sciences is expansive. For example, our data include

scientists holding Ph.D’s in chemistry, chemical engineering, materials engineering, plant

biology, veterinary sciences, and food science. The life sciences, broadly construed, represent

such a large slice of the academic patenting phenomenon that the issue of generalizability

does not loom particularly large.7

Next, we obtained scientists’ publication records from the ISI’s Web of Science database.

Because the Web of Science includes authors’ affiliations, we were able to identify Ph.D.

graduates who pursued careers outside of academe. After removing individuals that (i)

had no publications in any post-graduate year, (ii) published exclusively under corporate

affiliations, or (iii) exited academe early in their careers,8 we were left with 3,862 scientists, all

of whom we know to have been employed at U.S. universities or public research institutions.

Each scientist is observed from the year after he or she earned a Ph.D. until 1999, unless

the individual exited academia.9 The final panel contains 58,562 person-year observations

between 1968 and 1999.

6To identify the scientific disciplines that have been most important to biotechnology, we coded the
educational backgrounds of the Ph.D.-holding, university-employed scientific advisory board members of all
publicly traded biotechnology firms. The source of information on scientific advisors’ degrees was the IPO
prospectuses of the 533 U.S.-based biotechnology firms that were filed with the U.S. Securities and Exchange
Committee. We then stratified the random draw from UMI to correspond to the disciplines and Ph.D.
years of firms’ scientific advisors. For example, 22 percent of biotechnology company scientific advisors hold
biochemistry Ph.D.s; we drew a corresponding proportion of biochemists into our sample. Table 1 lists the
Top 15 disciplines from which scientists in our sample are selected.

7In a related paper, one of the authors assembled a dataset of “superstar” academic patenters, which
were defined to be US-based academics with more than 17 patents between 1976 and 2004 (this corresponds
to scientists above the 99th percentile of the patent count distribution). Among the 544 such scientists, he
found only 138 (25.37%) that did not fit our definition of “life scientists.”

8Ph.D.s with academic affiliations lasting less than five years were dropped from the dataset to exclude
post-doctoral fellows that later moved to jobs in industry.

9We assume a researcher has exited academia when he or she fails to publish for five consecutive years, or
in fewer instances, when the scientist begins to publish almost exclusively under a corporate affiliation. In
either case, we censor observation in the year in which a scientist last publishes under a university affiliation.
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4.1 Variables

A brief description of the patenting process in academia is useful to interpret the results

we will present. The process begins when a faculty member discloses an invention to the

university’s Technology Transfer Office (TTO).10 The commercial potential of this invention

is then evaluated by the TTO, which may decide to seek patent rights on the invention.

Concurrently, the TTO will market the innovation to potential licensing partners in industry.

A typical licensing agreement specifies a 40% royalty rate for the individual faculty inventor,

to be assessed on the gross licensing revenues the invention accrues.

Research outputs. From the Web of Science we computed annual paper publication

counts for each scientist. We count all papers on which a scientist is listed as an author

(in other words, we treat sole authored and coauthored papers as equivalents). Second, we

used the affiliation data available in the Web of Science to identify all instances in which

a scientist wrote a paper that was coauthored with one or more individuals in a corporate

research and development lab. We consider the rate of publication of papers with coauthors

in industry as an indicator of the degree to which scientists are engaging in commercially-

oriented research. We also keep track, for each journal in which our scientists published, of

the relative prevalence of authors with corporate affiliations.11 In particular, for each scientist

and in each year, we compute, following Lim (2004), an average Journal Commercial Score

(JCS) by weighting each publication by the proportion of corporate authors who publish in

the corresponding journal, summing the weights corresponding to all the articles published

by the scientist in a given year, and dividing this sum by the (unweighted) number of articles

he/she published during the year.

10Faculty members are contractually obligated to disclose potentially commercializable discoveries devel-
oped on university premises to the TTO; they do not have the option to patent university-originated dis-
coveries without going through the official channels. On average, TTO received 78 invention disclosures in
2003, but filed only 40 new patent applications (AUTM, 2003). Of course, these numbers vary widely across
institutions depending on whether involvement with the world of commerce corresponds to a well-established
culture within the institution.

11For example, 35.7% of the affiliations for the authors publishing articles in the Journal of Medicinal
Chemistry correspond to corporations. In contrast, the number is only 1.60% for the Journal of General
Physiology.
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We use a two-pronged approach to measure the quality of the articles published. First,

we make use of the order of authorship, computing the proportion of articles in which the

scientist appears in first or last position. This choice is motivated by a robust social norm

in the life sciences which systematically assigns last authorship to the principal investiga-

tor (generally the head of the laboratory), first authorship to the junior author who was

responsible for the actual conduct of the investigation, and apportions the remaining credit

to authors in the middle of the authorship list, generally as a decreasing function of the

distance from the extremities of the list. In the second approach, we make use of the Jour-

nal Citation Reports, published yearly by the Institute for Scientific Information. ISI ranks

journals by impact factor (JIF) in different scientific fields. The impact factor is a measure

of the frequency with which the “average article” in a journal has been cited in a particular

year. We weight each article published by the scientists in our sample by the corresponding

journal’s JIF, sum these weights for all the published output in a given year, and divide

by the yearly publication count. The resulting variable can be thought of as a measure of

quality for the average article published by one of our scientists in a given year.12

Patents. The patents of the academic scientists in our data were assembled from the NBER

patent database (Hall et al., 2001). To identify academic patenters, we matched the scientists

in our dataset to the list of inventors in the NBER patent database. Matches were done

on the basis of first and last names, and we used information on assignee (university) and

geographic region to eliminate false matches. For each scientist in our data, we generated

flow and stock measures of patent applications, as well as corresponding dummy variables.

Control variables. Following a number of studies of the determinants of scientists’ produc-

tivity, we were also able to construct a rich set of control variables to account for individual

12Basically a ratio between citations and recent citable items published, JIFs suffer from built-in biases:
they tend to discount the advantage of large journals over small ones, of frequently-issued journals over less
frequently-issued ones, and of older journals over newer ones. Nonetheless, they convey quite effectively the
idea that the New England Journal of Medicine (Impact Factor = 23.223 in 1991) is a much more influential
publication than the Journal of General Internal Medicine (Impact Factor = 1.056 in 1991). In an ideal
world, rather than assigning an identical weight to all publications appearing in a given journal, we would
instead weight each publication by the number of citations it garnered from other scientists. At the present
time, querying the Web of Science to collect this information is prohibitively time-consuming since this
database does not provide time-varying citation data.
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and institutional attributes that may influence rates of publication and patenting. To ac-

count for life-cycle effects (Levin and Stephan, 1991), we include the number of years since

a scientist earned his or her Ph.D. An extensive literature in the sociology of science has

documented gender differences in productivity (e.g., Long and Fox, 1995), so we include

a “scientist is female” dummy variable. Because the time involved in publishing scientific

research varies across fields, the regressions include a set of dummies for researchers’ disserta-

tion subject areas. Some of the regressions control for quality differences among researchers

through the inclusion of scientist fixed effects. In specifications without fixed effects, we

enter a dichotomous measure of the quality of a scientists’ Ph.D.-degree granting institution

— a dummy variable indicating whether or not a scientists’ doctoral program was ranked in

the Top 20. Specifically, we collected Gourman Report rankings for all institutions in our

dataset. Gourman rankings for graduate schools were issued for the first time in 1980. We

assigned universities their original rating for all years prior to 1980 and updated them every

other year for the subsequent period. We also included in the models the stock of patents

issued to the Ph.D-granting institution in the five years preceding the doctorate, to fur-

ther control for the “imprinting” of norms regarding commercial activities during graduate

training.

From previous research, we know that institutional context has an effect on the propen-

sity to commercialize research, either in the form of a well-funded technology licensing office,

or through the presence of prominent peers who themselves are engaged in this activity (Di

Gregorio and Shane 2003; Lach and Schankerman 2004; Stuart and Ding, 2006). As a result,

we also include in our models a number of employer-level variables. These covariates are

updated each year and when scientists change employers. First, we include a quality rank

dummy variable analogous to the one constructed for Ph.D.-granting institutions. There are

a variety of reasons why scientists at prominent universities are likely to be more produc-

tive, including the availability of more resources and easy access to high quality colleagues.

Second, we used the AUTM surveys to create a technology transfer office (TTO) dummy

variable, which is set to one in all years in which a scientist’s employing university has an
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active TTO. Third, a university’s stock of patents is entered in the model, among other

things to further control for institutional differences in support for patenting.

Patentability. In the regressions for selection into patenting used to construct the inverse

probability of treatment weights, it would obviously be desirable to account for differences

among scientists in the inherent “patentability” of their research. In past studies, latent

patentability was thought to be unobservable, and researchers used field fixed effects as

controls in order to hold constant individual scientists’ research agendum. In contrast, we

attempt to measure patentability directly. To construct such a measure, we use the title

words in scientists’ publications to identify the areas in which they have conducted research,

and then apply weights to theses areas based on an (endogenous-to-the-sample) measure of

the extent to which other scientists working in these areas have patented their discoveries.

Intuitively, we use the publications of scientists that have already applied for patent rights as

the benchmark for patentable research, and then compare the research of each scientist in our

dataset to this benchmark to generate a research patentability score for each scientist-year.

Specifically, the research patentability score for scientist i in year t is defined as:

PATENTABILITYit =
J∑

j=1

wi
j,t−1

nijt∑
k nikt

where j = 1, . . . , J indexes each of the scientific keywords appearing in the titles of the

journal articles published by scientist i in year t,13 nijt is the number of times each of the

keywords j has appeared in scientist i’s articles published in year t, and wi
jt is a weight for

each keyword that measures the frequency with which word j is used in the titles of articles

published by scientists who have entered the patenting regime in year t or earlier, relative to

those who have not entered the patenting regime as of year t (the calculation of wi
jt is detailed

in Appendix I). Intuitively, the patentability of a scientist’s research can change because of a

change in the direction of the research of that scientist, or because other patenters’ research

increasingly comes to resemble that of the scientist. The former effect is captured by the

13We relied on title words in journal articles instead of journal- or author-assigned keywords because the
Web of Science database did not begin to include keyword descriptors until 1992. However, the titles of
biomedical research papers typically indicate the research area and the methodology used in the paper. We
find high overlap between title words and keywords in the papers for which both are available.
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ratio
nijtP
k nikt

, the latter by the weights wi
j,t−1. Because the benchmark in year t − 1 is used

to weight title words in year t, year-to-year changes in the research patentability score will

only reflect actions of the scientist (through their choices of title keywords), rather than

contemporaneous changes in the benchmark.14

Finally, to capture the idea that the inherent patentability of past research might still

influence the current propensity to patent, we compute a depreciated stock of the research

patentability score using a perpetual inventory model. Through the impact of the deprecia-

tion rate δ, this formulation captures the fact that the recent substantive research orientation

of a scientist’s research should influence current behavior more strongly than scientific tra-

jectories that unfolded in the more distant past:15

STOCK RPit = (1− δ)STOCK RPi,t−1 + FLOW RPit =
t∑

τ=0

(1− δ)t−τ · FLOW RPiτ

4.2 Descriptive Statistics

Out of a population of 3,862 scientists, we found 473 (12.2%) patenters who were listed on

1,372 patents. Out of these patents, 342 were assigned to corporate entities (of which 31 were

co-assigned to a university and a corporation), even though the inventors of interest were

academically affiliated based on information revealed in other patent applications filed by the

inventor or in publication records. Most of these corporate patents have multiple inventors

and a university scientist could be listed as one of the inventors for his advice during the

process of invention. A typical example is Richard J. Lagow, who obtained a Ph.D. in

inorganic chemistry from Rice University in 1970 and subsequently held professorships at

MIT and the University of Texas Austin. Lagow began patenting in 1973 and his patents

have been assigned to MIT, University of Texas, and Exfluor Research Corporation. Among

14Previous researchers have developed other measures of proximity in technological space. For instance,
Jaffe (1986) used a cosine-based measure to assess the proximity between the R&D portfolio of any given
pair of firms. While this approach works well for measuring technological distance between dyads, it is not
well suited to our setting, since we need to measure the distance between the scientific trajectory of any
given scientist relative to that of a benchmark group of (patenting) scientists.

15We set δ equal to 0.15 — the Griliches constant — which has been used by many innovation researchers
on whose work this paper builds. We verified that our core results are not sensitive to this arbitrary choice.
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the 31 patents for which Exfluor is the assignee and Lagow is an inventor, 28 involved multiple

inventors and 3 listed Lagow as the sole inventor. Based on the data sources available to us, it

is not possible to determine the exact role of Lagow in developing these inventions and what

type of arrangement Lagow has with University of Texas, but from the titles and abstracts

of the Exfluor patents it is clear that the patented inventions are based on knowledge closely

related to Lagow’s research. Therefore, our data suggests that a non-trivial portion of faculty

patenting activity may occur without the official involvement of their employing university’s

technology transfer office.

In Figure 1, we plot the distribution of patents for the patenting researchers in our

sample. The histogram illustrates a rapid drop off after one — most patenters are listed

on 1 or 2 patents throughout their career, and very few scientists in our data receive more

than 10 patents. Figure 2 displays the distribution of scientists’ total publication counts by

the end of our observation period, broken out by their patenting status. Consistent with

the conventional wisdom that patenting is concentrated among the group of academically

productive scientists, the distribution for the patenter subsample is much less skewed than

that for the non-patenter subsample.

Table 2 presents the summary descriptive statistics for variables used in our analysis.

Table 3 reports, by scientists’ patenting status, the mean research and employer characteris-

tics measured at five career stages. Researchers who have sought and received patent rights

for their discoveries are more productive at each career stage: they publish more research

papers as those who have not yet entered the patenting regime, and those papers appear to

be of marginally higher quality (as captured by average JIF). Scientists who have applied

for patent rights are closer to commercial research than their non-patenting counterparts,

especially at the beginning of their career; they collaborate more often with researchers in

the private sector and the intrinsic patentability of their research appears higher. However,

these differences vanish at later career stages. Finally, patenters are more likely to work

in settings where a technology transfer office exists and patenting activity is intensive. Of

course, these univariate comparisons are subject to “static” omitted variable bias in addition

to the dynamic selection bias mentioned in section 3.
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4.3 Results

We present four sets of results. Table 4 focuses on the antecedents of selection into patenting,

and on the determinants of exit from academia. It provides evidence on the importance

of time-varying confounding, and displays the specifications from which our probability of

treatment and censoring weights are derived. Using these weights as inputs, the following

tables present results pertaining to the effect of patenting on the rate (Table 5), quality

(Table 6), and direction (Tables 7) of scientific output.

Determinants of patenting activity. We begin by presenting results pertaining to the

probability of applying for a patent in a given year (flow formulation) or for the first time

(regime formulation). The results are displayed in Table 4. It is important to note that the

list of independent variables and the risk set differ significantly across the flow and regime

models. In the former, all scientist-year observations are included, and the list of independent

variables includes a lag structure for patenting in order to address the possibility of structural

state dependence. In the latter, the observations corresponding to years subsequent to the

year of the first patent application are not part of the risk set; consequently, no lag structure

for the dependent variable can be part of the set of right-hand side variables.

The econometric analysis confirms that time-varying confounders are important determi-

nants of patenting activity for these scientists. First, controlling for the stock of publications

up to year t− 2, the probability of patenting in year t is significantly increasing in the flow

of publications in year t − 1: at the mean of the data, a standard deviation increase in

the flow of lagged publications increases the probability of patenting by 10.40% for the flow

specification (column 1a) and by 20.3% for the regime specification (column 2a).16

This conditional correlation strikes us as being an important finding, for it can help distin-

guish between competing interpretations of the association between scientific productivity

and involvement with the world of commerce. In the first interpretation, commercializa-

tion activities correspond to attempts by academics to monetize established reputations and

16In a companion paper (Azoulay et al., 2005), we confirm that this result is robust to much more flexible
specifications of the lag structure.
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professional status. In the second interpretation, publications and patents are co-occuring

outputs that encode the same set of scientific insights; patents, just like publications, re-

flect genuine shocks to scientific opportunities. We see the correlation between the onset of

patenting and the lagged flow, but not the stock, of publications as much more consistent

with the latter interpretation.17 The plausibility of this interpretation is reinforced by a

peculiar aspect of US patent law, which grants inventors a one-year grace period from the

date of publication for the filing of a patent application (Merges, 1997, p. 226). In other

words, an academic inventor wishing to maximize the effective life of a patent would apply

to the USPTO exactly 364 days after the date of publication, provided that he/she is willing

to forego patent protection in foreign jurisdictions.18

We also find that previous ties to industry in the form of coauthorships, and the stock

of patents for the university where the scientist obtained his/her doctorate increases the

likelihood of patenting activities. Similarly, scientists working in areas of science that are

inherently more amenable to patenting are, unsurprisingly, more likely to patent. At the

mean of the data, a high (in the top quartile) research patentability score increases the

probability of patenting by 36.20% (column 1a) and by 39.90% (column 2a).19 Just as in

the case of publications, the onset of patenting appears simultaneous with a change in the

content of a scientist’s research in a direction that makes it more similar to that of scientists

who have already applied for patent rights. But because it is the flow, and not the stock of

this measure that seems to matter, the evidence is consistent with the idea that a patent

application does not constitute merely a response to changes in the formal and informal

17This interpretation is also consistent with Murray and Stern’s (2005) analysis of paper-patent pairs,
but it suggests that this phenomenon is not confined to the single journal whose articles they analyze. Of
course, since we do not examine the actual content of patents and papers, we can only provide circumstantial
evidence in favor of a substantive linkage between these two forms of output. In practice, it seems likely that
patentable claims will be spread over a number of papers revolving around a common theme, some published
before, some after the filing of the patent application.

18This result also provides strong evidence against the crowding-out hypothesis, at least in its simplest
form. If the patent application process carried a high opportunity cost of time, one would expect this to be
reflected in the output of patenting scientists before their first patent application. The opposite is true.

19This conclusion is not altered when using a more flexible functional form to model the distributed lag
of the latent patentability score (Azoulay et al., 2005).
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incentives faced by academic scientists over their careers, but also reflects the seizing of

opportunities along a novel research trajectory.

In light of the results above, the shortcomings of fixed-effects estimation strategies become

clearer. Selection into patenting is influenced by transitory shocks to outcome variables of

interest, such as publications and their commercial content. While scientist fixed effects

purge econometric estimates from selection bias stemming from immutable characteristics,

they will fail to account for the transitory dynamics highlighted above.

Determinants of exit from academia. Models 3a and 3b display the results correspond-

ing to specifications modeling the probability of exit from academia. A priori, one might

imagine that academic scientists leave academia because they do not achieve success in the

publication game. One might also conjecture that very productive academics are more likely

to be poached by the private sector, leading to a premature exit from the academic ranks.

We find support for both stories. Even controlling for the stock of past publications, a dry

spell in academic productivity significantly increases the likelihood of exit. The stock of

patents up to year t − 2 and research patentability are found to have no meaningful effect,

but a patent application in year t− 1 is associated with a 34.9% increase in the probability

of exit — although the effect is only marginally significant (column 3a).

Effect of patenting on the rate of publication output. Table 5 is divided into three sets

of results, corresponding to three definitions of the patenting effect: flow (Models 1a, 1b, and

1c), regime (Models 2a, 2b, and 2c), and stock (Models 3a, 3b, and 3c). Within each set, the

first column reports on the determinants the rate of publication using the conditional fixed

effect poisson model of Hausman et al. (1984). As noted earlier, these estimates are likely

to understate the causal effect of patenting. The second column is a “näıve” specification

for the count of research publications, using Poisson Quasi-Maximum Likelihood Estimation

(PQMLE).20 The corresponding estimates are likely to be biased upwards by unobserved

heterogeneity. The third column is identical to the second except that it also incorporates

20Because the Poisson model is in the linear exponential family, the coefficient estimates remain consistent
as long as the mean of the dependent variable is correctly specified (Gouriéroux et al., 1984). Further,
“robust” standard errors are consistent even if the underlying data generating process is not Poisson. In fact
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our inverse probability of treatment and censoring weights. Under the sequential conditional

independence assumption, these estimates correspond to the average treatment effect of

patenting. Table 5 yields three robust results: (a) regardless of the method employed, the

estimated effect of patenting is positive and statistically significant; (b) the IPTCW estimates

are always higher than the conditional fixed effect estimates; and (c) in the cross-section,

the magnitude of the effect is much lower once we account for self-selection into patenting.

The formula (eβ − 1)× 100% (where β denotes an estimated coefficient) provides a number

directly interpretable in terms of elasticity. For example, the estimates in columns 2a, 2b,

and 2c imply elasticities of publishing with respect to patenting equal to .215, .483 and .265,

respectively.

Effect of patenting on the quality of publication output. Table 6 uses two distinct

measures of publication quality.21 The first is the proportion of publications in which the

researcher appears in first or last position in the authorship list (Models 1a and 1b). We

estimate the model using the quasi-maximum likelihood fractional logit estimator of Papke

and Wooldridge (1996). The estimated effect is small in magnitude, flips sign between the

unweighted and weighted version of the model, and is statistically insignificant in both cases.

This suggests that patenting has very little impact on authorship position.

Our second measure is the average journal impact factor for the articles published in a

given year (Models 2a and 2b). Estimation is performed using the Poisson QML approach

as in Table 5. Here, we do find a positive and statistically significant effect, although it is

quite small in magnitude (with an elasticity of about .05). From this mixed set of results,

we conclude that the publication boost estimated in Table 5 does not come at the expense

of the quality of these publications.

Effect of patenting on the content of publication output. Measuring the direction

of scientific progress is always more challenging than merely measuring scientific output. In

the PQML estimator can be used for any non-negative dependent variables, whether integer or continuous
(see Santos Silva and Tenreyro, Forthcoming).

21These two measures are not defined whenever a scientist has no output in a given year. As a result, the
estimation sample shrinks by about a third.
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Table 7, we propose three distinct ways of measuring the commercial content of scientists’

publications, and we show that our conclusions are not sensitive to the choice of measure.

We begin by using the research patentability score described in section 4 as the dependent

variable, and we perform estimation using the PQML estimator in columns 1a and 1b (since

RP is a non-negative, albeit continuous, dependent variable). Patenting increases modestly

the latent patentability of the research published in the post-patenting regime, even when we

adjust for confounding (our weights take into account the fact that a shock to patentability in

period t− 1 is associated with an increased likelihood of patenting at time t). For example,

the estimates in Model 2b imply that entering the patenting regime increases RP by a

statistically significant 8.8%.

Models 2a and 2b provide a different angle on the same question by focusing on the

institutional affiliations of our scientists’ coauthors. In the years of positive output, we

compute the fraction of of total publications accounted for by articles in which at least one

coauthor has an industry affiliation. At the mean of the data, the IPTCW estimates imply

that entering the patenting regime increases this proportion by a statistically significant

29.4%. The näıve cross-sectional estimate is of a similar magnitude.

Finally, Models 3a and 3b use the average Journal Commercial Score (JCS) as the depen-

dent variable. Starting from a journal-specific index that measures the proportion of authors

publishing in the journal that have an industry affiliation, we compute the scientist-specific

score by averaging these weights over all articles published in a given year.22 Patenting

appears to increase the average JCS in a statistically significant fashion, but the magnitude

of the effect is modest: at the mean of the data, the IPTCW estimates correspond to 4.2%

increase in average JCS for patenting scientists.

Taken together, however, these results paint a consistent picture whereby patenting in-

creases the rate of scientific output while maintaining its quality, but also changes the content

of these publications by connecting them more tightly to the world of commerce.

22Note that this measure has the advantage of not conflating the effect of patenting on the content of
publications with its effect on the quantity of publication. As in the case of the average JIF, however, it
suffers from the shortcoming that it is not defined whenever a scientist does not publish in a given year.
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Sensitivity analysis. If the fixed effect specifications understate the causal effect of patent-

ing, but the IPTCW specifications overstate it, Models 2a and 2c in Table 5 imply that the

average treatment effect of patenting on publication rates, expressed as an elasticity, lies

within the interval [0.215; 0.265]. In order to gauge the robustness of inverse probability of

treatment-weighted estimation to confounding by unobserved variables, we conduct a sen-

sitivity analysis. Following Robins (1999a) and Brumback et al. (2004), we ask how much

unmeasured confounding would there need to be for the confidence interval around our treat-

ment effect to include 0? This approach compels us to parameterize the bias from unobserved

confounding — a functional form choice that is guided by little else than intuition regarding

the cause and direction of bias. As such, the exercise does not provide a formal specification

test for our results. Yet, its results are reassuring in the sense that our estimates appear

robust to substantial amounts of unmeasured confounding. Estimation details and results

are provided in Appendix II.

5 Discussion and Conclusion

While past research had established that commercialists are disproportionately recruited

from the ranks of elite scientists and institutions (Zucker et al., 1998), our results build on

this prior literature by showing that patenting is often accompanied by a flurry of publi-

cation activity in the year preceding the patent application, even after accounting for the

lagged stock of publications. This result highlights the fact that academic patenting, rather

than merely reflecting the influence of time-invariant demographic factors, also responds to

variation in scientific opportunities (Azoulay et al., 2005). We also find that academic scien-

tists who patent are more productive than otherwise equivalent scientists that are not listed

as inventors on patents, but that publication quality appears relatively similar in the two

groups. Thus, the evidence appears to reject the assertion that the increase in patenting

in academe has come at the cost of diverting researchers’ time, interest, and attention from

their traditional focus on standard scientific research. However, we also find that scientists
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alter the content of their research after they patent in ways that make their output more

relevant to questions of commercial interest.

These results depend on the strong assumption that the outcomes we examine be in-

dependent of patenting conditional on the history of observables. As in all observational

studies, this assumption cannot be tested from the data. It is obviously better to include

a large set of potential confounders to model the probability of selection, but we recognize

that in practice, the assumption of selection on observables may still not be precisely or even

approximately tenable. We take solace in the results of a sensitivity analysis showing that

our core result is in fact robust.

There are two other avenues, all outside the scope of this analysis, through which patent-

ing in academic science could yet have a significant — and possibly deleterious — effect on

the advancement of scientific knowledge. As a result, beyond the first-order effect of a scien-

tist’s decision to patent on his or her individual productivity, our conclusions must remain

tempered.

First, as patenting within a department or research area continues to grow, is there a

point at which a negative effect on the collective output sets in, either because researchers

are deterred or blocked by intellectual property rights held by others, or because concerns

about intellectual property rights diminish open communications among scientists? This

“tragedy of the anti-commons” has recently been investigated by Murray and Stern (2005),

who provide evidence that scientific papers paired with patent applications are less likely to

be cited after the patent is granted by the USPTO (though the effect they uncover is modest

in magnitude). In the context of this paper, we present evidence that patenting changes

the content of individual scientists’ research trajectory, but there is a strong leap from our

results to normative statements regarding the welfare implications of this change in research

agenda.

Academic patenting might also alter the career trajectories of the graduate students and

post-doctoral fellows that work in patenters’ laboratories. For instance, patenters may have

much thicker and more diverse relationships with researchers in firms than non-patenting
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scientists, which may in turn facilitate apprentice scientists’ job searches in the private

sector. Therefore, patenters may (perhaps unintentionally) encourage their students to se-

lect private-sector careers above academic posts. Conversely, if patenters enlist the help

of scientists-in-training in the research streams that lead to patents, and if these projects

are different from the research topics that intrigue non-patenters, apprentices training un-

der patenters may be less appealing to academic departments searching for new faculty. In

short, the most significant impact of patenting on public research output may well lie in

the consequence of the behavior for non-patenting and soon-to-be scientists. We plan to

investigate this topic in future research.
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Table 1 
Top 15 Scientific Disciplines in the Sample 

UMI 
Subject  
Code 

UMI Subject Description Frequency 

487 Biochemistry 855 (22.1%) 

306 Biology, General 563 (14.6%) 

410 Biology, Microbiology 466 (12.1%) 

419 Health Sciences, Pharmacology 239 (6.2%) 

490 Chemistry, Organic 212 (5.5%) 

786 Biophysics, General 210 (5.4%) 

369 Biology, Genetics 191 (4.9%) 

433 Biology, Animal Physiology 170 (4.4%) 

982 Health Sciences, Immunology 167 (4.3%) 

307 Biology, Molecular 102 (2.6%) 

301 Bacteriology 61 (1.6%) 

287 Biology, Anatomy 54 (1.4%) 

571 Health Sciences, Pathology 52 (1.3%) 

349 Psychology, Psychobiology 37 (1.0%) 

572 Health Sciences, Pharmacy 33 (0.9%) 

Legend: Table 1 reports the Top 15 disciplines from which the sample was 
drawn and the number and proportion of scientists in each of the 15 scientific 
disciplines. The table also reports the frequency and the proportion of 
scientists in our sample for each of these 15 scientific disciplines. 
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Table 2  
Descriptive Statistics 

  Mean Std. Dev. Min. Max. N 

Patent Flow (=1 if one or more patent app. in year) 0.017 0.131 0 1 58,562 

Patent Regime (=1 after first patent app.) 0.073 0.261 0 1 58,562 

Patent Stock 0.184 1.175 0 57 58,562 

Research Publication Flow 1.729 2.379 0 35 58,562 

Research Publication Stock 17.563 26.759 0 386 58,562 

Fraction of First or Last Authored Publications (Flow)  0.619 0.397 0 1 38,007 

Average JIF of Publications (Flow) 3.956 3.101 0.005 30.334 38,007 

Average Journal Commercial Score of Pubs. (Flow)  0.076 0.055 0.001 1 38,007 

Fraction of Pubs. with Industry Coauthors (Flow) 0.075 0.223 0 1 38,007 

Research Patentability Score (Flow) 0.022 0.049 0 4.173 58,562 

Research Patentability Stock 0.111 0.142 0 4.201 58,562 

Employer Graduate School in Top 20 0.231 0.422 0 1 58,562 

Employer Has TTO 0.488 0.500 0 1 58,562 

Employer Patent Stock 71.80 145.18 0 2,189 58,562 

Experience (Career Age) 10.201 7.122 1 32 58,562 

Calendar year 1986 7.741 1968 1999 58,562 

Female 0.183 0.387 0 1 3,862 

Ph.D. Univ. Grad. School in Top 20 0.308 0.462 0 1 3,862 

Ph.D. Univ. 5-year Patent Stock 18.983 40.906 0 566 3,862 

Scientist Has One or More Patents 0.122 0.328 0 1 3,862 
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Table 3 
Mean Scientist and Employer Characteristics 

at Five Career Stages, by Patent Application Status 
  Experience = 5 Experience = 10   Experience = 15  Experience = 20  Experience = 25 

 Scientist ever applied for a patent right Yes No Yes No  Yes No Yes No Yes No 

(1) Count of Research Publications (Flow) 1.563 
(1.648) 

1.290 
(1.801)

2.524 
(2.945) 

1.821 
(2.228)  3.208 

(3.276)
2.036 

(2.629) 
3.513 

(4.029)
2.215 

(2.888) 
3.395 

(4.023)
2.179 

(2.955) 

(2) Count of Research Publications (Stock) 6.760 
(5.971) 

5.832 
(6.668)

19.066 
(16.753)

14.996 
(14.819)  35.389 

(28.251)
24.429 

(23.490)
50.974 

(40.143)
37.227 

(34.069)
74.386 

(60.078)
48.098 

(45.535) 

(3) Fraction of First or Last Authored Pubs. 0.625 
(0.404) 

0.605 
(0.416)

0.604 
(0.390) 

0.628 
(0.394)  0.568 

(0.366)
0.623 

(0.383) 
0.617 

(0.362)
0.577 

(0.392) 
0.654 

(0.345)
0.566 

(0.389) 

(4) Average JIF of Research Publications 5.257 
(4.133) 

4.107 
(3.368)

4.441 
(3.586) 

3.901 
(2.982)  4.161 

(2.785)
3.800 

(2.765) 
4.021 

(3.004)
3.586 

(2.616) 
4.244 

(2.751)
3.417 

(2.660) 

(5) Average JCS of Publications 0.070 
(0.039) 

0.077 
(0.056)

0.074 
(0.053) 

0.077 
(0.060)  0.084 

(0.075)
0.075 

(0.051) 
0.068 

(0.037)
0.073 

(0.050) 
0.062 

(0.031)
0.075 

(0.057) 

(6) Fraction of Pubs. with Industry Coauthors 0.145 
(0.306) 

0.052 
(0.196)

0.102 
(0.250) 

0.077 
(0.230)  0.089 

(0.225)
0.085 

(0.233) 
0.105 

(0.251)
0.114 

(0.260) 
0.108 

(0.225)
0.099 

(0.239) 

(7) Research Patentability Score (Flow) 0.024 
(0.028) 

0.016 
(0.050)

0.043 
(0.133) 

0.023 
(0.047)  0.037 

(0.032)
0.027 

(0.032) 
0.047 

(0.048)
0.032 

(0.041) 
0.037 

(0.029)
0.036 

(0.038) 

(8) Research Patentability Score (Stock) 0.078 
(0.074) 

0.052 
(0.091)

0.178 
(0.183) 

0.113 
(0.142)  0.230 

(0.181)
0.157 

(0.130) 
0.289 

(0.166)
0.209 

(0.144) 
0.293 

(0.122)
0.245 

(0.175) 

(9) Employer Grad. School in Top 20 0.323 
(0.470) 

0.264 
(0.441)

0.313 
(0.465) 

0.219 
(0.413)  0.250 

(0.434)
0.200 

(0.400) 
0.197 

(0.399)
0.181 

(0.385) 
0.175 

(0.382)
0.170 

(0.376) 

(10) Employer has TTO 0.531 
(0.502) 

0.384 
(0.486)

0.620 
(0.487) 

0.486 
(0.500)  0.694 

(0.462)
0.595 

(0.491) 
0.719 

(0.450)
0.688 

(0.463) 
0.825 

(0.382)
0.738 

(0.440) 

(11) Employer Patent Stock 107.4 
(206.8) 

53.6 
(136.7)

159.4 
(307.3) 

64.6 
(133.7)  143.0 

(224.1)
75.9 

(116.4) 
134.4 

(185.1)
110.2 

(155.1) 
172.3 

(238.6)
120.8 

(163.7) 
 Number of scientists (rows 1, 2 and 7-11) 96 3,610 166 2,429  216 1,621 228 1072 114 519 
 Number of scientists (rows 3-6) 69 2,278 128 1,646  176 1,108 198 738 87 355 
Legend: Table 3 reports the mean and standard deviation (in parentheses) of scientist research and employer characteristics measured at five career ages: 
the 5th, 10th, 15th, 20th and 25th year after a scientist was granted a Ph.D. At each professional age, the table is further broken out by whether a scientist has 
applied for at least one patent right throughout his career. For example, if a scientist applied for a patent right during the 20th year after he was granted a 
Ph.D., he contributed to the mean values of the “no” category of experience = 5, 10 and 15, and to the mean values of the “yes” category of experience = 20 
and 25.
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Table 4 
Probability of Patenting and Exiting Academia 

   Model 1a   Model 1b   Model 2a    Model 2b Model 3a Model 3b 

Dependent Variable Patent Flow Patent Regime  Exit Academia 
 Denominator Numerator   Denominator   Numerator Denominator  Numerator

0.141 0.195 0.166 0.239   Experience = [5, 8] (0.153) (0.153) (0.166) (0.164)   
0.219 0.347 0.305 0.432  0.206 -0.006Experience = [9, 15] (0.155) (0.151)* (0.168)† (0.162)**  (0.060)** (0.057)
0.022 0.218 0.252 0.401  0.116 -0.264Experience = [16, 22] (0.174) (0.162) (0.196) (0.180)*  (0.087) (0.077)**

-0.357 -0.097 -0.343 -0.232  0.371 -0.122Experience = [23, 35] (0.213)† (0.198) (0.278) (0.267)  (0.116)** (0.101)
-0.649 -0.675 -0.663 -0.700  0.147 0.243Female (0.130)** (0.133)** (0.153)** (0.152)**  (0.054)** (0.053)**

1.971 2.048  0.299 Patent Flow t-1 (0.093)** (0.128)**  (0.174)†

1.945 2.065  -0.128Patent Stock t-2 (0.124)** (0.093)**  (0.103)
0.042 0.083  -0.215Publications Flow t-1 (0.016)** (0.022)**  (0.024)**

0.003 -0.001  -0.013Publications Stock t-2 (0.002) (0.002)  (0.003)**

0.309 0.336  -0.097High Research Patentability t-1 (0.093)** (0.112)**  (0.068)
0.129 0.247  0.017 Research Patentability Stock t-2 (0.309) (0.300)  (0.203)
0.076 0.061  0.055 Has Industry Coauthors t-1 (0.093) (0.113)  (0.061)
0.143 -0.014  0.054 Employer Grad. School in Top 20 (0.113) (0.119)  (0.059)
0.137 0.012  -0.050Employer has TTO t-1 (0.096) (0.118)  (0.053)
-0.007 0.090  0.031 Employer Patent Stock t-1 × 100 (0.026) (0.033)**  (0.016)†

0.011 0.053 0.089 0.121  -0.151 -0.181Ph.D. Univ Grad. School in Top 20 (0.092) (0.089) (0.104) (0.104)  (0.053)** (0.053)**

0.001 0.001 0.001 0.002  -0.001 -0.001Ph.D. Univ. 5-Year Patent Stock 
(0.001) (0.001)† (0.001) (0.001)*  (0.001) (0.001)
-6.043 -5.968 -6.098 -6.039  -4.383 -4.533Constant (0.295)** (0.300)** (0.304)** (0.302)**  (0.139)** (0.139)**

Observations 58,562 58,562 54,746 54,746  58,437 58,437
Number Of Researchers 3,862 3,862 3,862 3,862  3,862 3,862
Log Pseudo-Likelihood -3,956.36 -3,994.80 -2,549.11 -2,578.29  -8,878.77 -9,092.91
Wald Χ2 2,263.35 2,089.54 348.72 272.91  564.09 308.91
Number Of Variables 48 40 46 38  47 37
Notes: 
(1) Models 2a-2b exclude observations after a researcher has filed for his or her first patent application. Models 3a-3b exclude 
observations after a researcher has accumulated 30 years’ professional experience (at which point he or she is no longer considered 
at risk of exiting academia). 
(2) All models control for Ph.D. subject and calendar year dummies. 
(3) Robust standard errors in parentheses, clustered around individual researchers. 
(4) † significant at 10%; * significant at 5%; ** significant at 1%.
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Table 5 
Effect of Patenting on the Rate of Publications: Poisson Models 

 Model 1a Model 1b Model 1c   Model 2a Model 2b Model 2c   Model 3a Model 3b Model 3c

Scientist Fixed Effects Yes No No Yes No No Yes No No 

IPTC Weights No No Yes No No Yes No No Yes 

0.160 0.205 0.209 0.161 0.200 0.206 0.162 0.206 0.209 Experience = [5, 8] (0.018)** (0.018)** (0.018)** (0.018)** (0.018)** (0.019)** (0.018)** (0.018)** (0.018)** 
0.260 0.445 0.428 0.262 0.430 0.420 0.263 0.447 0.425 Experience = [9, 15] (0.029)** (0.030)** (0.033)** (0.029)** (0.030)** (0.033)** (0.028)** (0.030)** (0.033)** 
0.229 0.554 0.443 0.228 0.521 0.427 0.229 0.548 0.430 Experience = [16, 22] (0.041)** (0.049)** (0.047)** (0.041)** (0.049)** (0.047)** (0.041)** (0.049)** (0.047)** 
0.085 0.521 0.348 0.085 0.487 0.335 0.082 0.494 0.332 Experience = [23, 32] (0.050)† (0.073)** (0.069)** (0.050)† (0.073)** (0.070)** (0.050)† (0.073)** (0.069)** 
 -0.215 -0.230  -0.203 -0.224  -0.216 -0.225 Female  (0.052)** (0.049)**  (0.051)** (0.049)**  (0.052)** (0.049)** 
 0.067 0.056  0.063 0.052  0.070 0.054 PhD Univ. Grad School in Top 20  (0.042) (0.041)  (0.042) (0.041)  (0.042)† (0.041) 
 0.046 0.046  0.043 0.048  0.047 0.046 PhD Univ. 5-yr Patent Stock × 100 
 (0.048) (0.047)  (0.047) (0.047)  (0.048) (0.047) 
0.165 0.539 0.300       

Patent Flow (0.028)** (0.057)** (0.057)**       
   0.195 0.394 0.235    

Patent Regime    (0.031)** (0.048)** (0.047)**    
      0.016 0.045 0.055 Patent Stock       (0.010) (0.012)** (0.011)** 
 0.033 0.038  0.034 0.041  0.037 0.040 Constant  (0.044) (0.044)  (0.044) (0.045)  (0.044) (0.044) 

Log pseudo-likelihood -78,109.5 -120,275.9 -117,023.9 -78,070.0 -119,953.1 -117,057.9 -78,126.2 -120,266.5 -116,923.5
Wald χ2 2,897.67 1,234.53 975.28 2,966.37 1,301.65 948.59 2,858.59 1,228.92 983.47 
Number of covariates 29 39 39 29 39 39 29 39 39 

Notes: 
(1) Number of observations = 58,562; number of researchers = 3,862. 
(2)  All models control for calendar year dummies; all cross-sectional models also control for Ph.D. subject dummies.     
(3) All cross-sectional models report robust standard errors in parentheses, clustered around researchers.  
(4) † significant at 10%; * significant at 5%; ** significant at 1%. 
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Table 6 
Effect of Patenting on the Quality of Publications 

  Model 1a  Model 1b   Model 2a Model 2b 
 Fractional Logit 

QML Estimates 
Proportion of First or Last-

Authored Publications 

Poisson Model 
QML Estimates  
Average JIF of 
Publications 

 
Unweighted IPTCW Unweighted IPTCW 

-0.096 -0.096 -0.087 -0.088 Experience = [5, 8] 
(0.029)** (0.029)** (0.013)** (0.013)** 

0.034 0.029 -0.189 -0.186 
Experience = [9, 15] (0.034) (0.034) (0.018)** (0.018)** 

0.133 0.122 -0.273 -0.275 
Experience = [16, 22] (0.046)** (0.046)** (0.027)** (0.027)** 

0.155 0.137 -0.354 -0.366 
Experience = [23, 32] (0.068)* (0.070)† (0.039)** (0.040)** 

-0.003 0.0003 0.031 0.033 
Female (0.038) (0.038) (0.022) (0.022) 

0.050 0.047 0.135 0.131 
PhD Univ. Grad School in Top 20 (0.033) (0.033) (0.021)** (0.021)** 

0.049 0.041 0.086 0.094 PhD Univ. 5-yr Patent Stock × 100
(0.042) (0.043) (0.030)** (0.029)** 

0.026 -0.004 0.077 0.052 
Patent Regime (0.048) (0.051) (0.029)** (0.030)† 

0.826 0.827 1.370 1.371 
Constant (0.047)** (0.047)** (0.023)** (0.023)** 

Log pseudo-likelihood -22,238.9 -21,846.2 -91,867.7 -90,193.4 
Wald χ2 272.6 268.9 642.1 680.8 

Notes: 
(1) Number of observations = 38,007; number of researchers = 3,862; number of variables = 39. 
(2) All models control for PhD subject and calendar year dummies.  
(3) Robust standard errors are reported in parenthesis, clustered around researchers. 
(4) † significant at 10%; * significant at 5%; ** significant at 1%. 
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Table 7  

Effect of Patenting on the Commercial Content of Publications 

  Model 1a   Model 1b  Model 2a Model 2b  Model 3a Model 3b 
 

Poisson Models 
QML Estimates 

Research 
Patentability 

Fractional Logit 
QML Estimates 

Proportion of Pub. 
with Industry 

Coauthors 

 
Fractional Logit 
QML Estimates  
Average Journal 

Commercial Score 

 Unweighted IPTCW Unweighted IPTCW  Unweighted IPTCW 

0.008 0.005 0.102 0.099  0.016 0.016 Experience = [5, 8] (0.039) (0.039) (0.069) (0.070)  (0.014) (0.014) 

-0.025 -0.024 0.130 0.124  0.006 0.006 Experience = [9, 15] 
(0.038) (0.037) (0.086) (0.086)  (0.019) (0.019) 

-0.054 -0.054 0.122 0.128  0.015 0.019 Experience = [16, 22] (0.038) (0.038) (0.111) (0.111)  (0.025) (0.025) 

-0.103 -0.104 0.087 0.083  0.057 0.076 Experience = [23, 32] (0.042)** (0.043)* (0.154) (0.155)  (0.035) (0.035)* 

-0.023 -0.023 -0.070 -0.066  -0.007 -0.005 Female 
(0.022) (0.023) (0.091) (0.092)  (0.017) (0.017) 

-0.027 -0.025 -0.313 -0.329  -0.069 -0.067 PhD Univ. Grad School in Top 20 (0.021) (0.022) (0.084)** (0.086)**  (0.018)** (0.018)** 

-0.017 -0.018 0.133 0.113  -0.018 -0.018 PhD Univ. 5-yr Patent Stock × 100  
(0.020) (0.020) (0.098) (0.091)  (0.025) (0.026) 

0.090 0.085 0.222 0.278  0.043 0.052 Patent Regime 
(0.028)** (0.029)** (0.088)* (0.097)**  (0.024)† (0.026)* 

-5.700 -5.700 -3.831 -3.827  -2.491 -2.494 Constant (0.353)** (0.352)** (0.153)** (0.153)**  (0.024)** (0.024)** 

Log pseudo-likelihood -4,887.3 -4,750.6 -9,099.0 -8,901.8  -7,669.4 -7,524.1 
Wald χ2 2,089.6 1,939.8 305.47 295.21  431.53 394.01 

Notes: 
(1) Number of observations = 38,007; number of researchers = 3,862; number of variables = 39. 
(2)  All models control for PhD subject and calendar year dummies.  
(3) Robust standard errors are reported in parenthesis, clustered around researchers. 
(4) † significant at 10%; * significant at 5%; ** significant at 1%. 
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Figure 1: 
Distribution of Patent Count for Patenting Scientists 
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Figure 2: 
Distribution of Publication Count for 

Patenting and Non-Patenting Scientists 
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Appendix I: Keyword Weights

wi
jt, the patentability weight for each keyword j in year t is defined as:

wi
jt =

∑
s∈Ip

t −{i}
msjtP
k mskt∑

s∈Inp
t −{i} msjt

where msjt denotes the number of times keyword j has appeared in articles published up to year t by scientist
s, Ip

t is the subset of scientists in our sample that have already applied for one or more patents as of year
t, and Inp

t is the subset of scientists in our sample that have not yet applied for any patent as of year t.
The weight is also indexed by scientist i, because i’s publications are taken out of the set of articles used to
compute the formula above.

To create the numerator of wi
jt, we first create a row-normalized matrix with each scientist in the

patenting regime listed in a row and each of the keywords used to describe their papers up to year t listed
in a column. The sjth cell in the matrix, [msjt/

∑
k mskt], corresponds to the proportion of title keywords

for scientist s that corresponds to keyword j. We then take the column sums from this matrix, i.e., we
sum the contributions of individual patenting scientists for keyword j. Turning next to the denominator,
we proceed in a similar manner, except that the articles considered only belong to the set of scientists who
have not applied for patents as of year t. The numerator is then deflated by the frequency of use for j by
non-patenters (in the rare case of keywords exclusively used by patenters, we substitute the number 1 for
the frequency).

The weights wi
jt are large for keywords that have appeared with disproportionate frequency as descriptors

of papers written by scientists already in the patenting regime, relative to scientists not yet in the patenting
regime.

Two things should be noted about the construction of these weights. First, wi
jt = 0 for all keywords that

have never appeared in the titles of papers written by scientists that have patented before t. Second, the
articles written by scientist i him/herself do not contribute at all to the weights wi

jt. Therefore, no scientist
can directly influence year-to-year changes in these weights.

The final step for each scientist i in the dataset is to produce a list of the keywords in the individual’s
papers published in year t, calculate the proportion of the total represented by each keyword j, apply the
appropriate keyword weight wi

j,t−1, and sum over keywords to produce a composite score. The resulting
variable increases in the degree to which keywords in the titles of a focal scientist’s papers have appeared
relatively more frequently in the titles of other academics who have applied for patents. This score is entered
in the regressions to control for the research patentability of scientists’ areas of specialization.

To illustrate the construction of the research patentability measure, Table A1 lists some representa-
tive keywords, along with their patentability weights in the year 2000. Consider the keyword “ubiquitin”
(italicized in the table) in group 1. In 1999, it had previously appeared 55 times as a keyword in one or
more articles of scientists who had patented prior to 1999. Among them is Keith D. Wilkinson, professor
of biochemistry at Emory University School of Medicine, who is listed as an inventor on a patent filed in
1992. To compute the numerator of the patentability weight for this keyword, we begin with the fraction of
Wilkinson’s research using “ubiquitin” in the title. In his 43 ISI-listed research papers published between
1977 (when he was granted a Ph.D.) and 1999, 133 unique keywords have been used a total of 330 times. The
word “ubiquitin” was used 24 times, hence the fraction of Wilkinson’s research stock devoted to “ubiqutin”
is 0.073. This procedure is repeated for the other eight patenting scientists who have used the word. The
sum of these fractions taken over all patenting scientists is reported in column (2) of the table. Next, to
compute the denominator in the above equation, we examine the keywords of all scientists who had not yet
received a patent by 1999 for the appearance of the word ubiquitin. In the research publications of 3,854
such scientists, this keyword has appeared on 30 occasions. The patentability weight for each keyword is
obtained by dividing the sum of proportions of keyword use by patenting scientists (column 2) by the count
of the use of the keyword by non-patenting scientists (column 3).
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Appendix II: Sensitivity Analysis

We present a sensitivity analysis for unmeasured confounding, following Robins (1999a) and Brumback et al.
(2004). The basic approach is similar to that adopted by other researchers who have evaluated the robustness
of non-experimental estimators in the presence of selectivity (see for example Altonji et al. (2005) for the
case of Heckman two-step estimators and Rosenbaum (2002, chap. 4) for the propensity score). Namely,
we attempt to quantify the amount of unmeasured confounding that would be necessary for our results to
lose statistical significance. The exercise assumes a particular functional form for the bias from unmeasured
confounding, generates new outcomes adjusted for the bias, and then performs IPTCW estimation by sub-
stituting these adjusted outcomes for the actual outcomes. For clarity, we begin by presenting the method
in the case of a binary treatment with only two periods: baseline and end-of-study. The results are then
generalized to the more relevant case of repeated treatments in a panel context.

Cross-sectional case. Let y be the outcome of interest (in our case, publications) at the end of the study,
A be a binary treatment administered at baseline (e.g., patenting), and V be a set of observables measured at
baseline. Let ya

i denote the outcome that person i would have experienced if he/she had, possibly contrary
to the fact, received treatment a (a = 0 or a = 1). The method proposed by Robins (1999a) quantifies
unmeasured confounding through the function ∆ defined by:

∆(a, v) = E[ya
i |A = a, V = v]− E[ya

i |A = 1− a, V = v]

∆ represents, among the set of individuals with baseline characteristics V = v, the average difference in
potential outcomes between those treated with A = a and those treated with A = 1 − a. For example,
∆(1, v) is the difference between the average outcome experienced by the treated when they are treated and
the average outcome experienced by the untreated had they been treated instead. Note that the assumption
of no unmeasured confounding is synonymous with ∆(a, v) = 0 for all a and v. The effect of interest can be
written θ = E[y1

i − y0
i |V = v]. A näıve estimator for the treatment effect is:

θnaive = E[y|A = 1, V = v]− E[y|A = 0, V = v] (AII1)

The function ∆ links θ and θnaive through the identity

θ = θnaive + ∆(1, v) · Prob[A = 0|V = v]−∆(0, v) · Prob[A = 1|V = v] (AII2)

If ∆(1, v) > 0 but ∆(0, v) < 0, then on average, treated individuals will have higher potential outcomes to
both treatment and no treatment than untreated individuals (i.e., more talented scientists are more likely to
patent). This seems to correspond to the type of bias that threatens the validity of the estimates presented
in Section 4. Therefore we choose the following functional form for ∆:

∆(a, yi0) = α · (2a− 1) · yi0

where α is a sensitivity parameter and yi0 denotes baseline outcome. With α > 0, θnaive is biased upward by
α·yi0. Robins (1999a) shows that for any user-specified α, one can obtain unbiased estimates of the treatment
effect by replacing each observed outcome yi with the adjusted outcome yα

i = yi −∆(A, V ) · Prob[1−A|V ]
and recalculating θnaive according to:

θ̄α
naive = E[yα

i |A = 1, V ]− E[yα
i |A = 0, V ] (AII3)

Intuitively, θ̄α
naive subtracts the bias term in eqn. [AII2] from θnaive. To counteract bias from unmeasured

confounding, we adjust the outcome of a treated individual downward by subtracting α · yi0 ·Prob[A = 0|V ],
and that of an untreated individual by adding α · yi0 · Prob[A = 1|V ].

Generalization to the panel case. The method of adjustment described above generalizes as follows for
time-varying confounding. First, we compute the adjusted outcome

yα
it = yit −

t−1∑
k=0

∆ik · Prob[1− TREATik|TREATi,k−1, Z̃i,k−1, X̃i,k−1] (AII4)
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where ∆ik = αyik(2 × TREATik − 1). Second, we re-estimate the causal model with yα
it in place of yit.

Subject to weak regularity conditions, the resulting augmented IPTCW estimator is consistent, assuming of
course that the confounding function ∆ is correctly specified. In what follows, we will focus on the case where
treatment is specified as a “regime,” i.e., once the scientist has patented for the first time, the treatment
variable never again reverts to 0. For such monotonic treatments, the sum above simplifies to

αyimProb[TREATim = 0|Z̃i,m−1, X̃i,m−1]− α
m−1∑
k=0

yikProb[TREATik = 1|Z̃i,k−1, X̃i,k−1]

for scientists who initiate patenting in period m ≤ t− 1, whereas for those initiating patenting at m ≥ t, it
remains

−α
t−1∑
k=0

yikProb[TREATik = 1|Z̃i,k−1, X̃i,k−1]

Choice of α and estimation details. From eqn. [AII4], α is measured on the same scale as the dependent
variable. We vary delta from 0.00 to 1.00 publications, in increments of 0.10. A priori, we regard negative
values for α as implausible, since α < 0 implies that non-patenters have higher potential outcomes regardless
of whether they patent. One can think of increasing α as progressively stacking the deck against the finding
of a positive effect of patenting on the rate of publication. α = 0 corresponds to the estimate found in
Table 5, Model 2c. The corresponding 95% confidence interval is [0.137; 0.323].

IPTCW estimation proceeds in two steps, where estimates of the first step (from which the weights
derive) are used as inputs in the second step. As Newey and McFadden (1994) have shown, the standard
errors that result from the second step when the first-step estimates are assumed known instead of estimated
will be biased. In the specific case of IPTCW estimation, Robins (1999b) has shown that the näıve asymptotic
standard errors are upward-biased. However, this does not necessarily hold true for the augmented model.
Since computing the standard errors analytically can be very cumbersome in these circumstances, we have
used the block bootstrap (based on 500 replications) where we treat each scientist as a sampling unit, thus
allowing for arbitrary serial correlation and heteroskedasticity. We account for the two-stage nature of
IPTCW estimators by bootstraping the entire estimation procedure.

Results. As can be seen on Table A2, the threshold value of α such that the 95% confidence interval around
the treatment effect falls just short of containing 0 is about 0.56. If one is willing to use a one-tailed test,
the threshold value of α is larger, about 0.65. This might be warranted if one holds a strong prior regarding
the direction of bias from unmeasured confounding.
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Table A1: Sample Title Keywords in 1999 

 (1) (2) (3) (4) 

 

Number of 
times keyword 

used by 
patenting 
scientists 

Sum over all 
patenting scientists 

of keyword’s 
proportion of total 

keywords used 

Number of 
times keyword 
used by non-

patenting 
scientists 

Keyword 
weight: 

Column (2) 
/ Column (3)

 
 

Group 1  
HIV-inhibitory 24 0.011 1 1.100 
Ribozyme 32 0.074 15 0.493 
Ubiquitin 55 0.145 30 0.483 
Glycosylase 22 0.037 10 0.370 
Aldose 36 0.059 16 0.369 
Vitronectin 23 0.076 23 0.330 
Glaucoma 30 0.069 25 0.276 
Telomere 37 0.094 35 0.269 
Melatonin 40 0.114 44 0.259 
Lymphokine-activated 83 0.084 33 0.255 
Spirochete 24 0.039 16 0.244 
Coronavirus 28 0.066 28 0.236 
Dendritic 43 0.178 83 0.214 
E1A 37 0.066 32 0.206 
Pheromone 66 0.119 58 0.205 

Group 2     
Receptor 1161 2.270 4134 0.055 
Antigen 494 1.094 1789 0.061 
Antibody 425 1.043 1587 0.066 
T-Cell 424 0.900 1242 0.072 
Peptide 403 1.098 1511 0.073 

Group 3     
Carnitine 1 0.0004 60 0.0007 
Aromatase 1 0.0006 70 0.0009 
Adenovirus-mediated 1 0.0004 37 0.001 
Bismuth 1 0.0003 33 0.001 
Endothelium-dependent 1 0.0007 51 0.001 

Legend: To illustrate the construction of keyword weights, we have chosen representative words in three categories. Group 
1 keywords are typical of those that appear frequently in the work of patenting scientists, and infrequently in the 
work of non-patenting scientists. These words receive high patentability weights. Group 2 comprises keywords 
that occur frequently in the journal articles of both patenting and non-patenting scientists. Words in this group 
garner intermediate weights. Group 3 contains keywords that are very common in the research of non-patenting 
scientists but uncommon in the work of patenters. In consequence, these keywords receive low weight. 
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Table A2 
Sensitivity Analysis 

 

Estimate 
of the naïve bootstrap

95% Confidence 
Interval 

α Treatment 
Effect 

SE SE (based on 
bootstrap SE) 

0.00 0.230 0.047 0.046 0.146 0.335 
0.10 0.205 0.048 0.047 0.121 0.310 
0.20 0.181 0.048 0.047 0.095 0.285 
0.30 0.156 0.048 0.047 0.068 0.261 
0.40 0.132 0.049 0.048 0.042 0.239 
0.50 0.107 0.049 0.048 0.017 0.215 
0.60 0.083 0.049 0.048 -0.008 0.190 
0.70 0.059 0.050 0.049 -0.033 0.166 
0.80 0.035 0.050 0.049 -0.058 0.142 
0.90 0.011 0.050 0.049 -0.083 0.118 
1.00 -0.012 0.051 0.050 -0.108 0.093 

 
 
 
 
 
 

Figure A2 
Sensitivity Analysis 
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Effect estimates and 95% pointwise confidence bands are graphed versus the scale parameter α. 

 




