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ABSTRACT

This paper discusses inference for rational expectations models estimated via minimum distance

methods by characterizing the probability beliefs regarding the data generating process (DGP) that

are compatible with given moment conditions. The null hypothesis is taken to be rational

expectations and the alternative hypothesis to be distorted beliefs. This distorted beliefs alternative

is analyzed from the perspective of a hypothetical semiparametric Bayesian who believes the model

and uses it to learn about the DGP. This interpretation provides a different perspective on estimates,

test statistics, and confidence regions in large samples, particularly regarding the economic

significance of rejections of the model.
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1.  Introduction 

The following inference setting pervades modern empirical work in economics involving 

rational expectations and market efficiency.  An economic model of the form t t 1E *[g | ] 0θ
− =F  

where t tg g(x , )θ θ≡  is assumed to describe relations among a set of observables xt and where * 

and Ft–1 reflect the beliefs of and information available to relevant economic agents in the model, 

respectively.  The model is closed by rational expectations – that is, by equating t 1E *[ | ] 0−• =F  

with the objective conditional expectation t 1E[ | ] 0−• =F  – and then estimated by the generalized 

method of moments (GMM) of Hansen (1982).  The GMM machinery provides for large sample 

inference, including distribution theory for the estimates along with goodness-of-fit measures 

such as the overidentifying restrictions test for the proximity of the sample mean of tgθ  to zero. 

This paper provides a coherent economic interpretation of this inference setting under 

both the null model and, more importantly, the alternative hypothesis that the model is false.  

The internally consistent interpretation treats the model tgθ  as a maintained hypothesis, making 

the null hypothesis rational expectations and the alternative non-rational expectations. The 

estimation framework is a family of minimum distance analogues of GMM that share its 

asymptotic properties.  Such methods involve the minimization of some measure of discrepancy 

between the usual empirical distribution function and an estimate of it that satisfies the a priori 

moment restrictions. The resulting probabilities estimate the beliefs compatible with the moment 

conditions that are closest to rational in the metric defined by the distance or discrepancy 

function.  This approach makes it possible to measure the economic significance of any 

violations of the null hypothesis via the degree to which these implied beliefs are distorted. 

This paper traces out the implications of this distorted beliefs alternative for inference in 



such models.  The next section is really a character sketch:  it describes the structure of the 

beliefs of a hypothetical semiparametric Bayesian.  The penultimate section discusses the way in 

which the beliefs of this Bayesian archetype can inform the interpretation of estimates, test 

statistics, and confidence regions in large samples.  A brief conclusion rounds out the paper. 

2.  A Portrait of a Semiparametric Bayesian 

 Three attributes characterize a Bayesian decision maker:  a preference ordering over the 

possible outcomes associated with given actions, a set of constraints governing these actions, and 

probability beliefs regarding the likelihood of each outcome.  The econometrician presumes that 

this archetypical Bayesian follows Bayes’ rule and believes that tgθ  is a martingale difference 

sequence but otherwise has little a priori knowledge of either the probability beliefs or the 

underlying decision problem of this agent.  This hypothetical semiparametric Bayesian would 

formulate prior beliefs over both the distributions compatible with and the parameters underlying 

the moment conditions.  These prior beliefs would be combined with these distributions, viewed 

as likelihood functions for a sample of data relevant to the decision problem, to arrive at a 

posterior distribution for use in drawing inferences about the data generating process.  The other 

attribute ascribed to this archetypical Bayesian is the use to which this family of models will be 

put:  this Bayesian’s sole interest is in the use of these models for forecasting. 

 What follows is really a character sketch:  a description of the essential attributes of this 

archetypical semiparametric Bayesian.  The next three subsections lay out the preferences, 

probability models, and priors that seem to me to provide the least restrictive portrait that still 

has nontrivial empirical implications.  The final subsection proves the only theorem of the 

section, one which describes the (remarkably weak) restrictions placed on prior beliefs to deliver 

convergence of the predictive distribution to the true distribution in this semiparametric setting. 



A. Preferences 

 The first observation is an old one:  a semiparametric Bayesian interested in using the 

moment conditions to provide the best a posteriori model for forecasting will use the so-called 

predictive distribution.  Let {yt,at} where yt is a vector of variables that define the relevant states 

of nature or that are useful for forecasting and where at is a vector of actions that can be taken by 

this Bayesian in light of the realizations of yt.  The underlying conditioning information Ft-1 

includes lagged values of the state variables Yt–1 = {ys, s ≤ t–1} but not lagged values of the 

actions {as, s ≤ t–1}.  That is, actions may affect the state variables in a deterministic way 

through budget constraints and the like but do not affect the random evolution of the state vector, 

an assumption that is appropriate when the semiparametric Bayesian is a small player in this 

economic environment.  Finally, suppose this archetypical Bayesian is a subjective expected 

utility maximizer for whom the expected present value of net benefits may be represented as: 

 
t tt t a A(y ) t t t 1 t 1 tV(y ,a , t) max U(y ,a , t) E[V(y ,a , t 1) | ]β∈ + += + + F  (1) 

where V(•,•,•) is the value function associated with the Bayesian’s dynamic program, U(•,•,•) is 

the per period reward function, and E[•|Ft] is the conditional expectation, the characterization of 

which is the matter at hand. 

 There are two uncertainties underlying this conditional expectation: the state of the world 

yt+1 that will be realized next period and the probability model Pθ∈Pθ that is the data generating 

process.  Hence, the conditional expectation of the value function next period takes the form: 
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where t 1 tP (y | )θ
+ F  is the predictive distribution, the posterior weighted average of the 



conditional distributions of Pθ∈Pθ, and yt+1∈Y.  The relevance of this observation for the present 

analysis is that the optimal estimate of the ‘parameter’ Pθ  is independent of the loss function V, 

a consequence of the presumption that the semiparametric Bayesian does not affect the evolution 

of the state variables and is interested in the model only for its impact on forecasting. 

 This is a very large scale forecasting problem if the dimensions of the state and model 

spaces are large.  Small world assumptions can shrink the scale of the problem.  One such 

assumption involves partitioning the state vector into two components yt = {xt,vt}.  In one sense 

this is just a matter of conditioning since Pθ(yt+1|Ft) can always be written as 

Pθ(vt+1|xt+1,Ft)Pθ(xt+1|Ft).  However, analyzing Pθ(xt+1|Ft) and Pθ(vt+1|xt+1,Ft) independently 

ignores any information in the latter that is relevant for the former.  Hence, the first small world 

assumption is that Pθ(xt+1|Ft)  and Pθ(XT) = {xs, s ≤ T} can be safely analyzed in isolation or, in 

the language of Engle et al. (1983), xt is weakly exogenous with respect to vt. 

 The second such assumption involves the role of conditional probabilities in the structure 

of the models in Pθ.  Since the archetypical Bayesian has no prior information regarding the data 

generating process save for that implicit in the moment conditions, it is reasonable to suppose 

that the semiparametric Bayesian follows a flexible modeling strategy in parameterizing the 

models in Pθ.  A convenient approach in this setting involves the decomposition of the joint 

distribution into the product of two components: 

 
TT

T T T T
t T

t 1
t

t 1

P (X )(X | P ) P (X ) Λ (X ) p (x );  Λ (X )
p (x )

θ
θ θ θ θ θ

θ=

=

≡ = =∏
∏

L  (3) 

where Λθ(XT) is the likelihood ratio statistic for the null hypothesis that the joint distribution 

Pθ(XT) is equal to the product of the marginals pθ(xt) that respect the unconditional moment 



conditions.  The specific series approximation of Λθ(XT) is not important; what matters is that it 

is orthogonal to the product of the marginals.1  If the archetype does not have informative priors 

over Λθ(XT), it is feasible to choose a flexible expansion that has the required orthogonality.  

This condition, coupled with the semiparametric Bayesian’s postulated ignorance about the data 

generating process, suggests that the prior is separable in Λθ and pθ as well.   

Letting Π(Λθ,pθ) = Π(Λθ) Π(pθ) denote the separable and proper2 prior distributions over 

these possibly infinite-dimensional parameters, Λθ can be integrated out of the joint posterior via: 
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where θ θ θp Λ= ×P .  The same reasoning also implies that the predictive distribution for xt+1 

given XT can be decomposed similarly since: 
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1 Note that, from a frequentist perspective, efficient semiparametric models orthogonalize the parametric and 
nonparametric components. 
2 The requirement that the prior be proper – that is, that it integrates to one – serves to insure that integrals over the 
space of probability measures are finite. 



so that these assumptions imply that T
T 1p (x | X )θ
+  can be safely analyzed in isolation as well. 

 There are two kinds of small worlds assumptions at work here that place restrictions on 

the structure of the beliefs of this subjective expected utility maximizer.  The first is made 

implicitly in all applied research:  that little harm is done by ignoring any information loss 

associated with confining the analysis to a subset the economically relevant variables xt.  The 

second follows from the presumption that the hypothetical semiparametric Bayesian has weak 

prior beliefs about the data generating process save for the information in moment conditions, 

which makes it reasonable to treat the likelihood ratio Λθ as a (possibly infinite-dimensional) 

nuisance parameter that is independent of the marginal distributions pθ both a priori and a 

posteriori.  As is readily apparent, these assumptions can be replaced by two simpler ones that 

are reasonable in many circumstances:  that xt represents all of the information relevant to the 

decision at hand and is independently and identically distributed or that xt has two components – 

i.e., xt = {x1t, x2t} – which are jointly iid and the moment conditions involve the conditional 

mean E[x1t|x2t]. 

 Collectively, these assumptions simplify the representation of the semiparametric 

Bayesian’s preferences over future outcomes (2), which is now given by: 

 
T 1 T 1 T T 1 T 1 T 1 T 1 T 1 T T 1 T 1
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E[V(y ,a ,T 1) | ] V(v ,x ,a ,T 1)P (x ,v | )dx dv
                                        V( )P (v | x , )P (x ,| )dx dv
                                       

θ
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+ + + + + + + + +

+ + + + +

+ = +
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T 1 T 1 T 1 E [V( )]p (x | X ) (x | X )dxθ θλ+ + += •∫ VX

 (6) 

where X and V are the sample spaces of xT+1 and vT+1, respectively.  There is no need for a loss 

function because the archetype is an expected utility maximizer.  There is no interaction between 

the learning and decision problems because the archetype’s actions do not affect the state 

variables xT+1 and vT+1.  The problem of predicting vT+1 can be separated from the problem of 



predicting xT+1 because xT+1 is weakly exogenous.  The presumption that the semiparametric 

Bayesian has prior information in the form of moment conditions that constrain T
T 1p (x | X )θ
+  

and none that constrains T
T 1(x | X )θλ +  permits the archetype to integrate out the latter.  In these 

circumstances, the Bayesian archetype can safely learn about the constrained stationary 

distribution T
T 1p (x | X )θ
+  from a sample XT without considering the larger decision problem. 

B. Probabilities 

Accordingly, let pθ denote the set of all probability measures that satisfy the moment 

conditions for each θ where xt takes values on a sample space X⊆ d and (X,F,pθ) is a probability 

space ∀ pθ∈pθ.  Note that conditioning information impinges on these measures to the extent that 

it is embedded in the moment conditions; for example, the moment conditions could be the 

scores from a parametric likelihood.  As is commonplace, assume the q-dimensional parameter θ 

lies in the interior of the compact set qΘ⊂ \  and that g(x, )θ  is continuously differentiable in an 

open neighborhood of the true value θ0 with a first derivative that has full column rank. 

The problem of characterizing the model space and formulating priors over it is still quite 

daunting.  One way to simplify the problem is to approximate the stationary measures that 

comprise the model space with a smaller set of finite dimensional distributions.  That is, one can 

seek a sequence of approximations T
n T 1p (x | X )θ

+  converging to T
T 1p (x | X )θ
+  such that: 

 
ta n t t t tmax V (y ,a , t) V(y ,a , t)→  (7) 

which would generally obtain if the approximations converge uniformly, preferences are 

bounded and sufficiently smooth, and actions lie in a compact set.   

 Suppose the archetypical Bayesian found that the reduction of the space of possible 

actions to a discrete set resulted in expected utility “close enough” to that derived from the whole 



opportunity set.  This circumstance arises when a table of actions as a function of a finite number 

of possible scenarios suffices.  Accordingly, suppose this Bayesian discretized the choice set into 

Na possible – and possibly countably infinite – actions associated with a corresponding partition 

of the state space into Na nonoverlapping subsets Yn such that aN
n m nn 1
;  0  m n

=
= ∩ = ∀ ≠∪Y Y Y Y  

for which: 

 t tt t a A(y ) t t t 1 t 1 t

n n t 1 m t m m tm

V(y ,a , t) max U(y ,a , t) E[V(y ,a , t 1) | ]
U[y ,a(y ), t] P[y | ]V(y ,a(y ), t 1) | ]

β
β

∈ + +

+

= + +
≈ + ∈ +∑

F
F FY  (8) 

where yt∈Yn and ym∈Ym is chosen so as to best approximate expected utility (which is just a 

normalization).  Such a Bayesian would naturally look to discrete measures to provide the 

required approximations.   

Accordingly, consider the following family of discrete measures on the associated 

partition of X into Na nonoverlapping subsets aN
n m nn 1
;  0  m n

=
= ∩ = ∀ ≠∪X X X X .  The discrete 

measures are taken to be that subset of pθ comprised of the Na-cell multinomial distributions 

{ }a a

Na

N N
M n n n n nn 1 n 1

p P ( ) 0 :  p 1;  p g 0θ θ θ θ θ θp
= =

= = ≥ = =∑ ∑� X  for which n n np
g E [g(x, ) | x ]θ
θ θ= ∈X .3  

Modulo regularity conditions, 
NaM

θp  will approximate pθ arbitrarily well as Na grows without 

bound since, in measure-theoretic terms, these discrete measures are dense in pθ.  This is a 

restatement of Chamberlain’s (1987) observation that any distribution can be approximated 

                                                 
3 Note that there is a slight abuse of notation in this definition because n np p (x )θ θ=  refers to each such probability 
distribution for a given value of θ.  It might be interesting to consider more structured partitions of the sample space.  
For example, the cells could be Voronoi tessellations based on a given set of points 

a1 N{x , ,x }…  in which the 

elements of Xn are those values of x that are closer to xn than to any other point xm in this set.  The discussion in 
Jiménez and Yukich (2002) suggests that the analysis could proceed along these lines. 



arbitrarily well by a multinomial distribution.4 

Moment conditions place considerable structure on the multinomial probabilities 

compatible with them.  In particular, consider the projection of npθ  on a constant and ngθ : 

a a

p
n N n N np a g b

θθ θ θ θ ε′= + +  (9) 

and note that the normal equations imply: 

 

a

a a a a a

a

a a a a a a
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N N N N N n
n 1a a
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1 1a [1 g V g ];  g g
N N

1 1b V g ;  V [g g ][g g ]
N N

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ
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=

−

=
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′= − = − −

∑

∑
 (10) 

This projection is not an estimate:  the multinomial probabilities satisfy these relations 

arithmetically for each value of θ irrespective of the validity of the null hypothesis.5  For each 

value of θ, npθ  has a common component 
a a a

1
N N n N

a a

1 1 g V [g g ]
N N

θ θ θ θ−′− −  and a zero mean, 

probability-specific residual p
n

θ

ε  that is uncorrelated with ngθ  by construction.   

Hence, (9) can be rewritten as: 
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a a a
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a a

p 1
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p 1
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This observation appears to be new.6  For later reference, note that the sum of squared deviations 

of the probabilities from their means of 1/Na is simply: 
                                                 
4 See also Theorem 4.1 of Diaconis and Freedman (1986b) for an application of multinomial approximation in a 
Bayesian context. 
5 Of course, 

aNg 0θ →  and 
a a a

1
N N n nN n

V S g gθ θ θ θ′→ = ∑  if the null model is true.  Relation (9) holds when the moment 

conditions are imposed but are false as well, in which case 
a aN Ng g 0θ → ≠ while n nn

p g 0θ θ =∑  by construction.   
6 The first two terms comprise what Back and Brown (1993) refer to as implied probabilities, which need not be 
positive.  The constraints on the residuals in (11) insure positivity. 
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where a

a

N2 p p 21
n nN n 1

( )
θ θ

σ ε ε
=

= ∑  and the leading term is the GMM overidentifying restrictions test 

statistic, a fact that will prove useful in the sequel. 

Finally, it is worth briefly contrasting this modeling strategy with the methods of Zellner 

(1994,1997), Kim (2002), Lazar (2003), and Schennach (2005).  Zellner, Lazar, and Schennach 

maximize pseudo-log-likelihoods of the form n nn
q ln p∑ (with qn = pn in Zellner and Schennach 

and qn =1/Na in Lazar) subject to different side constraints, posterior moments of the parameters 

of interest in Zellner and the moment conditions n nn
p g 0θ θ =∑  in Lazar and Schennach.  Kim 

treats the exponential of the GMM overidentifying restrictions test statistic as a likelihood 

function up to normalization.  None of these procedures is a truly Bayesian one in which a 

posterior is obtained by multiplying a prior by a likelihood function and integrating, if necessary, 

to make probability statements.   

The present approach yields a truly Bayesian procedure in which the moment conditions 

are substituted into the multinomial probabilities exactly via (11).  The resulting multinomial 

likelihood function is a true likelihood to which the full Bayesian calculus can be applied.  The 

only approximation is that of a density by a multinomial for which there is ample justification.7  

Hence, Bayesian inference based on the Na-cell multinomials in 
NaM

θp  would appear to be a more 

internally consistent procedure than those taken in these papers. 
                                                 
7 There is nothing sacred about multinomial approximation per se.  For example, mixtures of other exponential 
distributions would suffice.  See, for example, Barron and Sheu (1991).  Multinomial approximation makes 
particular sense in the present context when one views the GMM econometrician as implicitly estimating the 
moment-constrained distribution of the data as opposed to its density.  This view is compatible with Back and 
Brown (1993). 



C.  Priors 

 Perhaps the most nettlesome problem associated with subjective expected utility 

maximization is the formulation of prior beliefs for the parameters of the decision problem.  This 

problem is further complicated in the present setting by its semiparametric nature:  the space of 

all probability distributions compatible with the moment conditions is a “large” metric space in 

general and the construction of prior beliefs on such spaces is fraught with hazard.8  Fortunately, 

this semiparametric Bayesian is willing to work with the smaller space of countable multinomial 

distributions.   

Prior formulation is easier in this setting because of this Bayesian’s choice of probability 

models.  The archetype is content ex ante with a constrained countable cell multinomial 

distribution as the semiparametric model for the data for subject matter reasons relating to the 

adequacy of approximate decision rules and ex ante faith in the null model.  As in Chamberlain 

(1987), this turns a semiparametric problem into a parametric one in this setting – albeit for 

somewhat different reasons – thus facilitating the analysis of prior and posterior beliefs. 

The other reason it is comparatively easy to formulate priors in this case is because the 

priors are over probability measures, not parameter values.  Prior distributions over parameter 

values typically change with the parameterization, the standard example being that a prior that is 

noninformative for a standard deviation typically is informative for the corresponding variance 

and vice versa.  Priors over probability measures do not suffer from this problem:  

reparameterization of a model does not change prior beliefs in this fashion. 

These considerations make it natural to approximate the priors over partitions of the 

space of multinomial distributions.  The probabilities of the aN -cell multinomial lie in the 

                                                 
8 See Ghosh and Ramamoorthi (2003) and the references cited therein. 



standard aN -simplex { }aa

a

NN
1 N nn 1

(p , p ) [0,1] :  p 1
=

∈ =∑… . The standard aN -simplex is compact 

under the Euclidean metric as is the Na-simplex bounded by the hyperplanes induced by the 

residual constraints in (11) and so both simplices have finite subcovers.  In addition, the 

probabilities are of order 1
aN−  and this reduces the upper bound on the diameter of the relevant 

aN -simplex from √2 to 1/ 2
p aO (N )− , thus constraining the simplex to be bounded by the orthants 

comprised of all positive coordinates of spheres of the form aN 2 1
n p an 1

p O (N )−
=

=∑ .  Put differently, 

the largest eigenvalue of the information matrix of the aN -cell multinomial is of order 2
aN− .   

The minimal cover of the truncated Na-simplex can be used to approximate prior beliefs.9  

It is given by the smallest set of points i a{ ,  i 0, , N 1 }θ δp = − < ∞… , where aNδ  is the covering 

number, such that the balls i iB( , ) {p : p }θ θ θ θ θp δ p p δ= ∈ − ≤  are disjoint (i.e., 

i j 2   i jθ θp p δ− ≥ ∀ ≠ ) and cover 
NaM

θp .  By convention, the minimal cover is normalized so that 

0
0p B( , )θp δ∈ , i.e.,  the first ball contains the true model.10  It is natural to approximate prior 

beliefs by i i( ) Π[B( , )]θ θπ δ p δ= , which, of course, need not represent the way in which the 

underlying prior itself was formulated.11   

                                                 
9 See Diaconis and Freedman (1990) for a detailed discussion of Bayes estimates for the finite dimensional 
multinomial distribution in finite samples without the fiction of a ‘true’ model. 
10 There are at least two internally consistent interpretations of this true model.  The first views this modeling 
exercise as being conditional on p0 being the truth under the null with the understanding that there can be a separate 
modeling exercise under the alternative hypothesis.  On this interpretation, the semiparametric Bayesian would 
possess priors over this model class and assign the remaining prior probability to all remaining model classes.  
Alternatively, the so-called true model can be replaced by the one that minimizes the Kullback-Leibler divergence 
between it and the truth.  In these circumstances, distributions constructed to satisfy the moment conditions are 
perfectly well-posed but one would not expect Tg ( ) 0θ →  even at the pseudo-true value θ0 and so one would expect 

1
t t T T t T psup {T (p ) g ( ) V ( ) [g ( ) g ( )]} O (1)θε θ θ θ θ−′− − = , not op(1)  as would be the case if the moment conditions were 

true.  In addition, sufficiently false models would typically have probabilities that failed to be of order T-1. 
11 Priors formulated in this way trouble some Bayesians when the prior depends on the sample size, as would be the 
case if the covering number aNδ  is sample size dependent.  See, for example, Heath and Sudderth (1978).  This basic 
strategy can be used to construct coherent non-informative priors by making the required accuracy of the 



D.  Prediction 

The preceding three subsections provided a character sketch of a semiparametric 

Bayesian whose inferences the econometrician seeks to infer.  This Bayesian is concerned with 

forecasting and this focus has a perhaps surprising implication in this semiparametric setting:  the 

predictive distribution converges to the true distribution without additional regularity conditions.  

The twin discretizations – that is, the reduction of the space of measures that respect the moment 

conditions to a countable set of multinomial distributions that do so – make for predictive 

distributions with statistically distinguishable components.   

The discrete approximation to the semiparametric Bayesian’s predictive distribution 

based on i ( )θπ δ  is given by: 

a a
a a

a a

N 1 N
N 1 i i iN i 0

i ii 0 N 1 N
i ii 0

( ) (X )
p Π( X )

( ) (X )

δ δ
δ δ

δ δ

θ θ θ
θ θ θ

θ θ

π δ P p
P p

π δ P

−
− =

= −

=

= = ∑∑
∑

|  (13) 

where aNX
δ

 is a sample of size aNδ  and aa
NN

i inn 1
(X )

δδθ θP p
=

=∏  is the likelihood of the model 

around which iB( , )θp δ  is centered.  Given the positivity requirement placed on the priors, the 

limiting properties of pθ  depend only on the large sample behavior of these likelihoods.  Their 

distinguishability means that their large sample limits can be analyzed in isolation.   

 To recapitulate the assumptions that are scattered across the preceding three subsections, 

suppose xt takes values on a sample space d⊆ \X  and (X,F,pθ) is a probability space ∀ pθ∈pθ.  

Each pθ satisfies q
p

E [g(x, )] 0  Θθ θ θ= ∀ ∈ ⊂ \  with g(x, )θ  continuously differentiable in an 

                                                                                                                                                             
multinomial approximation a parameter of the decision problem and then placing a noninformative prior over the 
number of cells needed to achieve this degree of accuracy.  A variant of this approach may be found in Ghosh and 
Ramamoorthi (2003).  The idea of defining uniform probabilities over topological objects like balls of the same size 
seems to have originated in Dembski (1992).  In a strange evolution of ideas, he has since managed to use this idea 
to somehow argue for “intelligent design” in the creationism debate. 



open neighborhood of θ0 with a first derivative that has full column rank. The true measure p0 

has finite entropy (i.e.,  0
0

p
E [ln p ] ).> −∞   Partition X into aN

n m nn 1
;  0  m n

=
= ∩ = ∀ ≠∪X X X X  

and let { }a a

Na

N N
M n n n n nn 1 n 1

p P ( ) 0 :  p 1;  p g 0θ θ θ θ θ θp
= =

= = ≥ = =∑ ∑� X  be the subset of Na-cell 

multinomial distributions on this partition for which n n np
g E [g(x, ) | x ]θ
θ θ= ∈X .  Finally, let 

{ }i i j a:  2   i j,  i 0, , N 1θ θ θ δp p p δ− ≥ ∀ ≠ = − < ∞…  be the minimal cover of 
NaM

θp  by the aNδ  

disjoint balls { } 0
i i 0B( , ) p : p  with p B( , )θ θ θ θ θ θp δ p p δ p δ= ∈ − ≤ ∈ .  Note that •  denotes the 

Euclidean metric and →  denotes almost sure convergence when applied to a random variable. 

In these circumstances, we have: 

 Theorem 1:  Let Π be a prior distribution on θp .  If i i( ) Π[B( , )] 0  0θ θπ δ p δ δ= > ∀ > , the 

predictive distribution (13) is consistent as aN →∞  and 0δ→  p0 almost surely. 

Proof:  Divide the sample likelihoods in the numerator and the denominator of (13) by 

the true distribution so that: 

a a
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a a
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 (14) 

where each 
aiNδ

θA  is the sample likelihood ratio statistic for the simple null hypothesis that the 



constrained stationary distribution is i
θp  against the simple alternative hypothesis that it is p0.    

Clearly, the denominator is bounded below by 0 ( ) 0θπ δ > .  By Stein’s lemma [Chernoff (1952)], 

the type 2 error probability for 
aiNδ

θA  is given by 0
0

a i ap
exp{ N E [ln( ) ln(p )] o(N )}θp− − +  for any 

Type 1 error probability 0 1α≤ < , where 0
0

ip
E [ln( ) ln(p )]θp −  is the Kullback-Leibler divergence 

of the ith model.  Hence, each iT{ ,  i 0}ψ >A  converges to zero at an exponential rate and thus the 

predictive distribution will lie asymptotically within 0B( , )θp δ  at a rate given by 

0
0

i 0 ip
min E [ln( ) ln(p )]θp> − .  Now let 0δ→  and convergence obtains.  □ 

The regularity conditions underlying Theorem 1 yield consistency of the predictive 

distribution but are not sufficient to deliver posterior consistency:  that is, aN
0(B( , ) | X ) 1

δθ θπ p δ →  

and aN
i(B( , ) | X ) 0  i 0

δθ θπ p δ → ∀ > .  Posterior consistency implicitly involves pairwise 

comparisons of the posterior probabilities of each of the distributions under consideration, not 

the pairwise comparison of each such distribution against p0.  Sampling variation in the relative 

likelihood ratios can impede the process of posterior convergence if the ratio of prior 

probabilities strays too far from unity. 

Walker (2004) provides the currently weakest sufficient conditions for convergence in 

the more general setting in which i
θp  is a countable set of densities: Π[KL ] 0  0δ δ> ∀ >  where 

0
0

p
KL {p :  E [ln(p) ln(p )] }δ δ= − <  and iΠ( )θ

i
p < ∞∑ .12  The first condition, due to Schwartz 

(1965), is the analog of the positivity of the prior over the balls iB( , )θp δ , the passage from 

Euclidean to Kullback-Leibler balls reflecting the transition from countable multinomials to 

                                                 
12 See also Section 6 of the much-cited unpublished technical report of Barron (1988).  Note that the summability 
condition has to be strengthened when θp  is an uncountable space of densities. 



densities.  The second condition insures that distributions that (randomly) overfit the data are not 

given too much weight, which prevents them from interfering with posterior convergence.13  In 

fact, averaging can even permit the predictive distribution to converge without the posterior 

doing so.  In other words, the conditions on the prior that ensure posterior convergence are more 

delicate than those that deliver convergence of the predictive distribution.14   

The consistency of the predictive distribution under these comparatively simple regularity 

conditions stands in sharp contrast to the circumstances in which posterior convergence fails 

documented in Freedman (1963, 1965), Freedman and Diaconis (1983, 1986a,b), and 

Stinchcombe (2004).  Broadly speaking, two features of the priors they consider cause such 

failures.  The first is the absence of a restriction like iΠ[B( , )] 0 or Π[KL ] 0  0θ
δp δ δ> > ∀ > , 

which results in positive probability being placed on meager sets of probability measures and, 

hence, in the possibility of convergence to distributions that track the data – especially large 

realizations – too well.  The second reflects the fact that posterior convergence is more 

problematic than convergence of the predictive distribution, particularly when the objects of 

interest are metric spaces of densities.  Ghosh and Ramamoorthi (2003) and Walker (2004) 

discuss priors that deliver posterior convergence in these circumstances. 

 Is there an economic motivation for confining attention to those beliefs that converge 

uniformly to p0?  A minimal condition for an inductive learning scheme to be deemed rational 

would appear to be that it produces an estimate of the marginal distribution that respects the 

moment conditions and that converges to its population analogue when it is feasible to do so.  In 

the present setting, this amounts to assuming that a Bayesian learning from data would go 

through these “what if” calculations and avoid priors that did not satisfy i i( ) Π[B( , )] 0θ θπ δ p δ= >  

                                                 
13 See Walker et al. (2004) for a detailed investigation of this phenomenon. 
14 See Barron (1999) for more on these points.   



 0δ∀ > .  On the other hand, the set of priors that satisfy this restriction is topologically small 

and the topologically large set of priors excluded by this criterion imply that “for essentially any 

pair of Bayesians, each thinks the other is crazy” (Freedman (1965), p. 455) and that they engage 

in “erratic, wildly inconsistent, fickle, or faddish” behavior (Stinchcombe (2004), p. 17).  The 

question that remains is whether one should think of such behavior as economically relevant. 

3.  The Distorted Beliefs Interpretation of Hypothesis Tests and Confidence Regions 

The preceding section progressively constructed the beliefs of an archetypical 

semiparametric Bayesian.  It is time to relate these beliefs to the inferences of the econometrician 

studying the class of models defined by the unconditional moment conditions in large samples.  

The next subsection relates the analytical framework of the previous section to the estimation 

setting in which the econometrician resides.  The penultimate subsection provides the distorted 

beliefs interpretation of inference in this setting.  The final subsection discusses ways in which 

the decomposition (11) can be used to identify potentially plausible distorted beliefs. 

A.  Estimation 

 An econometrician interested in testing such a model would collect a sample of T 

observations XT = {x1 x2 … xT-1 xT}.  Since the Bayesian did not know a priori how the sample 

space would be carved up by nature, care must be taken to make sure that the econometrician 

looks at the sample space in a way that is compatible with the perspective of the semiparametric 

Bayesian.  From the perspective of both, nature partitioned the sample space X into T 

nonoverlapping subsets Xt as in T
t s tt 1
;  0  s t

=
= ∩ = ∀ ≠∪X X X X  with xt∈Xt for each t.  Hence, 

the Bayesian’s partition aN
n m nn 1
;  0  m n

=
= ∩ = ∀ ≠∪X X X X  maps directly into that of the 



econometrician when Na ≈ T and T is large, which insures the mapping is one-to-one.15 

 The approximate likelihood functions used by the semiparametric Bayesian must also be 

related to the estimation framework employed by the econometrician, which involves the 

replacement of conventional GMM estimation with that based on the countable cell multinomial.  

In particular, the log likelihood function for the T-cell multinomial is proportional to: 

T 1 p
t t T T t T tt

T T

T t T t T t T
t 1 T 1

1 1 1(p, | X ) ln p ;  1 p g V [g g ] 0
T T T

1 1                                          g g ;  V [g g ][g g ]
T T

θθ θ θ θ θ θ

θ θ θ θ θ θ θ

θ ε−

= =

′∝ > = − − + >

′= = − −

∑
∑ ∑

L
 (15) 

where the variables are as before save for being defined over the sample partition. 

 This is the countable cell multinomial studied by Rao (1958) that was reborn as empirical 

likelihood in Owen (1988, 2001) and extended to the GMM setting in Qin and Lawless (1994), 

although Rao allowed for sample proportions different from 1/T and for arbitrary smooth 

functions tpθ  as opposed to the moment conditions.  His proof of the consistency of the 

maximum likelihood estimator is instructive in its simplicity: 

 Theorem 2 [Rao (1958)]:  If 0
0

p
E [ln p ] ,> −∞  the maximum likelihood estimators θ̂  and 

ˆ
ttˆ{p ,  t 1, T}θ = …  converge to 0θ  and 0

t{p , t 1, ,T}= …  almost surely 0p . 

 Proof:  The sample entropies are ordered so that: 

ˆ0
t ttt t t

1 1 1 1ˆln p ln p ln lnT
T T T T

θ≤ ≤ = −∑ ∑ ∑  (16) 

and: 

0 0 0
t t tt t

1 ln p p ln p
T

→∑ ∑  (17) 

                                                 
15 For small values of T, there is a small problem when Na > T:  sampling theorist would aggregate empty cells while 
a Bayesian would weight them by their prior probabilities. 



by the strong law of large numbers.  The twin limiting conditions: 

0 0
T t tt t

0 0 0
T t t tt t t

1 1lim sup ln p ln p
T T
1 1 1lim inf ln ln p p ln p
T T T

→∞

→∞

≤

≥ =

∑ ∑
∑ ∑ ∑

 (18) 

imply that: 

0 0
t tt t

1 1ln p ln p
T T

→∑ ∑  (19) 

which, in conjunction with (17), implies that the three sums in (16) converge to the same limit.  

Since 0 0
t tt

p ln p∑  is finite by assumption: 

ˆ
tt

t

ˆ 2
ttt

p̂1 ln 01T T
1 1ˆ[p ] 0
T T

θ

θ

→

− →

∑

∑
 (20) 

as well, this last due to the fact that 2a 1
b 2ln (a b)≥ − .  Each term in the sum is positive and so: 

ˆ ˆ2 0
tt tt t

1 1ˆ ˆ[p ] 0 p p 0
T T

θ θ− → ⇒ − →  (21) 

which, in turn, implies convergence of the whole distribution: 

ˆ 0
tt tt

ˆ| p p | 0θ − →∑  (22) 

via Scheffés theorem.  □ 

 An immediate corollary of Theorems 1 and 2 is: 

 Corollary 1:  Under the conditions of Theorem 1, ˆ
ttˆ{p ,  t 1, T}θ = … converges to the 

predictive distribution (13). 

 Finally, it is worth considering related estimators that are first order efficient.  A 

convenient class in this setting arises from the family of φ- or f-divergences introduced by 



Csiszár (1967).  These divergences are defined by the discrepancy functions p
q( ) (z) 0φ φ≡ >  

where p and q are two densities defined on the same sample space and where φ(•) is continuous, 

convex, and twice differentiable with (1) (1) 0φ φ′= = .  The term discrepancy serves as a 

reminder that φ(•) need not possess either the symmetry or triangle inequality properties of a 

metric.  The smoothness assumption rules out weak metrics16 such as the Kolmogorov and 

Prohorov but contains all of the Cressie-Read (1984,1988) power divergence family for which 

φ(z) is linear in zα/α(α–1) including the likelihood divergence, entropy or Kullback-Leibler 

information, the Hellinger metric, and Pearson’s and Neyman’s modified χ2. 

The divergence between p and q is measured by Dφ(z) = Eq[φ(z)].17  A fact that will be 

useful in the sequel concerns the behavior of Dφ(z) when p and q are “close.”  A Taylor series 

expansion of Dφ(z) for two discrete measures with probabilities pt and qt for t= 1,…,T yields: 

2
t t t t t t t tt n

2
t t tt

2 2
t t t t tt t

2 2
t t t t t

1D (z) q (z ) q [ (1) (1)(z 1) ( )(z 1) ];  z
2

1 q { (1) [ ( ) (1)]}(z 1)
2
1 1q (1)(z 1) q [ ( ) (1)](z 1)
2 2

(1) 1q (z 1) sup {[ ( ) (1)](z 1) }
2 2

φ φ φ φ φ ξ ξ

φ φ ξ φ

φ φ ξ φ
φ φ ξ φ

′ ′′= = + − + − ≤

′′ ′′ ′′= + − −

′′ ′′ ′′= − + − −
′′

′′ ′′≤ − + − −

∑ ∑
∑
∑ ∑

t∑

 (23) 

where the leading term is proportional to Neyman’s modified χ2 divergence.  Hence: 

2
t tt

(1)D (z) q (z 1)
2φ

φ′′
→ −∑  (24) 

uniformly if supt|zt – 1| = o(1) and if φ(z) has bounded second derivatives in the neighborhood of 

one.18 

                                                 
16 See Donoho and Liu (1988) for a discussion of how such metrics can produce poorly behaved minimum distance 
estimates. 
17 The Csiszár divergence is sometimes defined to be the p expectation Dφ(z) = Ep[φ(z)]. 
18 Dφ(z) also converges to Ep[φ(z)].  Let z[t] be the order statistics of zt –  that is, z[1] ≤ z[2] ≤ … ≤ z[T-1] ≤ z[T] – and let 

[t 1] [ t ] [ t ]{[z ,z ], }ξ−  be the associated tagged partitions with the tags [t]ξ  given by 



 Now consider the divergence between the multinomial probabilities tpθ  and the 

associated empirical probabilities 1
t TP ( )θ =X .  Since it ignores the information contained in the 

moment conditions, 1
t TP ( )θ =X  is consistent and inefficient under the null but, unlike those that 

impose the restrictions implied by the moment conditions, is consistent under the alternative as 

well.19  Setting t tp pθ=  and 1
t Tq =  in (24), t

1
T

pD ( )
θ

φ  converges to a variant of (12): 

t
1

T

p p 1 2
t T T t Tt

1 2 2 p
T T T t

(1) 1D ( ) {T g V [g g ]}
2 T
(1) [g V g T ( )]
2

θ θ

θ

θ θ θ θ
φ

θ θ θ

φ ε
φ σ ε

−

−

′′ ′→ − −
′′ ′= +

∑
 (25) 

where 2 p p 21
t tT t

( )
θ θ

σ ε ε= ∑ and p p1
t t t tT t

Cov[ ,g ] g 0
θ θθ θε ε= ≡∑  by construction. 

This representation is useful for two reasons.  First, minimization of t
1

T

pD ( )
θ

φ  subject to 

the positivity and sum constraints on the probabilities provides alternative estimators to the 

empirical likelihood/infinite cell multinomial estimator of Theorem 2.  Second, the quadratic 

structure of (24) makes it easier to understand the role of the residuals p
t

θ

ε  from (11).  These 

considerations suggest the following theorem: 

Theorem 3:  Under the conditions of Theorems 1 and 2 and if φ(z) has bounded second 

derivatives in the neighborhood of unity, the estimators φ̂θ  and 
ˆ

t{p , t 1, ,T}φθ = …  that minimize 

t
1

T

pD ( )
θ

φ  converge to 0θ  and 0
t{p , t 1, ,T}= …  almost surely 0p  and to the predictive distribution 

                                                                                                                                                             
[t ] [t ] [ t ] [ t ] [ t 1]{ :  (z ) ( )[z z ], t 2, ,T}ξ φ φ ξ −= − = …  where the initial tag satisfies [1] [1]zξ ζ= −  and [1]

[1]

(z )
[0] [1] ( )z z φ

φ ξ= −  with 

[1] 0ξ ↓ .  The discrete sum (24) converges to: 

[t ] [t ] [ t ] [ t ] [ t ] [ t 1][ t ] [ t ] Ω
D (z) q (z ) q ( )[z z ] q[x(z)] (z)dzφ φ φ ξ φ−= = − →∑ ∑ ∫  

where x(z) is the realization of xt associated with zt. 
19 Of course, 1/T would be replaced by kt/T for any region Xt that contains more than one realization xt – a case that 
naturally arises when its distribution contains atoms – where kt is the cell count.  I will ignore such atoms in what 
follows. 



(13) as well.  If, in addition, 0 0 0 01
t T T t T psup g V [g g ] o (1)θ θ θ θ−′ − = ,20 p

T tlim 0  t
θ

ε→∞ = ∀  and 

ˆ
t

1
T

p 2
p q

2T D ( )
(1)

θφ

φ χ
φ −→
′′

.   

Proof:  Consistency follows directly from (20) in the proof of Theorem 2 via the implied 

limiting equality of the maximum likelihood and minimum divergence estimators.  Corollary 1 

then applies to these estimators as well.  Finally, the upper and lower bound constraints in (11) 

do not bind asymptotically if 0 0 0 01
t T T t T psup g V [g g ] o (1)θ θ θ θ−′ − = .  Hence, minimization of (25) will 

be such that p
t 0  t
θ

ε = ∀  in large samples and so 
ˆ
t

1
T

ˆ ˆ ˆp 12T
T T T p(1) D ( ) Tg V g o (1)

θφ
φ φ φθ θ θ

φφ
−

′′
′= + .  □ 

B.  Inference 

The large sample χ2 test statistic 
ˆ
t

1
T

p2T D ( )
(1)

θφ

φφ′′
 obtained by minimizing (25) can be used 

to test the null hypothesis.  Conventional practice is to select a significance level α and an 

associated critical value p qcα−  that solves 2
p q p qPr( c )αχ α− −≥ = .  The null hypothesis is rejected if 

ˆ
t

1
T

p
log p qD ( ) c

θ α
−>  while the statistic fails to reject the null if 

ˆ
t

1
T

p
p q

2T D ( ) c
(1)

θφ α
φφ −≤

′′
.  As is typically the 

case in likelihood-based inference, the rejection region can be viewed as the complement of the 

1–α per cent confidence region given by t
1

T

p
t p q

2Tp :  D ( ) c
(1)

θθ α
φφ −

⎧ ⎫
≤⎨ ⎬′′⎩ ⎭

. 

 Theorem 1 and Corollary 1 provide for an economic interpretation of rejections in this 

                                                 
20 This restriction will be satisfied in most circumstances since 0

tgθ  is naturally Op(1) and 0
Tgθ  converges to zero at 

rate T .  Consistency only requires 0
0 0 0 01 p

t T T t T t psup g V [g g ] o (1)
θθ θ θ θ ε−′ − + =  but it is not obvious to me what manner 

of stochastic process would violate 0 0 0 01
t T T t T psup g V [g g ] o (1)θ θ θ θ−′ − =  without interfering with consistency or the 

requirement that 0
0p

t tCov[ ,g ] 0
θ θε = . 



inference framework.  The rejection region 
ˆ
t

1T T

p
M p q

2Tp :  D ( ) c
(1)

θφθ θ α
φp

φ −

⎧ ⎫
∈ >⎨ ⎬′′⎩ ⎭

 is a subset of the 

T-cell multinomials in 
TM

θp .  The question at hand is simple:  are there beliefs implicit in the 

rejection region that the econometrician would think that the archetypical semiparametric 

Bayesian might reasonably possess a posteriori?  Put differently, might the beliefs of such a 

Bayesian make a seemingly sharp rejection appear instead to be compatible with the data?  

Might there be plausible beliefs outside the associated 1–α per cent confidence region? 

 This then is the main point of the paper.  If the answer to these questions is “yes,” the 

econometrician could reasonably declare that the test statistic provided a statistically significant 

rejection at level α that should be thought of as economically insignificant.  A similar statement 

applies to economically plausible beliefs that lie outside the confidence region that is the 

complement of the rejection region.  An econometrician who did not want to draw sharp 

conclusions about economic as opposed to statistical significance could simply report summary 

statistics describing the beliefs that seem to be sufficiently compatible with the data. 

One such summary statistic involves the comparison of the sample relative entropy 

ˆ1 1 1
ttT T Tt

ˆln p lnφθ −∑  based on the estimate φ̂θ  is “unreasonably low” with that of a distribution that 

is more easily interpreted.  McCulloch (1989) suggested one such calibration:  compare the 

sample relative entropy with that from a hypothetical binomial experiment in which the null 

success probability is ½ and the sample success probability is q with q selected so that:  

ˆ

ttt

1 ˆln p ½[ln½ ln(1 q)] ½[ln½ lnq] ½ln½ ½ln[q(1 q)]
T

φθ = − − + − = − −∑  (26) 

The presumption is that values of q close to ½ suggest that a sample entropy that is statistically 

significant at level α is small in this alternative metric.   



A similar calibration can be based on the multivariate normal distribution for which the 

entropy is d ln 2 e ln | |
2

π + ∑  where ∑  is the covariance matrix.  Hence: 

ˆ

ttt

1 dˆln p ln 2 e ln | |
T 2

φθ π= + ∑∑  (27) 

can be solved for | |∑ , which, in turn, can be compared with the restricted estimate ˆ| |∑  from: 

ˆ

tt t tt
ˆ ˆ ˆ ˆp  (x )(x )φθ µ µ ′∑ = − −∑  (28) 

where 
ˆ

tt tt
ˆˆ p  xφθµ =∑  is the restricted estimate of the mean.  Here, too, sufficiently small 

differences between | |∑  and ˆ| |∑  suggest that the difference between the two is “reasonably 

small” in this alternative metric. 

C.  Residual Analysis 

Reasonable a posteriori probability beliefs can also be identified via the decomposition 

(11).  This task is made easier because there are no unknown parameters in the regression of tpθ  

on a constant and tgθ :  the intercept is given by 11 1
T T TT T g V gθ θ θ−′+  and the slope coefficient vector is 

given by 11
T TT g Vθ θ−′− .  This means that fitted values and residuals can be examined for given 

values of θ without concern for the effect of outliers and inliers on slope and intercept estimates. 

One can begin by applying conventional regression diagnostics to the decomposition of 

ˆ

ttp̂ φθ  with the idea of identifying the relative contributions of the fitted values 

ˆ ˆ ˆ ˆ11 1
T T t TT T g V [g g ]φ φ φ φθ θ θ θ−′− −  and the residuals 

ˆ
p
t .
θφ

ε   Values of either that are large in absolute value 

are disproportionately influential in determining the 
ˆ

ttp̂ φθ  estimates and their associated sample 

entropy.  Large values of the residuals 
ˆ

p
t

θφ

ε  may be especially informative since the residuals are 



identically zero if 
ˆ ˆ ˆ ˆ11 1

T T t TT T g V [g g ] 0  t,φ φ φ φθ θ θ θ−′− − > ∀  a condition that will obtain in large samples 

according to Theorem 3 if 1
t T T t T psup g V [g g ] o (1)θ θ θ θ−′ − = . Hence, the fitted values and residuals 

are natural targets for additional scrutiny.   

In fact, one can examine local perturbations of the whole probability simplex for 

plausible values of θ.  Plausible values of θ might be obtained by minimizing (25) for different 

discrepancy functions φ(•) or by bootstrapping the model.  For each such θ, the fitted values 

11 1
T T t TT T g V [g g ]θ θ θ θ−′− −  are fixed and so one can enumerate sets of residuals p

t

θ

ε  that sum to zero, 

are orthogonal to tgθ , and satisfy the lower and upper bound constraints.  The relative 

contributions of these fitted values and residuals in the resulting multinomial probabilities can 

also be examined for a priori plausibility.  

Implicit in this discussion is a particular concern for the effect of outliers on probabilities, 

which play a special role in models that incorporate expectations.  As Back and Brown (1993) 

emphasized, outliers in this setting represent data that are not representative of the underlying 

population when the moment conditions are true.  In rational expectations models, data that are 

underrepresented – that is, those for which 1
t Tpθ −  is large – are often thought to represent peso 

problems, events that were expected to happen but that did not eventuate or that did not occur as 

frequently as expected.  For example, the Great Depression might represent a recurrent rare event 

or one that will succumb to the law of large numbers.  In these circumstances, we might 

reasonably expect the prior predictive probability aN 1
i ii 0

P ( ) Π( )P ( )
δ

θ θ θ
τ τP−

=
= ∑X X  of some such 

subset of the sample space τ ⊂X X  to be much larger than the observed frequency 1/T, resulting 

in a seemingly large value of tpθ .  Moreover, P ( )θ
τX  is the posterior predictive probability 



outside the convex hull of the data. 

This consideration suggests a third diagnostic to apply to candidate distributions:  the 

calculation of asymptotic highest posterior predictive regions for the bulk of the data.  For any 

model tpθ  and a given confidence level 1–α, these regions are given by the largest connected 

subset s Ss S∈
= ⊆∪ X X X  for which ss S

p 1θ α
∈

≤ −∑ , which are just upper and lower quantiles for 

univariate xt.  In fact, t
1

T

pD ( )
θ

φ  can be modified so that the objective function is the minimization 

of the distance between the model and given sample upper and lower quantiles for univariate 

data, calculations which involve straightforward modifications of the assumptions used above.  

Presumably the modification of t
1

T

pD ( )
θ

φ  for the multivariate case can be handled with 

multivariate quantile functions of the sort discussed in Serfling (2002), particularly the ones used 

to estimate the volume of central regions.  In any event, calculations along these lines provide 

explicit identification of potential outliers against which to measure the plausibility of candidate 

distributions. 

4.  Conclusion 

 This paper was based on a simple intuition.  What can we learn from probability 

statements about sample moment conditions in rational expectations models under the 

maintained hypothesis that the moment conditions are true?  The answer is simple:  modulo 

sampling error, the sample moments reflect biases in the expectations of the relevant economic 

actors in these circumstances.  This distorted beliefs alternative would appear to be an interesting 

one, if only because it provides one dimension in which to distinguish between economic and 

statistical significance.  All that is needed is a way to measure the attributes of expectations 

compatible with the moment conditions. 



 The attainment of this goal required a modest detour down the path of Bayesian 

semiparametrics.  Semiparametric models based on moment conditions do not deliver likelihood 

functions and the strict application of the Bayesian calculus requires the specification of 

likelihoods.  Moreover, the formation of prior beliefs is more challenging in semiparametric and 

nonparametric settings because the priors are over the space of likelihood functions that are so 

hard to specify because there is no guarantee that the data will swamp the prior in such settings.  

Finally, the literature on priors for semiparametric models is thin and it would appear to be 

desirable to have a broad class of priors when seeking to characterize the extent to which the 

expectations compatible with a given set of moment conditions are “nearly rational.”   

 Two attributes of the archetypical Bayesian constructed in section 2 eliminated these 

problems.  The first was the shift from the model class comprised of densities that respect the 

moment conditions to that comprised of discrete measures that did so.  The second was the 

presumption that the hypothetical semiparametric Bayesian was a consumer of economic theory 

who used the model solely for forecasting.  The resulting predictive distribution based on a 

countable set of multinomial likelihood functions proved to be consistent under the weak 

restriction of positivity of the prior over sufficiently dense sets of multinomial distributions.  

While this observation is hardly surprising in finite-dimensional parametric settings, it is 

somewhat more remarkable in this semiparametric setting in which the typical requirement is far 

more stringent. 

 The result is a semiparametric Bayesian interpretation of the probability estimates 

provided by empirical likelihood and related minimum divergence estimation procedures.  On 

this interpretation, a rejection region and its complement, a confidence region, are not comprised 

of parameter values but rather of probability beliefs, beliefs that the econometrician can examine 



for their plausibility.  The notion that plausible beliefs can be associated with the parameter 

values in a rejection region provides a framework for assessing the economic significance of 

distorted beliefs. 

 Let me conclude by suggesting four ways in which research along these lines can 

proceed.  First, there is the extension of the tests considered in these pages beyond omnibus 

goodness-of-fit tests.  After all, the difference between the Bayesian and frequentist treatment of 

nuisance parameters might make it more difficult to equate the beliefs of a semiparametric 

Bayesian with those of a GMM econometrician.  Second, it would be nice to have a 

semiparametric Bayesian interpretation of higher order asymptotics such as Bartlett corrections.  

Third, it is natural to extend the results to conditional moment models.  While this extension 

need not be challenging theoretically since Markov chain approximation can replace multinomial 

approximation, finite sample issues will be more severe since there will be so many empty cells.  

Finally, it might be interesting to consider a more interesting semiparametric Bayesian, one who 

has the same objectives but whose decisions affect the sample outcomes as is the case in rational 

expectations models with learning.  Here, too, it might well be substantially more challenging to 

equate the beliefs of the Bayesian and GMM econometrician. 
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