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1. Introduction

The following inference setting pervades modern empirical work in economics involving

rational expectations and market efficiency. An economic model of the form E*[g’ .7 ,]1=0

where g’ =g(x,,0) is assumed to describe relations among a set of observables x, and where *

and .7, | reflect the beliefs of and information available to relevant economic agents in the model,

respectively. The model is closed by rational expectations — that is, by equating E*[e|.7  ]=0
with the objective conditional expectation E[e|.7 ,]=0 — and then estimated by the generalized

method of moments (GMM) of Hansen (1982). The GMM machinery provides for large sample

inference, including distribution theory for the estimates along with goodness-of-fit measures
such as the overidentifying restrictions test for the proximity of the sample mean of g’ to zero.

This paper provides a coherent economic interpretation of this inference setting under

both the null model and, more importantly, the alternative hypothesis that the model is false.
The internally consistent interpretation treats the model g’ as a maintained hypothesis, making

the null hypothesis rational expectations and the alternative non-rational expectations. The
estimation framework is a family of minimum distance analogues of GMM that share its
asymptotic properties. Such methods involve the minimization of some measure of discrepancy
between the usual empirical distribution function and an estimate of it that satisfies the a priori
moment restrictions. The resulting probabilities estimate the beliefs compatible with the moment
conditions that are closest to rational in the metric defined by the distance or discrepancy
function. This approach makes it possible to measure the economic significance of any
violations of the null hypothesis via the degree to which these implied beliefs are distorted.

This paper traces out the implications of this distorted beliefs alternative for inference in



such models. The next section is really a character sketch: it describes the structure of the
beliefs of a hypothetical semiparametric Bayesian. The penultimate section discusses the way in
which the beliefs of this Bayesian archetype can inform the interpretation of estimates, test
statistics, and confidence regions in large samples. A brief conclusion rounds out the paper.
2. A Portrait of a Semiparametric Bayesian

Three attributes characterize a Bayesian decision maker: a preference ordering over the
possible outcomes associated with given actions, a set of constraints governing these actions, and

probability beliefs regarding the likelihood of each outcome. The econometrician presumes that

this archetypical Bayesian follows Bayes’ rule and believes that g’ is a martingale difference

sequence but otherwise has little a priori knowledge of either the probability beliefs or the
underlying decision problem of this agent. This hypothetical semiparametric Bayesian would
formulate prior beliefs over both the distributions compatible with and the parameters underlying
the moment conditions. These prior beliefs would be combined with these distributions, viewed
as likelihood functions for a sample of data relevant to the decision problem, to arrive at a
posterior distribution for use in drawing inferences about the data generating process. The other
attribute ascribed to this archetypical Bayesian is the use to which this family of models will be
put: this Bayesian’s sole interest is in the use of these models for forecasting.

What follows is really a character sketch: a description of the essential attributes of this
archetypical semiparametric Bayesian. The next three subsections lay out the preferences,
probability models, and priors that seem to me to provide the least restrictive portrait that still
has nontrivial empirical implications. The final subsection proves the only theorem of the
section, one which describes the (remarkably weak) restrictions placed on prior beliefs to deliver

convergence of the predictive distribution to the true distribution in this semiparametric setting.



A. Preferences

The first observation is an old one: a semiparametric Bayesian interested in using the
moment conditions to provide the best a posteriori model for forecasting will use the so-called
predictive distribution. Let {y,a;} where y; is a vector of variables that define the relevant states
of nature or that are useful for forecasting and where a; is a vector of actions that can be taken by
this Bayesian in light of the realizations of y;. The underlying conditioning information .7,
includes lagged values of the state variables Y' = {y,, s < t-1} but not lagged values of the
actions {as, s < t-1}. That is, actions may affect the state variables in a deterministic way
through budget constraints and the like but do not affect the random evolution of the state vector,
an assumption that is appropriate when the semiparametric Bayesian is a small player in this
economic environment. Finally, suppose this archetypical Bayesian is a subjective expected
utility maximizer for whom the expected present value of net benefits may be represented as:

V(y,a,0)=max, ., Uy,a,.0+FEIV(Y,, .a,,.t+1)| 7] (1)
where V(e,e,°) is the value function associated with the Bayesian’s dynamic program, U(e,e,*) is
the per period reward function, and E[+|7] is the conditional expectation, the characterization of
which is the matter at hand.

There are two uncertainties underlying this conditional expectation: the state of the world

yir1 that will be realized next period and the probability model P’e P that is the data generating

process. Hence, the conditional expectation of the value function next period takes the form:

BVt t+DIF1= [ [ V(yea,t+ DP (v, [ AP )dy,,,
= [ Vet t+ D] P DA (Dl @
=, Vit DP (v [y,

where P’(y,, |.%) is the predictive distribution, the posterior weighted average of the



conditional distributions of PHGPH, and y1€). The relevance of this observation for the present

analysis is that the optimal estimate of the ‘parameter’ P’ is independent of the loss function V,
a consequence of the presumption that the semiparametric Bayesian does not affect the evolution
of the state variables and is interested in the model only for its impact on forecasting.

This is a very large scale forecasting problem if the dimensions of the state and model
spaces are large. Small world assumptions can shrink the scale of the problem. One such
assumption involves partitioning the state vector into two components y; = {X;,v¢}. In one sense
this is just a matter of conditioning since P(yu1|%) can always be written as
P(vi[xe1,70P (xe1|%).  However, analyzing P(x¢1|%) and PY(vi|xw1,77) independently
ignores any information in the latter that is relevant for the former. Hence, the first small world
assumption is that P’(x.+1|%) and P/(X") = {x,, s < T} can be safely analyzed in isolation or, in
the language of Engle et al. (1983), x; is weakly exogenous with respect to v;.

The second such assumption involves the role of conditional probabilities in the structure

of the models in 7. Since the archetypical Bayesian has no prior information regarding the data

generating process save for that implicit in the moment conditions, it is reasonable to suppose

that the semiparametric Bayesian follows a flexible modeling strategy in parameterizing the

models in 7’. A convenient approach in this setting involves the decomposition of the joint

distribution into the product of two components:

X [P) =P (XT) = A (XD [ (x,); A(XT) =) 3)

t=1 Hpé) (Xt)

where A’(X") is the likelihood ratio statistic for the null hypothesis that the joint distribution

P%(X") is equal to the product of the marginals ps(x;) that respect the unconditional moment



conditions. The specific series approximation of A%X") is not important; what matters is that it
is orthogonal to the product of the marginals.' If the archetype does not have informative priors
over A%X"), it is feasible to choose a flexible expansion that has the required orthogonality.
This condition, coupled with the semiparametric Bayesian’s postulated ignorance about the data
generating process, suggests that the prior is separable in A” and p? as well.

Letting H(Ae,pg) = II(A?) H(pe) denote the separable and proper” prior distributions over

these possibly infinite-dimensional parameters, A” can be integrated out of the joint posterior via:

(P* )2 (X" |P’) (AN (X")I(p )1;[ p’(x,)

H(Pa |XT) - 0 T | pd 0 T
J'P”H(P )-Z (X |P7)dP .[ g_[ 9H(AG)AH(XT)H(pG)Hpe(xt)dA‘gdpg
T r =g 4)
") Ip’(x)f , AN (XT) ne)[ e’ (x)
=1’ [X") = =

[,], mON <He)[Te’ xpan'd” [ ") Tp ex)dp’

where P’ = p’ x A°. The same reasoning also implies that the predictive distribution for X,
given X' can be decomposed similarly since:

[P G XD (XT [ PY)II(P" )P’
[, X7 1P)1(e’ )P’

Lg [0’ I’ )H p’ (x I(A")A’ (XA’ dp’

P (xp |XT) = [ P7 (g | XDI(PY | XT)P” =

[ o], A XN T " (x, A dp’ 5)

[ 02" G " (xdp” [, AN (X’

J.pb' H(pe )H pb‘ (X‘ )dpe .[AH H(AH )Ae (XTH )dAe
=D %yt | XD (%7, 1X7)

' Note that, from a frequentist perspective, efficient semiparametric models orthogonalize the parametric and
nonparametric components.

? The requirement that the prior be proper — that is, that it integrates to one — serves to insure that integrals over the
space of probability measures are finite.



so that these assumptions imply that p’(x,,, | X") can be safely analyzed in isolation as well.

There are two kinds of small worlds assumptions at work here that place restrictions on
the structure of the beliefs of this subjective expected utility maximizer. The first is made
implicitly in all applied research: that little harm is done by ignoring any information loss
associated with confining the analysis to a subset the economically relevant variables x;. The
second follows from the presumption that the hypothetical semiparametric Bayesian has weak
prior beliefs about the data generating process save for the information in moment conditions,
which makes it reasonable to treat the likelihood ratio A’ as a (possibly infinite-dimensional)
nuisance parameter that is independent of the marginal distributions pa both a priori and a
posteriori. As is readily apparent, these assumptions can be replaced by two simpler ones that
are reasonable in many circumstances: that x, represents all of the information relevant to the
decision at hand and is independently and identically distributed or that x; has two components —
1.e., Xy = {Xj, X2t} — which are jointly iid and the moment conditions involve the conditional
mean E[x;¢xa].

Collectively, these assumptions simplify the representation of the semiparametric

Bayesian’s preferences over future outcomes (2), which is now given by:

E[V(y;,,ar,, T+ [F]= J-v J.X V(ViasXpsarn,, T+ 1)}_)0 (Xps1s Vi | )X v,

- J.v Lc V(.)Fe (Vo [ Xy Z)l_)g (Xpypo| F)dX g dve (6)
= | EL VI (eruy X7 (x| X,

where X and V are the sample spaces of xri; and vryj, respectively. There is no need for a loss

function because the archetype is an expected utility maximizer. There is no interaction between
the learning and decision problems because the archetype’s actions do not affect the state

variables xr4+; and vry;. The problem of predicting vry; can be separated from the problem of



predicting xr+; because xr+; is weakly exogenous. The presumption that the semiparametric

Bayesian has prior information in the form of moment conditions that constrain p’(x,,, |X")

and none that constrains 1’ (X, | X") permits the archetype to integrate out the latter. In these
circumstances, the Bayesian archetype can safely learn about the constrained stationary

distribution p’(x,,,|X") from a sample X" without considering the larger decision problem.

B. Probabilities

Accordingly, let p’ denote the set of all probability measures that satisfy the moment

conditions for each 6 where x; takes values on a sample space XcRd and (X,%pa) is a probability

space V p’ep”. Note that conditioning information impinges on these measures to the extent that
it is embedded in the moment conditions; for example, the moment conditions could be the
scores from a parametric likelihood. As is commonplace, assume the g-dimensional parameter 6
lies in the interior of the compact set ® — R? and that g(x,6) is continuously differentiable in an
open neighborhood of the true value 6, with a first derivative that has full column rank.

The problem of characterizing the model space and formulating priors over it is still quite
daunting. One way to simplify the problem is to approximate the stationary measures that
comprise the model space with a smaller set of finite dimensional distributions. That is, one can

seek a sequence of approximations p’ (x,,, | X") converging to p’(x,,,|X") such that:
max, V,(y,,a,,t) > V(y,,a,,t) (7)

which would generally obtain if the approximations converge uniformly, preferences are
bounded and sufficiently smooth, and actions lie in a compact set.
Suppose the archetypical Bayesian found that the reduction of the space of possible

actions to a discrete set resulted in expected utility “close enough” to that derived from the whole



opportunity set. This circumstance arises when a table of actions as a function of a finite number
of possible scenarios suffices. Accordingly, suppose this Bayesian discretized the choice set into

Na possible — and possibly countably infinite — actions associated with a corresponding partition

of the state space into N, nonoverlapping subsets ), such that ) = UL V; YNY =0Vm#n

for which:

V(y.a,t)=max, ., U(y,a.t)+ BE[V(y,.a,,,t+ D[ F] ®)
~ U[Yni'a(yn)at] + ﬂsz[YtH € ym | </T]\/(Ym’a'(}]m)’t + 1) | Z]

where y;€ Y, and yn € Vi, 1s chosen so as to best approximate expected utility (which is just a

normalization). Such a Bayesian would naturally look to discrete measures to provide the
required approximations.

Accordingly, consider the following family of discrete measures on the associated
N,

partition of X into N, nonoverlapping subsets X = U1 3 X NAX =0V m=#n. The discrete

=1
measures are taken to be that subset of p” comprised of the N,-cell multinomial distributions
Pl ={pr =P (X)20: 30l =1 3 plel =0) for which g =E_[g(x.0)|x,€X,]
Modulo regularity conditions, pfAN will approximate p’ arbitrarily well as N, grows without

bound since, in measure-theoretic terms, these discrete measures are dense in pe. This is a

restatement of Chamberlain’s (1987) observation that any distribution can be approximated

? Note that there is a slight abuse of notation in this definition because p! =p’(x,) refers to each such probability

distribution for a given value of 4. It might be interesting to consider more structured partitions of the sample space.
For example, the cells could be Voronoi tessellations based on a given set of points {x,,...,x, } in which the

elements of A, are those values of x that are closer to x, than to any other point X,, in this set. The discussion in
Jiménez and Yukich (2002) suggests that the analysis could proceed along these lines.



arbitrarily well by a multinomial distribution.’

Moment conditions place considerable structure on the multinomial probabilities
compatible with them. In particular, consider the projection of p’ on a constant and g’ :

0 _ .0 0'1.0 p’
pn - aNa + gn bNa + gn (9)

and note that the normal equations imply:

1 —n 1 1 _ 1 N,
ay, ZN_[ng*‘ Vi Z D B :N—Zgﬁ

j Lo (10)
bl =—— Vi "Bl Vi == gl — & el -8 T

Na Na n=1

This projection is not an estimate: the multinomial probabilities satisfy these relations
arithmetically for each value of @ irrespective of the validity of the null hypothesis.” For each

1 1 _yreg_ _
value of 6, p’ has a common component NN g, VX, '[gh -2y ] and a zero mean,

probability-specific residual 82& that is uncorrelated with g’ by construction.

Hence, (9) can be rewritten as:

1 1 — ! _ — 4
o :N_a_N_agiI"‘ Vi, '[gn — 8y 1+ el

0 1 0, _ 1
& <1+N—g{ia Vi, l[gi—gﬂa]—N— (11)

a a

0 1 _, ., _ 1
&, >N_g§a Vi, ‘[gﬁ—gﬁa]—N—

a a

This observation appears to be new.® For later reference, note that the sum of squared deviations

of the probabilities from their means of 1/N, is simply:

* See also Theorem 4.1 of Diaconis and Freedman (1986b) for an application of multinomial approximation in a
Bayesian context.
® Of course, gy —0 and Vi —S{ =->" gl if the null model is true. Relation (9) holds when the moment

conditions are imposed but are false as well, in which case g}, — g, # 0 while znpz g’ =0 by construction.

® The first two terms comprise what Back and Brown (1993) refer to as implied probabilities, which need not be
positive. The constraints on the residuals in (11) insure positivity.



2 2
N, 1 N[ o0 1 g _
ZFI(Pi _N_} = ZFI(&: —N—gia Vi g -8 ]] W)
1 —9 ! 1= 4
—8 B TN ()

a

where ¢’ (850 )= NLZN ¢"? and the leading term is the GMM overidentifying restrictions test

n=] 10
statistic, a fact that will prove useful in the sequel.
Finally, it is worth briefly contrasting this modeling strategy with the methods of Zellner

(1994,1997), Kim (2002), Lazar (2003), and Schennach (2005). Zellner, Lazar, and Schennach

maximize pseudo-log-likelihoods of the form ann Inp, (with g, = pn in Zellner and Schennach

and g, =1/N, in Lazar) subject to different side constraints, posterior moments of the parameters

of interest in Zellner and the moment conditions ani g’ =0 in Lazar and Schennach. Kim

treats the exponential of the GMM overidentifying restrictions test statistic as a likelihood
function up to normalization. None of these procedures is a truly Bayesian one in which a
posterior is obtained by multiplying a prior by a likelihood function and integrating, if necessary,
to make probability statements.

The present approach yields a truly Bayesian procedure in which the moment conditions
are substituted into the multinomial probabilities exactly via (11). The resulting multinomial
likelihood function is a true likelihood to which the full Bayesian calculus can be applied. The

only approximation is that of a density by a multinomial for which there is ample justification.’

Hence, Bayesian inference based on the N,-cell multinomials in pfAN would appear to be a more

internally consistent procedure than those taken in these papers.

” There is nothing sacred about multinomial approximation per se. For example, mixtures of other exponential
distributions would suffice. See, for example, Barron and Sheu (1991). Multinomial approximation makes
particular sense in the present context when one views the GMM econometrician as implicitly estimating the
moment-constrained distribution of the data as opposed to its density. This view is compatible with Back and
Brown (1993).



C. Priors

Perhaps the most nettlesome problem associated with subjective expected utility
maximization is the formulation of prior beliefs for the parameters of the decision problem. This
problem is further complicated in the present setting by its semiparametric nature: the space of
all probability distributions compatible with the moment conditions is a “large” metric space in
general and the construction of prior beliefs on such spaces is fraught with hazard.® Fortunately,
this semiparametric Bayesian is willing to work with the smaller space of countable multinomial
distributions.

Prior formulation is easier in this setting because of this Bayesian’s choice of probability
models. The archetype is content ex ante with a constrained countable cell multinomial
distribution as the semiparametric model for the data for subject matter reasons relating to the
adequacy of approximate decision rules and ex ante faith in the null model. As in Chamberlain
(1987), this turns a semiparametric problem into a parametric one in this setting — albeit for
somewhat different reasons — thus facilitating the analysis of prior and posterior beliefs.

The other reason it is comparatively easy to formulate priors in this case is because the
priors are over probability measures, not parameter values. Prior distributions over parameter
values typically change with the parameterization, the standard example being that a prior that is
noninformative for a standard deviation typically is informative for the corresponding variance
and vice versa. Priors over probability measures do not suffer from this problem:
reparameterization of a model does not change prior beliefs in this fashion.

These considerations make it natural to approximate the priors over partitions of the

space of multinomial distributions. The probabilities of the N, -cell multinomial lie in the

¥ See Ghosh and Ramamoorthi (2003) and the references cited therein.



standard N, -simplex {(pl,...pNa)e [0,1]" : Z::lpn :1}. The standard N, -simplex is compact

under the Euclidean metric as is the N,-simplex bounded by the hyperplanes induced by the

residual constraints in (11) and so both simplices have finite subcovers. In addition, the

probabilities are of order N_'

a

and this reduces the upper bound on the diameter of the relevant
N, -simplex from V2 to o, (N."?), thus constraining the simplex to be bounded by the orthants
comprised of all positive coordinates of spheres of the form lepi = Op(Na_l) . Put differently,

the largest eigenvalue of the information matrix of the N, -cell multinomial is of order N_>.

The minimal cover of the truncated N,-simplex can be used to approximate prior beliefs.’

It is given by the smallest set of points {p’, i=0,...,N’ —1<oo}, where N’ is the covering
number, such that the balls B(p/,8)={p’ ep’ :Hpe -p’ H <6} are disjoint (ie.,
H pl - pf” >26 Vi j)and cover py, . By convention, the minimal cover is normalized so that

p’ € B(p),o), ie., the first ball contains the true model.'’ It is natural to approximate prior

beliefs by x(5)=TI[B(p’,d)], which, of course, need not represent the way in which the

underlying prior itself was formulated."'

? See Diaconis and Freedman (1990) for a detailed discussion of Bayes estimates for the finite dimensional
multinomial distribution in finite samples without the fiction of a ‘true’ model.

' There are at least two internally consistent interpretations of this true model. The first views this modeling
exercise as being conditional on p° being the truth under the null with the understanding that there can be a separate
modeling exercise under the alternative hypothesis. On this interpretation, the semiparametric Bayesian would
possess priors over this model class and assign the remaining prior probability to all remaining model classes.
Alternatively, the so-called true model can be replaced by the one that minimizes the Kullback-Leibler divergence
between it and the truth. In these circumstances, distributions constructed to satisfy the moment conditions are
perfectly well-posed but one would not expect g.(6) — 0 even at the pseudo-true value 6, and so one would expect

sup, {Te,(p’) — 2 (0)' V;(8) '[g,(0) -8, (0)]} = 0,(1), not oy(1) as would be the case if the moment conditions were

true. In addition, sufficiently false models would typically have probabilities that failed to be of order T™.
" Priors formulated in this way trouble some Bayesians when the prior depends on the sample size, as would be the
case if the covering number N? is sample size dependent. See, for example, Heath and Sudderth (1978). This basic

strategy can be used to construct coherent non-informative priors by making the required accuracy of the



D. Prediction

The preceding three subsections provided a character sketch of a semiparametric
Bayesian whose inferences the econometrician seeks to infer. This Bayesian is concerned with
forecasting and this focus has a perhaps surprising implication in this semiparametric setting: the
predictive distribution converges to the true distribution without additional regularity conditions.
The twin discretizations — that is, the reduction of the space of measures that respect the moment
conditions to a countable set of multinomial distributions that do so — make for predictive
distributions with statistically distinguishable components.

The discrete approximation to the semiparametric Bayesian’s predictive distribution

based on 7 (J) is given by:

> RSB (XN p!
Sl ()P (X

_ N°-1 5
p =Y (R [X")p! = (13)

where X™ is a sample of size N’ and P’ (XNi):l_[:i1 p is the likelihood of the model
around which B(p’,d) is centered. Given the positivity requirement placed on the priors, the

limiting properties of p° depend only on the large sample behavior of these likelihoods. Their

distinguishability means that their large sample limits can be analyzed in isolation.

To recapitulate the assumptions that are scattered across the preceding three subsections,

suppose x; takes values on a sample space X — R* and (X,%pa) is a probability space V paepe.

Each p’ satisfies E ,[g(x,0)]=0V 0 e®cR® with g(x,6) continuously differentiable in an

of

multinomial approximation a parameter of the decision problem and then placing a noninformative prior over the
number of cells needed to achieve this degree of accuracy. A variant of this approach may be found in Ghosh and
Ramamoorthi (2003). The idea of defining uniform probabilities over topological objects like balls of the same size
seems to have originated in Dembski (1992). In a strange evolution of ideas, he has since managed to use this idea
to somehow argue for “intelligent design” in the creationism debate.



open neighborhood of 6, with a first derivative that has full column rank. The true measure p’

has finite entropy (i.e., E o[Inp’]>—0). Partition X into X = U X; X "X =0Vm#n

and let pjy = {pﬁ =P’(X,)>0: zlnilpﬁ =1 ZL plg’ = 0} be the subset of N,-cell
multinomial distributions on this partition for which g’ :Epﬁ [g(x,0)|x, €X ]. Finally, let

0. 0 0 S 5 .. o 5
{pi : Hpi - D; H225 Vi#j, 1=0,..,N; —1<oo} be the minimal cover of py, by the N

disjoint balls B(p/,d) = {pﬁ ep’ :Hp" —pf” < 5} with p’ € B(p;,6). Note that |s| denotes the

Euclidean metric and — denotes almost sure convergence when applied to a random variable.

In these circumstances, we have:

Theorem 1: Let IT be a prior distribution on p’. If z’(6) =TI[B(p{,5)]>0 V 6 >0, the
predictive distribution (13) is consistent as N, - o and 6 -0 p’ almost surely.

Proof: Divide the sample likelihoods in the numerator and the denominator of (13) by

the true distribution so that;:

[ o= 2 o X! -

‘\Z, ARG ) I

| N -1 9( )HN -1 9
DI A DU

N NO -1 2
Oy |
0 Ze 0 9IN Ni-1 g 0 NP (14)
QR DUNES SO T Dl
ZN -1 9(5%
<no(5>f0N;Hpo pH P ”(5)@ P =7

PIEAOLE ZN RAOLE

where each ng(’ is the sample likelihood ratio statistic for the simple null hypothesis that the



constrained stationary distribution is p{ against the simple alternative hypothesis that it is .
Clearly, the denominator is bounded below by 7z (6)>0. By Stein’s lemma [Chernoff (1952)],
the type 2 error probability for éng is given by exp{-N,E , [In( p))—In(p”)]+o(N,)} for any
Type 1 error probability 0 <a <1, where Epo [In(p’) —In(p°)] is the Kullback-Leibler divergence

of the i™ model. Hence, each {w, 1>0} converges to zero at an exponential rate and thus the
predictive distribution will lie asymptotically within B(p),d) at a rate given by
min,_, Epo [In(p!)—In(p’)]. Now let § — 0 and convergence obtains. O

The regularity conditions underlying Theorem 1 yield consistency of the predictive

distribution but are not sufficient to deliver posterior consistency: that is, 7’(B(p’,d)|X™)—1

and 7°(B(p’,8)|X™)—>0Vi>0. Posterior consistency implicitly involves pairwise

comparisons of the posterior probabilities of each of the distributions under consideration, not
the pairwise comparison of each such distribution against p’. Sampling variation in the relative
likelihood ratios can impede the process of posterior convergence if the ratio of prior
probabilities strays too far from unity.

Walker (2004) provides the currently weakest sufficient conditions for convergence in

the more general setting in which p! is a countable set of densities: TI[KL,]>0 V 6 >0 where
KL, ={p: E ,[In(p) —In(p°)] <6} and Y JTI(p{) <o 2 The first condition, due to Schwartz

(1965), is the analog of the positivity of the prior over the balls B(p',d), the passage from

Euclidean to Kullback-Leibler balls reflecting the transition from countable multinomials to

12 See also Section 6 of the much-cited unpublished technical report of Barron (1988). Note that the summability
condition has to be strengthened when p’ is an uncountable space of densities.



densities. The second condition insures that distributions that (randomly) overfit the data are not
given too much weight, which prevents them from interfering with posterior convergence.” In
fact, averaging can even permit the predictive distribution to converge without the posterior
doing so. In other words, the conditions on the prior that ensure posterior convergence are more
delicate than those that deliver convergence of the predictive distribution.'*

The consistency of the predictive distribution under these comparatively simple regularity
conditions stands in sharp contrast to the circumstances in which posterior convergence fails
documented in Freedman (1963, 1965), Freedman and Diaconis (1983, 1986a,b), and
Stinchcombe (2004). Broadly speaking, two features of the priors they consider cause such

failures. The first is the absence of a restriction like H[B(pf’,é)] >0 or II[KL;]>0V >0,

which results in positive probability being placed on meager sets of probability measures and,
hence, in the possibility of convergence to distributions that track the data — especially large
realizations — too well. The second reflects the fact that posterior convergence is more
problematic than convergence of the predictive distribution, particularly when the objects of
interest are metric spaces of densities. Ghosh and Ramamoorthi (2003) and Walker (2004)
discuss priors that deliver posterior convergence in these circumstances.

Is there an economic motivation for confining attention to those beliefs that converge
uniformly to p’? A minimal condition for an inductive learning scheme to be deemed rational
would appear to be that it produces an estimate of the marginal distribution that respects the
moment conditions and that converges to its population analogue when it is feasible to do so. In

the present setting, this amounts to assuming that a Bayesian learning from data would go

through these “what if” calculations and avoid priors that did not satisfy z’(6)=TII[B(p,5)]>0

1 See Walker et al. (2004) for a detailed investigation of this phenomenon.
' See Barron (1999) for more on these points.



¥V 0>0. On the other hand, the set of priors that satisfy this restriction is topologically small
and the topologically large set of priors excluded by this criterion imply that “for essentially any
pair of Bayesians, each thinks the other is crazy” (Freedman (1965), p. 455) and that they engage
in “erratic, wildly inconsistent, fickle, or faddish” behavior (Stinchcombe (2004), p. 17). The
question that remains is whether one should think of such behavior as economically relevant.
3. The Distorted Beliefs Interpretation of Hypothesis Tests and Confidence Regions

The preceding section progressively constructed the beliefs of an archetypical
semiparametric Bayesian. It is time to relate these beliefs to the inferences of the econometrician
studying the class of models defined by the unconditional moment conditions in large samples.
The next subsection relates the analytical framework of the previous section to the estimation
setting in which the econometrician resides. The penultimate subsection provides the distorted
beliefs interpretation of inference in this setting. The final subsection discusses ways in which
the decomposition (11) can be used to identify potentially plausible distorted beliefs.
A. Estimation

An econometrician interested in testing such a model would collect a sample of T
observations X' = {x1 Xz ... X7.1 X7}. Since the Bayesian did not know a priori how the sample
space would be carved up by nature, care must be taken to make sure that the econometrician

looks at the sample space in a way that is compatible with the perspective of the semiparametric

Bayesian. From the perspective of both, nature partitioned the sample space X into T

nonoverlapping subsets &; as in X' = ULXt; X NX =0V s#t with x,e X; for each t. Hence,

the Bayesian’s partition X = U:;Xn; X NX =0V m#n maps directly into that of the



econometrician when N, = T and T is large, which insures the mapping is one-to-one."

The approximate likelihood functions used by the semiparametric Bayesian must also be
related to the estimation framework employed by the econometrician, which involves the
replacement of conventional GMM estimation with that based on the countable cell multinomial.
In particular, the log likelihood function for the T-cell multinomial is proportional to:

1 1 1_! _ — 0
E(p,GIXT)oc$Ztlnpf; I>pl=-——8 Vr [g/ ~gl+el >0

PR, e 1 < _ —o
Br=—2.80 Vi==2 [g -21llgl — ]
thl TT:l

(15)

where the variables are as before save for being defined over the sample partition.
This is the countable cell multinomial studied by Rao (1958) that was reborn as empirical
likelihood in Owen (1988, 2001) and extended to the GMM setting in Qin and Lawless (1994),

although Rao allowed for sample proportions different from 1/T and for arbitrary smooth

functions p! as opposed to the moment conditions. His proof of the consistency of the
maximum likelihood estimator is instructive in its simplicity:

Theorem 2 [Rao (1958)]: If EpO [Inp”]> —o0, the maximum likelihood estimators 6 and

{f)f, t=1,..T} convergeto 6, and {p;,t=1,...,T} almost surely p’.

Proof: The sample entropies are ordered so that:

1 1 ;1 1
> Inp’<=) np’<=> In=—=-InT 16
TZt pt TZt pt TZt T ( )

and:

1
?ztlnp? —)th? Inp! (17)

" For small values of T, there is a small problem when N, > T: sampling theorist would aggregate empty cells while
a Bayesian would weight them by their prior probabilities.



by the strong law of large numbers. The twin limiting conditions:

lim, sup¥211n¥ < thl Inp,

o le, 11 Do e (18)
lim, 1nf¥znln¥2¥ztlnpl :th[ Inp,

imply that:
lZmLAZﬁmﬁ (19)
T T '

which, in conjunction with (17), implies that the three sums in (16) converge to the same limit.
Since ztp? Inp, is finite by assumption:
£

I mP o

T 1

| T (20)

A0 2

2Bl = 0
as well, this last due to the fact that In2 > (a— b)>. Each term in the sum is positive and so:

1 ~0 1 2 A0 0

?[pt_¥] _)ijt_pt—>0 (21)
which, in turn, implies convergence of the whole distribution:

2B -pl1=0 (22)

via Scheffés theorem. O

An immediate corollary of Theorems 1 and 2 is:
Corollary 1: Under the conditions of Theorem 1, {f)f, t=1,...T} converges to the

predictive distribution (13).
Finally, it is worth considering related estimators that are first order efficient. A

convenient class in this setting arises from the family of ¢- or f-divergences introduced by



Csiszar (1967). These divergences are defined by the discrepancy functions ¢({)=¢(z)>0

where p and q are two densities defined on the same sample space and where ¢(*) is continuous,

convex, and twice differentiable with ¢(1)=¢'(1)=0. The term discrepancy serves as a

reminder that ¢(¢) need not possess either the symmetry or triangle inequality properties of a
metric. The smoothness assumption rules out weak metrics'® such as the Kolmogorov and
Prohorov but contains all of the Cressie-Read (1984,1988) power divergence family for which
¢(z) is linear in z*/a(o~1) including the likelihood divergence, entropy or Kullback-Leibler
information, the Hellinger metric, and Pearson’s and Neyman’s modified y*.

The divergence between p and q is measured by D,(z) = Eq[go(z)].17 A fact that will be
useful in the sequel concerns the behavior of D,(z) when p and q are “close.” A Taylor series

expansion of D,(z) for two discrete measures with probabilities p; and g for t=1,...,T yields:

D,(0)=X,a0() = X, alo0) + o'z, D+ 9"z, -7} & <7,
= %tht "D +[p"(E) - 9" D]}z, - 1)

i 1 X (23)
=32,40" D D 423 a[0"(E) ~ 0"z -
" 1 " "
<2 a0z =17+ s 0"~ D1z, ~ 17
where the leading term is proportional to Neyman’s modified 4 divergence. Hence:
" 1
D, > LYY gz -1y (24)

2

uniformly if sup|z; — 1| = o(1) and if ¢(z) has bounded second derivatives in the neighborhood of

1
one. 8

'® See Donoho and Liu (1988) for a discussion of how such metrics can produce poorly behaved minimum distance
estimates.

"7 The Csiszar divergence is sometimes defined to be the p expectation D,(z) = E,[p(2)].

"* D,(2) also converges to E [p(z)]. Let 7y be the order statistics of z — that is, z;) < 72 < ... < 7.1y < 7r) — and let
Uz 200160} be the associated tagged  partitions with the  tags ¢y given by



Now consider the divergence between the multinomial probabilities p’ and the

associated empirical probabilities P’(X,) = +. Since it ignores the information contained in the

moment conditions, P’(X,) =1 is consistent and inefficient under the null but, unlike those that

impose the restrictions implied by the moment conditions, is consistent under the alternative as
0
well."” Setting p,=p! and q, = T in(24),D, ('?/—‘T) converges to a variant of (12):

"(1 e _
¢()2 ST BV e -

"1 —0' 70-1=0
="’T”[gv T2 (e8]

(25)

where ¢%(e” ) = %Ztef% and Cov[e” ,g’]= > g’e” =0 by construction.

This representation is useful for two reasons. First, minimization of D ( ) subject to

the positivity and sum constraints on the probabilities provides alternative estimators to the

empirical likelihood/infinite cell multinomial estimator of Theorem 2. Second, the quadratic
structure of (24) makes it easier to understand the role of the residuals efﬁ from (11). These

considerations suggest the following theorem:

Theorem 3: Under the conditions of Theorems 1 and 2 and if ¢(z) has bounded second

derivatives in the neighborhood of unity, the estimators éw and {pf“ ,t=1,...,T} that minimize

D, (‘f7i) converge to 6, and {p;,t=1,...,T} almost surely p’ and to the predictive distribution

s o(zyy) = o(E 2z — 2y, t=2,..., T} where the initial tag satisfies ¢, =z,,-( and 7, =2 — 20 \yith

(1] (&)

iy 4 0. The discrete sum (24) converges to:

D(p(z) = Z[‘]q[t]go(z[t]) = Z[‘]q[t]go(é[t])[z[t] - Z[xq]] - qu[x(z)]¢(z)dz
where x(z) is the realization of x, associated with z,.
1 Of course, 1/T would be replaced by k/T for any region AX; that contains more than one realization x, — a case that

naturally arises when its distribution contains atoms — where k; is the cell count. I will ignore such atoms in what
follows.



_60

(13) as well. If, in addition, sup, g V"“ [gh —gh]= op(l),20 lim. & =0Vt and

T—o t

2T

i 2
o e

Proof: Consistency follows directly from (20) in the proof of Theorem 2 via the implied
limiting equality of the maximum likelihood and minimum divergence estimators. Corollary 1

then applies to these estimators as well. Finally, the upper and lower bound constraints in (11)
do not bind asymptotically if sup, g VH0 g0 -gr]=0 ,(1). Hence, minimization of (25) will

—0,7x 70,-1=0,

be such that 8" =0V t in large samples and so 3 <1)D (p‘ ) =Tg/ Vi g +o,(1). O

B. Inference

The large sample y” test statistic 2,1;) D, (%) obtained by minimizing (25) can be used

to test the null hypothesis. Conventional practice is to select a significance level a and an

. .. o 2 o _ .. . .
associated critical value ¢ that solves Pr(y, ,=c; )=a. The null hypothesis is rejected if

0 “ . .. . . . 2T f«' “ . .
D,, (%) > ¢, . while the statistic fails to reject the null if () D, ('17) <c, - Asis typically the

case in likelihood-based inference, the rejection region can be viewed as the complement of the

I—a per cent confidence region given by {p‘f : %(1) ( ) }

Theorem 1 and Corollary 1 provide for an economic interpretation of rejections in this

20 This restriction will be satisfied in most circumstances since g” is naturally O,(1) and gP converges to zero at
rate \/T . Consistency only requires sup, g’ Vi '[gh —gh ]+ f’”" =0,(1) but it is not obvious to me what manner

of stochastic process would violate sup, gr'Vy '[gh _"“]—o (1) without interfering with consistency or the

requirement that Cov[e, {’ ,g"1=0.



) .. . 2T Oy )
inference framework. The rejection region {pe €py, - WD ,(5r)> cﬁ_q} is a subset of the
¢ T

T-cell multinomials in pfAT . The question at hand is simple: are there beliefs implicit in the

rejection region that the econometrician would think that the archetypical semiparametric
Bayesian might reasonably possess a posteriori? Put differently, might the beliefs of such a
Bayesian make a seemingly sharp rejection appear instead to be compatible with the data?
Might there be plausible beliefs outside the associated 1—o per cent confidence region?

This then is the main point of the paper. If the answer to these questions is “yes,” the
econometrician could reasonably declare that the test statistic provided a statistically significant
rejection at level a that should be thought of as economically insignificant. A similar statement
applies to economically plausible beliefs that lie outside the confidence region that is the
complement of the rejection region. An econometrician who did not want to draw sharp
conclusions about economic as opposed to statistical significance could simply report summary
statistics describing the beliefs that seem to be sufficiently compatible with the data.

One such summary statistic involves the comparison of the sample relative entropy
%ztln pr—LInL based on the estimate HAW is “unreasonably low” with that of a distribution that

is more easily interpreted. McCulloch (1989) suggested one such calibration: compare the
sample relative entropy with that from a hypothetical binomial experiment in which the null

success probability is }2 and the sample success probability is q with q selected so that:
%Zt In f)f": 72[In'2 —In(1-q)]+'%[In"2—Inq]='2In'2—"2In[q(1 —q)] (26)

The presumption is that values of q close to 2 suggest that a sample entropy that is statistically

significant at level a is small in this alternative metric.



A similar calibration can be based on the multivariate normal distribution for which the

. d . . .
entropy is Eln 2we+In| X | where X is the covariance matrix. Hence:

1 i d
¥Ztlnpf”= E1nz;ze+1n 12| (27)

can be solved for | X |, which, in turn, can be compared with the restricted estimate | > | from:

A N R v

2= thtw(xt _ﬂ)(Xt _/u) (28)
where = Z:tf)f“’xt is the restricted estimate of the mean. Here, too, sufficiently small

differences between || and |2| suggest that the difference between the two is “reasonably

small” in this alternative metric.
C. Residual Analysis

Reasonable a posteriori probability beliefs can also be identified via the decomposition

(11). This task is made easier because there are no unknown parameters in the regression of p’
on a constant and g’ : the intercept is given by ++ 18 V/ ™'’ and the slope coefficient vector is

given by —%gi’vﬁ”. This means that fitted values and residuals can be examined for given

values of 8 without concern for the effect of outliers and inliers on slope and intercept estimates.
One can begin by applying conventional regression diagnostics to the decomposition of

f)(f" with the idea of identifying the relative contributions of the fitted values

) ! ) — ) _A . é‘#’ . .
%giw VT% 1[%? - g?’] and the residuals & . Values of either that are large in absolute value

—|=

are disproportionately influential in determining the f)f“ estimates and their associated sample

(3(0 . . . . .
entropy. Large values of the residuals &/ may be especially informative since the residuals are



identically zero if + —%gf“"Vf“’*l[gf“’ —Q? ]1>0 V¥V t, a condition that will obtain in large samples

according to Theorem 3 if sup, g% V! '[g’ -g1= 0,(1). Hence, the fitted values and residuals

are natural targets for additional scrutiny.
In fact, one can examine local perturbations of the whole probability simplex for
plausible values of 4. Plausible values of & might be obtained by minimizing (25) for different

discrepancy functions ¢(¢) or by bootstrapping the model. For each such 6, the fitted values

—p! _ — . g
1187V '[g! —g}] are fixed and so one can enumerate sets of residuals ¢’ that sum to zero,

are orthogonal to g, and satisfy the lower and upper bound constraints. The relative
contributions of these fitted values and residuals in the resulting multinomial probabilities can
also be examined for a priori plausibility.

Implicit in this discussion is a particular concern for the effect of outliers on probabilities,
which play a special role in models that incorporate expectations. As Back and Brown (1993)
emphasized, outliers in this setting represent data that are not representative of the underlying

population when the moment conditions are true. In rational expectations models, data that are
underrepresented — that is, those for which p! —1 is large — are often thought to represent peso

problems, events that were expected to happen but that did not eventuate or that did not occur as
frequently as expected. For example, the Great Depression might represent a recurrent rare event

or one that will succumb to the law of large numbers. In these circumstances, we might
reasonably expect the prior predictive probability P’(X) = Zi"‘o_ll'[(ff )P’ (X)) of some such
subset of the sample space X, < X’ to be much larger than the observed frequency 1/T, resulting

in a seemingly large value of p/. Moreover, P’(X,) is the posterior predictive probability



outside the convex hull of the data.
This consideration suggests a third diagnostic to apply to candidate distributions: the

calculation of asymptotic highest posterior predictive regions for the bulk of the data. For any

model p’ and a given confidence level 1-a, these regions are given by the largest connected

subset Uses X =X, c X for which Zses p. <1-a, which are just upper and lower quantiles for

univariate x;. In fact, D . ('1’/—‘) can be modified so that the objective function is the minimization

of the distance between the model and given sample upper and lower quantiles for univariate

data, calculations which involve straightforward modifications of the assumptions used above.
Presumably the modification of D(p(‘f/—f) for the multivariate case can be handled with

multivariate quantile functions of the sort discussed in Serfling (2002), particularly the ones used
to estimate the volume of central regions. In any event, calculations along these lines provide
explicit identification of potential outliers against which to measure the plausibility of candidate
distributions.
4. Conclusion

This paper was based on a simple intuition. What can we learn from probability
statements about sample moment conditions in rational expectations models under the
maintained hypothesis that the moment conditions are true? The answer is simple: modulo
sampling error, the sample moments reflect biases in the expectations of the relevant economic
actors in these circumstances. This distorted beliefs alternative would appear to be an interesting
one, if only because it provides one dimension in which to distinguish between economic and
statistical significance. All that is needed is a way to measure the attributes of expectations

compatible with the moment conditions.



The attainment of this goal required a modest detour down the path of Bayesian
semiparametrics. Semiparametric models based on moment conditions do not deliver likelihood
functions and the strict application of the Bayesian calculus requires the specification of
likelihoods. Moreover, the formation of prior beliefs is more challenging in semiparametric and
nonparametric settings because the priors are over the space of likelihood functions that are so
hard to specify because there is no guarantee that the data will swamp the prior in such settings.
Finally, the literature on priors for semiparametric models is thin and it would appear to be
desirable to have a broad class of priors when seeking to characterize the extent to which the
expectations compatible with a given set of moment conditions are “nearly rational.”

Two attributes of the archetypical Bayesian constructed in section 2 eliminated these
problems. The first was the shift from the model class comprised of densities that respect the
moment conditions to that comprised of discrete measures that did so. The second was the
presumption that the hypothetical semiparametric Bayesian was a consumer of economic theory
who used the model solely for forecasting. The resulting predictive distribution based on a
countable set of multinomial likelihood functions proved to be consistent under the weak
restriction of positivity of the prior over sufficiently dense sets of multinomial distributions.
While this observation is hardly surprising in finite-dimensional parametric settings, it is
somewhat more remarkable in this semiparametric setting in which the typical requirement is far
more stringent.

The result is a semiparametric Bayesian interpretation of the probability estimates
provided by empirical likelihood and related minimum divergence estimation procedures. On
this interpretation, a rejection region and its complement, a confidence region, are not comprised

of parameter values but rather of probability beliefs, beliefs that the econometrician can examine



for their plausibility. The notion that plausible beliefs can be associated with the parameter
values in a rejection region provides a framework for assessing the economic significance of
distorted beliefs.

Let me conclude by suggesting four ways in which research along these lines can
proceed. First, there is the extension of the tests considered in these pages beyond omnibus
goodness-of-fit tests. After all, the difference between the Bayesian and frequentist treatment of
nuisance parameters might make it more difficult to equate the beliefs of a semiparametric
Bayesian with those of a GMM econometrician. Second, it would be nice to have a
semiparametric Bayesian interpretation of higher order asymptotics such as Bartlett corrections.
Third, it is natural to extend the results to conditional moment models. While this extension
need not be challenging theoretically since Markov chain approximation can replace multinomial
approximation, finite sample issues will be more severe since there will be so many empty cells.
Finally, it might be interesting to consider a more interesting semiparametric Bayesian, one who
has the same objectives but whose decisions affect the sample outcomes as is the case in rational
expectations models with learning. Here, too, it might well be substantially more challenging to

equate the beliefs of the Bayesian and GMM econometrician.
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