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ABSTRACT

"Limits of Arbitrage" theories hypothesize that the marginal investor in a particular asset market is

a specialized arbitrageur rather than a diversified representative investor. We examine the mortgage-

backed securities (MBS) market in this light. We show that the risk of homeowner prepayment,

which is a wash in the aggregate, is priced in the MBS market. The covariance of prepayment risk

with aggregate wealth implies the wrong sign to match the observed prices of prepayment risk. The

price of risk is better explained by a kernel based on MBS-market-wide specific risk. This finding

is consistent with the specialized arbitrageur hypothesis.
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A number of recent “limits of arbitrage” theories predict that the distressed liquidation of assets by
hedge funds results in a large drop in asset prices (see, for example, Shleifer and Vishny (1997), Kyle
and Xiong (2001), Gromb and Vayanos (2002), or Geanakoplos (2003)). These theories are often
referenced in explaining episodes of market illiquidity and falling asset prices, such as the events of
Fall of 1998.

In traditional asset pricing theory, the marginal investor in every asset market is the same
broadly diversified representative investor. Thus, a hedge fund liquidating $200 billion of mortgage-
backed securities finds a large pool of ready buyers (comparable to the entire capital market).
The liquidation does not affect expected returns because the representative investor acts quickly to
eliminate excess returns. On the other hand, according to the limits of arbitrage theory, the relevant
set of buyers is a smaller specialized pool of investors and the liquidations can have large effects on
prices. The limits of arbitrage theory posits that the marginal investor in a particular asset market
is an investor who specializes in that market.

We provide support for the existence of limits of arbitrage in the context of the mortgage-backed
securities (MBS) market. We present a simple model of delegated fund management in which the
marginal investor in the MBS market is a risk-averse fund manager who has all of his wealth invested
in this market. The novelty of the theory lies in its implications for the pricing of MBS-market
specific risk. We predict that MBS-market specific risk will carry a positive risk premium, contrary
to traditional asset pricing theory. Moreover, we predict that the market price of this risk will be
high when the total riskiness of the MBS-market is also high. We argue that prepayment risk is a
good example of an MBS-market specific risk, and present evidence consistent with our theoretical
predictions.

MBS securities rise and fall in value based on the exercise of homeowners’ prepayment options.
When a homeowner prepays a mortgage, the MBS backed by the mortgage is called back at par.
Depending on the interest rate environment, prepayment can either hurt or benefit the MBS investor.
Thus, for an investor who specializes in the MBS market, prepayment risk represents a risk to the
value of his portfolio. At the aggregate level, prepayments do not cause changes to aggregate wealth
or the aggregate endowment, since for every MBS investor who is short a prepayment option, there
is a homeowner who is long the prepayment option. Any observed covariance between aggregates
and prepayments is due to some common economic factors driving both aggregates and homeowner
prepayments. In traditional asset pricing theory, the covariance between prepayments and aggregate
wealth or consumption explains the price of prepayment risk.

We establish three principal empirical results in the paper. First, we show that prepayment risk
carries a positive risk premium. Second, we show that the observed covariance between prepayment
risk and either aggregate wealth or consumption implies a sign opposite to that required to match
the observed prices of prepayment risk, under traditional asset pricing theory. This suggests that
the marginal investor in the MBS market is not the representative investor hypothesized by the
traditional CAPM or consumption-CAPM model. Finally, we derive a proxy for the riskiness of the
MBS market and show that the market price of prepayment risk comoves with this proxy.

Taken together, these results support the existence of limits to arbitrage in the MBS market.
We argue that the marginal investor in the MBS market is a hedge fund or mutual fund that trades
exclusively in the MBS market. We show that when the fund manager has a coefficient of relative
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risk aversion of 4, the model’s empirical predictions are consistent with what we find in the data.
An important theme in the limits of arbitrage literature is that negative shocks to the capital of

hedge funds cause them to liquidate assets, which results in higher expected returns on these assets.
In the MBS market the events of 1993 and 1994 (collapse of the Askins Capital Management MBS
fund) and 1998 and 1999 (LTCM crisis) in which MBS spreads widened substantially, are usually
taken to be a sign of a capital-related shock. Although we do not provide direct evidence of capital-
related movements in MBS prices, we do establish a necessary condition for a capital-related shock
to effect a large move in MBS prices. Namely, the marginal investor must be an MBS specialist
rather than a broadly diversified representative investor.

The main difficulty we encounter in establishing our results arises from a measurement problem.
In order to draw a relation between prepayment risk and the risk premium on an MBS, we need to
measure an MBS’s risk premium. We proxy for this risk premium using the security’s option adjusted
spread (OAS). The OAS measures the yield on an MBS in excess of Treasuries, after accounting for
the value of the homeowner’s prepayment option. However, accounting for the prepayment option
depends on the specific pricing model used to compute the OAS. Thus, the OAS is a model-dependent
measure of the MBS’s risk premium. To the extent that the pricing model is mis-specified, the OAS
is a noisy measure of the true risk premium, potentially rendering the interpretation of our results
suspect (e.g., see Kupiec and Kah, 1999).

One way to bypass the mis-specification issue is to use actual MBS returns, a proxy for expected
returns, as the dependent variable in our regressions. We have chosen against this approach because
of data limitations. Actual bond returns are a very noisy estimate of the expected return on the
securities. Thus, we need more data than we have to implement these regressions. Using the
OAS greatly reduces this measurement error problem, at the cost of raising the mis-specification
possibility.

We address the mis-specification possibility in the OAS in three ways. First, our theory predicts
that securities with more prepayment risk will have differentially higher risk premia at times when
the market-wide price of prepayment risk is higher. We provide support for the theory from panel
data regressions where the independent variable is the interaction between constructed measures of
security-specific prepayment risk and market-wide price of prepayment risk. Since the theory is based
on the interaction between a security measure and a time measure, we are able to apply both time
dummies and security dummies as controls in our regressions. The profusion of dummy variables
controls for all possible linear time-specific and security-specific sources of OAS mis-specification.
Indeed, our results are strengthened when these controls are added.

Second, as we explain in the next sections, our theoretical measure of the market-wide price of
prepayment risk is partly based on the average coupon of all traded MBS. While a mis-specification
explanation of the OAS may involve the coupon of a specific MBS, it is unclear why it would
involve the average market-wide coupon on mortgages. We present regressions that isolate the
average coupon measurement and show that it has independent explanatory power for the OAS.
Such explanatory power is consistent with our theory of the determination of risk premia, but
inconsistent with a pure mis-specification explanation of the OAS.

Lastly, we introduce controls in our regressions for specific alternative hypotheses for the deter-
mination of the OAS, and show that our results continue to hold-up. Two of the hypotheses we
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consider are, (i) prepayment models underpredict prepayments relative to the true model, and (ii)
prepayment models undervalue the homeowner’s prepayment option. We show that these hypotheses
can explain positive OAS. But, introducing controls that proxy for the prepayment-underprediction
or the option-undervaluation does not change our conclusions.

The theory we develop in this paper belongs to the limits of arbitrage literature in which the
marginal investor is a specialized institution, and the constraints faced by this institution affect
asset prices. Papers in the literature include Dow and Gorton (1994), Shleifer and Vishny (1997),
Kyle and Xiong (2001), Gromb and Vayanos (2002), Geanakoplos (1997, 2003) and Gabaix et al.
(2003, 2006). Gabaix et al. (2003, 2006) propose to explain spikes in returns and trading volume
by the trades of large institutional investors in illiquid markets. Allen and Gale (1994) study an
environment in which traders must specialize ex-ante in a certain asset market, which implies that
ex-post there is limited market participation and the specialized traders become marginal in setting
prices.1 Caballero and Krishnamurthy (2001, 2002) present a model of emerging market crises in
which crises are events in which the marginal investor switches from a broadly diversified world
investor to an investor within the emerging market. In our paper, we explicitly model how financial
intermediation affects market participation and the preferences of the marginal investor.

Our empirical results are consistent with some existing papers in the MBS literature. Brown
(1999) presents evidence that the spreads of mortgage securities (relative to Treasuries) co-vary with
the spreads on corporate bonds (relative to Treasuries). Brown argues that this is evidence of time
variation in the market price of prepayment risk on MBS. However, Brown acknowledges that the
latter evidence is also consistent with time variation in the liquidity premium on Treasury securities.
Brown analyzes only collaterals while we analyze collaterals and IO’s, and he studies a sample of
MBS different from ours, but he arrives at a similar conclusion regarding the existence of a positive
market price of prepayment risk.2

Boudoukh, Richardson, Stanton, and Whitelaw (1997) study the pricing of GNMA securities
under a benchmark multi-factor interest rate model that they propose. They focus on a pricing
function which depends only on the yield curve, thus setting aside prepayment information. One
of their main findings is that a single (non-interest-rate) factor accounts for 80-90% of the common
variation in the pricing errors. Our study suggests that a candidate for the common factor is
prepayment risk3 and the average coupon outstanding in the market.

Similar common factor phenomena have been documented in other asset markets. Collin-
Dufresne, Goldstein, and Martin (2001) study the corporate bond market. They find that a simple
Merton (1973) model explains very little of the variation in corporate bond prices. Even after in-
cluding macro factors, such as the stock market, they are only able to explain about 25% of price
variation. The tantalizing evidence they present is that the bulk of the remaining variation is due
to a single risk factor that is common across all corporate bonds.4,5 Unlike us, they are unable to
identify either the risk factor or the marginal investor who is pricing the risk.

Froot and O’Connell (1999) demonstrate effects similar to ours in the market for catastrophe
insurance. They note that there are times at which the price of catastrophe insurance seems to get
unusually high. Froot and O’Connell demonstrate that these are also times in which the capital
of all catastrophe insurers is low, and the quantity of insurance transacted is also low. Using
an argument similar to ours, they assert that the marginal investor in the catastrophe insurance
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market is a specialized institution (an insurer) rather than the broadly-diversified representative
investor. Therefore, when the capital in the insurance market is low, insurers are less willing to
write catastrophe insurance. This drives prices up and quantities down as found empirically.

The academic work on MBS valuation is primarily concerned with prepayment modeling. In one
line of research, prepayment stems from rational choice by homeowners. This “rational” prepayment
approach was pioneered by Dunn and McConnell (1981) and investigated more recently by Stanton
(1995) and Longstaff (2004).6 In the other main line of research (and in the practitioner approach),
prepayment behavior is modeled statistically. The justification for this approach is that, given
the complexity of the constraints faced by consumers, prepayment behavior on a pool of consumer
mortgages is better captured statistically than by modeling these complex constraints. Examples
of the latter approach include Schwartz and Torous (1989), Richard and Roll (1989), and Patruno
(1994).

Our research suggests that it is also necessary to model the uncertainty surrounding prepayment
behavior, which arises naturally once we recognize that homeowners’ cost of refinancing, for example,
will be subject to innovations. In our approach, we directly model this prepayment uncertainty as
an error around a mean prepayment forecast. However, there are many other ways of introducing
this prepayment uncertainty, in both the rational as well as the statistical approach. The important
point we make is that this uncertainty is priced and that the market price of this uncertainty varies
in a systematic way with market conditions.

Section I formally presents the theoretical model that motivates our empirical tests. The theory
links an MBS’s risk premium to the prepayment risk on the MBS and the market-wide price of
prepayment risk. Section II presents evidence in support of that theory, using the OAS as a proxy
for the security’s risk premium. Section III discusses in detail our empirical strategies to deal with
the OAS measurement problem, and provides robustness checks of our main results.

I. The Model

Mortgage backed securities are financial securities that are backed by a pool of underlying mort-
gages. As of June 2002 there were about $3.9 trillion worth of securitized mortgages.

Mirroring the underlying mortgage, the MBS is a debt security with an amortizing principal
value. The fact that consumers have the option to prepay their mortgages, however, makes valuing
(and hedging) MBS very difficult. Consumer prepayments are not just a function of interest rates,
but empirically seem driven by a host of other factors including local macroeconomic variables,
demographics and real estate prices. Our study focuses on prepayment risk and its pricing.

The securities we study in this paper are known as collateralized mortgage obligations (CMO).
A typical CMO has several tiers, known as “tranches,” each with a different degree of prepayment
risk. All tranches receive interest payments, but principal payments go first to bonds in the top
tier until they are entirely repaid, and then to the next tier, and so on. Thus, prepayment risk
is carved up differently among the tranches. The upper tranches have shorter and more certain
maturities, and therefore lower prepayment risk. The natural buyers of these tranches are pension
funds, insurance companies and other large institutional investors requiring relative safety. The lower
tranches have longer maturities and therefore assume greater prepayment risk. These lower tranches

4



(“toxic waste”) are especially volatile and hard to price. The natural buyers are sophisticated
investors such as hedge funds or investment banks who have some expertise in assessing prepayment
risk. The success of a securitization of mortgages often hinges on finding sophisticated investors
willing to hold toxic waste.

A single CMO tranche typically passes both interest and principal payments of the underlying
pool of loans, in some pre-specified manner, to the investor. Often a security is created which passes
only the principal repayments (PO) or only the interest payments (IO) to the investor. Such a
security may be a separate tranche or a derivative stripped from a mortgage.

Valuing an MBS involves two steps. First, one assumes prepayment behavior as a deterministic
function of interest rate paths, housing prices and so on (Richard and Roll 1989, Schwartz and Torous
1990). Second, one simulates several interest rate paths, discounting and averaging the cash-flows
based on a term-structure model calibrated to current market risk-free rates.

The model-implied prices under this methodology typically differ from quoted market prices. This
difference is termed an Option-Adjusted Spread (OAS). Specifically, the OAS is a spread added to
the riskless term structure such that the present value of a security’s expected cash flows, forecast
using the prepayment model and discounted under the term structure model, plus the spread, equals
the price of the security (equation (7) below). To the extent that the term structure model is correct,
the OAS constitutes the non-interest rate risk premium on the security.

In this section we describe a very simple environment for studying the pricing of MBS and the
determination of OAS. We then develop a general equilibrium model, where the marginal investor
is one who is wholly invested in the MBS market, and present our main hypotheses regarding the
pricing of MBS.

A. Mortgage backed securities with no prepayment risk

Consider a world with a constant interest rate of r and a mortgage pool with constant prepayment
rate of φ and coupon of c (and no credit risk). At any date t, the amount of outstanding of this
mortgage-pool is a(t), where,

da(t)
dt

= −φa(t),

given some a(0). We normalize a(0) = 1.
Suppose that there is a single class of MBS issued against this pool. The IO is defined as the

claim on all of the coupons (interest payments) from this mortgage pool. Thus, the value of one
unit face of the IO is simply,

VIO =
∫ ∞

0

e−rta(t)cdt = c

∫ ∞

0

e−(r+φ)tdt =
c

r + φ
. (1)

The PO is defined as the claim on the principal repayment on this mortgage-pool:

VPO =
∫ ∞

0

(−da(t))e−rtdt = a(0) − r

∫ ∞

0

e−(r+φ)tdt = 1 − r

r + φ
. (2)

Finally, the mortgage pass-through itself – the collateral – is defined as the claim on all cashflows
from the mortgage pool, i.e., the coupons (interest payments) and the principal repayment. So its
value is the value of the IO plus the value of the PO:

VC = VIO + VPO = 1 +
c − r

r + φ
. (3)
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B. Prepayment risk

Our aim is to develop an equilibrium model along the lines of a static CAPM to illustrate how
prepayment risk is priced.

There are two periods, t = 0, 1. We assume that the discount rate between periods 0 and 1 is
constant and normalize it to be one. We assume there are K mortgage pools. In each pool, the
mortgage has coupon ck and quantity θk. We assume that mortgages “payoff” at date 1 is a function
of ck, r and φk. We next describe the payoff function.

We assume that the only uncertainty is in the prepayment rate, φk, of mortgage k. The mean
forecast of φk is φ̄k. Pricing the IO, for example, based on this mean forecast would yield a value of,

EV k
IO =

ck

r + φ̄k
.

The problem is that there is model risk as the actual φk may differ from φ̄k. Let ∆φk = φk − φ̄k be
this variation.7 We assume that ∆φk has mean zero and covariance matrix of Ω.

For simplicity, we linearize the above valuation expressions and assume that the date 1 value
(terminal payoff in our two-period world) of the k-th IO is,

V k
IO =

ck

r + φ̄k

(
1 − ηk∆φk

)
, (4)

where ηk = 1/
(
r + φ̄k

)
and −ηk ck

r+φ̄k is the derivative of the IO value with respect to the prepayment
rate.

Likewise the date 1 value of the k-th PO is,

V k
PO = 1 − r

r + φ̄k

(
1 − ηk∆φk

)
. (5)

Finally, the date 1 value of the k-th collateral is,

V k
C = 1 +

ck − r

r + φ̄k

(
1 − ηk∆φk

)
. (6)

C. OAS

Let P k
IO and P k

PO be the date 0 prices of one dollar of face value of IO and PO. The OAS is defined
as the premium to the riskless rate r required to set the present value of the securities’ cash flows,
expected under the mean prepayment forecast, equal to the market prices of the securities. For
example, in the case of the IO, the OAS is the solution to,

P k
IO =

ck

r + φ̄k + OASk
IO

(7)

where the mean prepayment forecast is φ̄k. Evaluated at this forecast, the value of the IO would be
ck

r+φ̄k . So, the OAS is the premium to r required to recover the actual market price.
There are two ways to interpret the OAS. First, it may simply reflect a mis-specified model of

the prepayment option. Perhaps informed market participants have a true model of prepayments
which is actually φ̂k. A naive market participant (and the econometrician) who uses φ̄k would have
to introduce the additional discount rate of φ̂k − φ̄k in order to recover the true market prices.8

6



A second way to look at the OAS is that it is a risk premium. Any time that prices differ from
expected values, the OAS will be non-zero. However, under this interpretation it may be either an
interest rate risk premium or a prepayment risk premium.

In our empirical tests we will try to rule out the alternative hypotheses that the OAS is due to
a mis-specified model of the prepayment option or an interest rate risk premium.

Using the same logic as for the IO, the OAS for the collateral is the solution to,

P k
C = 1 +

ck − r − OASk
C

r + φ̄k + OASk
C

(8)

(i.e., it is the previous valuation expression with an adjustment to r).
Now, from (4) and (6) we see that the date 1 payoff on the collateral is equal, state-by-state, to

the payoff on a one dollar face of bond plus the payoff on ck−r
ck of the IO. Thus, by no arbitrage,

P k
C = 1 +

ck − r

ck
P k

IO

Using this relation, along with (7) and (8), we arrive at,

OASk
C =

ck − r

ck + φ̄k + OASk
IO

OASk
IO (9)

The relation between the OAS on the IO and the collateral depends on the coupon on the
mortgage relative to market interest rates. In a low interest rate environment (r < ck), the OAS on
the IO and the collateral have the same sign. Intuitively this is because shocks lowering the value
of the IO, i.e., faster prepayments, also lower the value of the collateral. In the high interest rate
environment (r > ck), the converse is true, and the OAS of the collateral has the opposite sign of
the IO.

Note that these relations are derived only from arbitrage considerations. We have not made any
statements about the equilibrium, or how risks are priced.9

D. The marginal investor

The critical assumption that we make – and for which we provide tests – is that a representative
and specialized MBS fund manager is the marginal investor in this market.

For internal consistency, we motivate this assumption using a model of agency and delegated
fund management. As will become clear, we do not provide any explicit tests of agency. Thus the
agency model should only be viewed as an organizing principle.

Formally, we assume that at date 0 there is a set of risk-neutral investors (“investors”) with
large endowments, as well as a set of MBS fund managers (“fund managers”) with endowments of
wM . The risk-neutral investors find it unprofitable to invest in the MBS market directly. Their lack
of expertise renders them vulnerable to exploitation by MBS specialists, who may be able to sell
them securities with a value significantly less than their price. As a result they give their funds to
the specialized MBS fund manager who invests for them.

Investors require that the fund manager contribute a fraction of his own endowment for every
dollar that the investor provides. We think of this as a capital requirement that ensures that the
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fund manager invests prudently. Let us define αwF as the capital requirement for a fund manager
for a fund of size wF .10 Thus for each dollar of his wealth, the fund manager runs a fund of size 1

α
.

The problem is that the fund manager is risk averse. He has utility over date 1 wealth of,

U(w) = E[w]− ρ

2
V ar[w] (10)

i.e., is a mean-variance maximizer.

E. Equilibrium

At date 0, fund managers raise a total of wF − wM from investors. This gives them total capital of
wM

α
. With this sum the fund managers purchase a portfolio of mortgage backed securities. Let xk

IO

and xk
PO be the amount of the k-th IO and PO held in a portfolio. Then,

WF =
wF

α
+

∑
k

xk
IO(V k

IO − P k
IO) +

∑
k

xk
PO(V k

PO − P k
PO) (11)

is the date 1 value of the portfolio. Since the fund manager’s wealth increases linearly with WF (at
slope of α), his problem is to maximize (10) given (11), and subject to the budget constraint that

wF

α
≥

∑
k

xk
IOP k

IO +
∑

k

xk
POP k

PO.

In our derivation, we assume that the fund manager has sufficient wealth, or that α is sufficiently
low, so that the fund manager is not capital-constrained in purchasing his desired portfolio of MBS.

This formulation is a variant of the traditional static CAPM. Deriving the first order condition for
the fund manager’s portfolio choice problem and then substituting in the market clearing condition
of xk

IO = xk
PO = θk, yields an expression for the price of the IO,

ck

r + φ̄k
− P k

IO = −ρα cov

(
ck

r + φ̄k
ηk∆φk, RM

)
(12)

where the market is defined as:

RM =
∑

j

θj(
r + φ̄j

)2 ∆φj(r − cj). (13)

The term on the right hand side of (12) is a risk premium for holding prepayment risk. We note
the dependence of the risk premium on α. When α = 0, the MBS fund manager is a “veil,” and
the marginal investor is the risk-neutral investor. When α = 1, the MBS fund manager is the only
investor in the MBS market.

F. Covariance structure

We make the following simplifying assumption on the covariance structure:

∆φk = βkΦ + εk (14)

where Φ is a common shock affecting prepayment across all securities, βk is the loading of security
k on the common shock, and εk is an idiosyncratic prepayment shock. We normalize the variance
of Φ to be 1.
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Under this assumption,11

OASk
IO ≈ ρβkα

(∑ βj

(r + φ̄j)2
θj (cj − r)

)
.

The sum term is difficult to observe empirically. It is a weighted sum of the coupons of all
mortgages in the market, where the weights depend on the amounts outstanding and the loading on
systematic prepayment risk. To compute the sum requires us to have data on the entire mortgage
market – which we do not have. Instead, it is common for mortgage traders to follow whether the
market as whole is at a premium or a discount. As a proxy for the sum term, we use a weighted aver-
age coupon across all the agency-issued mortgage-backed securities in the market (FNMA, FHLMC,
GNMA), where the weights are the amounts outstanding of each mortgage security. The relation
we use in our tests is,12

OASk
IO =

Systematic risk︷ ︸︸ ︷
βk × ραa (c̄ − r)︸ ︷︷ ︸

Market price of risk

(15)

where c̄ is the weighted average coupon and ρα is the effective risk aversion of the MBS fund manager
(a is a constant of proportionality). The approximation of using the simple weighted average for the
coupon is valid when r is in the neighborhood of φ̄j. Alternatively, note that the difference of cj − r

is the dominant factor governing changes in the sum for r near cj.

Loosely speaking, the first term in (15) captures the systematic risk of the mortgage, and the
term involving the average market coupon captures the market price of risk (recall that ρ is the risk
tolerance preference parameter for the MBS fund manager).

In equilibrium, the market price of risk is proportional to c̄ − r. Intuitively, when the MBS
market as a whole is at a premium – i.e., coupons exceed r – faster prepayments are costly to the
representative fund manager. Thus securities whose value decreases because of faster prepayments
command a positive risk premium. This is the reason that the OAS on the IO is positively related
to c̄− r. In fact, securities whose values increase because of faster prepayments will carry a negative
risk premium in this environment. An example of such a security is the PO. Algebraic manipulation
gives us that the OAS for the PO is equal to,

OASk
PO = −βk × ραa (c̄ − r) × r

φ̄k + OASk
IO

.

Another example of a security whose value increases with faster prepayment is a discount collateral.
Collateral with a coupon below the market interest rate increases in value if the mortgage prepays
faster than expected. Given relations (15) and (9), we can write the OAS on the collateral as,

OASk
C = βk × ραa (c̄ − r) (ck − r) × 1

ck + φ̄k + OASk
IO

(16)

Thus the OAS on the collateral depends on both whether the MBS market as a whole is at a premium
as well as whether a particular security is at a premium. This leads to a quadratic dependence on
r. We test this relation in our empirical work.

Finally, all of these relations are reversed when the MBS market as a whole is at a discount. In
this case, faster prepayments increase the value of the market. Hence, the IO has a negative risk
premium while the PO commands a positive risk premium.
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The dependence of the price of prepayment risk on (c̄ − r) is principally a general equilibrium
implication. It seems plausible that the relation between βk and the OAS could be spurious, or due
to model mis-specification, but we think that the fact that it depends on the interaction between
βk and (c̄− r) stems uniquely from equilibrium considerations. Most of our empirical tests are built
around this interaction term.

G. Testable empirical predictions

The main predictions of the model are contained in equation (15), which we can unpack as:

OASkt
IO = βkλt (17)

λt = ραa (c̄t − rt) (18)

where ρα is a constant proportional to the risk aversion of the fund managers. Further implications
are as follows:

• In the cross-section, the loading of IO-k on the common component of prepayment uncertainty
explains the OAS on the IO’s.

• In the time-series, the difference between the average market coupon, c̄t, and the market
interest rate, rt, explains the evolution of the market price of prepayment risk λt.

• In the cross-section, the residual prepayment risk of security-k (i.e. σ(εk)) is not priced.

• Eq. (16) predicts that the OAS on the collateral is quadratic in the market interest rate, rt,
and is a function of both ck as well as the average market coupon, c̄t.

H. Discussion of assumptions

The model we have presented is simplified along many dimensions. We comment on some of these
simplifications in this subsection.

At a broad level, the main result of our simplifications is that OASIO is proportional to βk×(c̄−r).
This relation is likely to be robust to more sophisticated models, although not necessarily in the
simple linear form we derived.

On the other hand, the simplification in the derivation means that there are probably other factors
affecting the OAS. It is likely the case that in practice the OAS is affected by the optionality of the
securities and the history dependence of mortgage prepayment. For example, Brown (1999) notes
a positive relation between OAS and implied volatilities on Treasury bond options which suggests
that there is a mis-specification in Wall Street prepayment models used to derived the OAS. These
issues suggest that the OAS is noisy measure of a security’s risk premium and our empirical tests
may need to control for these other factors. The controls are discussed in far greater depth in the
robustness section.

We have omitted capital constraints from the model, which are significant in the limits of ar-
bitrage literature. Mainly, this is because we do not provide any direct empirical tests of capital
effects. Informally, we can think of capital constraints as raising the effective risk aversion (ρ) of
the fund managers. For example, if one-half of the fund managers lose all of their capital so that
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they are no longer active in the MBS market, the rest of the fund managers will, in equilibrium,
bear twice the amount of risk and will therefore demand a higher risk premium. In the next section,
we provide some evidence that early on in our sample period the risk premia are higher. The early
period also corresponds to the Askins Capital Management hedge fund crisis.

In the model, the fund manager is risk-averse and receives a linear share of profits. In part,
we make this assumption because we are interested in exploring the limits of arbitrage. As in
Shleifer and Vishny (1997), the effective risk aversion of the manager limits his ability to exploit
high returns. In practice, however, monetary compensation contracts are convex which can lead
to risk-taking behavior in regions where the fund manager is near the kink in his payoff, and risk
averse behavior in other regions. Whether risk-taking behavior is the rule rather than the exception
is ultimately an empirical question. Our results suggest that it is the exception, but it would be
interesting to empirically explore non-monotonicities in the behavior of fund managers in the MBS
market.

We have derived our results in a static CAPM framework. In a dynamic model the current
wealth of the fund managers will be an important state variable. To the extent that the aggregate
value of the mortgage market is a sufficient statistic for the marginal utility of the representative
fund manager, our cross-sectional pricing equations will be unaffected by the omission of dynamics.
Generally, in a dynamic model, the marginal utility will also depend on changes in the investment
opportunity set. If preferences are close to unit-elastic, the latter effect will be small and our analysis
will remain valid.

II. Data and Estimation

We rely on two data sets. Our first data set comprises the OAS for nine IO’s and PO’s (see
Table I) furnished by Salomon-Smith-Barney. This data is daily and covers a period beginning (for
some securities) in August 1993 and ending in March 1998. We also have data on the historical
prepayment rates (monthly frequency) of the underlying collateral. The nine strips chosen are liquid
securities and fairly representative in age and coupon of the active secondary market. The collateral
are all FNMA 30-year conventional loans, uniformly drawn from a mix of loans from across the
country. The largest representation is from California, New York, Texas, Florida, and Illinois.

The bulk of our analysis is conducted using the IO data. We have also checked our results using
the PO data and the results are consistent with the IO evidence, albeit a little less strong. The
results are not reported but are available upon request.

Insert Table I about here

Our second data set comprises quarterly observations on the OAS for six generic (TBA) FNMA
30-year collateral covering a period from October 1987 to July 1994. The coupons on these securities
range from 7.5% to 11% and the data was provided by Smith-Breeden. We do not have prepayment
information for these pools. We test our model using this data because it covers a period with
signficant variation in the average coupon. We discuss these tests in further detail in Section F.

We construct time series of monthly OAS data for the IO’s by forming simple averages of the
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daily figures. This reduces micro-structure effects. The data is an unbalanced panel, with common
last observations, but varying initial observations.

A. Estimation of βk and c̄ − r

There are two steps in testing (17)–(18). We need an estimate of βk, and we need an estimate of
c̄ − r.

Our estimate of c̄ comes from UBS. For the last several years, UBS has tracked the weighted
average coupon across all outstanding mortgage pools of FNMA, FHLMC, GNMA. This variable
is computed as the average of the underlying coupons on individual mortgage pools, weighted by
the amount outstanding of the pools. We obtained monthly data starting from 1988 to form our
estimate of c̄t. We use the 10-year constant maturity Treasury yield from the Federal Reserve’s
Board of Governors web site to form rt .

The estimate of βk is more complex. We first develop a bare-bones statistical prepayment model.
For each IO, we have the historical paydown of its collateral month by month, expressed as a series
skt (single monthly mortality, or monthly prepayment rate). The prepayment model we estimate is,

skt = α0k + α1k
ck

rt−1
+ α2k

ck

rt−1
(rt − rt−1) + α3kaget + εkt

where aget is the age of the mortgage. The term ck

rt−1
captures some of the non-linearity of the

homeowner’s prepayment option. Richard and Roll (1989) use a similar term in their prepayment
model. For most of the mortgage pools we study, ck is above rt throughout our sample, so that the
option is near-the-money or in-the-money. The dependence on past interest rates is a feature of most
prepayment models. Longstaff (2004) has shown that this feature arises naturally in a setting with
transactions costs of refinancing. The term involving aget captures seasoning effects in mortgage
pools. We assume that the error follows an AR(1) process,

εkt = γεkt−1 + ukt

This procedure results in a time-series of ûkt’s for each security. Note that by construction the ûkt’s
are orthogonal to 10-year interest rates.

We use two proxies for βk. In the first line of Table II we present the sample standard deviations
of the residuals, ûkt. In many of our tests we use these standard deviations as βk .

We also peform a principal components analysis of the errors and use security-k’s loading on the
common factor as βk. We focus only on the overlapping observations (22 months) for this analysis.13

The first eigenvector accounts for 84% of the variance which suggests that equation (14) is a good
representation of the data. The second and third components account for 8.5% and 3% respectively.
Table II (second line) presents the loading on the first eigenvector for each security as well as the
standard deviation of the residual (third line).

As we have noted before, the idiosyncratic component of the prepayment risk should not be
priced. We do not have the prepayment rates for the entire mortgage market. However, on the
assumption that our sample is representative, we use the standard deviation of the residual as
our measure of idiosyncratic risk. Unfortunately the two vectors are very similar (the correlation
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coefficient is 0.88), and as we will see, the test of the explanatory power of idiosynratic risk is not
informative.

Insert Table II about here

Our measure of βk captures how prepayment uncertainty varies across pools. In practice, pools
differ in the terms of their underlying mortgages – e.g., ages, coupons, and geography. These factors
lead to different prepayment uncertainty across pools.

To measure βk, we have used a simple prepayment model that captures some of the main features
of prepayment behavior – dependence on interest rates relative to mortgage coupon, dependence on
lagged interest rates, and seasoning of a mortgage pool. Our aim is to come up with a ranking,
across pools, of prepayment uncertainty rather than present a fine-tuned prepayment model. We
know that the best predictor of skt given the history of past interest rates is non-linear (prepayment
functions are typically complex non-linear functions of the entire path of interest rates), however our
simple approach avoids the difficult task of calibrating such a complex model. We have experimented
with other prepayment models (for example, adding more lags of interest rates, or adding interest
rate of other maturities) and while the prepayment estimates change, our rankings of prepayment
variability remain relatively unaffected. As a check, we also have prepayment forecasts from a Wall
Street firm and have used these residuals to form β’s. The β’s look similar, suggesting that our
model is reasonable. See the last line of Table II.

B. Interest rates, average market coupon, and OAS

Insert Figure 1 about here

Figure 1 shows the time-series of the CMT 10 year rt, and the outstanding average coupon c̄t. It
is worth noting that the adjustments of the outstanding average coupon are slow compared to the
large movements of market interest rates. Prior to 1993, prevailing mortgage rates were around 10-
11%. There was a large prepayment wave as rates fell from 1991 through 1993. As a consequence,
the outstanding average coupon c̄t adjusted down from values of 9-10% to 7-8%. We follow the
evolution of the OAS of the IO’s and PO’s from 1993 to 1998. At the start of this period, interest
rates were rising as the U.S. economy was exiting a recession. The Federal Reserve raised their target
rate in February of 1994 and followed this move with several others. Interest rates rose dramatically
during this period. In 1995, there was another important market rally, as rates fell 200 b.p. from
January 1995 to January 1996. Rates fell continuously from March 1997 to July 1998 by slightly
more than 100 b.p. to reach levels as low as those of November 1993. By the end of our sample
period, the outstanding coupon had adjusted down to 7.5%.

Insert Figure 2 about here

Figure 2 shows the variation of the OAS of the IO’s in our data over the period Autumn 1993 to
Spring 1998. One readily observes the large swings of the OAS of the IO’s, from values above 500
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b.p. in the beginning of the period to values close to zero in 1994 and 1996 when interest rates were
very high. The OAS of PO’s give a somewhat symmetric image, although at smaller magnitudes
(as predicted by equation (19)). One should also note that the interest rate alone is not enough to
understand the relative magnitude of the OAS of the IO between 1993 and 1998 when rates were at
the same level: OAS are much higher in 1993 than in 1998. This in fact is not a puzzle in light of
our derivations, since equations (17)–(18) tells us that the OAS of the IO is proportional to c̄ − r

and not r alone. Indeed, when looking at c̄ − r, we find that it is 35% higher in 1993 than in 1998.

C. Cross-sectional estimates of the market price of risk

We run one cross-sectional regression for each month, where we estimate λt based on,

OASkt
IO = αt + βkλt + εt.

The OAS is measured in basis points. βk is given in Table II and is measured in units of percentage-
prepayment rates per month. These estimates exploit only the slope of the OAS. The variation in
the level is picked up in αt. The αt term may pick up any common variation due to mis-specification
problems in the OAS. Alternatively, it may pick a time varying interest rate risk premium or a time
varying premium due to shortages of arbitrageur capital.

Figure 3 graphs the estimate of λt using β-stdev as well as the one standard deviation envelopes
around the estimate.14 The estimation errors of λt are uniformly tight, and λt is significantly
different than zero for each month. We interpret these results as supportive of the theory because it
suggests that prepayment risk is related to the OAS, and that our measure of βk is in fact picking
up the cross-sectional prepayment risk of the IO’s.

The average value of the estimated λt is 469. As βk varies from 0.08 to 0.55 across the securities,
this coefficient implies a difference between these securities of 220 basis points in the OAS.

Also pictured in the figure is the difference between c̄t and rt. At a broad level λt and c̄t − rt

follow each other. Early in the sample the fit is quite close. Later in the sample, while the ups
and downs in the two series seem to track each other, the λ estimates seem like a muted version of
c̄t − rt.

Insert Figure 3 about here

We conjecture that the more muted relationship later in the period may result from a falling ρ

over the sample period. It is well documented that in the 1993/1994 period a number of mortgage
hedge funds suffered losses, and many went out of business. We conjecture that this led to a loss
of capital in the mortgage market and lower capacity for risk taking, causing a higher effective ρ.
As time passed, capital flowed back into these funds and the effective ρ fell. Froot (2001) finds this
effect in the catastrophe insurance market.
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D. Tests using the entire panel

We now report the results of testing our model using the entire panel. Table III reports regressions
based on the following model:

OASkt
IO =

∑
t

αtdt +
∑

k

γkdk + A × βk (c̄t − rt) + εkt,

where the c̄t and rt are measured in percentage units, and the OAS is measured in basis points.
The regression includes both time and security dummies (dt and dk), thereby controlling for any
alternative hypothesis that involves either security specific effects or time specific effects. We discuss
alternative hypotheses in greater depth in the next section.

Both the OAS series and the (c̄t − rt) series are persistent, so there is serial correlation in the
regression residuals (εkt). We correct for this in two ways. First, most of the regressions report
t-statistics which are corrected for serial correlation in the residuals at the security level (we cluster
the residuals at the security level). Second, we run regressions using first-differenced data and report
the results in Table III. Another potential problem is correlation in the regression residuals across
securities at a single point in time. This problem, however, is less severe in our specification because
the regressions include a time dummy that absorbs all common innovations in the OAS. We have
also conducted a robustness check using a standard panel data adjustment where we assume that
εkt is AR(1) at the security level and correlated across securities. We find that our results remain
highly significant.

The results in columns (1) - (8) of Table III verify that our model fits the data. The specification
in column (1) uses β-stdev, while the specification in column (7) uses β-PCA. Column (2) and (3)
give the results from two sub-samples, where June 1996 is the dividing point between the two (there
are fewer observations early in the early subsample). The coefficient estimate using β-stdev is 462,
while it is 441 using β-PCA. In the cross-section, our measure of βk-stdev varies from 0.08 to 0.55.
In the time series, c̄ − r varies from a low of −0.1 to a high of 3.06 with an average value of 1.30.
If we consider a security with a βk of 0.50, then the coefficient estimate of 462 implies a time-series
variation in the OAS from −22 bps to a high of 706 bps as c̄ − r varies from −0.1 to 3.06. If we
consider the average level of c̄−r of 1.30, then the coefficient estimate of 462 implies a cross-sectional
variation in the OAS of 285 bps, as βk-stdev varies from 0.08 to 0.55

The time and security effects inflate the R2’s in the regressions, leading to somewhat misleading
R2’s in the baseline regressions. Dropping both the time and security effects, the variables from our
theory explain 20% of the variation in the OAS of the securities (column 6). If we drop the variable
from our theory but keep both time and security effects, the R2 remains high at 89% (not reported).
Columns (4), (5), and (9) present other combinations from the results of regressions without the
time and/or security effects.

We note the lower (but still highly significant) coefficient in specification (3) compared to (2).
This result agrees with our conjecture that there was more risk-bearing capacity (i.e., lower ρ) in
the latter half of the sample.

Insert Table III about here
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Column (8) contains the result of the following regression:

OASkt
IO =

∑
t

αtdt +
∑

k

γkdk + A × βk (c̄t − rt) + B × idiosynck (c̄t − rt) + εkt

Our theory predicts that the idiosyncratic risk should not be priced. Unfortunately, as mentioned
earlier, there is not enough independent variation in idiosynck and βk to fashion a meaningful test
of this prediction. The two series have a correlation coefficient of 0.88 and their near collinearity
causes the standard error on the coefficients to blow up, so neither is significant.

The persistence in the data series may raise concerns that the correlation we find is spurious.
Table IV reports the result of a regression run using first-differenced data:

∆OASkt
IO =

∑
t

αtdt + A × ∆βk (c̄t − rt) + εkt

The coefficients estimates are lower than those obtained in the other regressions, but the results
remain highly significant. As before, the coefficient estimate for the second half of the sample is
lower than that of the first half (specification (2) versus (3)).

A comforting aspect of the results in Table IV is that monthly changes in OAS spreads correspond
more closely to changes in the underlying market prices of the IO’s. If interest rates do not change
from one month to the next, but the IO price does change, then it must be the case that the OAS
changes. In fact, interest rates do change somewhat, but since the OAS is a spread over Treasuries,
part of the interest rate change is accounted for. Therefore, our results will be less sensitive to the
particular OAS prepayment model when we run regressions using first-differenced data.

Insert Table IV about here

E. Corporate bond spreads

Brown (1999) presents evidence that the spreads of mortgage securities co-moves with the spreads
on corporate bonds (both relative to Treasuries). Although Brown argues that the evidence suggests
time variation in the market price of prepayment risk on MBS, he acknowledges that the evidence
is also consistent with time variation in the liquidity premium on Treasury securities. Since both
mortgage and corporate bond spreads are measured relative to Treasuries, a common time-varying
liquidity demand for Treasuries will drive both spreads.

Table V presents our baseline regressions, altered by replacing the time dummies with the AAA-
Treasury bond spread. Although the time dummies subsume any variation in the corporate bond
spread, the more parsimonious specification offers some insight into the sources of variation in the
OAS. The AAA-Treasury spread data is from Lehman Brothers and is measured in percentage units.

Insert Table V about here

We find, consistent with Brown (1999), that the corporate bond spread comoves with the OAS.
Over our sample the corporate bond spread varies from 0.37% to 1.05%. Using the coefficient
estimate of 674.1 in column (1), the corporate bond spread variation implies variation in the OAS

16



of 458bps. The coefficient estimate on our model is 318.4 in column (1). For a βk of 0.5, variation
in c̄ − r from −0.1 to 3.06 implies variation in the OAS of 503bps. Thus both the corporate bond
spread and our theoretically motivated price of prepayment risk explain similar magnitudes of OAS
variation.

F. Average market coupon

There is one further result that is unique to our equilibrium theory. We predict that the market
price of risk should vary with the average market coupon. Plausibly, alternative hypotheses will
only link security specific attributes (e.g., the coupon of the specific security being studied) and the
market interest rate to the OAS, but not the average market coupon. Although the bulk of the
variation in c̄t− rt is driven by variation in rt, from Figure 1, we note that there is some variation in
the average coupon outstanding over the period from 1991 to 1998. We exploit this variation in the
average coupon to verify that the c̄t has independent explanatory power for the OAS. We begin this
section by reporting results from the IO sample. Unfortunately, there is only slight variation in c̄t

over the IO sample. We present our main results from the pass-through data from Smith-Breeden,
which covers a period with more variation in c̄t.

Over the period from September 1993 to April 1998 the average coupon outstanding falls from
8.45% to 7.52% (see Figure 1). This fall occurs in two phases: early in the sample, and again late
in the sample. We estimate the following regression for the IO’s:

OASkt
IO =

∑
t

αtdt +
∑

k

γkdk + A1 × βk c̄t + A2 × βkrt + εkt

The coefficient estimates are: A1 = 1474(8.61), and A2 = −162(4.25) (R2 = 94% for N = 383). The
coefficients are significant and of the right sign, but of (substantially) different magnitudes, contrary
to the theory. It seems likely that the large coefficient on βk c̄t is due to overfitting, driven by the
fact that c̄t moves only a little over this sample period.

The largest variation in the average coupon occurs over the period from mid-1991 to early 1994.
We have OAS data for pass-throughs over this period from Smith-Breeden, which we also use to
test for the explanatory power of the average coupon. The data is for the OAS on FNMA 30-year
generic collateral for 8 bonds with coupons ranging from 7.5% to 11%. Our data spans a period
from October 1987 to July 1994. From our theory (see equation (16)), the pass-through takes a
quadratic form in interest rates. We estimate the following regression:

OASkt
C =

∑
k

γkdk + (A1c̄t + A2rt + A3) × (ck − rt) + εkt,

where the c̄t and rt are measured in percentage units, and the OAS is measured in basis points. Our
theory predicts that A1 is positive and that A2 is negative, and that A1 + A2 = 0. A3 should not
have any explanatory power.

The results are reported in Table VI. The first set of regressions are run separately by bond.
The last regression combines all of the data in a panel, and implicitly sets the βk loadings for each
security equal to each other.

The coefficients on c̄t are uniformly positive and significant, as predicted. In terms of magnitudes,
if we consider the 9% coupon bond, along with typical values in our sample of an r of 7.5%, and
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c̄ − r of 2%, our theoretically motivated variable predicts an OAS of 35bps. The average OAS over
our sample for the 9% coupon bond is 75bps.15 It is also encouraging that A1 and A2 have opposite
signs. While the coefficients, A1 and A2, are of similar magnitudes, it is disappointing that the
p-values from testing if A1 + A2 = 0 are high for most of the specifications. Finally, in contrast to
our theory, A3 is negative and often significant.

A possible explanation for this discrepancy is that a true measure of the model’s c̄ would include
expected values of future coupons. That is, while in our one-period model the OAS is proportional
to our current measure of the market price of risk (i.e. c̄ − r today), in a richer model, the OAS
would reflect all of the future expected market prices of risk, i.e., the expected future values of c̄− r.
As in the 1980s and 1990s, nominal rates were largely declining, a negative A3 captures the market’s
expectation that the average coupon will decrease in the future. Alternatively, this discrepancy could
be due to a mis-specification of the option value in the underlying prepayment model from which the
OAS is generate, or a mis-specification of the interest rate in our simple empirical implementation.

Insert Table VI about here

G. Representative household model

Our theory and tests lend support to the view that a specialized mortgage investor sets prices in
the MBS market. Thus the delegation of fund management has important effects on asset prices.
This view contrasts with traditional asset pricing theory which sees institutions as a “veil.” In this
section we provide further support for our view by showing that the correlation between prepayment
risk and wealth or aggregate consumption has, given the observed values of the OAS, a sign opposite
to that which traditional asset pricing theory predicts. The reason for this phenomenon seems to be
that, controlling for interest rates, households are more likely to prepay mortgages in good states
than in bad states.

We form a time series of prepayment risk innovations from our estimates of ûkt. For each t we
compute,

Ut =
1
K

∑
k=1..K

ûkt

βk

where the βk’s are the loading on the first eigenvector from the principal component analysis. This
procedure results in a monthly series of prepayment innovations.

We first measure the correlation between prepayment innovations and measures of a represen-
tative household’s wealth. We note that mortgage backed securities are zero net supply assets. A
homeowner exercising her prepayment option does not change aggregate wealth as it merely transfers
wealth between the holder of the MBS and the homeowner. Thus, in measuring aggregate wealth
one should not include the aggregate value of MBS. We check the correlations between prepayment
innovations and the stock market and real estate prices.

We form a time series of monthly excess returns (over the short term rate) on the S&P500
(SPt) (a proxy for aggregate wealth). It has a correlation coefficient of 0.032 with the prepayment
innovation series. We run a regression of:

Ut = A + B × SPt.
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The coefficient estimate for B is 0.873 and the t-statistic is 0.23 (N = 53, R2 = 0.001). We conclude
that the portion of prepayment risk that is orthogonal to interest rates is unrelated to the stock
market.

The other major part of aggregate wealth is real estate. Empirically, there is extensive evidence
that prepayment rates fall when real estate falls in value, holding interest rates constant (see for
example, Caplin, Freeman, and Tracy, 1997, Bennett, Peach, and Peristiani, 2000, Mattey and
Wallace, 2001, or Downing, Stanton and Wallace, 2003). Caplin, Freeman, and Tracy argue that this
phenomenon is due to collateral constraints: The homeowner is unable to refinance a mortgage when
the equity value in the home is small. Hurst and Stafford (2003) present evidence that households
refinance their mortgages and borrow against the equity value in their homes to boost consumption
when real estate prices rise. Stein (1995) argues that down-payment effects lead to more housing
turnover when real estate prices rise. This activity naturally creates higher rates of prepayment.

Table VII presents the correlation of the Ut series with measures of (real) house price appreciation
in different regions of the U.S. The data is from FHLMC’s index of home prices. Our evidence is
not as strong as other evidence presented in the literature (cited above). However, in line with other
empirical studies, the correlations are for the most part positive.

Insert Table VII about here

We note that the IO falls in value with faster prepayment shocks, and rises with slower prepay-
ment shocks. Since the IO rises in value when prepayment rates fall, the former acts as a hedge
against real estate and should command a negative risk premium if the representative household
model is correct (i.e., it is a hedge against falling real estate prices). On the other hand, the tradi-
tional theory predicts a positive premium for the PO. However, in the data, the spreads on IO’s are
positive, while those on PO’s are negative.

Insert Table VIII about here

We also check the implications of the consumption-based CAPM for the pricing of MBS. We
aggregate the monthly series of prepayment innovations up to a quarterly level for comparison to
aggregate consumption data (data from Q4 1993 to Q1 1998). The consumption data is from the
NIPA accounts, and is in real terms. The contemporaneous correlation between the quarterly growth
in consumption and the prepayment shocks series is 0.03. The correlation between one-quarter lagged
consumption growth and prepayment shocks in 0.36. Table VIII presents these results in the form
of standard OLS regressions. The correlations are uniformly positive (but only statistically different
from zero for services).

The positive correlation between consumption and prepayment innovations means that (as with
the case of real estate prices), under the traditional theory, the IO should command a negative risk
premium while the PO should command a positive risk premium. Neither is true in practice.

We should note that the positive correlation between consumption and prepayment innovations
is derived from a simplified prepayment model, and demonstrated over a small sample of a boom
period during the 1990s. Unlike the link we demonstrate between real estate prices and prepayment
innovations, we are not aware of prior work that documents this correlation. However the result
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seems believable on a priori grounds. As noted above, prepayments are positively correlated with
real estate prices. As consumption is also positively correlated with real estate prices (see Case,
Quigley, and Shiller, 2005), prepayments are thereby correlated with consumption. A second possible
explanation is that homeowners are only able to take advantage of lower interest rates and refinance
if they qualify for a new mortgage (see Longstaff, 2004). Thus, when income and consumption grows,
the credit quality of the average homeowner improves, thereby allowing more homeowners to take
advantage of refinancing options and increasing prepayment rates.

H. Preferences of the marginal investor

The coefficient estimates on our model range from 82 to 547, depending on specification and sub-
sample. These numbers are not readily interpretable as corresponding to preferences. In this sub-
section, we provide a “back-of-the-envelope” calibration to assess these numbers. We show that our
findings are in the range of what one would expect if the marginal investor is a leveraged mortgage
fund manager.

Previously we found that for a mean-variance investor with risk tolerance of ρ, the OAS is,

OASk
IO ≈ αρβk

(∑ βj

(r + φ̄j)2
θj (cj − r)

)
.

Let us translate this into preferences for an agent with CRRA preferences with parameter ρ̂ and
wealth of w,

U(w) =
w1−ρ̂ − 1

1 − ρ̂
.

Taking a Taylor expansion around a point w0 and retaining the first two terms gives us,

U(w) − U(w0) ≈ u′(w)
(

∆w − 1
2

ρ̂

w
(∆w)2

)
.

Hence, locally, this agent is a mean-variance investor with risk tolerance of ρ̂/w, where w is the fund
manager’s wealth. Substituting this into the OAS expression gives,

OASk
IO ≈ αρ̂

w
βk

(∑ βj

(r + φ̄j)2
θj (cj − r)

)
.

We have assumed that the capital requirement for fund managers is α fraction of fund size, so
that a fund manager who starts a fund by contributing wT of his own wealth has fund capital of wT

α .
Now, mortgage funds typically also leverage up this capital via the repo market. Suppose that the
typical mortgage fund manager has leverage of L. Then, market clearing (i.e., the fund managers,
via leverage, hold the entire mortgage market) requires,

L
wT

α
=

∑
P j

Cθj ,

where P j
C is the price of the j-the collateral. We can use this expression to solve for wT which is the

amount of wealth that fund managers have at stake in the mortgage market.
For a typical hedge fund, it is plausible that the largest share of the manager’s wealth is tied up

in the fund. More generally, let us suppose that the representative fund manager has a portfolio of

20



κw (κ > 0) in the mortgage market and (1 − κ)w in a riskless bank account. Then, w = wT

κ , and
we can substitute for w into the OAS expression to find,

OASk
IO ≈ Lκρ̂βk

(∑ βj

(r+φ̄j )2
θj(cj − r)

)
∑

P j
Cθj

.

We see that leverage increases the effective risk aversion of the fund manager by a factor of L. The
reason is that leverage implies that a fund manager with little wealth is taking a large position in
the market. In order to compensate the fund manager for bearing this risk, the risk premium must
be correspondingly large.

We also see that a lower κ decreases the effective risk aversion of the manager. This is because
a fund manager whose wealth is more diversified is less risk averse with respect to shocks in the
mortgage market.16

We now calibrate this expression based on data from the mortgage market. Over our sample, the
average 10-year CMT rate is 6.5%. The average annual prepayment rate (across all of the mortgage
pools) is 11.8%. The average βk is 0.38. If we approximate the OAS formula as,

OASk
IO ≈ Lκρ̂βk

(
β̄

(r̄+φ̄)2

∑
θj(cj − r)

)
∑

P j
Cθj

,

and further take P j
C = 1 (i.e. no discount or premium on the underlying collateral in the market),

then,

OASk
IO ≈ Lκρ̂βk β̄

(r̄ + φ̄)2
(c̄ − r) = L × κ × ρ̂ × 11× βk(c̄ − r).

For the leverage number, we have conducted an informal poll of MBS traders, and have found
that typical leverage ranges from 5 to 20 for funds that trade IO’s and PO’s. For the κ number if
we use one (i.e. 100% of wealth tied up in the MBS market), then for a coefficient estimate on the
model of 462, and a leverage of 10, this implies a risk aversion parameter, ρ̂, of about 5. Thus our
estimates of ρ̂ range from 0.7 to 5 for an L of 10 and κ of one. If κ is one-half, the corresponding
risk aversion parameter ranges from 1.4 to 10.

These preference parameters can make sense under a limits of arbitrage view that the marginal
investor is a specialized institution. The specialized mortgage fund manager bears disproportionate
amounts of mortgage risk. Leverage magnifies this effect, enabling us to match the data with rea-
sonable risk aversion parameters. We should also note that other institutional features of delegation,
such as capital constraints, open-ending, minimum benchmarks, etc. may also affect risk aversion.
For example, Grossman and Zhou (1996) have shown how institutional demand for portfolio in-
surance can end up having important effects on aggregate risk aversion and prices. It would be
interesting to study further the effects of, for example, capital constraints.

Finally, MBS are zero net supply securities. However, if we ignore this fact and suppose that
the relevant measure of aggregate wealth of the household included the securitized value of MBS,
then the corresponding risk aversion parameters will be too high. As the MBS market is about 10%
of aggregate wealth, the risk aversion parameters will be 10L times bigger – i.e. 100 times as high,
so numbers of 70 to 500. Reconciling this with consumer preferences would be very problematic.
We conclude that, to make sense of the prepayment risk premia in MBS, one needs a “limits of
arbitrage” view.
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III. Model Mis-Specification and Robustness Checks

As we have mentioned, observed OAS behavior might be explained by a mis-specification in the
Wall Street mortgage model from which the OAS are derived. We have shown that our results
hold using OAS from both Salomon-Smith-Barney as well as Smith-Breeden. Thus our results are
not driven solely by peculiarities of one firm’s prepayment model. We provide a number of other
robustness checks in this section to address the mis-specification possibility.

We should note at the outset that one way to sidestep the mis-specification issue is to use actual
bond returns as the dependent variable in our regressions. There are a few reasons we have not done
this. Actual bond returns are a very noisy estimate of the expected return on the securities.17 Thus,
we need more data than we have to implement these regressions. Using the OAS greatly reduces this
measurement error problem. Breeden (1994) provides support for our approach. He studies a large
panel of GNMA securities and finds that the OAS has strong predictive power for the subsequent
returns. The results are reported in Exhibits 72, 73, and 74 of Breeden (1994). We note Exhibit
74 in particular which demonstrates that the strongest relation is between the OAS for IO’s and
subsequent returns.18

A. Is the OAS due to a mis-specified model of the prepayments?

If the Wall Street pricing model uses an incorrect model of homeowner prepayment, then the OAS
will be biased.

Let us revisit equation (7), rewritten below:

P k
IO =

ck

r + φ̄k + OASk
IO

.

Suppose that informed market participants have a true model of prepayments which is actually φ̂k.
If the average market participant quotes the OAS based on an incorrect assessment of prepayment
and uses φ̄k, then an additional discount rate of φ̂k − φ̄k is required in order to recover the true
market prices. In this case, the OAS is equal to φ̂k − φ̄k, which is non-zero even if prepayment risk
is not priced.

Note that the OAS on the IO’s in our sample are for the most part positive, while those on the
PO are negative. Thus, under the mis-specified model hypothesis, the OAS must be based on a
model which consistently underpredicts prepayments.

There is a plausible hypothesis why underprediction may have been the norm in our sample.
Banks typically calibrate their prepayment functions to historical experience. Consumers have in
the past been slow to exercise their refinancing option. However, during the 1990’s, increased
competition and the explosion of internet-based lending greatly reduced the costs of refinancing.
As a result, consumers were quicker to take advantage of refinancing possibilities and prepayments
increased.

Suppose that in our sample, smart investors forecast this decrease in refinancing costs. Then,
a smart investor would have also forecast a higher level of prepayments. However, if the OAS was
based on a model calibrated to historical experience, then the OAS will be based on a model that
“underpredicts” prepayments.

22



If underprediction is a phenomena that only affected the general level of prepayments, then
the time effects in our regression specification will handle the mis-specification. For example, an
increase in the general level of prepayment may occur if the reduction in refinancing costs led to
more trading-up or relocation based prepayments across all mortgage pools. Thus, our regression
specification controls for an underprediction that can be written as,

φ̂k − φ̄k = γt,

where the γt is a common mis-specification in the rate of prepayment across all mortgages.
Alternatively, suppose that some types of mortgage pools, say for geographic reasons, had a

higher level of underprediction, then the security effects in our specification will handle the mis-
specification. Thus, our regression specification controls for all underprediction that can be written
as,

φ̂k − φ̄k = αk + γt.

Thus the only case that poses a problem for our results is if the underprediction is a non-linear
function of both security and time.

Suppose that the underprediction at time t is proportional to φ̄k
t , the current level of prepayments

on mortgage-k. That is, suppose that φ̂k
t is equal to φ̄k

t times a constant. For example, this situation
may arise if φ̄k

t proxies for refinancing desires of the average household in a particular pool, so that the
lower costs of refinancing particularly sped up prepayments in that pool. Such an underprediction
implies an OAS whose sign patterns match those found in the data. We run the following regression
to account for this possibility,

OASkt
IO =

∑
t

αtdt +
∑

k

γkdk + A × βk (c̄t − rt) + B × skt + εkt

where skt is the actual single month mortality (SMM) for month t. We also run the same specification
using an average of skt where the average is for 7 months centered around month t.

Insert Table IX about here

The results are reported in the first two columns of Table IX. The skt variables are not significant
(and are negative), while the coefficient on our model remains large and significant. The coefficient
on our model does drop in the second specification, while the R2 rises. Part of this may be due to
different sample sizes. However, there also seems to be an interaction with the fixed effects, as the
coefficients (not reported) on some of the bonds change in the second specification.

Another possible time and security effect interaction arises if the underprediction is related to the
difference between the coupon on a particular mortgage pool (ck) and the market interest rate. This
situation may occur if the lower costs of refinancing leads consumers to exercise their refinancing
option more optimally in reaction to falling interest rates. This alternative may predominantly
affect high coupon mortgages in low interest rate environments. Notice that if the bias is simply
proportional to ck−rt then the security/time fixed effects specification will control for this possibility.
So the only possibility that we need to address is if the bias depends on both ck and rt. The results
of Table IX control for this possibility by including a term where ck is interacted with rt. While the
interaction term is significant, the coefficient on our model continues to be large and significant.
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B. Is the OAS due to a mis-specified interest rate model?

Market practice is to use a term-structure model that is calibrated to current market risk-free rates
and then discount the cash-flows under the risk-neutral measure implied by the term-structure
model. By construction, therefore, the OAS should not reflect interest rate risk. However, any mis-
calibration or mis-specification in the interest rate model will pollute the OAS. In practice, state-
of-the-art term structure models produce relatively small pricing errors for bonds. However, when
pricing interest rate derivatives, model implied prices can deviate significantly from market prices.
Longstaff, Santa-Clara, and Schwartz (2001) report deviations of 2-4% when pricing swaptions using
a four-factor string market model. These deviations increased substantially during the Fall of 1998
crisis period. Since the MBS is a combination of a bond and interest rate option, the OAS will
partly reflect the sort of deviations that Longstaff, Santa-Clara, and Schwartz report.

C. Agnostic interest rate mis-specification controls

On a priori grounds, it is not obvious what specific alternative hypothesis to control for. While there
is likely to be a bias in the OAS, neither the direction of the bias, nor how the bias affects inference
in our regressions, is clear. In this subsection we present “agnostic” controls, where our controls are
guided by the literature and the tests we perform.

If the bias varies across time and equally affects all of the IO’s we study, then the time fixed
effects in our regressions will serve as a control. For example, time dummies may control for spikes
in the pricing deviations similar to those reported by Longstaff, Santa-Clara, and Schwartz during
the Fall of 1998.

Andersen and Andreasen (2000) report a skew in pricing deviations for caps and floors. Lower
strike options have larger deviations than higher strike options. The strike in an MBS is related to
the underlying coupon. Our regressions include security fixed effects, that can proxy for the strike,
and thereby control for this sort of cross-sectional pricing bias.

The type of bias our security/time fixed effects do not control for is a bias that varies over
time, but affects different strikes differentially. Recall that we test our theory by interacting the
prepayment risk of the security and a term involving the level of interest rates (c̄t − rt). Thus, a
candidate for the bias that seems pertinent for our inference is one that depends on the interaction
between the moneyness of the option and the level of interest rates.

We can control for this possibility by introducing a regressor that depends on (ck−rt)×rt, where
ck is the coupon on the MBS. This control is subsumed by introducing a regressor that is quadratic
in ck and rt:

A(ck)2 + Bckrt + Cck + Drt + Er2
t .

As our basic regression already has time and security fixed effects, the terms involving only ck or
only rt are already controlled for. We only need to include an interaction term between ck and rt

to control for this hypothesis. The results reported in the last column of Table IX confirm that our
results are robust to this type of mis-specification possibility.
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D. Option undervaluation hypothesis

Brown (1999) notes a positive relation between the OAS and implied volatilities on Treasury bond
options which suggests that pricing models may be using an incorrect interest rate volatility. The
OAS on IO’s are usually positive, while those for PO’s are usually negative. If the model interest
rate volatilities are too low, the prepayment option will be undervalued in the pricing models, giving
rise to a positive OAS for the IO’s (and a negative one for the PO’s).

We investigate the option undervaluation hypothesis in Table X. If models are undervaluing the
interest rate option, then a simple way to control for this effect is to introduce a regressor that is
equal to the value of the interest rate option minus intrinsic value.

We take the following approach. For each security we compute,

OVkt = E[max(ck − r̃, 0)]− max(ck − rt, 0) where r̃ ∼ N (rt, σ
2τ ),

where rt is the 10 year CMT at time t, and ck is the coupon underlying mortgage-k. So the
computation is of the value of a European “floor” on the 10 year CMT, minus the intrinsic value of
the option. Our distributional assumption is that the 10 year CMT is distributed normally around
the current value of the 10 year CMT. Finally the “time to maturity” is τ . We use two different
values of τ , 5 years and 10 years. The σ is the sample standard deviation of changes in the 10 year
CMT (81bps). Finally, we scale this option value by 100 for ease of comparison.

The above is obviously a crude representation of the value of the option. However, to the extent
that we are assuming that none of this option value is accounted for in the trader’s model, we are
being conservative.

The results are in Table X. The coefficient on our model remains significant and of the same
order of magnitude as in other specifications. Specifications (2) and (4) interact the option value
with βk, based on the idea that perhaps βk is picking up the number of options embedded in the
mortgage.

Insert Table X about here

IV. Conclusion

We provide theory and evidence that the marginal investor in the mortgage-backed securities
market is a fund manager who is principally invested in the mortgage market, as opposed to a well
diversified household. The theory predicts that prepayment risk is priced and that the pricing of
this risk depends on the riskiness of the entire mortgage market. Our empirical findings support the
notion of limits to arbitrage in the MBS market, a large market in the U.S.

The MBS market is a highly specialized market that requires a great deal of expertise on the
part of the active investor. We conjecture that the limits of arbitrage effects are most pronounced in
markets that require a great deal of expertise. For example, recent evidence from the corporate bond
market (Collin-Dufresne, Goldstein, and Martin 2001) and the credit default swap market (Berndt
et al. 2004) suggests that market-specific risk factors have important effects on risk premia in these
markets. We believe this evidence also supports limits of arbitrage theories. In line with the theory
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we present in this paper, we predict that when the standard deviation of returns of the corporate
bond market increases, the price of non-interest risk in the bond market will increase. Likewise,
when credit risk becomes large, the price of credit risk itself will increase. More work needs to be
done to evaluate these conjectures.

There are several avenues along which to extend our research. First, the evidence we present is
from a data sample that is small, especially in relation to the MBS market. Including more securities
in our cross-sectional analysis and extending our sample beyond 1998 are important steps to take
in order to verify the generality of our results. Additionally, while we have tried to rule out the
alternative explanation that our results are driven by a mis-specification in the model from which
the OAS is derived, this remains a potential alternative. Collecting sufficient data on MBS prices
so that we can directly estimate MBS returns instead of relying on the OAS is an important step in
this research.

On the theoretical side, the result that a limited amount of capital sets prices in the MBS market
has bearing for models of capital constraints. Liquidations induced by low capital can be expected
to have large price effects in such a market, as a small set of investors have to absorb the sales. We
have investigated an extension of the model of this paper in which some fund managers face capital
constraints in the form of a value-at-risk requirement. Our investigations so far confirm that, under
natural assumptions, the MBS risk effect we identify in this paper and the capital constraint effect
proposed by others should reinforce each other. Capital scarcity affects MBS prices by first affecting
the price of prepayment risk according to the factor structure we identify. This theoretical result
suggests an interesting avenue for empirically identifying capital effects: Capital constraints should
raise the spreads between high and low prepayment risk securities, in addition to raising the level of
all spreads to Treasury securities. We intend to pursue this extension in future work.
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Notes

1 Merton (1987) presents a model in which segmentation arises endogenously, and he explores
the implications of market segmentation for asset prices.

2Cohler, Feldman and Lancaster (1997) and Levin and Davidson (2005) present pricing method-
ologies where the OAS is in large part a prepayment risk premium.

3Boudoukh et al. do hint at this by looking at the prepayment of the different coupons. They
find that for lower coupons, which have a lot of relocation-based prepayment, prepayment variables
explain a significant fraction of the pricing errors.

4 Berndt, Douglas, Duffie, Ferguson, and Schranz (2004) present similar evidence based on data
from credit default swaps. They find large swings in the risk-premia incorporated in default swaps.

5Bates (2003) and Bollen and Whaley (2004) find related effects in the options market. Garleanu,
Pedersen and Poteshman (2005) provide further evidence for options and a model also based on the
limited diversification of the marginal options investor.

6See Kau and Keenan (1995) for a survey of this line of research.

7Unlike our abstraction, in practice interest rates are uncertain. The logical extension of our
model to the uncertain interest rate case is to write φ̄k(r̃). Then the innovation of ∆φk is the
uncertainty in prepayments that is orthogonal to changes in interest rates. This is the definition we
use in the empirical section of this paper.

8It is also possible that the OAS is due to a Jensen’s inequality term. However, we think that this
Jensen’s inequality effect is unlikely to be very important. Indeed, since, PIO = E

[
c/

(
r + φ̃

)]
>

c/
(
r + E

[
φ̃
])

this interpretation predicts a negative OAS for the IO. In our sample, the OAS of
IO’s are almost always positive, which means that this effect is probably small. Also, the Jensen’s
inequality effect predicts that the OAS depends only on the security-specific factors, not on market-
wide factors as we find in our empirical work.

9The OAS for the PO is defined by

P k
PO = 1 − r + OASk

PO

r + φ̄k + OASk
PO

Repeating the arbitrage argument in the text (the payoff on the PO is equal to the payoff on a one
dollar face of bond minus the payoff on r

ck of the IO), we find that,

OASk
PO = − r

φ̄k + OASk
IO

OASk
IO. (19)

The OAS on the PO and IO have opposite signs. An increase in prepayment hurts the IO but
benefits the PO: Thus the IO and PO have opposite sensitivities to prepayment risk.

10See Holmstrom and Tirole, 1997, for a model of capital constraints in intermediation.
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11 The exact expression is,

OASk
IO

r + φ̄k

r + φ̄k + OASk
IO

= ρβkα

(∑ βj

(r + φ̄j)2
θj(cj − r)

)
.

This expression can be derived from combining (12) with (7), and noting that ηk = 1/(r + φ̄k).

12We have also developed a continuous time model to express the relation between the OAS and
prepayment risk. The resulting expressions are very similar to the ones we have derived in the text.
For details, see the Technical Appendix to this paper at http : //econ−www.mit.edu/faculty/xgabaix/papers.htm.

13We have also done the principal component analysis dropping the security with the shortest
time series. This results in 32 months of overlapping observations. The results are close to what we
find for the 22 months.

14The graph of the estimate of λt using the β-PCA is very similar to Figure 3.

15We can do a rough calculation to see whether the coefficient estimates from the collateral
regressions are consistent with the coefficient estimates from the IO regressions that we reported
earlier. For the IO’s we predict that,

OASk
IO = Aβk(c̄ − r)

and estimated that A was around 460. For the collateral, we predict that,

OASk
C = Aβk(c̄ − r)(ck − r)

1
ck + φ̄k + OASk

IO

In our collateral regressions, we estimate Â where,

OASk
C = Â(c̄ − r)(ck − r)

We can relate Â to A using these expressions. Also, keeping track of the unit conversions from bps
to %, we find that,

Â = Aβk 1
ck + φ̄k + OASk

IO

1
100

Substituting in typical numbers from our sample of ck = 0.09, φ̄k = 0.11, OASk
IO = 0.04, and

βk = 0.4, we find that, Â = A × 0.016. Thus for an estimate of A of 460, we should expect that Â

is around 7.5. The values are in the neighborhood of the coefficient estimates for the collateral.

16α drops out because it has two offsetting effects. On the one hand, low α means that fund
managers will run bigger funds and be exposed to more risk. On the other hand, a low α means that
the fund manager’s exposure to this risk is smaller. The model only requires that α be positive.

17We can reduce the noise in bond returns if we take a stand on the mortgage prepayment model
and calculate interest rate hedge-ratios. Then we can strip out the interest rate component of actual
bond returns. But this seems no better than using the OAS from the prepayment model of a dealer,
as we have done.

18For each MBS security, Breeden (1994) calculates optimal interest-rate hedges based on a pre-
payment model, and then uses these hedge ratios to construct hedged returns on the MBS security.
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He regresses the realized hedged returns on the OAS of these securities, and shows that the regres-
sion coefficients are positive. The regression coefficient of the hedged returns on the OAS is: 1.1
(s.e. 0.34), 1.35 (s.e. 0.33) and 0.87 (s.e. 0.58), for respectively, collaterals, IO’s and PO’s. The
result holds true for collaterals, IO’s, and PO’s, and is supportive of our working hypothesis that
the OAS is not solely driven by model mis-specification.
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Table I

Description of the IO/POs

IO/PO Pool Number
249 240 252 272 264 237 270 267 268

Coupona 7.08 7.49 7.95 8.07 8.49 8.48 9.01 8.91 9.64
Ageb 58 60 63 27 50 70 80 47 110
Sizec 1,375 3,450 1,975 1,055 1,050 1,725 898 1,155 567

a: Weighted average coupon (WAC) in % on underlying mortgage pool (±5bp over sample.)

b: Seasoning of underlying pool in months as of July 98.

c: Size of underlying pool at original issue date, in millions.
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Table II

Measures of Prepayment Risk
For each of the 9 securities, we present βk (st. dev.), the measure of prepayment risk based on the
standard deviation of prepayment error for security k; βk (PCA), the loading of the prepayment
error for security k on the first eigenvector of prepayment errors in a principal component analysis;
idiosynck (PCA), the standard deviation of the residual from the principal component analysis;
and, βk (mtge. model), the standard deviation of the residual from a Wall Street mortgage
model.

IO/PO Pool Number
249 240 252 272 264 237 270 267 268

βk (st. dev.) 0.083 0.120 0.181 0.449 0.492 0.549 0.471 0.460 0.383
βk (PCA) 0.062 0.121 0.198 0.417 0.594 0.503 0.465 0.518 0.334
idiosynck (PCA) 0.088 0.074 0.080 0.167 0.263 0.178 0.240 0.178 0.203
βk (mtge. model) 0.095 0.174 0.357 0.603 1.071 0.821 0.890 1.369 0.935
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Table IV

Explaining the OAS, First Differences
Regressions based on the OAS of the IO’s:

∆OASkt
IO =

∑
t αtdt + A × ∆βk(c̄t − rt) + εkt.

βk is the β-stdev. dt is a time dummy, c̄t is the average coupon outstanding, and rt is the 10 year
interest rate. Results for the full sample are reported in (1). Results by subsample are reported
in (2) (first-half) and (3) (second-half). The break point is June 1996.

(1) (2) (3)

∆βk(c̄t − rt) 173.9 (3.05) 216.9 (2.67) 82.5 (2.40)
R2 0.71 0.68 0.81
N 374 186 180

Estimates reported with T -statistics based on robust standard errors in parentheses.

Time dummies not reported.
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Table V

Explaining the OAS, Role of the Corporate Bond Spread
Regressions based on the OAS of the IO’s:

OASkt
IO =

∑
k γkdk + A × βk(c̄t − rt) + B × (AAA − Treasury) + εkt.

Results are reported for βk-stdev in (1) and βk-PCA in (2). dk is a security dummy, c̄t is
the average coupon outstanding, and rt is the 10 year interest rate. AAA − Treasury is the
high-grade corporate bond spread, from Lehman Brothers.

(1) (2)

βk(c̄t − rt) 318.4 (8.66) 307.5 (6.01)
AAA − Treasury 674.1 (6.90) 682.2 (6.75)
R2 0.76 0.76
N 383 383

Estimates reported with T -statistics based on clustered (by security) standard errors in parentheses.
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Table VI

Explaining the OAS, Average Market Coupon
Regressions based on the OAS of the collateral:

OASkt
C =

∑
k γkdk + (A1c̄t + A2rt + A3) × (ck − rt) + εkt

dk is a security dummy, c̄t is the average coupon outstanding, and rt is the 10 year interest rate.
ck is the coupon on collateral-k. The last column reports the p-value from testing A1 + A2 = 0.

Bond Coupon A1 A2 A3 R2 N p-value

7.5 19.4 (2.11) -10.1 (-2.18) -104.1 (-1.85) 0.27 26 0.13
8 24.4 (5.26) -14.0 (-4.41) -120.0 (-3.22) 0.45 28 0.03
8.5 18.6 (4.32) -13.1 (-3.83) -78.6 (-2.24) 0.45 28 0.21
9 9.6 (4.46) -9.2 (-4.67) -29.9 (-1.54) 0.47 28 0.88
9.5 11.0 (6.65) -8.2 (-3.81) -47.2 (-2.84) 0.51 28 0.30
10 11.1 (5.85) -7.3 (-2.65) -53.0 (-2.85) 0.48 28 0.23
10.5 14.0 (6.8) -6.3 (-2.37) -85.9 (-5.29) 0.53 28 0.01
11 9.4 (3.57) -6.0 (-1.61) -42.9 (-1.82) 0.35 28 0.44

ALL BONDS 11.6 (10.45) -11.7 (-3.18) -33.3 (-1.36) 0.86 222 0.99

ALL BONDS regression uses the entire panel, with security fixed effects.

Estimates reported with t-statistics based on robust standard errors in parentheses.
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Table VII

Correlations between Shocks to Prepayment and Shocks to Real Estate Values

Correlations between prepayment shocks (Ut) and measures of real estate price appreciation for both re-

gional indices and a national index. corr(0) is the contemporaneous correlation. corr(-1) is the correlation

between the one-quarter lagged real estate appreciation and Ut.

New Mid South E.So W.So W.No E.No Mount. Pac. United

Eng. Atl. Atl. Cent. Cent. Cent. Cent. States

corr(0) 0.01 0.15 0.03 0.06 0.19 0.18 -0.03 0.09 0.04 0.08

corr(-1) -0.12 -0.11 -0.07 0.11 0.12 -0.03 -0.17 0.15 -0.21 -0.11

corr(-2) 0.04 0.21 0.21 0.26 0.18 0.12 0.03 0.40 0.08 0.18
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Table VIII

Prepayment shocks and Aggregate Consumption:
We regress:

Ut = A + B× Consumption-Growth.
Ut are prepayment shocks. Ct is measured household consumption.
Results are presented for aggregate (non-durables plus services), services, and housing.

Consumption Series Ct

Ct−1
− 1 Ct−1

Ct−2
− 1 R2

Aggregate 32.5 (0.19) 278.5 (1.49) 0.13
Services 320.4 (2.06) 0.21
Housing 150.7 (0.94) 0.05

OLS estimates reported with T -statistics in parentheses. N = 18
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Table IX

Explaining the OAS, Robustness Checks
Regressions based on the OAS of the IO’s:

OASkt
IO =

∑
t αtdt +

∑
k γkdk + A × βk(c̄t − rt) + xkt + εkt.

βk is the β-stdev. Additional explanatory variables xkt are: skt, the SMM for security-k, month-t;
s̄kt, 1

2 -year moving average of skt, centered at t; and, ck × rt, the coupon of security-k interacted
with rt.

(1) (2) (3)

βk(c̄t − rt) 547.4 (5.18) 273.5 (4.35) 254.6 (4.73)
skt -30.1 (-0.73)
s̄kt -11.4 (-0.32)
ck × rt 16.0 (6.82)
R2 0.94 0.96 0.96
N 374 337 383

All regressions have security and time fixed effects (not reported).

Estimates reported with T -statistics based on clustered (by security) standard errors in parentheses.
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Table X

Explaining the OAS, the Option Undervaluation Hypothesis
Regressions based on the OAS of the IO’s:

OASkt
IO =

∑
t αtdt +

∑
k γkdk + A × βk(c̄t − rt) + B × OVkt.

OVkt is the option value, minus intrinsic, of an European floor on the 10-year CMT, struck at
ck. We also use βk × OVkt as an independent variable. Results are reported for 5 and 10 year
maturities for the option valuation.

5 year 10 year

(1) (2) (3) (4)

βk(c̄t − rt) 495.3 (6.50) 570 (5.32) 477.6 (5.83) 590 (8.68)
OVkt -3.8 (-2.50) -2.0 (-1.18)
βk × OVkt 17.7 (2.82) 15.3 (6.23)
R2 0.94 0.95 0.94 0.95
N 383 383 383 383

Estimates reported with T -statistics based on clustered (by security) standard errors in parentheses.

All regressions have security and time fixed effects (not reported).
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