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ABSTRACT

During technological revolutions, stock prices of innovative firms tend to exhibit high volatility and

bubble-like patterns, which are often attributed to investor irrationality. We develop a general

equilibrium model that rationalizes the observed price patterns. The high volatility results from high

uncertainty about the average productivity of a new technology. Investors learn about this

productivity before deciding whether to adopt the technology on a large scale. For technologies that

are ultimately adopted, the nature of uncertainty changes from idiosyncratic to systematic as the

adoption becomes more likely; as a result, stock prices fall after an initial run-up. This “bubble” in

stock prices is observable ex post but unpredictable ex ante, and it is most pronounced for

technologies characterized by high uncertainty and fast adoption. We examine stock prices in the

early days of American railroads, and find evidence consistent with a large-scale adoption of the

railroad technology by the late 1850s.
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“Technological revolutions and financial bubbles seem to go hand in hand.” The Economist, Sep 21, 2000.

1. Introduction

Technological revolutions tend to be accompanied by bubble-like patterns in the stock prices

of firms that employ the new technology. After an initial surge, stock prices of innovative

firms usually fall in the presence of high volatility. Recent examples of such price patterns

include the “Internet craze” of the late 1990s, the “biotech revolution” of the early 1980s, and

the “tronics boom” of the early 1960s, as characterized by Malkiel (1999).1 Other examples

include the 1920s and the turn of the 20th century; in both periods, technological innovation

spread rapidly while the stock market boomed and then faltered (e.g., Shiller, 2000).2

The bubble-like stock price behavior during technological revolutions is frequently at-

tributed to market irrationality (e.g., Shiller, 2000, Perez, 2002). For example, one com-

mon argument is that investors repeatedly fail to realize that technological advances benefit

mostly consumers rather than producers. In this paper, we propose an alternative explana-

tion, without appealing to irrationality. We argue that new technologies are characterized by

high uncertainty about their average future productivity, and that the time-varying nature

of this uncertainty can produce the observed stock price patterns.

We build a general equilibrium model of a finite-horizon representative-agent economy

with two sectors: the “new economy” and the “old economy.” The old economy implements

the existing technologies in large-scale production whose cumulative output determines the

representative agent’s terminal wealth. The new economy, which is created when a new

technology is invented, implements the new technology in small-scale production that does

not affect the agent’s wealth. Under simple assumptions, it is optimal for a new technology

to be initially employed on a small scale because its future productivity is uncertain. By

observing the new economy, the representative agent learns about the average productivity

of the new technology before deciding (as a utility-maximizing social planner) whether to

adopt the technology on a large scale. We show that this irreversible adoption takes place if

the agent learns that the new technology is sufficiently productive. We define a technological

revolution as a period concluded by a large-scale adoption of a new technology.

1According to Malkiel (1999), “What electronics was to the 1960s, biotechnology became to the 1980s...
Valuation levels of biotechnology stocks reached levels previously unknown to investors... From the mid-1980s
to the late 1980s, most biotechnology stocks lost three-quarters of their market value.”

2According to The Economist (2000), “Every previous technological revolution has created a speculative
bubble... With each wave of technology, share prices soared and later fell... The inventions of the late 19th
century drove p-e ratios to a peak in 1901, the year of the first transatlantic radio transmission. By 1920
shares prices had dropped by 70% in real terms. The roaring twenties were also seen as a “new era”: share
prices soared as electricity boosted efficiency and car ownership spread. After peaking in 1929, real share
prices tumbled by 80% over the next three years.”
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The nature of the risk associated with new technologies changes over time. Initially,

this risk is mostly idiosyncratic due to the small scale of production and a low probability

of adoption. The risk remains largely idiosyncratic for those technologies that are never

adopted on a large scale. For the technologies that are ultimately adopted, however, the

risk gradually changes from idiosyncratic to systematic: As the probability of adoption

increases, the new technology becomes more likely to affect the old economy and with it the

representative agent’s wealth, so the systematic risk in the economy increases.

This time-varying nature of risk has interesting implications for stock prices. Initially,

while uncertainty about the average productivity of the new technology is idiosyncratic, it

increases both the level and volatility of stock prices in the new economy.3 Therefore, the

new economy stocks initially command high valuation ratios (of market value to book value

of equity) and high volatility. However, as the adoption probability increases, the resulting

increase in systematic risk increases the discount rates and thus depresses stock prices. Stock

prices fall in both the new and old economies, but especially in the new economy. In short,

we argue that stock prices begin falling during technological revolutions when it becomes

likely that the new technology will eventually be adopted on a large scale.

Stock prices are affected not only by news about discount rates but also by news about

cash flows. The technologies that are ultimately adopted must turn out to be sufficiently

productive before the adoption. This positive cash flow news pushes stock prices up, coun-

tervailing the effect of the higher discount rate. The cash flow effect tends to prevail initially,

pushing the new economy stock prices up, but the discount rate effect prevails eventually,

pushing the stock prices down. The resulting pattern in the new economy stock prices looks

like a bubble although it is perfectly rational.

The bubble-like pattern in stock prices can be viewed as an outcome of a “hindsight

bias.” Researchers study technological revolutions with the ex post knowledge that the revo-

lutions took place, but investors living through those periods did not know whether the new

technologies would eventually be adopted on a large scale. The representative agent in our

model never expects stock prices to fall; she always expects to earn positive stock returns

commensurate to the stocks’ riskiness, and she subsequently earns those fair returns, on

average. However, in those periods that are recognized as technological revolutions ex post,

the agent’s realized returns tend to be initially positive due to good news about productivity

and eventually negative due to unexpected increases in systematic risk.

3Uncertainty about average productivity increases market value because the latter is convex in average
productivity, as explained in Pástor and Veronesi (2003, 2006).
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In addition to the level of stock prices, the high stock volatility observed during tech-

nological revolutions can also be explained by uncertainty about new technologies. Due to

this uncertainty, the new economy stocks are more volatile than the old economy stocks.

Moreover, the new economy’s volatility exhibits a U-shape pattern: it initially declines due

to learning, but it ultimately increases when the volatility of the stochastic discount factor

increases as a result of a higher probability of a large-scale adoption. The latter effect also

causes the old economy’s volatility to increase during technological revolutions, albeit more

slowly. We also show that if agents have to choose which new technologies to implement in

the new economy, they prefer technologies with higher uncertainty. In that sense, uncertainty

about average productivity is a natural feature of new technologies.

To complement our theoretical analysis, we empirically examine the stock price behavior

during the first major technological revolution in the United States since the opening of the

U.S. stock market – the introduction of steam-powered railroads. We argue that in the 1830s

and 40s, there was substantial uncertainty about whether the railroad technology would be

adopted on a large scale. We analyze stock prices before the Civil War, and find that they

fell before and during year 1857, with railroad stocks falling more than non-railroad stocks.

We also find that railroad stock volatility and price-dividend ratios consistently exceeded

their non-railroad counterparts, and that the volatility of all stocks rose in 1857. In the

context of our model, this evidence is consistent with a large-scale adoption of the railroad

technology around 1857, after railroads began expanding west of the Mississippi River.

Much of the literature on technological innovation analyzes issues different from those

addressed here. Unlike Romer (1990), Aghion and Howitt (1992), and others, we take tech-

nological inventions to be exogenous. We do not examine the links between technological

revolutions and human capital (e.g., Chari and Hopenhayn, 1991, Caselli, 1999, Manuelli,

2003). Although there is learning in our model, there is no learning-by-doing in the sense of

Arrow (1962), Jovanovic and Nyarko (1996), Atkeson and Kehoe (2003), and others because

learning here does not affect the technology’s productivity. In Jovanovic (1982), firms learn

about their costs; the efficient firms grow, the inefficient ones decline. Our model is similar

in that we learn about the average productivity of a new technology; the productive tech-

nologies are adopted, the unproductive ones are not. We empirically examine the “railroad

revolution” in the U.S., while other technological revolutions are examined by Jovanovic

and Rousseau (2003, 2005), Mazzucato (2002), and others. Mokyr (1990) argues that tech-

nological progress is discontinuous, as assumed in our model, and that occasional seminal

inventions (“macroinventions”) are the key sources of economic growth.
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A small but growing literature explores the links between technological innovation and

stock prices (e.g., Jovanovic and MacDonald, 1994, and Laitner and Stolyarov, 2003, 2004a,b).

According to Greenwood and Jovanovic (1999) and Hobijn and Jovanovic (2001), innovation

causes the stock market to drop because the incumbent firms are unable or unwilling to im-

plement the new technology. Similar initial stock market drops are obtained in the models

of Laitner and Stolyarov (2003) and Manuelli (2003). In our model, the stock market value

of the old economy also drops after the new technology is invented, mostly because of the

costs and risks associated with a large-scale adoption of the new technology, but our focus

is on the subsequent bubble-like stock price pattern in the new economy.

We focus not only on the level of stock prices, as the above papers do, but also on

the stock price volatility. Mazzucato (2002) studies the early phases of the life-cycles of the

automobile and PC industries in the U.S., and finds that in both industries, stock prices were

the most volatile when technological change was the most radical. Agarwal et al. (2004)

empirically examine a sample of brick-and-mortar firms that launched Web sites in the late

1990s, and find that initiating eCommerce increases the idiosyncratic return volatility of a

firm’s stock. To explain their results, both papers argue that taking up the new technology

increases the uncertainty that firms face in the product market. Both the empirical evidence

and the explanations provided in these papers are consistent with our model.

The paper is organized as follows. Section 2 presents the model. Section 3 solves for stock

prices and analyzes their dynamics. Section 4 calibrates the model and uses simulations

to investigate the model-implied paths of stock prices and volatilities during technological

revolutions. Section 5 empirically examines the behavior of stock prices in 1830 through

1861 when the railroad technology spread in the United States. Section 6 concludes.

2. The Economy

We consider an economy with a finite horizon [0, T ]. A representative agent has preferences

defined by power utility over final wealth WT , with risk aversion γ > 1:

u (WT ) =
W 1−γ
T

1 − γ
. (1)

At time t = 0, the agent is endowed with capital B0. Subsequently, capital is invested in a

linear technology producing output (net of depreciation) at the rate of

Yt = ρtBt.
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Since there is no intermediate consumption, all output is reinvested, and capital follows

dBt = Ytdt = ρtBtdt. (2)

Productivity ρt follows a mean-reverting process whose mean is determined by the available

technology. There are two technologies: “old” and “new.” Initially, only the old technology

is available, and the long-run mean of ρt is equal to ρ. At time t∗, the new technology

becomes available. If the representative agent adopts the new technology at time t∗∗ ≥ t∗,

the long-run mean of ρt changes from ρ to ρ+ ψ. Thus, the dynamics of ρt are given by

dρt = φ (ρ− ρt) dt+ σdZ0,t, 0 < t < t∗∗ (3)

dρt = φ (ρ+ ψ − ρt) dt+ σdZ0,t, t∗∗ ≤ t < T, (4)

where φ is the speed of mean reversion, ρ is the mean productivity of the old technology, ψ is

the “productivity gain” brought by the new technology, and σ2 is the variance of productivity

shocks, represented by the Brownian increments dZ0,t. That is, we define the adoption of

the new technology simply as a shift in the economy’s average productivity.

The representative agent chooses whether and when to adopt the new technology to max-

imize utility in equation (1) under the market-clearing condition WT = BT . In equilibrium,

the agent’s final wealth must equal the amount of capital accumulated by time T .

Our key assumption is that the productivity gain ψ is unobservable. When the new

technology appears at time t∗, ψ is drawn from a normal distribution with known variance:

ψ ∼ N
(
0, σ̂2

t∗
)
. (5)

All other parameters are known. The adoption of the new technology is irreversible; after

the adoption, the agent cannot go back to the old technology. Finally, converting capital to

the new technology is costly, incurring a proportional conversion cost κ ≥ 0.

Proposition 1: It is never optimal to adopt the new technology immediately at time t∗.

Adopting the new technology is risky – it may increase or decrease average productivity,

depending on the sign of ψ. Since the representative agent is risk averse and the prior in

equation (5) is centered at zero, immediate adoption of the new technology is suboptimal.4

To formalize this intuition, define the value function at time t as

V
(
Bt, ρt, ψ̂t, σ̂t, t;T

)
= Et

[
W 1−γ
T

1 − γ

]
, (6)

4If the prior is centered at ψ̂t∗ �= 0, Proposition 1 is modified so that it is not optimal to adopt the new
technology at time t∗ unless ψ̂t∗ is sufficiently high. See Proposition 2 for an analogous relation.
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where ρt follows the process in equation (4) and the representative agent’s beliefs at time t

are given by ψ ∼ N
(
ψ̂t, σ̂

2
t

)
. A closed-form expression for V is provided in Lemma A1 in

the Appendix. The Appendix also shows that

V
(
Bt∗ (1 − κ) , ρt∗ , 0, σ̂

2
t∗ , t

∗;T
)
< V (Bt∗ , ρt∗ , 0, 0, t

∗;T ) ,

where the left-hand (right-hand) side captures expected utility conditional on adopting (not

adopting) the new technology at time t∗.5 This result holds for any κ, including κ = 0, as it

is driven purely by the increase in risk resulting from the adoption of the new technology.

2.1. Learning in the New Economy

Although adopting the new technology immediately is suboptimal, it might become optimal

later if the agent learns that ψ is high. The agent can learn about ψ by “experimenting”

with the new technology – i.e., by implementing it on a small scale. As shown in Section

2.3., it is optimal for the agent to begin experimenting at time t∗, immediately after the

new technology becomes available. After time t∗, the economy consists of two sectors: the

small-scale “new economy,” which employs the new technology, and the large-scale “old

economy,” whose productivity follows equation (3). The capital BN
t used in the new economy

is infinitely smaller than Bt, so the agent’s wealth WT is affected by the new technology only

if this technology is adopted on a large scale (i.e., by the old economy). Denoting the new

economy’s productivity by ρNt , the processes of BN
t and ρNt for t > t∗ are given by

dBN
t = ρNt B

N
t dt (7)

dρNt = φ
(
ρ+ ψ − ρNt

)
dt+ σN,0dZ0,t + σN,1dZ1,t, (8)

where Z1,t is a Brownian motion uncorrelated with Z0,t. The representative agent learns

about ψ by observing ρNt and ρt. The following lemma characterizes the learning process:

Lemma 1: Suppose the prior distribution of ψ at time t∗ is normal, ψ ∼ N(0, σ̂2
t∗). Then the

posterior distribution of ψ at time t, t∗ < t < t∗∗, conditional on Ft =
{(
ρNτ , ρτ

)
: t∗ ≤ τ ≤ t

}
is also normal, ψ|Ft ∼ N(ψ̂t, σ̂

2
t ), where the posterior mean ψ̂t follows the process

dψ̂t = σ̂2
t

φ

σN,1
dZ̃1,t, (9)

and the posterior variance σ̂2
t is given by

σ̂2
t =

1

(σ̂t∗)
−2 +

(
φ

σN,1

)2

(t− t∗)
. (10)

5On the right hand side, V is evaluated at ψ̂t∗ = σ̂2
t∗ = 0. If the agent decides not to adopt the new

technology, ρt follows the process in equation (3), which is equivalent to equation (4) when ψ = 0.
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Note that the posterior variance σ̂2
t declines deterministically over time due to learning.

Also due to learning, the shocks perceived by the representative agent are given by the

orthogonalized Brownian motions
(
Z̃0,t, Z̃1,t

)
capturing the agent’s expectation errors (see

the Appendix). The productivity processes can then be rewritten as

dρt = φ (ρ − ρt) dt+ σdZ̃0,t (11)

dρNt = φ
(
ρ+ ψ̂t − ρNt

)
dt+ σN,0dZ̃0,t + σN,1dZ̃1,t. (12)

2.2. Technological Revolution

We define a technological revolution as the period [t∗, t∗∗] concluded by a large-scale adoption

of a new technology. We treat the invention of the new technology as given, and study the

conditions under which the invention leads to a technological revolution.

When the new technology becomes available at time t∗, the representative agent acquires

a real option to adopt the technology anytime before time T . The agent begins learning about

the technology’s productivity gain in the new economy, and solves for the optimal time t∗∗

to adopt the technology in the old economy. (Such an adoption may or may not occur.) We

solve for the optimal t∗∗ numerically in Section 4.2. Here, we focus on a simpler problem in

which, at a given time t∗∗, the agent decides whether or not to adopt the new technology.

This simplification leads to closed-form solutions for stock prices, and thus improves our

understanding of the price dynamics during technological revolutions. Our numerical results

in Section 4.2. show that the price patterns obtained when t∗∗ is endogenously chosen are

very similar to those obtained with an exogenous t∗∗.

Proposition 2: The new technology is adopted at time t∗∗ if and only if

ψ̂t∗∗ ≥ ψ = − log (1 − κ)

A2 (τ ∗∗)
+

1

2
(γ − 1)A2 (τ ∗∗) σ̂2

t∗∗ , (13)

where τ ∗∗ = T − t∗∗, A2 (τ ) = τ − (1 − exp (−φτ )) /φ > 0, and σ̂t is defined in Lemma 1.

The new technology is adopted if the expected productivity gain ψ̂t∗∗ is sufficiently large.

The threshold ψ > 0 increases in the conversion cost κ and uncertainty σ̂t∗∗ , which is intuitive.

Using our closed-form expression for the value function in equation (6), equation (13) follows

from the optimality condition

V
(
Bt∗∗ (1 − κ) , ρt∗∗, ψ̂t∗∗ , σ̂

2
t∗∗, t

∗∗;T
)
≥ V (Bt∗∗, ρt∗∗ , 0, 0, t

∗∗;T ) . (14)

Note that the agent makes the adoption decision without knowing for sure whether the

new technology increases productivity. Regardless of the outcome of the adoption decision,

the true value of ψ remains unknown and learning about ψ continues after time t∗∗.
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2.3. Optimal Experimentation under Uncertainty

We now show that the agent sets up the new economy and begins learning about the new

technology immediately after this technology becomes available at time t∗.

Proposition 3: It is optimal to begin experimenting with the new technology at time t∗.

To prove the proposition formally, define the value function at time t, t∗ ≤ t < t∗∗, as

V
(
Bt, ρt, ψ̂t, σ̂

2
t , t;T

)
= Et

{
max

{yes, no}
Et∗∗

[
W 1−γ
T

1 − γ

]}
, (15)

where the maximization involves choosing whether or not to adopt the new technology at

time t∗∗, following Proposition 2. The Appendix provides an expression for V (Lemma A3),

along with a proof that expected utility is higher when experimentation takes place:

V (
Bt∗ , ρt∗ , 0, σ̂

2
t∗, t;T

)
> V (Bt∗ , ρt∗ , 0, 0, t;T ) . (16)

The intuition behind Proposition 3 is simple. Experimenting allows the agent to learn

about the productivity gain ψ. If this learning leads the agent to believe at time t∗∗ that

ψ is sufficiently high, then it becomes optimal to adopt the new technology (Proposition

2). Otherwise, the status quo will prevail. Since experimenting is costless and there is no

downside to it, it gives the agent a valuable option for free.6

Since option value generally increases with uncertainty, high uncertainty σ̂t∗ makes a

new technology desirable for experimentation.7 If it were costly to experiment with new

technologies, or if the agent had to choose from a subset of technologies at time t∗, then

the technologies with the highest σ̂t∗ would be selected for experimentation, ceteris paribus.

Uncertainty about productivity gains is thus a natural feature of innovative technologies.

The sequence of events in the model is summarized in Figure 1. We assume that if a new

technology is not adopted at time t∗∗, it continues to operate on a small scale until time T .

6The problem we solve resembles the problem of making an irreversible marriage decision. It is generally
suboptimal to marry a new acquaintance immediately because of substantial uncertainty regarding the qual-
ity of the personality match (cf. Proposition 1). Instead, it seems advisable to first develop the relationship
on a small scale, by dating without any commitment (cf. Proposition 3), and then to marry if we learn that
the relationship is likely to work in the long run (cf. Proposition 2).

7We find numerically that the value function V is increasing in σ̂t∗ (∂V/∂σ̂t∗ > 0) for any reasonable
parameter values. In fact, we have not found any parameter values for which ∂V/∂σ̂t∗ > 0 is violated. While
a general proof that ∂V/∂σ̂t∗ > 0 seems infeasible, we have some local analytical results. Proposition 3 shows
that V is increasing in σ̂t∗ as σ̂t∗ → 0, and for κ = 0, we can also prove that ∂V/∂σ̂t∗ > 0 as σ̂t∗ → ∞. Given
∂V/∂σ̂t∗ > 0, if we added an assumption that experimenting with new technologies is costly, Proposition 3
would be modified so that it is optimal to begin experimenting at time t∗ unless σ̂t∗ is too low.
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Our history is full of examples of “failed” technologies that have not been adopted on a large

scale but still survive on a small scale (e.g., direct-current electric motors, airships, etc.)

3. Stock Prices

The stocks of the old and new economies are the contingent claims paying liquidating divi-

dends BT and BN
T , respectively, at time T . There is also a riskless bond in zero net supply,

whose yield we normalize to zero, for simplicity. Since the two shocks in the model (Z̃0 and

Z̃1) are spanned by the two stocks, markets are complete. Standard arguments then imply

that the state price density is uniquely given by

πt =
1

λ
Et

[
W−γ
T

]
, (17)

where λ is the Lagrange multiplier from the utility maximization problem of the representa-

tive agent. The market values (shadow prices) of the old and new economy stocks, denoted

by Mt and MN
t , respectively, are given by the standard pricing formulas

Mt = Et

[
πTBT

πt

]
and MN

t = Et

[
πTB

N
T

πt

]
. (18)

To normalize the market values, we form “market-to-book” (M/B) ratiosMt/Bt andMN
t /B

N
t .

It seems reasonable to interpret capital as the book value of equity, and this interpretation

is exact for Bt and BN
t in equations (2) and (7) if we also interpret output and productivity

as earnings and profitability, respectively (Pástor and Veronesi, 2003).

Let pt denote the probability at time t, t∗ ≤ t < t∗∗, that the new technology will be

adopted at time t∗∗. Lemma A2 in the Appendix shows that

pt = 1 −N
(
ψ; ψ̂t, σ̂

2
t − σ̂2

t∗∗

)
, (19)

where N (·; a, s2) denotes the cumulative density function of the normal distribution with

mean a and variance s2, and σ̂2
t is given in Lemma 1.

Proposition 4: For any t ∈ [t∗, t∗∗), the state price density is given by

πt = λ−1B−γ
t

{
(1 − pt) G̃

no
t + ptG̃

yes
t

}
, (20)

where

G̃no
t = Et

[(
BT

Bt

)−γ
|ψ̂t∗∗ < ψ

]
= eA0(τ )−γA1(τ )ρt (21)

G̃yes
t = Et

[(
BT

Bt

)−γ
|ψ̂t∗∗ ≥ ψ

]
, (22)
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and where τ = T − t, A1(τ ) = (1 − e−φτ)/φ, and A0(τ ) and G̃yes
t are in the Appendix.

Intuitively, πt is a probability-weighted average of the expectations of marginal utility

of wealth conditional on whether or not the new technology is adopted at time t∗∗. (Recall

from Proposition 2 that the adoption takes place if ψ̂t∗∗ ≥ ψ, which occurs with probability

pt.) Computing G̃yes
t is more complicated than computing G̃no

t because the adoption of the

new technology changes the dynamics of ρt from (3) to (4), which makes BT depend on ψ̂t∗∗.

Corollary 1. For any t ∈ [t∗, t∗∗), the dynamics of πt are given by

dπt
πt

= −σ0
π,tdZ̃0,t − σ1

π,tdZ̃1,t = −γA1(τ )σdZ̃0,t − Sπ,tσ̂
2
t

φ

σN,1
dZ̃1,t, (23)

where Sπ,t is given in the Appendix.

This corollary illustrates the time-varying nature of risk during technological revolutions.

When a new technology arrives at time t∗, the adoption probability pt∗ is generally small,

which makes Sπ,t∗ small as well (pt = 0 implies Sπ,t = 0). The volatility of the stochastic

discount factor in equation (23) then depends only slightly on σ̂2
t , making uncertainty about

ψ mostly idiosyncratic. During a technological revolution, the adoption probability increases,

which makes Sπ,t larger.8 As a result, the volatility of the stochastic discount factor becomes

more closely tied to σ̂2
t , making uncertainty about ψ increasingly systematic.

Proposition 5: For any t ∈ [t∗, t∗∗), the market-to-book ratios are given by

Mt

Bt
=

(1 − pt)G
no
t + ptG

yes
t

(1 − pt) G̃
no
t + ptG̃

yes
t

(24)

MN
t

BN
t

=
(1 − pt)K

no
t + ptK

yes
t

(1 − pt) G̃no
t + ptG̃

yes
t

, (25)

where G̃no
t and G̃yes

t are given in Proposition 4, and

Gno
t = Et

[(
BT

Bt

)1−γ
|ψ̂t∗∗ < ψ

]
; Gyes

t = Et

[(
BT

Bt

)1−γ
|ψ̂t∗∗ ≥ ψ

]
(26)

Kno
t = Et

[(
BT

Bt

)−γ
BN
T

BN
t

|ψ̂t∗∗ < ψ

]
; Kyes

t = Et

[(
BT

Bt

)−γ
BN
T

BN
t

|ψ̂t∗∗ ≥ ψ

]
, (27)

are given explicitly in the Appendix.

8The dependence of Sπ,t on pt is difficult to characterize explicitly because both variables depend on
ψ̂. Although the dependence need not be monotonic, Sπ,t generally increases as pt increases. At time
t∗, we have pt∗ ≈ 0 and Sπ,t∗ ≈ 0. In a technological revolution, pt rises to pt∗∗ = 1, at which point
Sπ,t∗∗ = γA2(τ∗∗) > 0. That is, as pt increases, Sπ,t increases from approximately zero to a positive number.
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In the special case pt = 0, the market-to-book ratio of the new economy simplifies into

MN
t

BN
t

= eC0(τ )+A1(τ )ρ
N
t +A2(τ )ψ̂t+

1
2
A2(τ )2σ̂2

t , (28)

where A1(τ ) is defined in Proposition 4, A2(τ ) in Proposition 2, and C0(τ ) is in the Appendix.

Note that MN/BN increases when uncertainty about ψ, σ̂2
t , increases. This relation, first

pointed out by Pástor and Veronesi (2003) in a simpler framework, is due to the idiosyncratic

nature of uncertainty. When pt = 0, the state price density does not depend on uncertainty

about ψ, but when pt > 0, it does.9 When pt is sufficiently large, uncertainty is mostly

systematic, and the associated risk reverses the positive relation between MN/BN and σ̂2
t .

10

Corollary 2: For any t ∈ [t∗, t∗∗), the stock return processes are given by

dMt

Mt
= µM,tdt+ σ0

M,tdZ̃
0
t + σ1

M,tdZ̃
1
t and

dMN
t

MN
t

= µNM,tdt+ σN,0M,tdZ̃
0
t + σN,1M,tdZ̃

1
t ,

where expected returns are equal to the return covariances with dπt/πt,

µM,t = −σ0
M,tσ

0
π,t − σ1

M,tσ
1
π,t (29)

µNM,t = −σN,0M,tσ
0
π,t − σN,1M,tσ

1
π,t, (30)

and the components of the return volatilities are

σ0
M,t = A1 (τ )σ; σ1

M,t = (SM,t + Sπ,t) σ̂
2
t

φ

σN,1
(31)

σN,0M,t = A1 (τ )σN,0; σN,1M,t = A1 (τ )σN,1 +
(
SNM,t + Sπ,t

)
σ̂2
t

φ

σN,1
, (32)

with SM,t and SNM,t given in the Appendix.

Note that the return volatilities in both economies increase with uncertainty σ̂2
t .

3.1. The Dynamics of Prices during a Technological Revolution

In a technological revolution, the adoption probability pt rises from a small value at time t∗

to the value of one at time t∗∗. The effect of pt on stock prices is analyzed next.

Proposition 6: The new (old) economy’s market-to-book ratio is increasing in pt if and

only if hnew > 0 (hold > 0), where the functions hnew and hold are given in the Appendix.

9When pt = 0, the state price density in equation (20) simplifies into πt = λ−1B−γ
t exp{A0(τ )−γA1(τ )ρt}.

10These results hold also in a more general model in which ψ is not constant (an assumption we make for
simplicity) but rather decays gradually toward zero. In this alternative specification, the level of MN/BN is
lower. However, the bubble-like dynamics of stock prices, which we document below, are unaffected unless
the rate of decay in ψ is too large (in which case uncertainty about ψ becomes unimportant).
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To illuminate the conditions derived in Proposition 6, Figure 2 plots hnew and hold as

functions of ψ̂t and t∗∗ − t, for the parameter values used in our subsequent calibration.

Panel A shows that the condition hnew > 0 is satisfied when ψ̂t is close to its initial value of

zero (ψ̂t∗ = 0), but the condition becomes violated as ψ̂t increases towards the threshold ψ

(marked by a dotted vertical line). In addition, hnew turns negative as t∗∗ − t falls, holding

ψ̂t constant. In other words, hnew > 0 holds initially, shortly after time t∗, but it becomes

violated as time t∗∗ approaches and the adoption at time t∗∗ becomes more likely. Proposition

6 then implies that the new economy’s M/B is initially increasing but ultimately decreasing

in pt in the course of a technological revolution.

Panel B of Figure 2 shows that the condition hold > 0 is never satisfied for the given

parameter values, so the old economy’s M/B is always decreasing in pt. Note that hold

increases when ψ̂t increases because adopting a new technology is more valuable when the

technology is more productive. Additional analysis shows that increases in κ or σ̂t lead to

decreases in hold because adoption that involves higher conversion costs or a higher discount

rate is less desirable. The condition hold > 0 can be satisfied if κ and σ̂t are sufficiently small

and ψ̂t is sufficiently large, but for most reasonable parameter values, hold < 0.

While analyzing M/B as a function of pt seems informative, pt itself is driven primarily by

ψ̂t. Stock prices depend on ψ̂t through two channels working in opposite directions. On one

hand, an increase in ψ̂t is good news for prices because it increases expected cash flows in both

economies (Et [BT ] and Et
[
BN
T

]
). This cash flow effect is stronger for the new economy whose

perceived productivity is immediately affected; the old economy’s productivity is not affected

by ψ until time t∗∗, if at all. On the other hand, an increase in ψ̂t is bad news for prices

because the higher adoption probability makes the risk embedded in the new technology

increasingly systematic, thereby raising the discount rate. This discount rate effect is also

stronger for the new economy because the stochastic discount factor covaries more with

ρNt than with ρt (since both dπt/πt and ρNt depend on Z̃1, but ρt does not). Moreover, the

discount rate effect has a growing impact on the new economy’s M/B because the dependence

of dπt/πt on Z̃1 increases as pt increases (equation (23)). For the old economy, the discount

rate effect generally outweighs the cash flow effect from the very beginning, leading to a

gradual price decline during a revolution. For the new economy, the cash flow effect tends to

dominate at first, but the discount rate effect dominates in the end, producing a bubble-like

pattern in the new economy stock prices.

Although characterizing the dependence of MN/BN on ψ̂t seems intractable in general,

its key features can be established locally at times t∗ and t∗∗. We show below that MN/BN
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is increasing (decreasing) in ψ̂ around time t∗ (t∗∗), under certain assumptions.

Proposition 7: For any t ≥ t∗ there exists p̄ > 0 such that if pt < p̄ then
∂(MN

t /BN
t )

∂ψ̂t
> 0.

In words, if the probability of adoption pt is sufficiently small, then MN/BN is increasing

in ψ̂. When pt is close to zero, so is its sensitivity to changes in ψ̂t; thus an increase in ψ̂t

does not produce a large discount rate effect. The cash flow effect is large, though, because

MN/BN in equation (28) is strongly increasing in ψ̂. Proposition 7 follows.

When a new technology arrives at time t∗, its probability of eventual adoption is typically

small because only a small fraction of new technologies are adopted by the whole economy.

Proposition 7 then implies that, for most new technologies, the cash flow effect initially

prevails over the discount rate effect and MN/BN is increasing in ψ̂ shortly after time t∗.

We also have some local results at time t∗∗. Below, we compare the M/B ratio of the

new economy under two scenarios: ψ̂t∗∗ = ψ ± ε, where ε > 0 is small.

Corollary 3:

(a) If ψ̂t∗∗ = ψ + ε, then the new technology is adopted at time t∗∗, and

MN
t∗∗

BN
t∗∗

= eC0(τ∗∗)+A1(τ∗∗)ρN
t∗∗+A2(τ∗∗)ψ̂t∗∗+ 1

2
A2(τ

∗∗)2(1−2γ)σ̂2
t∗∗ . (33)

(b) If ψ̂t∗∗ = ψ − ε, then the new technology is not adopted at time t∗∗, and

MN
t∗∗

BN
t∗∗

= eC0(τ∗∗)+A1(τ∗∗)ρN
t∗∗+A2(τ∗∗)ψ̂t∗∗+ 1

2
A2(τ∗∗)2σ̂2

t∗∗ . (34)

The M/B of the new economy is clearly lower when the technological revolution takes

place. The reason is the uncertainty term σ̂2
t , whose coefficient is negative in part (a) and

positive in part (b). In part (a), σ̂2
t is systematic (it affects πt), whereas in part (b), it is

idiosyncratic (it does not affect πt). Since ψ̂t is essentially the same in both scenarios, the

difference between M/B in parts (a) and (b) is due to the discount rate effect.

Close to the adoption time t∗∗, the discount rate effect is generally stronger than the

cash flow effect. For the cash flow effect to prevail in the knife-edge case discussed above, ψ̂t

would have to increase by at least γA2(τ
∗∗)σ̂2

t∗∗ to offset the higher systematic risk resulting

from the adoption. Such an increase in ψ̂t seems implausibly large, given the parameters

used in our calibration. Since the discount rate effect dominates, MN/BN decreases in ψ̂t.

In summary, the cash flow effect usually dominates close to time t∗, leading to an initial

positive relation between MN/BN and ψ̂t, but the discount rate effect usually dominates
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close to time t∗∗, leading to an eventual negative relation. During a technological revolution,

ψ̂t generally increases, leading to a bubble-like pattern in MN/BN .

3.2. Discussion

Corollary 3 shows that the adoption reduces the new economy’s M/B, holding ψ̂t constant.

Intuitively, the adoption of the new technology by the old economy does not bring any benefit

to the new economy, which already uses the new technology. On the contrary, the adoption

(or even an increasing probability thereof) increases systematic risk and thus reduces the new

economy’s market value. It appears that the adoption is not favored by the new economy

shareholders. However, in the model, there is only one shareholder, the representative agent,

who employs infinitely more capital in the old economy than in the new economy. This agent

wants the adoption to take place because the utility gain from making the old economy more

productive outweighs the (negligible) loss of market value in the new economy.

Analogous to Corollary 3, we can show that the old economy’s market value also decreases

at time t∗∗ if the adoption takes place when ψ̂t∗∗ is close to ψ. Interestingly, the representative

agent chooses to adopt the new technology even if doing so reduces the market value of her

stocks. There is a difference between maximizing utility and maximizing market value. The

adoption occurs only if it increases the agent’s expected utility. This adoption changes the

economic environment by installing (what the agent perceives to be) a more productive

technology and by increasing expected stock returns. In this new environment, stock prices

are lower (due to higher discount rates) but expected utility is higher (due to higher expected

wealth). Expected utility and stock prices need not move in the same direction because stock

prices are related to the agent’s marginal utility rather than to the level of utility.

We solve the social planner’s problem in which a utility-maximizing representative agent

owns all output by holding the stocks of the old and new economies. When a new technology

is invented, it becomes property of the social planner. The social planner finds it optimal

to set up a (small-scale) new economy to learn about the new technology before deciding

whether to adopt this technology in the (large-scale) old economy. Upon adoption, there is

no transfer from the old economy to the new economy because the new economy does not

own the new technology (the social planner does). As an example of a new economy firm,

Amazon was an early user of the Internet but it did not own the Internet technology.

As an alternative to the social planner’s problem, one can analyze a competitive economy

in which firms independently decide whether and when to adopt the new technology while
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maximizing their own market values. Although the decentralized problem does not seem

to have a tractable solution for stock prices, not even with exogenous t∗∗, we believe that

it would lead to similar price dynamics as the (tractable) social planner’s problem. Sup-

pose that a continuum of firms facing different conversion costs observe signals about ψ. As

ψ̂t increases during a technological revolution, the proportion of firms that adopt the new

technology also increases. This proportion might play the same role as the adoption prob-

ability in our model: As the proportion increases from (close to) zero to one, the volatility

of the stochastic discount factor also increases, making the uncertainty about ψ increasingly

systematic. The decentralized model can be analyzed in future work.

4. Empirical Implications

The purpose of this section is to analyze the model-implied paths of stock prices and volatil-

ities during technological revolutions. We simulate 50,000 samples of shocks in our economy

and compute the paths of the M/B ratios and volatilities in each simulated sample. We split

the 50,000 samples into two groups, depending on whether or not the new technology was

adopted at time t∗∗, and plot the average paths of prices and volatilities across all samples

within each group. Our objective is to understand how these paths differ depending on

whether or not the new technology leads to a technological revolution.

Table 1 shows the parameters used in our simulations. For the productivity processes, we

choose parameters close to those estimated by Pástor and Veronesi (2006) for the dynamics

of profitability. We equate productivity with profitability because all output in our model

represents firm profits. The parameter values for the conversion cost, time horizon, risk

aversion, and prior beliefs about ψ are varied later in our sensitivity analysis.

Figure 3 plots the average paths of ψ̂t, pt, and σπ ≡ Std(dπt/πt). Panel A shows that

the average drift in ψ̂t during technological revolutions is positive, due to conditioning on

the ex post event that ψ̂t∗∗ ≥ ψ (without such conditioning, ψ̂t is a martingale; see equation

(9)).11 Analogously, conditional on ψ̂t∗∗ < ψ, ψ̂t in Panel B (no revolution) drifts downward.

The drift is less pronounced in Panel B than in Panel A because ψ̂t∗ = 0 and ψ > 0. The

average probability of adoption, pt, drifts up in Panel C (revolution) and down in Panel D

(no revolution), as expected. The volatility of the stochastic discount factor, σπ, is almost

flat while pt is low, but it increases as pt increases (Panel E).

11Brown, Goetzmann and Ross (1995) provide a mathematical proof of a related statement in their analysis
of stock returns conditional on the stock’s survival through the end of the sample.
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Figure 4 plots the average paths of M/B and volatility for the new economy (solid line)

and the old economy (dashed line). The panels on the left are based on the samples in which

pt∗∗ = 1 (revolution); the panels on the right condition on pt∗∗ = 0 (no revolution).12 The

dotted vertical lines mark the time when the new technology arrives, t∗ = 1, and the time

at which the agent decides whether to adopt the technology, t∗∗ = 9.

Panel A of Figure 4 plots the average paths of M/B across all technological revolutions.

The new economy’s M/B exhibits a bubble-like pattern of an initial increase followed by a

decrease, as predicted in Section 3.1. Since we are conditioning on the adoption of the new

technology at time t∗∗, ψ̂t has increased between t∗ and t∗∗ (Figure 3). This increase in ψ̂t

has two countervailing effects on prices. First, it increases expected future cash flow from

the new technology, pushing M/B up. Second, it increases the adoption probability, which

makes the risks associated with the new technology ever more systematic (affecting WT ),

which then increases the discount rate applied to future cash flow, pushing M/B down. For

the new economy, the cash flow effect is stronger at first, but the discount rate effect prevails

in the end, producing an apparent bubble. For the old economy, the cash flow effect is weaker

(i.e., Et [BT ] increases by less than Et
[
BN
T

]
) because the old economy’s productivity is not

affected by ψ until time t∗∗. As a result, the discount rate effect outweighs the cash flow

effect from the outset, leading to a slow price decline in the old economy’s M/B.

Different technological revolutions produce different paths in M/B, depending on the

path of realized productivity. These individual paths look mostly like bubbles that peak

at different times, and they are far less smooth than the average path plotted in Panel A

of Figure 4. This average path shows that apparent bubbles are not merely possible in a

rational world; they should in fact be expected during most technological revolutions.

Panel B of Figure 4 plots the average paths of M/B across all samples in which pt∗∗ = 0

(no revolution). In these samples, ψ̂t declines slightly between t∗ and t∗∗, nudging the M/Bs

down as well. The decline is larger in the new economy, for two reasons. One, the new

economy’s M/B is more sensitive to ψ̂t, as discussed earlier. Two, uncertainty about ψ

gradually declines due to learning, which reduces M/B for the new economy but not for

the old economy (see equation (28)). Thanks in part to this uncertainty, the level of M/B

is higher in the new economy than in the old economy, in both Panels A and B. Higher

productivity is another reason why the new economy’s M/B is higher in Panel A, even after

time t∗∗. Although the adoption makes the long-run means of productivity equal in both

12The fraction of the simulated samples in which pt∗∗ = 1 is approximately equal to the ex ante probability
of adoption implied by our parameter choices, pt∗ = 7.56%, as expected.
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economies, the productivity at time t∗∗ is higher in the new economy (ρNt∗∗ is likely to be high

to make ψ̂t∗∗ > ψ), lifting the M/B of the new economy above that of the old economy.

Panel C of Figure 4 plots the average paths of stock return volatility across all tech-

nological revolutions. Volatility is higher in the new economy than in the old economy,

partly due to higher volatility of the fundamentals, but mostly due to uncertainty about ψ.

To understand the U-shape in the new economy’s volatility, recall that shocks to ψ̂t affect

stock prices via the discount rate and cash flow effects, which work in opposite directions.

Around time t∗ (t∗∗), the cash flow (discount rate) effect dominates, so the two effects do

not offset each other much and the volatility is high. The volatility is lowest when the two

effects cancel each other, which happens at some point between times t∗ and t∗∗; hence the

U-shape. For the old economy, the discount rate effect dominates from the outset. As a

result, the old economy’s volatility slowly increases as the rising adoption probability makes

the stochastic discount factor more volatile. The spike in volatility at time t∗∗ is caused by

high price variation in those simulated paths where ψ̂t∗∗ is close to the adoption threshold

ψ. If ψ̂t is close to ψ as t→ t∗∗, then pt swings between values close to zero and one, making

returns highly volatile (Corollary 3). We show later that the volatility spike disappears (but

all other effects remain) when t∗∗ is chosen optimally instead of being fixed exogenously.

Panel D of Figure 4 plots the average return volatility across all no-revolution samples. In

these samples, the adoption probability is mostly close to zero, so the discount rate effect is

weak. Therefore, the cash flow shocks to stock prices are not offset much by the discount rate

shocks, and the new economy’s volatility is larger than in Panel C. The volatility increases

slightly over time because the adoption probability falls from 7.56% at time t∗ to zero at

time t∗∗, making the discount rate effect progressively weaker, on average.

Note that our calibration produces plausible values for the level and volatility of stock

prices. The new (old) economy’s M/B in Figure 4 ranges from 4.1 to 8.4 (1.9 to 3.2),

while the new (old) economy’s volatility ranges from 22% to 41% (20% to 31%) per year.

For comparison with a recent technology boom, when the technology-loaded Nasdaq index

peaked in March 2000, its M/B stood at 8.55 and the standard deviation of its daily returns

in March 2000 was 41% (Pástor and Veronesi, 2006). At the same time, the M/B ratio of

the NYSE/Amex index was about 3.2 and its return volatility was about 20%.

Figure 5 plots the average realized returns (solid line) and expected returns (dashed

line).13 Ex post conditioning on the adoption of the new technology at time t∗∗ generates

13All returns are annualized by multiplying each interval-dt return by 1/dt.
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stock returns that are first positive and then negative for both economies. This return

pattern results from what we call a hindsight bias. Ex post, we know that a technological

revolution took place at time t∗∗, but ex ante, we only have a probability assessment of

this event. Before time t∗∗, stock prices are not expected to rise and fall; expected returns

are given by the covariances with the stochastic discount factor (Corollary 2). However,

conditioning on a technological revolution means that the adoption probability pt must have

been revised upward between times t∗ and t∗∗, causing a bubble-like pattern in prices through

the cash flow and discount rate effects discussed earlier. The bias of realized returns relative

to expected returns is solely due to ex post conditioning on pt∗∗ = 1; when this conditioning

is removed, the bias disappears. (Across all 50,000 simulations, average realized returns are

equal to average expected returns.) The rise and fall in stock prices during technological

revolutions are observable ex post but not predictable ex ante.

The unexpected arrival of the new technology causes the market value of the old economy

to drop immediately, which is clear from the old economy’s negative return at time t∗ in

Figure 5. This fall in market value is driven by two forces. First, the agent now anticipates

that conversion costs might be paid at time t∗∗. Second, the possibility of eventual adoption

increases systematic risk and so drives up the future discount rates.

4.1. Sensitivity Analysis

This section examines the sensitivity of the price dynamics to our parameter choices. Figure

6 is the counterpart of Panel A of Figure 4 (revolution), with various parameter changes.

In Panel A of Figure 6, risk aversion γ = 4, as opposed to γ = 3 in Figure 4. Higher risk

aversion decreases M/B in both economies, as expected, but the pattern of M/B is otherwise

the same as that in Figure 4. A hump-shaped pattern in MN/BN obtains for any γ > 1.

In Panel B of Figure 6, the cost of switching to the new technology is κ = 0, as opposed

to κ = 0.1 in Figure 4. The only perceptible effect of the lower κ is to decrease M/B of the

new economy. The reason is that the lower conversion cost makes it more likely that the new

technology will be adopted, which increases discount rates and thus depresses prices. For the

old economy, there is also a counterbalancing effect, as the lower conversion cost increases

the old economy’s post-conversion capital Bt∗∗+ = Bt∗∗− (1−κ). The two effects approximately

offset each other, so the old economy’s M/B is almost unaffected by the change in κ. Most

important, the price patterns look just like those in Figure 4.

In Panel C, prior uncertainty about ψ is σ̂t∗ = 8%, compared to σ̂t∗ = 4% in Figure 4.
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The higher uncertainty increases MN/BN , especially close to time t∗ when pt is small (equa-

tion (28)). However, as pt increases during a revolution, uncertainty becomes increasingly

systematic, pushing MN/BN down, and this discount rate effect is stronger when systematic

uncertainty is higher. Therefore, in technological revolutions characterized by high uncer-

tainty, the new economy firms tend to start out with high valuations that exhibit a large

decline. High uncertainty amplifies the bubble-like pattern in stock prices.

In Panel D of Figure 6, the time until the adoption decision is shortened to t∗∗ − t∗ = 4,

compared to t∗∗ − t∗ = 8 in Figure 4. Faster adoption increases MN/BN . To understand

this effect, we note two facts. First, faster adoption implies higher uncertainty about ψ at

time t∗∗ because there is less time to learn (equation (10)). Second, faster adoption implies a

higher adoption threshold ψ because t∗∗ is lower and σ̂t∗∗ is higher (equation (13)). Since ψ̂t

has less time to reach a higher threshold, the adoption probability pt∗ is lower, which implies

that systematic risk is initially lower and MN/BN starts higher than in Figure 4. MN/BN

then rises higher and falls deeper than in Figure 4, conditional on pt∗∗ = 1, because both the

cash flow effect and the discount rate effect are stronger when adoption is faster. The cash

flow effect is stronger because in order for ψ̂t to reach a higher threshold in shorter time, the

increase in ψ̂t must be sharper. The discount rate effect is stronger because uncertainty at

time t∗∗ is higher, and conditional on pt∗∗ = 1, this uncertainty is entirely systematic. Since

both effects are stronger, the rise and fall in MN/BN are more striking than in Figure 4.

Faster adoption of the new technology magnifies the bubble-like pattern in stock prices.

4.2. Optimal Adoption Time

In this section, we relax the assumption that t∗∗ is exogenously given. Without this assump-

tion, no closed-form solutions are available. We define the value function as

V
(
Bt, ρt, ψ̂t, σ̂

2
t , t;T

)
= Et

{
max
t∗∗

Et∗∗

[
W 1−γ
T

1 − γ

]}
, (35)

where the maximization involves choosing the optimal time t∗∗, t∗ ≤ t∗∗ ≤ T to adopt the

new technology (no adoption, t∗∗ = T , is a possibility). The agent has a real option to pay

the conversion cost and adopt the new technology, and she solves for the best time to exercise

this option. The value function in equation (35) satisfies a partial differential equation that

we solve by using the finite difference method. The market prices and volatilities are also

computed numerically. The details are in the Appendix.

Figure 7 plots the average paths of M/B and volatility when t∗∗ is chosen optimally.

Depending on the path of profitability, the adoption can occur anytime between t∗ and T ,
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but averaging across adoptions at very different t∗∗’s would not be very meaningful. For

better comparison with Figure 4 in which t∗∗ is fixed at 9 years, the left panels of Figure 7

report averages across those simulations in which the optimal t∗∗ is between years 8 and 10.

The right panels average across the simulations in which no revolution took place.

Figure 7 shows that our main results are unaffected by endogenizing t∗∗. The new econ-

omy’s M/B is somewhat lower than in Figure 4, mostly because the optimal t∗∗ exceeds

9 years, on average, and because slower adoption reduces M/B. More important, during

revolutions, this M/B exhibits a rise-and-fall pattern similar to that in Figure 4. Realized

returns in the new economy are positive at first and negative at last, due to the hindsight

bias discussed earlier. The path of volatility in Panel C is also very similar to that in Figure

4. The main difference is that endogenous t∗∗ produces a smoother path around time t∗∗:

the volatility spike observed in Figure 4 disappears, as argued earlier.

5. American Railroads Before the Civil War

In this section we analyze the first major technological revolution that took place in the

U.S. since the New York Stock Exchange was organized in 1792 – the introduction of steam-

powered railroads (RRs). We argue that in the early days of the RR, there was substantial

uncertainty about whether the RR technology would be ultimately adopted on a large scale.

After examining the historical milestones of American RRs in Section 5.1., we argue that the

probability of a large-scale adoption rose gradually, and that it approached one in the late

1850s after the RR expansion west of the Mississippi River. We then empirically examine

the behavior of the RR stock prices in 1830–1861 in Section 5.2. In the context of our model,

our evidence is consistent with large-scale adoption of the RR technology around year 1857.

5.1. Brief History

The steam engine, an 18th-century invention, was first used for rail-based transportation

in the early 19th century in Britain. The United States followed shortly afterwards. The

first RR act in the U.S. was passed in 1815 when the New Jersey legislature awarded a

charter to Colonel John Stevens to build a RR between the Delaware and Raritan rivers.14

In 1825, Stevens operated the first locomotive in America – his 16-foot “Steam Waggon”

ran around a circular rail track in Hoboken at 12 miles per hour. The construction of the

first RR, the Baltimore & Ohio, began in July 1828. The Baltimore & Ohio initially used

14The discussion in this section draws especially on Stover (1961), Fogel (1964), and Klein (1994).
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horses to draw its cars, but it replaced them in 1830 by a steam locomotive, Peter Cooper’s

“Tom Thumb.” In 1830, both passenger and freight service commenced on the Baltimore &

Ohio. RRs spread quickly. On Christmas Day in 1830, the “Best Friend of Charleston,” the

first locomotive built for sale in the U.S., made the first scheduled steam-RR train run in

America. Between 1830 and 1840, the RR mileage in the U.S. grew from 23 to 2,808 miles.

In 1840, only four of the 26 states had not completed their first mile of track.

The new RR technology competed with the existing modes of transportation such as

wagons, stagecoaches, steamboats, and canals. Those were not without problems – wagons

were slow and expensive, stagecoaches were uncomfortable, steamboats were dangerous and

limited in scope, and canals froze over in winter. However, it was far from obvious in the

1830s and 1840s that the RRs would later come to dominate the transportation industry. For

example, waterways were much less expensive than RRs, and wagons were not restricted to

rails. While the RR mileage caught up with the canal mileage in the early 1840s, waterways

still carried the great bulk of the nation’s freight in the late 1840s. Writes Fogel (1964): “Far

from being viewed as essential to economic development, the first RRs were widely regarded

as having only limited commercial application. Extreme skeptics argued that RRs were too

crude to insure regular service, that the sparks thrown off by belching engines would set

fire to buildings and fields, and that speeds of 20 to 30 miles per hour could be “fatal to

wagons, road and loading, as well as to human life.” More sober critics questioned the ability

of RRs to provide low cost transportation, especially for heavy freight. [Some] placed “a RR

between a good turnpike and a canal” in transportation efficiency.”

Nearly all RRs organized as corporations funded by private investors. More than half of

the more than $300 million invested in American RRs in 1850 was represented by capital

stock, the remainder being in bonds. The freight business was economically more important

than passenger traffic, which typically produced around 30% of the total revenue.

While most early RRs were built with local capital to provide local transportation, RR

building became more ambitious in the 1850s. This decade “was one of the most dynamic

periods in the history of American RRs” (Stover, 1961). RR mileage expanded from 9,021

in 1850 to 30,626 in 1860, and total investment in the industry increased from about $300m

to about $1,150m over the same period. This growth was spurred by land grants to RRs

by the federal government. The first land-granting act was passed by the Congress in 1850,

aiding the Illinois Central and the Mobile & Ohio RRs. The RR growth in the 1850s was

also stimulated by the discovery of gold in California and the lure of the trans-Pacific trade.

In the 1850s, New York, Philadelphia, and Baltimore all achieved their rail connections with
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the west. In 1853, an all-rail route opened from the East to Chicago, and Chicago quickly

became the rail capital of the nation. The RR technology also advanced in the 1850s –

telegraph was first used to dispatch trains, T-rails became the general rule, and so did the

standard track gauge, at least in the North.15 “Instead of merely serving as connectors

between navigable bodies of water as originally conceived, RRs were replacing them as the

preferred way of transport” (Klein, 1994).

The dramatic RR growth in the 1850s is also evident in Figure 8, which plots the total

rail consumption in the U.S., measured by the number of track-miles of rails laid each year

(Fogel, 1964). Rail consumption grew fast in the 1830s, but especially fast during the decade

leading up to 1856. After 1856, rail consumption slowed down and even declined in 1861

when the Civil War began, but it accelerated again after the war.

The diffusion of the RR technology made a leap in 1856 when two milestone RRs were

completed: the Illinois Central, the longest RR in the world (705 miles), and the Sacramento

Valley, the first RR in California. Also in 1856, the first RR bridge across the Mississippi was

built near Davenport, Iowa, heralding future westward expansion into the region then known

as the “Great American Desert.” This westward expansion was the defining feature of the

RR growth in the decades to come. The RRs shaped the economy of the West, creating new

national markets and fostering unprecedented economic specialization across the nation.

By the late 1850s, it seemed clear that the RR had become a dominant form of trans-

portation. According to Stover (1961), “By 1860 the canal packets and river steamers had

lost much of their passenger traffic” to the RR. In 1860, every state save Minnesota and

Oregon had RR mileage, and 29 of the 33 states had more than 100 miles of line. Klein

(1994) argues that “By 1860... [the RR] had emerged not only as the preferred form of

transportation but also as the chief weapon of commercial rivalry.” This evidence suggests

that a large-scale adoption of the RR technology took place by the end of the 1850s.

5.2. Railroad Stock Prices

To examine the behavior of RR stock prices in the early days of the RR (1830–1861), we use

the data compiled by Goetzmann, Ibbotson, and Peng (2001). These data contain monthly

individual stock prices for NYSE stocks from 1815 to 1925, as well as annual dividends for

15The Northern RRs were using 11 different track gauges in the 1850s, but the standard gauge, 4’8.5”,
became by far the most common by 1860, according to Stover (1961). The South was still mostly on the
5’ gauge. Benmelech (2005) exploits the diversity of track gauges in 19th century American railroads to
examine the effect of asset liquidation value on capital structure.
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a subset of stocks from 1825 to 1870. The data are provided by the International Center of

Finance at Yale University at http://icf.som.yale.edu/nyse/ (as of January 7, 2005).

To focus on common stocks, we exclude stocks classified as “preferred” or “scrip” in

the database. (Scrips are certificates convertible into shares when fully paid-in.) If such

classification is not provided, we examine the stock name and exclude stocks whose name

contains an indication of non-common status such as “pref,” “pr.,” “pf,” or “scrip.” Among

the 671 stocks in the database, we identify and exclude 85 preferred stocks and 29 scrips.

We identify RR stocks by examining the stock names. As an initial benchmark, we use

the list of RRs from the DeGolyer Library at Southern Methodist University, provided at

http://www.smu.edu/cul/degolyer/rr%20names%20for%20web.htm. This list is comprehen-

sive but incomplete. When in doubt, we search the internet for more information. Overall,

we identify 284 RR stocks (42.32% of the whole sample). The first RRs that appear in

our price index (discussed below) in 1831 are Camden & Amboy, Canajoharie & Catskill,

Harlem, and Ithaca & Oswego. All RRs that have at least one valid monthly common stock

return between 1830 and 1861 are listed in Table 2.

We clean the monthly price file to remove apparent data errors. To proceed in a system-

atic fashion, we exclude all prices that imply implausibly large return reversals. Specifically,

we exclude prices that more than tripled compared to the most recent available price and

then fell to less than a third at the nearest future observation, as well as prices that experi-

enced the same reversals in reverse order (first down, then up). We eliminate 34 such prices

in our 1830–1861 sample. We also examine all price sequences in which the price increased or

decreased at least tenfold without reversal, and eliminate six suspicious price entries between

1830 and 1861. We retain the price entries that imply returns below -90% at the very end

of a stock’s price series because these could be stocks heading for bankruptcy. Altogether,

we delete 40 of the 15,276 price entries between 1830 and 1861, or 0.26% of the sample.

Before the price coverage in the database improves in 1848, uninterrupted price sequences

for RR stocks are rare. In no month before 1848 are there more than five RR stocks with

valid monthly returns, and there are months with zero RR returns. An important part of the

problem are gaps in the price series, in which one or several missing values are sandwiched

between two valid prices for a given stock. To alleviate the data shortage, we fill in such

gaps by linear interpolation, but only for gaps that are no more than three months long.

This procedure substantially increases the price coverage early in the sample. For example,

without interpolating, the RR year-end price-dividend ratio discussed below would have only

three valid observations prior to 1847; with interpolation, the number of valid observations
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increases to eight. Without interpolating, our results would be noisier, with more missing

values, but they would lead to the same basic conclusions.

Panel A of Figure 9 plots the aggregate price-to-dividend ratio (P/D) for the RR and

non-RR industries. Each year, we compute P/D as the sum of year-end prices divided by the

sum of dividends paid in that year, summing across all RR (or non-RR) stocks with valid

price and dividend data. Note three main results. First, the P/D of RRs almost invariably

exceeds the P/D of non-RRs before the mid-1850s. Second, the RR P/D falls from 24.9

in 1846 to 15.8 in 1852, to 6.5 in 1857. Third, the non-RR P/D falls as well, but less

dramatically: from 14.0 to 12.8 to 9.1 over the same period. While interpreting the noisy

data requires caution, all three results are broadly consistent with the idea that the new RR

technology was widely adopted around 1857.

Panel B of Figure 9 plots the stock price indexes for the RR and non-RR industries,

obtained by cumulating monthly returns in each industry. Industry returns are computed as

price-weighted averages of monthly capital gains across all stocks in the industry.16 We use

capital gains rather than total returns because the dividend data available to us are annual,

not monthly, and because these data are spotty, especially early in the sample (Goetzmann

et al. (2001) suggest that their dividend sample is incomplete). The general downward trend

in the price indexes is partly due to the absence of dividends and partly due to the absence

of inflation in the economy. The biggest price declines occur in the mid-1850s. For example,

between June 1853 and October 1857, the RR price index falls by 58.3%, whereas the non-

RR index falls by 33.9%. Both the sharp price decline for RRs and the milder decline for

non-RRs are consistent with the RR technology being adopted on a large scale around 1857.

Recall that our model predicts that the new economy (RR) stock prices fall by more than

the old economy (non-RR) stock prices before the adoption of the new technology.

Various events played a role in the stock price decline in 1857. Investor confidence was

shaken by embezzlement at the Ohio Life Insurance and Trust Company in August, as well

as by the government’s loss of a large amount of gold at sea in September. Other commonly

cited negative influences include falling grain prices, British withdrawals of capital from U.S.

banks, and manufacturing surpluses. The stock market bottomed in October 1857 amidst

a number of bank failures. However, the stock price decline cannot be fully attributed to

the banking panic. According to Mishkin (1991), “Rather than starting with the banking

panic in October 1857, the disturbance to the financial markets seems to arise several months

16Goetzmann et al. (2001) argue that price-weighting best approximates the return on a buy-and-hold
portfolio, given the absence of information about market capitalization and book value in their database.
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earlier with the rise in interest rates, the stock market decline... and the widening of the

interest rate spread.” Mishkins last observation is particularly interesting. He shows that

the spread between the yields of low- and high-quality corporate bonds was unusually high

in 1857–1859, higher than at any future time before the 1930s. These high yield spreads

indicate that the risk premia in the late 1850s were high, consistent with our story. Mishkin

also opines that the decline in stock prices in the late 1850s “might be linked to the general

rise in interest rates which lowers the present discounted value of future income streams.”

This is precisely our story - stock prices fall shortly before the adoption of the new technology

because discount rates increase due to an increase in systematic risk.

Panel C plots the volatility of returns in the RR and non-RR industries, computed

annually as the standard deviation of monthly industry returns within the year. Two facts

seem noteworthy. First, the RR volatility exceeds the non-RR volatility in every year except

1841, consistent with the presence of uncertainty about the RR technology. This fact is

also consistent with the explanation that the RR portfolio is less diversified than the non-

RR portfolio, which is apparent from Panel D. While we cannot dismiss this alternative

explanation, we note that the volatility difference persists also after the number of RRs with

valid monthly stock returns increases sharply (from 6 in December 1847 to 15 in January

1848, to 25 in July 1850). The second interesting fact in Panel C is that return volatility

increases sharply in 1857, to 33.5% per year for RRs and to 23.1% for non-RRs. Again, this

fact is consistent with a large-scale adoption of the RR technology around 1857.

6. Conclusions

We provide a rational explanation for the bubble-like patterns in stock prices observed during

technological revolutions. Stock prices of innovative firms initially rise due to good news

about the productivity of the new technology, but they ultimately fall as the risk of the

technology changes from idiosyncratic to systematic. The rise and fall in prices are observable

only in hindsight. This price pattern is unexpected while investors are uncertain whether

the new technology would be widely adopted, but we observe it ex post because we focus on

technologies that eventually led to technological revolutions. To formalize this intuition, we

develop and calibrate a general equilibrium model that features a real option decision and

Bayesian learning about the average productivity of the new technology.

According to the model, the bubble-like price pattern should be most pronounced for tech-

nologies characterized by high uncertainty and fast adoption. These characteristics seem to

fit the Internet technology, which spread quickly over the past decade amid high uncertainty
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about the future growth of the Web. The recent “bubble” in the Internet stock prices might

be to some extent due to the mechanism discussed here.17

Although we focus on stock prices, our model also has some implications for productivity.

First, the new technology does not bring productivity gains immediately upon arrival because

the agent finds it optimal to learn about a new technology before adopting it. Since the agent

chooses the adoption time optimally depending on what she learns, the time it takes for the

productivity gains to begin emerging is endogenous in the model. The implication that

productivity gains arrive with a lag seems reasonable; for example, although electric power

first appeared around 1880, it was not until the 1920s that the productivity of the U.S.

economy increased as a result of a large-scale adoption of electricity (David, 1991). Another

realistic implication is that productivity increases gradually after the adoption of the new

technology. Although the adoption occurs suddenly, productivity rises slowly instead of

jumping because the adoption shifts the long-run mean of productivity.

Our model has no direct implications for investment. The agent invests only a negligible

amount in the new technology for learning purposes. Investing more would not allow the

agent to learn faster because there is only one stream of signals about the productivity gain

(the new economy’s realized productivity) and any investment in the new economy allows

the agent to observe this signal. In an extension that would allow multiple or costly signals,

the amount invested could affect the speed of learning.18 Such an extension might have novel

implications for investment while preserving the pricing implications of our model.

Economists typically date technological revolutions by analyzing the underlying inven-

tions, productivity growth, or product prices. We offer a complementary indirect approach

based on the behavior of stock prices. To give an example, we examine stock prices during

the 19th century railroad revolution in the United States, and find evidence consistent with a

large-scale adoption of the railroad technology soon after railroads began expanding west of

the Mississippi. A systematic empirical study of stock prices during technological revolutions

is beyond the scope of this paper, but it is a promising avenue for future research.

17“The growth of the Internet has paralleled that of most industries based on revolutionary technology.
Canals, railroads, telegraphs, telephones, cars, radios, personal computers – all progressed (or are progress-
ing) through four phases of development: boom, bust, mature growth and decay... the repetition of the
pattern... suggests that the boom-and-bust phases should be viewed as far more than repeated examples of
human folly.” (The New York Times, “Irreplaceable Exuberance,” August 30, 2005.)

18A similar mechanism is at work in the model of Johnson (2005) who argues that learning about the
curvature of the production function of a new technology can generate overinvestment in this technology.

26



Table 1

Parameters used in Simulations.

ρ ψ̂t∗ σ̂t∗
0.1217 0 0.04

φ σ0 σN,0 σN,1
0.3551 0.07 0.07 0.07

κ t∗∗ − t∗ T γ
0.1 8 30 3
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Table 2
Railroads Appearing in our Price Index.

This table lists all railroads in our sample that have at least one valid monthly common stock return between
1830 and 1861. The railroads are sorted by the year of appearance of their first valid monthly return.

Year Railroad

1831 Camden & Amboy; Canajoharie & Catskill; Harlem; Ithaca & Oswego

1832 Boston & Providence

1833 Boston & Worcester; Brooklyn & Jamaica

1835 Hudson & Berkshire; Long Island

1839 Auburn & Syracuse

1841 Auburn & Rochester

1844 Housatonic

1847 Hudson River; Macon & West

1848 Hartford & New Haven; New York & Erie

1849 Erie

1850 Albany & Schenectady; Baltimore & Ohio; Michigan Central; New York & Harlem

1851 Chemung

1852 Michigan & Southern

1853 Cincinnati, Hamilton & Dayton; Cleveland, Columbus & Cincinnati; Cleveland & Pittsburg;
Cleveland & Toledo; Galena & Chicago; Illinois Central; Little Miami

1854 Chicago & Rock Island

1855 Michigan Southern & Northern Indiana

1856 Eighth Avenue; Lacrosse & Milwaukee; Macon & Western

1857 Chicago, Burlington & Quincy; Delaware, Lackawanna & Western; Indianapolis & Cincinnati

1858 Brooklyn City; Buffalo & State Line; Cleveland, Painesville & Ashtabula
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Figure 1. The Sequence of Events. In this chart, t∗∗, the time when the agent decides whether to adopt
the new technology, is taken as given. We initially take t∗∗ as given for the purpose of obtaining closed-form
solutions for prices, but later we solve for the optimal time t∗∗ to adopt the new technology.
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Figure 2. Functions hnew and hold from Proposition 6. This figure plots hnew (Panel A) and hold

(Panel B) as functions of ψ̂t and t∗∗ − t, for parameter values in Table 1. The dotted vertical lines mark ψ.
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Figure 3. Average ψ̂t, pt, σπ,t in Simulations. The left panels plot the perceived productivity gain ψ̂t

(Panel A), the adoption probability pt (Panel C), and the volatility of the stochastic discount factor σπ,t

(Panel E), averaged across all simulations in which the new technology was adopted at time t∗∗ (pt∗∗ = 1).
The right panels (B, D, and E) plot the same quantities but the average is taken across all simulations in
which the new technology was not adopted at time t∗∗ (pt∗∗ = 0). In each panel, the first vertical line denotes
t∗ = 1, the time when the new technology becomes available, and the second vertical line denotes t∗∗ = 9,
the time at which the agent decides whether to adopt the technology on a large scale. All parameters are
given in Table 1.
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Figure 4. Average M/B and Volatility in Simulations. Panel A plots the path of the market-to-book
ratio of the new economy (solid line) and old economy (dashed line) averaged across all simulations in which
the new technology was adopted at time t∗∗ (pt∗∗ = 1). Panel B is an equivalent of Panel A, except that
the averages are computed across all simulations in which the new technology was not adopted at time t∗∗

(pt∗∗ = 0). Panels C and D are equivalents of Panels A and B, respectively, with M/B replaced by the
volatility of stock returns. In each panel, the first vertical line denotes t∗ = 1, the time when the new
technology becomes available, and the second vertical line denotes t∗∗ = 9, the time at which the agent
decides whether to adopt the technology on a large scale. All parameters are given in Table 1.
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Figure 5. Average Realized and Expected Stock Return in Simulations. The left panels plot
the realized return (solid line) and expected return (dashed line) for the old economy (Panel A) and the
new economy (Panel C), averaged across all simulations in which the new technology was adopted at time
t∗∗ (pt∗∗ = 1). The right panels (B and D) plot the same quantities but the average is taken across all
simulations in which the new technology was not adopted at time t∗∗ (pt∗∗ = 0). In each panel, the first
vertical line denotes t∗ = 1, the time when the new technology becomes available, and the second vertical
line denotes t∗∗ = 9, the time at which the agent decides whether to adopt the technology on a large scale.
All parameters are given in Table 1.
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Figure 6. Average M/B in Simulated Revolutions: Sensitivity Analysis. All four panels plot the
paths of the market-to-book ratio of the new economy (solid line) and old economy (dashed line) averaged
across all simulations in which the new technology was adopted at time t∗∗ (pt∗∗ = 1). All parameters are
given in Table 1, except for one change that varies across the panels. In Panel A, the risk aversion γ = 4
instead of the benchmark case γ = 3. In Panel B, the conversion cost κ = 0 instead of the benchmark case
κ = 0.1. In Panel C, the uncertainty σt∗ = 0.08 instead of the benchmark case σt∗ = 0.04. In Panel D, the
time until the adoption t∗∗ − t∗ = 4 instead of the benchmark case t∗∗ − t∗ = 8 years. In each panel, the
first vertical line denotes t∗, the time when the new technology becomes available, and the second vertical
line denotes t∗∗, the time at which the agent decides whether to adopt the technology on a large scale.
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Figure 7. Average M/B and Volatility in Simulations with Optimal Adoption Time. Panel A
plots the path of the market-to-book ratio of the new economy (solid line) and old economy (dashed line)
averaged across all simulations in which the new technology was adopted at an optimally chosen time t∗∗

between years 8 and 10. Panel B is an equivalent of Panel A, except that the averages are computed across
all simulations in which the new technology was never adopted. Panels C and D are equivalents of Panels A
and B, respectively, with M/B replaced by the volatility of stock returns. All parameters are in Table 1.
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Figure 8. Total Rail Consumption in the United States. The figure plots the number of track-miles
of rails laid each year in the U.S., as estimated by Fogel (1964, p.174). A track-mile of rails is defined as one
half of the length of the rails in a mile of single track. The total includes rails used in the construction of
new track as well as in the replacement of worn-out rails.
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Figure 9. Railroad and Non-Railroad Common Stock Prices. Panel A plots the aggregate price-
to-dividend ratio for the railroad (solid line) and non-railroad (dashed line) industries. Each year, this ratio
is computed as the sum of year-end prices divided by the sum of dividends paid in that year, summing
across all railroad (non-railroad) stocks with valid price and dividend data. Panel B plots the stock price
index, obtained by cumulating monthly capital gains in the respective industry. Each month, the capital
gain for railroads (non-railroads) is computed as the price-weighted average of monthly capital gains across
all railroad (non-railroad) stocks. Panel C plots the standard deviation of returns in the railroad and non-
railroad industries. Each year, this standard deviation is computed across all monthly price-weighted average
industry returns in the given year. Panel D plots the number of firms with valid monthly stock returns in
each month.
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Appendix.

The Appendix contains the sketches of all proofs. The formal proofs are available in the
companion Technical Appendix, which is downloadable from the authors’ websites.

Lemma A1: Let τ = T − t. The expectation in equation (6) is given by

V
(
Bt, ρt, ψ̂t, σ̂

2
t , t;T

)
= Et

[
B1−γ
T

1 − γ

]
=
B1−γ
t

1 − γ
eA0(τ )+(1−γ)A1(τ )ρt+(1−γ)A2(τ )ψ̂t+

1
2
(1−γ)2A2(τ )2σ̂2

t ,

(36)
where A1(τ ) and A2(τ ) are given in Propositions 4 and 2, respectively, and

A0 (τ ) = (1 − γ) ρ (τ − A1 (τ )) +
σ2

2

(1 − γ)2
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{
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− 2
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Proof: Let xt =
(
bt, ρt, ψ̂t, σ̂

2
t

)
. From the Feynman-Kac theorem, V satisfies
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∑
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∑
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∑
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∂2V
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with the boundary condition V (xT ) = (1 − γ)
−1
e(1−γ)x1,T . This PDE is satisfied by (36).

Proof of Proposition 1. Since γ > 1, V in equation (36) is negative, decreasing in σ̂2
t ,

and increasing in Bt. As a result, V (Bt∗ (1 − κ) , ρt∗ , 0, σ̂
2
t∗, t

∗;T ) < V (Bt∗ , ρt∗ , 0, 0, t
∗;T ) .

Proof of Lemma 1. Given the observation equations (3) and (8), the result follows from

Theorem 10.3 in Liptser and Shiryayev (1977). The explicit formulas for (Z̃0,t, Z̃1,t), which
capture perceived innovations in ρNt and ρt, are given in the Technical Appendix.

Proof of Proposition 2. Using Lemma A1, it is easy to verify that (13) follows from (14).

Lemma A2: The distribution of ψ̂t∗∗ conditional on ψ̂t is normal:

ψ̂t∗∗|ψ̂t
∼ N

(
ψ̂t, σ̂

2
t − σ̂2

t∗∗

)
.

In addition, pt ≡ Prob
(
ψ̂t∗∗ > ψ|ψ̂t

)
= 1 −N

(
ψ; ψ̂t, σ̂

2
t − σ̂2

t∗∗

)
.

Proof : The process for ψ̂t is linear with deterministic volatility. The result then follows.

Lemma A3: For t∗ ≤ t < t∗∗, the value function in equation (15) is given by

V
(
Bt, ρt, ψ̂t, σ̂

2
t , t;T

)
=
B1−γ
t

1 − γ
{(1 − pt)G

no
t + ptG

yes
t } , (37)

where

Gno
t = eA0(τ )+(1−γ)A1(τ )ρt (38)

Gyes
t = Gno

t (1 − κ)1−γ Rte
(1−γ)A2(τ

∗∗)ψ̂t+
1
2
(1−γ)2A2(τ∗∗)2σ̂2

t (39)
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and

Rt =
1 −N

(
ψ; ψ̂t + (1 − γ)A2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)
1 −N

(
ψ; ψ̂t, σ̂2

t − σ̂2
t∗∗

) < 1. (40)

Proof: From the definition of the value function and WT = BT , we have

V
(
Bt, ρt, ψ̂t, σ̂

2
t , t;T

)
= (1 − pt)Et

[
B1−γ
T

1 − γ
|ψ̂t∗∗ < ψ

]
+ ptEt

[
B1−γ
T

1 − γ
|ψ̂t∗∗ ≥ ψ

]
,

as the adoption occurs at t∗∗ if and only if ψ̂t∗∗ ≥ ψ. Explicit computations show that

Et

[
B1−γ
T

1 − γ
|ψ̂t∗∗ < ψ

]
=
B1−γ
t

1 − γ
Gno
t and Et

[
B1−γ
T

1 − γ
|ψ̂t∗∗ ≥ ψ

]
=
B1−γ
t

1 − γ
Gyes
t .

Proof of Proposition 3. From Lemma A1, V (Bt∗ , ρt∗ , 0, 0, t;T
∗) = B1−γ

t∗ / (1 − γ)Gno
t∗ .

Comparing this formula with V (Bt∗ , ρt∗, 0, σ̂
2
t∗ , t

∗;T ) and recalling that γ > 1, claim (16)
follows if Gyes

t < Gno
t . The fraction Gyes

t /Gno
t can be shown to equal Jt, which is given by

Jt = Et
[
e(1−γ) log(1−κ)+(1−γ)A2(t∗∗;T )ψ̂t∗∗+ 1

2
(1−γ)2A2(t∗∗;T )2σ̂2

t∗∗ |ψ̂t∗∗ > ψ
]
.

Using the definition of ψ in equation (13), Jt can be rewritten as

Jt = Et

[
e(1−γ)A2(τ∗∗)[ψ̂t∗∗−ψ]|ψ̂t∗∗ > ψ

]
.

Since Jt is an expectation of a random variable that is always less than 1, we have Jt < 1.

Proof of Proposition 4. The proof is analogous to that of Lemma A3, except that
“(1 − γ)” is substituted with “−γ”. Explicit calculations show that

G̃yes
t ≡ E

[(
BT

Bt

)−γ
|ψ̂t∗∗ ≥ ψ

]
= G̃no

t (1 − κ)−γ R̃te
−γA2(τ∗∗)ψ̂t+

1
2
γ2A2(τ∗∗)2σ̂2

t , (41)

where G̃no
t is given in equation (21) and

R̃t =
1 −N

(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)
1 −N

(
ψ; ψ̂t, σ̂2

t − σ̂2
t∗∗

) < 1 (42)

A0 (τ ) = −γρ (τ −A1 (τ )) +
σ2

2

γ2

φ2

{
τ +

1 − e−2φτ

2φ
− 2

1 − e−φτ

φ

}
. (43)

Proof of Corollary 1. Let p̃t = 1−N
(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)
. The claim

follows from an application of Ito’s Lemma, where

Sπ,t =

(
γA2 (τ ∗∗) − 1

p̃t

∂p̃t

∂ψ̂t

)
G̃yes
t + ∂pt

∂ψ̂t
G̃no
t

(1 − pt) G̃no
t + ptG̃

yes
t

. (44)
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Proof of Proposition 5. The old economy result follows from Mt = Et [πTBT ] /πt =
Et

[
B1−γ
T

]
/Et

[
B−γ
T

]
, as well as from Lemma A3 and Proposition 4. For the new economy,

explicit computations of the conditional expectations show that

Kno
t ≡ Et

[(
BT

Bt

)−γ
BN
T

BN
t

|ψ̂t∗∗ < ψ

]
= KtR

N
L,t

Kyes
t ≡ Et

[(
BT

Bt

)−γ
BN
T

BN
t

|ψ̂t∗∗ ≥ ψ

]
= (1 − κ)

−γ
KN
t R

N
H,t,

where

Kt = eC0(τ )−γA1(τ )ρt+A1(τ )ρN
t +A2(τ )ψ̂t+

1
2
A2

2(τ )σ̂2
t

KN
t = Kte

−γA2(τ∗∗)ψ̂t+
1
2
γA2(τ

∗∗)(γA2(τ∗∗)−2A2(τ ))σ̂
2
t

and

RN
L,t =

N
(
ψ; ψ̂t + σL

yψ̂
, σ̂2

t − σ̂2
t∗∗

)
N

(
ψ; ψ̂t, σ̂2

t − σ̂2
t∗∗

) with σL
yψ̂

= A2 (τ ) σ̂2
t − A2 (τ ∗∗) σ̂2

t∗∗

RN
H,t =

1 −N
(
ψ; ψ̂t + σH

yψ̂
, σ̂2

t − σ̂2
t∗∗

)
1 −N

(
ψ; ψ̂t, σ̂2

t − σ̂2
t∗∗

) with σHyψ = σLyψ − γA2 (τ ∗∗)
(
σ̂2
t − σ̂2

t∗∗
)
.

Above, C0 (τ ) is given by

C0 (τ ) = (1 − γ) ρ (τ − A1 (τ ))

+
1

2φ2

{
τ +

1 − e−2φτ

2φ
− 2

1 − e−φτ

φ

}(
γ2σ2 − 2γσN,0σ +

(
σ2
N,0 + σ2

N,1

))
.

Proof of Corollary 2. Let pt = 1−N
(
ψ; ψ̂t + (1 − γ)A2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)
. The

claim follows from an application of Ito’s Lemma, where we obtain

SM,t =
− ∂pt

∂ψ̂t
Gno
t +

(
(1 − γ)A2 (τ ∗∗) + 1

pt

∂pt

∂ψ̂t

)
Gyes
t

(1 − pt)Gno
t + ptG

yes
t

. (45)

Let also pNL,t = N
(
ψ; ψ̂t + σL

yψ̂
, σ̂2

t − σ̂2
t∗∗

)
and pNH,t = 1 −N

(
ψ; ψ̂t + σH

yψ̂
, σ̂2

t − σ̂2
t∗∗

)
, then

SNM,t =

(
A2 (τ ) + 1

pN
L,t

∂pN
L,t

∂ψ̂

)
Kno
t +

(
(A2 (τ ) − γA2 (τ ∗∗)) + 1

pN
H,t

∂pN
H,t

∂ψ̂

)
Kyes
t

(1 − pt)Kno
t + ptK

yes
t

. (46)

Proof of Proposition 6. First, we rewrite the M/B ratio of the old economy as

MBt =
Gno
t + ptHt

G̃no
t + ptH̃t

,
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where Ht = Gyes
t −Gno

t and H̃t = G̃yes
t − G̃no

t . Taking the derivative ∂MBt/∂pt, we find that

M/B increases in pt if and only if HtG̃
no
t > Gno

t H̃t. Substituting the closed-form expressions,
we obtain the condition hold > 0, where

hold = −κ̃+ A2 (τ ∗∗) ψ̂t +
1

2
(1 − 2γ)A2 (τ ∗∗)2 σ̂2

t (47)

− log

⎛⎝ 1 −N
(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)
1 −N

(
ψ; ψ̂t + (1 − γ)A2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)
⎞⎠ . (48)

We follow a similar derivation for the new economy’s M/B ratio. First, we write

MBN
t =

KtR
N
L + ptJ̄t

G̃no
t + ptH̃t

,

where J̄t = (1 − κ)
−γ
KN
t R

N
H −KtR

N
L . Taking ∂MBN

t /∂pt, we find that MBN
t increases in

pt if and only if J̄tG̃
no
t −KtH̃tR

N
L > 0. Substituting, we obtain the condition hnew > 0, where

hnew = −γA2 (τ ∗∗)A2 (τ ) σ̂2
t − log

⎛⎝N
(
ψ; ψ̂t + σL

yψ̂
, σ̂2

t − σ̂2
t∗∗

)
N

(
ψ; ψ̂t, σ̂2

t − σ̂2
t∗∗

)
⎞⎠ (49)

− log

⎛⎝ 1 −N
(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)
1 −N

(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) + σLyψ, σ̂

2
t − σ̂2

t∗∗

)
⎞⎠ . (50)

Proof of Proposition 7. First, we write MN

BN = ΦN

π̃
, where ΦN and π̃ are defined as the

numerator and denominator in equation (25). Then,

∂
(
MN

BN

)
∂ψ̂t

=
π̃∂ΦN/∂ψ̂t − ΦN∂π̃/∂ψ̂t

π̃2
> 0 if and only if SNM,t + Sπ,t > 0,

where SNM,t and Sπ,t are defined above. The probability of adoption as of time t∗ is given by

pt∗ =

∫ ∞

f(κ,γ,σ̂2
t∗ ;τ∗)

1√
2π
e−

1
2
x2

dx,

where

f
(
κ, γ, σ̂2

t∗ ; τ
∗) = − log (1 − κ) /A2 (τ ∗∗)

⎛⎜⎝(σ̂2
t∗)

−1
+

(
φ

σN,1

)2

(t∗∗ − t∗)

σ̂2
t∗

(
φ

σN,1

)2

(t∗∗ − t∗)

⎞⎟⎠
1
2

+
1
2
(γ − 1)A2 (τ ∗∗)(

φ
σN,1

)
(t∗∗ − t∗)

1
2

(
1 + σ̂2

t∗

(
φ

σN,1

)2

(t∗∗ − t∗)
)1

2
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Thus, pt∗ → 0 if and only if f (κ, γ, σ̂2
t∗ ; τ

∗) → ∞. This happens when κ → 1, γ → ∞,
T → ∞, t∗∗ − t → 0, and, if κ > 0, when σ̂2

t∗ → 0. In all of these cases, the formulas for the
various quantities in SNM,t + Sπ,t imply that this sum becomes positive.

Proof of Corollary 3. Immediate from Proposition 5 for pt∗∗ = 1 and pt∗∗ = 0. In Corollary
3, C0(τ

∗∗) = C0(τ
∗∗) − A0(τ

∗∗).

Optimal Stopping Time.

Proposition 8: The value function in equation (35) is given by

V
(
Bt, ρt, ψ̃t, σ̂

2
t , t;T

)
= B1−γ

t e(1−γ)A1(t)ρtV2

(
ψ̂t, t;T

)
, (51)

where V2

(
ψ̂t, t;T

)
satisfies the PDE

0 =
∂V2

∂t
+

(
(1 − γ)A1(T − t)φρ+

1

2
(1 − γ)2A1(T − t)2σ2

)
V2 +

1

2

∂2V2

∂ψ̂2

(
σ̂2
t

φ

σN,1

)2

,

with the boundary conditions V2

(
ψ̂T , T

)
= 1

1−γ if t∗∗ > T and

V2

(
ψ̂t, t;T

)
≥ (1 − κ)1−γ

1 − γ
eA0(τ )+(1−γ)A2(τ )ψ̂t+

1
2
(1−γ)2A2(τ )2σ̂2

t ,

where the equality holds at t = t∗∗.

Proof: Since σ̂2
t is a deterministic function of time, we write the value function simply as

V(Bt, ρt, ψ̂t, t;T ). For t ≤ t∗∗, V must satisfy the Bellman equation

0 =
∂V
∂t

+
∂V
∂Bt

Et [dBt]+
∂V
∂ρ
Et [dρ]+

∂V
∂ψ̃

Et
[
dψ̃

]
+

1

2

∂2V
∂ρ2

Et
[
dρ2

t

]
+

1

2

∂2V
∂ψ̂2

Et
[
dψ̂2

t

]
+
∂2V
∂ρ∂ψ̂

Et
[
dρdψ̂t

]
,

with the boundary conditions V(Bt, ρt, ψ̂t, t;T ) ≥ V (Bt(1 − κ), ρt, ψ̂t, σ̂t, t;T ) (and equality

at t∗∗) and V(BT , ρT , ψ̂T , σ̂T , T ;T ) = B1−γ
T /(1 − γ) if T < t∗∗. It is easy to verify that this

Bellman equation is satisfied by the value function (51) with V2 satisfying the PDE and the
boundary conditions given in Proposition 8.
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Technical Appendix

This appendix contains more detailed proofs than the ones sketched in the article.

Lemma 1: For later reference, we prove a more general version of Lemma 1. In particular, we
cover three cases: (i) the new economy does not exist, and learning only occurs only by observing
the old economy; (ii) the new economy exists, and learning occurs for t ∈ [t∗, t∗∗]; (iii) the new
economy exists, adoption takes place at t∗∗ and learning occurs for t ≥ t∗∗. The learning dynamics
for t > t∗∗ in the case of no adoption at t∗∗ is identical to case (ii). For t ≥ t∗ we then have

dψ̂t = σ̂2
t c
φ

σ
dZ̃0,t + cN σ̂

2
t

φ

σN,1

(
1 − c

σN,0
σ

)
dZ̃1,t (B1)

dσ̂2
t

dt
= −

(
σ̂2
t

)2
g (B2)

where g, c and cN are constants given by

g =

⎛⎝(
cφ

σ

)2

+ cN

(
φ

σN,1

)2 (
1 − c

σN,0
σ

)2
⎞⎠ (B3)

(c, cN) =

⎧⎪⎨⎪⎩
(1, 0) if only old economy exists
(1, 1) if t ≥ t∗∗ and adoption occurs at t∗∗

(0, 1) otherwise
(B4)

This implies that

σ̂2
t =

⎧⎪⎨⎪⎩
(
σ̂−2
t∗∗ + g (t− t∗∗)

)−1
if t ≥ t∗∗ and switch occurs at t∗∗(

σ̂−2
t∗ + g (t− t∗)

)−1
otherwise

(B5)

Proof: We consider only case (ii) and (iii). The simpler case (i) can be shown using similar steps.
In these two cases, the new economy exists and thus the observation equations are

dρt = φ (ρ+ cψ − ρt) dt+ σ0dZ0,t

dρNt = φ
(
ρ+ ψ − ρNt

)
dt+ σN,0dZ0,t + σN,1dZ1,t

where c is given in (B4). Defining st = (ρt, ρ
N
t )′, this can be written compactly as

dst = (A + Bz + Cψ) dt+ ΣdZ

where C = (cφ, φ)′ and

Σ =

(
σ 0
σN,0 σN,1

)

Liptser and Shiryaev (1977) show that the process for ψ̂t = Et [ψ] is given by

dψ̂t = σ̂2
tC

′ (Σ′)−1
dZ̃ (B6)

where Z̃t = (Z̃0,t, Z̃1,t)′ follows the process

dZ̃t = Σ−1

(
dρt
dρNt

−Et

[
dρt
dρNt

])

1



and
dσ̂2

t

dt
= −

(
σ̂2
t

)2
C′ (ΣΣ′)−1 C

Substituting C and Σ, we find immediately

C′ (Σ′)−1 =

(
c
φ

σ
,−cφ σN,0

σσN,1
+

φ

σN,1

)

Substituting this expression in (B6) and defining g = C′ (ΣΣ′)−1 C we obtain (B1) and (B2) for
cN = 1. It is simple to verify that (B5) satisfies (B2), yielding the conclusion. Q.E.D.

It is convenient to rewrite the original processes under the filtered measure. Let bt = log (Bt)
and bNt = log

(
BNt

)
. For t > t∗ we have

dbt = ρtdt (B7)

dρt = φ
(
ρ+ cψ̂t − ρt

)
dt+ σdZ̃0,t (B8)

dψ̂ = σ̂2
t c
φ

σ
dZ̃0,t + cN σ̂

2
t

φ

σN,1

(
1 − c

σN,0
σ

)
dZ̃1,t (B9)

dσ̂2
t = −

(
σ̂2
t

)2

⎛⎝(
cφ

σ

)2

+ cN

(
φ

σN,1

)2 (
1 − c

σN,0
σ

)2
⎞⎠ dt (B10)

dbNt = ρNt dt (B11)

dρNt = φ
(
ρ+ ψ̂t − ρNt

)
dt+ σN,0dZ̃0,t + σN,1dZ̃1,t (B12)

Lemma A1: Let τ = T − t. The expectation in equation (6) is given by

V
(
Bt, ρt, ψ̂t, σ̂

2
t , τ

)
= Et

[
B

1−γ
T

1 − γ

]
=
B1−γ
t

1 − γ
eA0(τ )+(1−γ)A1(τ)ρt+(1−γ)A2(τ)ψ̂t+

1
2
(1−γ)2A2(τ )

2σ̂
2
t (B13)

where

A0 (τ) = (1 − γ) ρ (τ − A1 (τ)) +
σ2

2
(1 − γ)2

φ2

{
τ +

1 − e−2φτ

2φ
− 2

1− e−φτ

φ

}

A1 (τ) =
1 − e−φτ

φ
and A2 (τ) = τ −A1 (τ)

Proof : By definition
V

(
bt, ρt, ψ̂t, σ̂

2
t , t; T

)
= (1− γ)−1Et

[
e(1−γ)bT

]
Denoting xt =

(
bt, ρt, ψ̂t, σ̂

2
t

)
, the Feynman-Kac theorem shows that V has to satisfy the PDE

0 =
∂V

∂t
+

∑
i

∂V

∂xi
Et [dxi] +

1
2

∑
i

∑
j

∂2V

∂xi∂xj
Et [dxidxj]

with boundary condition V (xT ) = (1 − γ)−1 e(1−γ)x1,T . Using (B7) - (B10) with c = 1 and cN = 0,
it is simple to verify that (B13) satisfies this PDE with the boundary condition. Finally, A2 (τ) > 0

2



is immediate. Rewrite A2 (τ) = f (τ) = τ− 1−e−φτ

φ . Note that f (0) = 0. Since f ′ (τ) = 1−e−φτ > 0,
we have f (τ) > 0 for every τ > 0. QED.

Proof of Proposition 1: Since γ > 1 we have that V in (B13) is decreasing in σ̂2
t . It

immediately follows that V
(
Bt∗ (1 − κ) , ρt∗, 0, σ̂

2
t∗ , τ

∗
)
< V (Bt∗ , ρt∗ , 0, 0, τ∗) . Q.E.D.

Proof of Proposition 2: Using (B13) it is immediate to verify that equation (13) follows from
equation (14). Q.E.D.

To prove Proposition 3 we need the following lemmas, obtaining the closed form solution for
the value function in equation (15) in the paper:

Lemma A2: The density of ψ̂t∗∗ conditional on ψ̂t is normal and explicitly given by

ψ̂t∗∗ |ψ̂t
∼ N

(
ψ̂t, σ

2

ψ̂,t

)
where

σ2
ψ̂,t

= σ̂2
t − σ̂2

t∗∗

and σ̂2
t is given in (B5) for the case t < t∗∗.

Proof : The process for the posterior mean ψ̂t is a linear diffusion with deterministic volatility,
as given in (B1). The integral representation is

ψ̂t∗∗ = ψ̂t +
φ

σN,1

∫ t∗∗

t
σ̂2
sdZ̃1,s

which immediately implies that
ψ̂t∗∗ |ψ̂t ∼ N

(
ψ̂t, σ

2
ψ̂,t

)
where

σ2

ψ̂,t
=

(
φ

σN,1

)2 ∫ t∗∗

t

(
σ̂2
s

)2
ds

Using (B5) for t < t∗∗ we can compute∫ t∗∗

t

(
σ̂2
s

)2
ds =

1
(φ/σN,1)

2

[
σ̂2
t − σ̂2

t∗∗
]

Thus σ2

ψ̂,t
= σ̂2

t − σ̂2
t∗∗ . In addition, it is then immediate that the probability of adoption is given

by
pt ≡ p

(
ψ̂t, t

)
= Pr

(
ψ̂t∗∗ > ψ|ψ̂t

)
= 1 −N

(
ψ; ψ̂t, σ

2

ψ̂,t

)
where N (

.; a, s2
)
the cumulative density function of a normal distribution with mean a and variance

s2. Q.E.D.
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Lemma A3: The value function

Vt = Et

[
max
yes,no

Et∗∗

[
W 1−γ
T

1 − γ

]]

at time t∗ ≤ t < t∗∗ is given by

V
(
Bt, ρt, ψ̂t, σ̂

2
t ; τ

)
=
B1−γ
t

1− γ
{(1 − pt)Gnot + ptG

yes
t } (B14)

where

Gnot = eA0(τ)+(1−γ)A1(τ )ρt

Gyest = Gnot (1 − κ)1−γ Rte(1−γ)A2(τ
∗∗)ψ̂t+

1
2
(1−γ)2A2(τ∗∗)2σ̂

2
t

and

Rt =
1 −N

(
ψ; ψ̂t + (1 − γ)A2 (τ∗∗)σ2

ψ̂,t
, σ2

ψ̂,t

)
1 −N

(
ψ; ψ̂t, σ2

ψ̂,t

) < 1 (B15)

Proof: The value function is

Vt = Et

[
max
yes,no

Et∗∗

[
W 1−γ
T

1 − γ

]]
= (1 − pt)Et

[
W 1−γ
T

1 − γ
|ψ̂t∗∗ < ψ

]
+ ptEt

[
W 1−γ
T

1 − γ
|ψ̂t∗∗ ≥ ψ

]

as the adoption at t∗∗ occurs if and only if ψ̂t∗∗ ≥ ψ. Starting with the first expectation, we can
use the law of iterated expectations

Et

[
W 1−γ
T

1 − γ
|ψ̂t∗∗ < ψ

]
= Et

[
Et∗∗

[
W 1−γ
T

1 − γ
|ψ̂t∗∗ < ψ

]
|ψ̂t∗∗ < ψ

]

We can use again equation (B13) to compute the inner expectation. In fact, if ψ̂t∗∗ < ψ the
technology does not change at t∗∗. Moreover, eqn (B8) - (B9) show that ρt and ψ̂t are independent
as c = 0 (see eqn. B4). Thus, Lemma A2 implies

Et∗∗

[
W 1−γ
T

1 − γ
|ψ̂t∗∗ < ψ

]
= V (Bt∗∗ , ρt∗∗ , 0, 0, t

∗∗; T ) =
B1−γ
t∗∗

1 − γ
eA0(t∗∗;T )+A1(t∗∗;T )ρt∗∗

Thus,

Et

[
B1−γ
t∗∗

1− γ
eA0(t∗∗;T )+A1(t∗∗;T )ρt∗∗ |ψ̂t∗∗ < ψ

]
= Et

[
B1−γ
t∗∗

1 − γ
eA0(t∗∗;T )+A1(t∗∗;T )ρt∗∗

]

=
B1−γ
t

1− γ
eA0(t;T )+A1(t;T )ρt

where the first equality stems from the independence of ρt and ψ̂t, and the second equality stems
from an application of Feynman - Kac thorem, similar to the argument used in Lemma A1.

The second expectation is more involved, as until t∗∗ capital employs the old technology, and
only then it switches to the new technology. In addition, the switch occurs only if ψ̂t∗∗ is high
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enough, and this must be taken into account in the computation. Using again the law of iterated
expectations, we have

Et

[
W 1−γ
T

1 − γ
|ψ̂t∗∗ ≥ ψ

]
= Et

[
Et∗∗

[
W 1−γ
T

1− γ
|ψ̂t∗∗ > ψ

]
|ψ̂t∗∗ > ψ

]
= Et

[
V

(
Bt∗∗ (1 − κ) , ρt∗∗, ψ̂t∗∗, σ̂

2
t∗∗ , t

∗∗; T
)
|ψ̂t∗∗ > ψ

]
where the second equality stems from Lemma A1 and the fact that if ψ̂t∗∗ > ψ, the adoption occurs.
We can use the explicit formula for V (.) to compute this expectation. In particular, from (B7) -
(B10), ψ̂t is independent of both ρt and bt, and σ̂2

t∗∗ is a known constant. Thus, we can write

Et
[
V

(
Bt∗∗ (1 − κ) , ρt∗∗, ψ̂t∗∗, σ̂

2
t∗∗ , t

∗∗; T
)
|ψ̂t∗∗ > ψ

]
=

(1 − κ)1−γ

1 − γ
Et

[
e(1−γ)bt∗∗+A0(t∗∗;T )+(1−γ)A1(t∗∗;T )ρt∗∗ + 1

2
(1−γ)2A2(t∗∗;T )2σ̂

2
t∗∗

]
×Et

[
e(1−γ)A2(t∗∗;T )ψ̂t∗∗ |ψ̂t∗∗ > ψ

]
= e(1−γ)bt+A0(t;T )+(1−γ)A1(t;T )ρt+

1
2
(1−γ)2A2(t∗∗;T )2σ̂

2
t∗∗Et

[
e(1−γ)A2(t

∗∗;T )ψ̂t∗∗ |ψ̂t∗∗ > ψ

]

Since from Lemma A2, ψ̂t∗∗ ∼ N
(
ψ̂t, σ̂

2
t − σ̂2

t∗∗
)

we have that the conditional density required to
compute the last expectation is given by

f
(
ψ̂t∗∗|ψ̂t∗∗ > ψ

)
=
f

(
ψ̂t∗∗; ψ̂t, σ̂

2
t − σ̂2

t∗∗
)

1{
ψ̂t∗∗>ψ

}
1 −N

(
ψ; ψ̂t, σ̂

2
t − σ̂2

t∗∗
)

Using this density, we find

E

[
e(1−γ)A2(t

∗∗;T )ψ̂t∗∗ |ψ̂t∗∗ > ψ

]
=

1

1−N
(
ψ; ψ̂t, σ̂

2
t − σ̂2

t∗∗
) ∫ ∞

ψ
e(1−γ)A2(t

∗∗;T )ψ̂t∗∗f
(
ψ̂t∗∗

)
dψ̂t∗∗

= e
1
2
(1−γ)2A2

2(τ∗∗)
(
σ̂

2
t−σ̂2

t∗∗
)
+(1−γ)A2(τ∗∗)ψ̂tR

(
ψ̂t

)
where R

(
ψ̂t

)
= Rt is given in (B15). Putting all these elements together, we obtain (B14).

Lemma A4: Gyest < Gnot .

Proof : Consider the expression

Jt = Et

[
e(1−γ) log(1−κ)+(1−γ)A2(t

∗∗;T )ψ̂t∗∗+ 1
2
(1−γ)2A2(t∗∗;T )2σ̂

2
t∗∗ |ψ̂t∗∗ > ψ

]
Using the definition of ψ in equation (13) of the paper, this can be written as

Jt = Et

[
e
−(1−γ)A2(τ∗∗)

[
− log(1−κ)

A2(τ∗)
−ψ̂t∗∗− 1

2
(1−γ)A2(t∗∗;T )σ̂

2
t∗∗

]
|ψ̂t∗∗ > ψ

]

= Et

[
e(1−γ)A2(τ∗∗)

[
ψ̂t∗∗−ψ

]
|ψ̂t∗∗ > ψ

]
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Thus, Jt < 1, as it is the expectation of a random variable that is constrained to be less than 1.
By using the same steps as in Lemma A3, we find

Jt = Et

[
e(1−γ)A2(τ∗∗)

[
ψ̂t∗∗−ψ

]
|ψ̂t∗∗ > ψ

]
= e−(1−γ)A2(τ

∗∗)ψEt

[
e(1−γ)A2(τ∗∗)ψ̂t∗∗ |ψ̂t∗∗ > ψ

]
= e−(1−γ)A2(τ

∗∗)ψ+(1−γ)A2(τ∗)ψ̂t+
1
2
(1−γ)2A2(τ∗)2

(
σ̂

2
t−σ̂

2
t∗∗

)
× Rt

= e(1−γ) log(1−κ)+(1−γ)A2(τ
∗)ψ̂t+

1
2
(1−γ)2A2(τ∗)2σ̂

2
t ×Rt

=
Gyest
Gnot

yielding the conclusion. Q.E.D.

Proposition 3: Experimenting is always optimal at time t∗, that is

V
(
Bt∗ , ρt∗ , 0, σ̂

2
t∗; τ

∗
)
> V (Bt∗ , ρt∗, 0, 0; τ∗)

where V (Bt∗ , ρt∗ , 0, 0; τ∗) is defined in equation (B13).

Proof : SinceGyest < Gnot , the result follows from the fact that we can rewrite V (Bt∗ , ρt∗ , 0, 0; τ∗) =
B1−γ

t∗
1−γ G

no
t∗ and γ > 1. Q.E.D.

Proof of Proposition 4: The proof is identical to the one of Lemma A3, where “(1 − γ)” is
substituted with “−γ”. Using this fact, we have

πt = λ−1B−γ
t

{
(1 − pt) G̃not + ptG̃

yes
t

}
(B16)

where

G̃not = eA0(τ )−γA1(τ )ρt (B17)

G̃yest = G̃not (1 − κ)−γ R̃te−γA2(τ
∗∗)ψ̂t+

1
2
γ2A2(τ∗∗)2σ̂

2
t (B18)

and

R̃t =
1 −N

(
ψ; ψ̂t − γA2 (τ∗∗) σ2

ψ̂,t
, σ2

ψ̂,t

)
1 −N

(
ψ; ψ̂t, σ2

ψ̂,t

) < 1 (B19)

In this proposition,

A0 (τ) = −γρ (τ −A1 (τ)) +
σ2

2
γ2

φ2

{
τ +

1 − e−2φτ

2φ
− 2

1 − e−φτ

φ

}

Q.E.D.

Proof of Corollary 1: The corollary follows from an application of Ito’s Lemma, so that

dπt
πt

= −σπ,tdZ̃t

6



where
σπ,t = γA1 (τ) σ+Sπ,tσ̃ψ,t

and

Sπ,t =

(
γA2 (τ∗∗)− 1

p̃
∂p̃

∂ψ̂

)
G̃yest + ∂p

∂ψ̂
G̃not

(1 − pt) G̃not + ptG̃
yes
t

(B20)

where
p̃t ≡ p̃

(
ψ̂t, t

)
= 1−N

(
ψ; ψ̂t − γA2 (τ∗∗)σ2

ψ̂,t
, σ2

ψ̂,t

)
and σ = (σ, 0) , σ̃ψ =

(
0, σ̂2

t
φ

σN,1

)
. Q.E.D.

Proof of Proposition 5 (old economy): The result about the old economy is immediate
from the pricing formula Mt = Et [πTBT ] /πt = Et

[
B1−γ
T

]
/πt, and the results in Lemma A3 and

Proposition 4. Q.E.D.

For better referencing, it is convenient to restate Proposition 5 for the new economy:

Proposition 5 (new economy) Let τ = T − t. For t∗ ≤ t < t∗∗, the market to book ratio of
the new economy is given by

MN
t

BNt
=

(1 − pt)Kno + ptK
yes

(1− pt) G̃not + ptG̃
yes
t

(B21)

where G̃not and G̃yest are given in Proposition 3, and

Kno = KtR
N
L,t

Kyes = (1 − κ)−γ KN
t R

N
H,t

Kt = eC0(τ)−γA1(τ )ρt+A1(τ )ρN
t +A2(τ )ψ̂t+

1
2
A2

2(τ)σ̂
2
t

KN
t = Kte

−γA2(τ∗∗)ψ̂t+
1
2
γA2(τ∗∗)(γA2(τ∗∗)−2A2(τ))σ̂

2
t

and

RNL,t =
N

(
ψ; ψ̂t + σL

yψ̂
, σ2

ψ̂,t

)
N

(
ψ; ψ̂t, σ2

ψ̂,t

) with σL
yψ̂

= A2 (τ) σ̂2
t −A2 (τ∗∗) σ̂2

t∗∗

RNH,t =
1 −N

(
ψ; ψ̂t + σH

yψ̂
, σ2

ψ̂,t

)
1 −N

(
ψ; ψ̂t, σ2

ψ̂,t

) with σHyψ = σLyψ − γA2 (τ∗∗)σ2
ψ̂,t

Above, C0 (τ) is given by

C0 (τ) = (1 − γ) ρ (τ −A1 (τ))

+
1

2φ2

{
τ +

1 − e−2φτ

2φ
− 2

1 − e−φτ

φ

}(
γ2σ2 − 2γσN,0σ +

(
σ2
N,0 + σ2

N,1

))
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We start the proof with two lemmas:

Lemma A5: For t ≥ t∗∗, let τ = T − t. Then

V N
(
bt, b

N
t , ρt, ρ

N
t , ψ̂t, σ̂

2
t , τ

)
≡ Et

[
e−γbT +bNT

]
is given by

V N
(
bt, b

N
t , ρt, ρ

N
t , ψ̂t, σ̂

2
t , τ

)
= e−γbt+b

N
t +C0(τ )−γA1(τ )ρt+A1(τ )ρN

t +A2(τ )ψ̂t+
1
2
(1−cγ)2A2

2(τ )σ̂
2
t (B22)

where c = 1 if the adoption occurred at time t∗∗ , and 0 otherwise, A1 (.) and A2 (.) are as in
Lemma A1, and

C0 (τ) = (1 − γ) ρ (τ −A1 (τ)) +
1
φ2

(
τ +

1 − e−2φτ

2φ
− 2A1 (τ)

)
1
2

(σ∗)2

and
(σ∗)2 = γ2σ2 + σ2

N,0 + σ2
N,1 − 2γσN,0σ

Proof: As in Lemma A1, denoting xt =
(
bt, b

N
t , ρt, ρ

N
t , ψ̂t, σ̂

2
t

)
, the Feynman-Kac theorem shows

that V N has to satisfy the PDE

0 =
∂V N

∂t
+

∑
i

∂V N

∂xi
Et [dxi] +

1
2

∑
i

∑
j

∂2V N

∂xi∂xj
Et [dxidxj]

with the boundary condition V (xT ) = (1 − γ)−1 e−γx1,T +x2,T . Using (B7) - (B12) for the cases
where c = 1 or c = 0 (with cN = 1) in Lemma 1, it is simple to verify that (B22) satisfies this PDE
with the boundary condition provided. Q.E.D.

Lemma A6: Define

yt∗∗ = −γbt∗∗ + bNt∗∗ − γA1 (τ∗∗) ρt∗∗ + A1 (τ∗∗) ρNt∗∗ + (1 − c1)A2 (τ∗∗) ψ̂t∗∗

where c1 > 0 is a constant. Then(
yt∗∗

ψ̂t∗∗

)
∼ N

((
μy,t
ψ̂t

)
,

(
σ2
y σyψ
σyψ σ2

ψ̂,t

))

where

μy,t = −γbt + bNt + (1− γ) ρa (t) − γA1 (τ) ρt + A1 (τ) ρNt + (A2 (τ)− c1A2 (τ∗∗)) ψ̂t
σ2
y = (1− c1)

2A2 (τ∗∗)2
(
σ̂2
t − σ̂2

t∗∗
)

+ a (t)2 σ̂2
t + 2A2 (τ∗∗) (1− c1) a (t) σ̂2

t + (σ∗)2 a2 (t)

σ2

ψ̂,t
= σ̂2

t − σ̂2
t∗∗

σyψ = (1− c1)A2 (τ∗∗)
(
σ̂2
t − σ̂2

t∗∗
)

+ a (t) σ̂2
t
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and

a (t) = t∗∗ − t− e−φ(T−t∗∗) − e−φ(T−t)

φ
(B23)

a2 (t) =
1
φ2

(
t∗∗ − t+

e−2φ(T−t∗∗) − e−2φ(T−t)

2φ
− 2

e−φ(T−t∗∗) − e−φ(T−t)

φ

)
(B24)

(σ∗)2 = γ2σ2 + σ2
N,0 + σ2

N,1 − 2γσN,0σ (B25)

Proof : The proof of this lemma is rather lengthy, and so it is provided separately below.

Proof of Proposition 5 (new economy): The pricing formula is MN
t = Et

[
πTB

N
T

]
/πt. Thus,

we need to compute

Et
[
B−γ
T BNT

]
= (1− pt)Et

[
B−γ
T BNT |ψ̂t∗∗ < ψ

]
+ ptEt

[
B−γ
T BNT |ψ̂t∗∗ > ψ

]
(B26)

Starting with the first expectation, note that if ψ̂t∗∗ < ψ, no adoption occurs at t∗∗. Thus,

Et
[
B−γ
T BNT |ψ̂t∗∗ < ψ

]
= Et

[
Et∗∗

[
B−γ
T BNT |ψ̂t∗∗ < ψ

]
|ψ̂t∗∗ < ψ

]
= Et

[
V N

(
bt∗∗, b

N
t∗∗, ρt∗∗ , ρ

N
t∗∗ , ψ̂t∗∗, σ̂

2
t∗∗ , t

∗∗; T
)
|ψ̂t∗∗ < ψ

]
= eC0(τ∗∗)+ 1

2
A2

2(τ
∗∗)σ̂

2
t∗∗

×Et
[
e−γbt∗∗+bN

t∗∗−γA1(τ∗∗)ρt∗∗+A1(τ∗∗)ρN
t∗∗+A2(τ∗∗)ψ̂t∗∗ |ψ̂t∗∗ < ψ

]
where the first equality stems from the law of iterated expectations, the second from the fact that
ψ̂t∗∗ is known at t∗∗, the third from Lemma A5, with c = 0 as the adoption does not occur at t∗∗.
Note that the exponent in the expectation is simply yt∗∗ in Lemma A6 with c1 = 0. For notational
convenience, let

a0 (t) = (1 − γ) ρa (t) .

Using Lemma A6 with c1 = 0 and denoting by L the corresponding quantities in Lemma A6 for
this case, we can compute

E
[
eyt∗∗ |ψ̂t∗∗ < ψ

]
=

∫ ψ
−∞E

[
eyt∗∗ |ψ̂t∗∗

]
f

(
ψ̂t∗∗; ψ̂t, σ2

ψ̂,t

)
dψ̂t∗∗

Pr
(
ψ̂t∗∗ < ψ

)
where f

(
ψ̂t∗∗ ; ψ̂t, σ

2

ψ̂,t

)
is the density of a normal with mean ψ̂t and variance σ2

ψ̂,t
. The rules of

the conditional normal distribution yield the following expression for this expectation:

Et
[
eyt∗∗ |ψ̂t∗∗ < ψ

]
= B−γ

t BNt e
a0(t)−γA1(t;T )ρt+A1(t;T )ρN

t +A2(t;T )ψ̂t+
1
2
σ2

LyRNL,t

where RNL,t is given in Proposition 5. So, finally, the first expectation is given by

Et
[
B−γ
T BNT |ψ̂t∗∗ < ψ

]
= B−γ

t BNt e
C0(t∗∗;T )+ 1

2
A2

2(t∗∗;T )σ̂
2
t∗∗ea0(t)−γA1(t;T )ρt+A1(t;T )ρN

t +A2(t;T )ψ̂t+
1
2
σ2

L,yRNL,t

= B−γ
t BNt e

C0(t;T )+ 1
2
A2

2(t;T )σ̂
2
t−γA1(t;T )ρt+A1(t;T )ρN

t +A2(t;T )ψ̂tRNL,t
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where the second equality is obtained from the first after some tedious algebra.

We now turn to the second expectation in (B26). The methodology is the same as before,
although now we must set c = 1 in (B22) and note that Bt∗∗ = (1 − κ)Bt∗∗− , which implies bt∗∗ =
bt∗∗− + log (1 − κ). Specifically, we have that for t ≤ t∗∗

Et
[
B−γ
T BNT |ψ̂t∗∗ ≥ ψ

]
= Et

[
V N

(
log (1 − κ) + bt∗∗− , b

N
t∗∗, ρt∗∗ , ρ

N
t∗∗, ψ̂t∗∗ , σ̂

2
t∗∗ , τ

)
|ψ̂t∗∗ ≥ ψ

]
= (1 − κ)−γ eC0(τ∗∗)+ 1

2
(1−γ)2A2

2(τ∗∗)σ̂
2
t∗∗ ×

×Et
[
e−γbt∗∗+bN

t∗∗−γA1(τ∗∗)ρt∗∗+A1(τ∗∗)ρN
t∗∗+(1−γ)A2(τ

∗∗)ψ̂t∗∗ |ψ̂t∗∗ ≥ ψ

]

Comparing to the case with
{
ψ̂t∗∗ < ψ

}
, we see that the term in the expectation is identical,

but for the coefficient of ψ̂t∗∗ , which is multiplied by (1 − γ). The distribution of the exponent is
given in Lemma A6 for c1 = γ. In this case, defining

yH,t∗∗ = −γbt∗∗ + bNt∗∗ − γA1 (τ∗∗) ρt∗∗ +A1 (τ∗∗) ρNt∗∗ + (1 − γ)A2 (τ∗∗) ψ̂t∗∗

we have that

μH,y,t = E [yH,t∗∗] = −γbt + bNt + a0 (t) − γA1 (τ) ρt + A1 (τ) ρNt + (A2 (τ) − γA2 (τ∗∗)) ψ̂t

The same steps then show

Et
[
eyH,t∗∗ |ψ̂t∗∗ > ψ

]
=

1

1 −N

(
ψ; ψ̂t, σ2

ψ̂

) ∫ ∞

ψ
E

[
eyH,t∗∗ |ψ̂t∗∗

]
f
(
ψ̂t∗∗

)
dψ̂t∗∗

= B−γ
t BNt e

a0(t)−γA1(t;T )ρt+A1(t;T )ρN
t +(A2(τ ;T )−γA2(t∗∗;T ))ψ̂t+

1
2
σ2

HyRNH,t

where RNH,t is defined in Proposition 5.

So, we finally obtain

Et
[
B−γ
T BNT |ψ̂t∗∗ ≥ ψ

]
= B−γ

t BNt (1 − κ)−γ eC0(τ∗∗)+ 1
2
(1−γ)2A2(τ∗∗)2σ̂

2
t∗∗

×ea0(t)−γA1(τ)ρt+A1(τ)ρN
t +(A2(τ )−γA2(τ∗∗))ψ̂t+

1
2
σ2

HyRNH,t

= B−γ
t BNt (1 − κ)−γ eC0(τ )−γA1(τ)ρt+A1(τ)ρN

t +(A2(τ)−γA2(τ∗∗))ψ̂t+
1
2
(A2(τ)−γA2(τ∗∗))2σ̂

2
tRNH,t

where the second equality is obtained from the first after some tedious algebra. Putting all terms
together, we obtain the expression in Proposition 5. Q.E.D.

Proof of Corollary 2: The proof follows from an application of Ito’s Lemma to the respective
pricing functions. We obtain

σNM = A1(τ)σN +
(
SNM,t + Sπ,t

)
σ̃ψ

10



where σN = (σN,0, σN,1) and

SNM,t =

(
A2 (τ) + 1

pN
L,t

∂pN
L,t

∂ψ̂

)
Kno
t +

(
(A2 (τ) − γA2 (τ∗∗)) + 1

pN
H,t

∂pN
H,t

∂ψ̂

)
K
yes
t

(1 − pt)Kno
t + ptK

yes
t

(B27)

with

pNL,t ≡ pNL

(
ψ̂t, t

)
= N

(
ψ; ψ̂t + σL

yψ̂
, σ2

ψ̂,t

)
(B28)

pNH,t ≡ pNH

(
ψ̂t, t

)
= 1 −N

(
ψ; ψ̂t + σH

yψ̂
, σ2

ψ̂,t

)
(B29)

For the old economy
σM = A1(τ)σ + (SM,t + Sπ,t) σ̃ψ

where

SM,t =
− ∂p

∂ψ̂
Gnot +

(
(1 − γ)A2 (τ∗∗) + 1

p
∂p

∂ψ̂

)
Gyes

(1 − pt)Gnot + ptG
yes
t

(B30)

and
pt ≡ p

(
ψ̂t, t

)
= 1 −N

(
ψ; ψ̂t + (1 − γ)A2(τ∗∗)σ2

ψ̂,t
, σ2

ψ̂,t

)
Q.E.D.

Proof of Proposition 6: Consider the old economy first. Rewrite the M/B of the old economy
as

MBt =
Gnot + ptHt

G̃not + ptH̃t

where Ht = Gyest −Gnot , and H̃t = G̃yest − G̃not . Given the closed form formulas for all the functions,
we can compute the first derivative of MBt with respect to the probability of adoption of the new
technology pt :

∂MBt
∂pt

=
HtG̃

no
t −Gnot H̃t(

G̃not + ptH̃t

)2

That is, the M/B increases in pt if and only if HtG̃
no
t > Gnot H̃t. Substituting the closed form

expressions, we obtain the condition hold > 0 where

hold = −κ̃ +A2 (τ∗∗) ψ̂t +
1
2

(1 − 2γ)A2 (τ∗∗)2 σ̂2
t (B31)

− log

⎛⎜⎜⎝ 1 −N
(
ψ; ψ̂t − γA2 (τ∗∗)σ2

ψ̂,t
, σ2

ψ̂,t

)
1 −N

(
ψ; ψ̂t + (1− γ)A2 (τ∗∗)σ2

ψ̂,t
, σ2

ψ̂,t

)
⎞⎟⎟⎠ (B32)

Consider now the new economy

MBNt =
KtR

N
L,t + ptJt

G̃not + ptH̃t

11



where J t = (1 − κ)−γ KN
t R

N
H −KtR

N
L . The first derivative with respect to pt is

∂MBNt
∂pt

=
JtG̃

no
t −KtR

N
L,tH̃t(

G̃not + ptH̃t

)2

Once again, the M/B of the new economy increases in pt if and only if J tG̃not − KtH̃tR
N
L,t > 0.

Substituting, we obtain the condition hnew > 0

hnew = −γA2 (τ∗∗)A2 (τ) σ̂2
t − log

⎛⎜⎜⎝N
(
ψ; ψ̂t + σL

yψ̂
, σ2

ψ̂,t

)
N

(
ψ; ψ̂t, σ2

ψ̂,t

)
⎞⎟⎟⎠ (B33)

− log

⎛⎜⎜⎝ 1 −N
(
ψ; ψ̂t − γA2 (τ∗∗)σ2

ψ̂,t
, σ2

ψ̂,t

)
1 −N

(
ψ; ψ̂t − γA2 (τ∗∗)σ2

ψ̂,t
+ σLyψ , σ

2

ψ̂,t

)
⎞⎟⎟⎠ (B34)

Proof of Proposition 7: Consider MN

BN = ΦN

π̃
, where ΦN and π̃ are defined appropriately.

Then,
∂
(
MN

BN

)
∂ψ̂t

=
π̃∂ΦN/∂ψ̂t − ΦN∂π̃/∂ψ̂t

π̃2 > 0

if and only if SNM,t + Sπ,t > 0 where SNM,t, and Sπ,t are defined above. The probability of adoption
as of time t∗ is given by

pt∗ =
∫ ∞

f
(
κ,γ,σ̂

2
t∗ ;τ∗

) 1√
2π
e−

1
2
x2
dx

where

f
(
κ, γ, σ̂2

t∗ ; τ
∗
)

= − log (1 − κ) /A2(τ∗∗)

⎛⎜⎝
(
σ̂2
t∗
)−1

+
(

φ
σN,1

)2
(t∗∗ − t∗)

σ̂2
t∗

(
φ

σN,1

)2
(t∗∗ − t∗)

⎞⎟⎠
1
2

+
1
2 (γ − 1)A2(τ∗∗)(

φ
σN,1

)
(t∗∗ − t∗)

1
2

(
1 + σ̂2

t∗
(

φ
σN,1

)2
(t∗∗ − t∗)

)1
2

Thus, pt is small whenever f
(
κ, γ, σ̂2

t∗ ; τ
∗
)

is large. We can see that f
(
κ, γ, σ̂2

t∗; τ
∗
)

is large when

κ is high, γ is high and, finally, when σ̂2
t∗ is small (if κ > 0). (In addition, we can see that

f is large when (t∗∗ − t∗) is small and T is large, the latter due to the increase in A2(τ∗∗) =
(T − t∗∗) −

(
1 − e−φ(T−t∗∗)

)
/φ). In all of these cases, the formulas for the various quantities in

SNM,t + Sπ,t imply that the latter becomes positive. Q.E.D.

Proof of Lemma A6: Let

yt∗∗ = −γbt∗∗ + bNt∗∗ − γA1 (t∗∗; T ) ρt∗∗ +A1 (t∗∗; T ) ρNt∗∗ + (1 − c1)A2 (t∗∗; T ) ψ̂t∗∗

12



The fact that yt∗∗ and ψ̂t∗∗ are jointly normally distributed stems from the linearity of all of the
processes. To compute the means, variances and covariances, we can compute the joint moment
generating function. That is, let α1, α2 > 0, and define

N
(
bt, b

N
t , ρt, ρ

N
t , ψ̂t, σ̂

2
t , t

)
= Et

[
eα1yt∗∗+α2ψ̂t∗∗

]
where the processes of stochastic variables are given by (B7) - (B12) with c = 0. Let xt =(
bt, b

N
t , ρt, ρ

N
t , ψ̂t, σ̂

2
t

)
, the Feynman-Kac theorem shows that N must satisfy the PDE

0 =
∂N

∂t
+

∑
i

∂N

∂xi
Et [dx] +

1
2

∑
i

∑
j

∂2N

∂xi∂xj
Et [dxidxj]

with the boundary condition N
(
bt∗∗, b

N
t∗∗, ρt∗∗ , ρ

N
t∗∗, ψ̂t∗∗, σ̂

2
t∗∗ , t

∗∗
)

= eα1yt∗∗+α2ψ̂t∗∗ . It can be veri-
fied that the solution to the PDE is given by

Nt = eα1{−γbt+bNt −γC1(t;T )ρt+C1(t;T )ρN
t }+α1C0(t;T )+{(1−c1)α1C2(t;T )+α2}ψ̂t+α1C3(t;T )σ̂

2
t

where

C1 (t; T ) =
1 − e−φ(T−t)

φ
= A1 (t; T )

C2 (t; T ) = A2 (t∗∗; T ) +
1

(1 − c1)
a (t)

α1C3 (t; T ) = C̃3 (t; T )

=
1
2

((1− c1)α1C2 + α2)
2 − 1

2
((1 − c1)α1A2 (t∗∗; T ) + α2)

2

and

α1C0 (t; T ) = C̃0 (t; T )

= α1 (1 − γ) ρa (t) +
1
2

((1 − c1)α1A2 (t∗∗; T ) + α2)
2
[
σ̂2
t − σ̂2

t∗∗
]

+α2
1

1
2

(σ∗)2 a2 (t)

Above, a (t), a2 (t) and σ∗ are given by (B23) - (B25). Rewrite Nt = eg(α1,α2) where

g (α1, α2) = α1

{
−γbt + bNt − γC1 (t; T )ρt +C1 (t; T )ρNt

}
+C̃0 (t; T )+{(1 − c1)α1C2 (t; T ) + α2} ψ̂t+C̃3 (t; T ) σ̂2

t

Thus
∂N

∂α1
= eg

{(
−γbt + bNt − γC1ρt + C1ρ

N
t

)
+
∂C̃0

∂α1
+ (1 − c1)C2ψ̂t +

∂C̃3

∂α1
σ̂2
t

}
We can use

∂C̃0

∂α1
= (1 − γ) ρa (t) + ((1− c1)α1A2 (t∗∗; T ) + α2) (1− c1)A2 (t∗∗; T )

[
σ̂2
t − σ̂2

t∗∗
]

+α1 (σ∗)2 a2 (t)

13



and

∂C̃3

∂α1
= ((1 − c1)α1C2 + α2) (1 − c1)C2 − ((1 − c1)α1A2 (t∗∗; T ) + α2) (1 − c1)A2 (t∗∗; T )

Thus

lim
α1,α2→0

∂N

∂α1
= μy =

{
−γbt + bNt − γC1ρt + C1ρ

N
t + (1 − γ) ρa (t) + (1 − c1)C2ψ̂t

}
Similarly

∂N

∂α2
= eg

{
∂C̃0

∂α2
+ ψ̂t +

∂C̃3

∂α2
σ̂2
t

}
Since

∂C̃0

∂α2
= ((1 − c1)α1A2 (t∗∗; T ) + α2)

[
σ̂2
t − σ̂2

t∗∗
]

∂C̃3

∂α2
= ((1 − c1)α1C2 + α2) − ((1 − c1)α1A2 (t∗∗; T ) + α2)

we find
lim

α1,α2→0

∂N

∂α2
= μψ = ψ̂t

Turning to the second moments

∂2N

∂α2
1

= eg
{(

−γbt + bNt − γC1ρt +C1ρ
N
t

)
+
∂C̃0

∂α1
+ (1 − c1)C2ψ̂t +

∂C̃3

∂α1
σ̂2
t

}2

+eg
{
∂2C̃0

∂α2
1

+
∂2C̃3

∂α2
1

σ̂2
t

}

Since

∂2C̃0

∂α2
1

= (1 − c1)
2A2 (t∗∗; T )2

[
σ̂2
t − σ̂2

t∗∗
]
+ (σ∗)2 a2 (t)

∂2C̃3

∂α2
1

= ((1 − c1)C2)
2 − ((1 − c1)A2 (t∗∗; T ))2

we obtain

lim
α1,α2→0

∂2N

∂α2
1

=
{
−γbt + bNt − γC1ρt + C1ρ

N
t + (1 − γ) ρa (t) + (1 − c1)C2ψ̂t

}2

+ (1 − c1)
2A2 (t∗∗; T )2

[
σ̂2
t − σ̂2

t∗∗
]
+ (σ∗)2 a2 (t)

+
(
((1 − c1)C2)

2 − ((1− c1)A2 (t∗∗; T ))2
)
σ̂2
t

Thus

σ2
y = lim

α1,α2→0

∂2N

∂α2
1

−
(

lim
α1,α2→0

∂N

∂α1

)2

= (1 − c1)
2A2 (t∗∗; T )2

(
σ̂2
t − σ̂2

t∗∗
)

+ a (τ)2 σ̂2
t + 2A2 (t∗∗; T ) (1 − c1) a (τ) σ̂2

t + (σ∗)2 a2 (t)
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Similarly,
∂2N

∂α2
2

= eg
{
∂C̃0

∂α2
+ ψ̂t +

∂C̃3

∂α2
σ̂2
t

}2

+ eg
{
∂2C̃0

∂α2
2

+
∂2C̃3

∂α2
2

σ̂2
t

}
Since

∂2C̃0

∂α2
2

=
[
σ̂2
t − σ̂2

t∗∗
]

∂C̃3

∂α2
= 0

we have

lim
α1,α2→0

∂2N

∂α2
2

= ψ̂
2

t +
[
σ̂2
t − σ̂2

t∗∗
]

and thus

σ2
ψ = lim

α1,α2→0

∂2N

∂α2
2

−
(

lim
α1,α2→0

∂N

∂α2

)2

= σ̂2
t − σ̂2

t∗∗

Finally

∂2N

∂α2∂α1
= eg

{(
−γbt + bNt − γC1ρt + C1ρ

N
t

)
+
∂C̃0

∂α1
+ (1 − c1)C2ψ̂t +

∂C̃3

∂α1
σ̂2
t

}{
∂C̃0

∂α2
+ ψ̂t +

∂C̃3

∂α2
σ̂2
t

}

+eg
{

∂2C̃0

∂α2∂α1
+

∂2C̃3

∂α2∂α1
σ̂2
t

}

Since

∂2C̃0

∂α2∂α1
= (1− c1)A2 (t∗∗; T )

[
σ̂2
t − σ̂2

t∗∗
]

∂2C̃3

∂α2∂α1
= (1− c1) (C2 −A2 (t∗∗; T ))

we have

lim
α1,α2→0

∂2N

∂α2∂α1
=

{
−γbt + bNt − γC1ρt +C1ρ

N
t + (1− γ) ρa (t) + (1 − c1)C2ψ̂t

} {
ψ̂t

}
+

{
(1 − c1)A2 (t∗∗; T )

[
σ̂2
t − σ̂2

t∗∗
]
+ (1 − c1) (C2 − A2 (t∗∗; T )) σ̂2

t

}
implying

σy,ψ =

(
lim

α1,α2→0

∂2N

∂α2∂α1

)
−

(
lim

α1,α2→0

∂N

∂α1

)(
lim

α1,α2→0

∂N

∂α2

)
= (1 − c1)A2 (t∗∗; T )

(
σ̂2
t − σ̂2

t∗∗
)

+ a (t) σ̂2
t

Some additional algebra yields the formulas in Lemma A6. Q.E.D.
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Pástor, Ľuboš, and Pietro Veronesi, 2006, “Was there a Nasdaq bubble in the late 1990s?”
Journal of Financial Economics, forthcoming.

Perez, Carlota, 2002, Technological Revolutions and Financial Capital: The Dynamics of
Bubbles and Golden Ages, Edward Elgar, Cheltenham, UK.

Romer, Paul, 1990, Endogenous technological change, Journal of Political Economy 98, S71–
S102.

Shiller, Robert, 2000, Irrational Exuberance, Princeton University Press, Princeton, NJ.

Stover, John F., 1961, American Railroads, University of Chicago Press.

The Economist, 2000, September 21, Bubble.com.

44




