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ABSTRACT

This paper empirically assesses the wage effects of the Job Corps program, one of the largest

federally-funded job training programs in the United States. Even with the aid of a randomized

experiment, the impact of a training program on wages is difficult to study because of sample

selection, a pervasive problem in applied micro-econometric research. Wage rates are only observed

for those who are employed, and employment status itself may be affected by the training program.

This paper develops an intuitive trimming procedure for bounding average treatment effects in the

presence of sample selection. In contrast to existing methods, the procedure requires neither

exclusion restrictions nor a bounded support for the outcome of interest. Identification results,

estimators, and their asymptotic distribution, are presented. The bounds suggest that the program

raised wages, consistent with the notion that the Job Corps raises earnings by increasing human

capital, rather than solely through encouraging work. The estimator is generally applicable to typical

treatment evaluation problems in which there is non-random sample selection/attrition.
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I. Introduction

For decades, many countries around the world have administered government-sponsored employment

and training programs, designed to help improve the labor market outcomes of the unemployed or eco-

nomically disadvantaged.1 To do so, these programs offer a number of different services, ranging from

basic classroom education and vocational training, to various forms of job search assistance. The key ques-

tion of interest to policymakers is whether or not these programs are actually effective, suf�ciently so to

justify the cost to the public. The evaluation of these programs has been the focus of a large substantive

and methodological literature in economics. Indeed, Heckman et al. [1999] observe that �[f]ew U.S. gov-

ernment programs have received such intensive scrutiny, and been subject to so many different types of

evaluation methodologies, as governmentally-supplied job training.�

Econometric evaluations of these programs typically focus on their reduced-from impacts on total

earnings, a �rst-order issue for cost-bene�t analysis. Unfortunately, exclusively studying the effect on total

earnings leaves open the question of whether any earnings gains are achieved through raising individuals'

wage rates (price effects) or hours of work (quantity effects). That is, a training program may lead to a

meaningful increase in human capital, thus raising participants' wages. Alternatively, the program may

have a pure labor supply effect: through career counseling and encouragement of individuals to enter the

labor force, a training program may simply be raising incomes by increasing the likelihood of employment,

without any increase in wage rates.

But assessing the impact of training programs on wage rates is not straightforward, due to the well-

known problem of sample selection, which is pervasive in applied micro-econometric research. That is,

wages are only observed for individuals who are employed. Thus, even if there is random assignment of the

�treatment� of a training program, there may not only be an effect on wages, but also on the probability that

a person's wage will even be observed. Even a randomized experiment cannot guarantee that treatment and

control individuals will be comparable conditional on being employed. Indeed, standard labor supply theory

1 See Heckman, LaLonde and Smith [1999] for �gures on expenditures on active labor market programs in OECD countries. See
also Martin [2000].
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predicts that wages will be correlated with the likelihood of employment, resulting in sample selection

bias [Heckman 1974]. This missing data problem is especially relevant for analyzing public job training

programs, which typically target individuals who have low employment probabilities.

This paper empirically assesses the wage effects of the Job Corps program, one of the largest federally-

funded job training programs in the United States.2 The Job Corps is a comprehensive program for econom-

ically disadvantaged youth aged 16 to 24, and is quite intensive: the typical participant will live at a local

Job Corps center, receiving room, board, and health services while enrolled, for an average of about eight

months. During the stay, the individual can expect to receive about 1100 hours of vocational and academic

instruction, equivalent to about one year in high school. The Job Corps is also expensive: the average cost

is about $14,000 per participant.3 This paper uses data from the National Job Corps Study, a randomized

evaluation funded by the U.S. Department of Labor.

Standard parametric or semi-parametric methods for correcting for sample selection require exclusion

restrictions that have little justi�cation in this case. As shown below, the data include numerous baseline

variables, but all of those that are found be related to employment probabilities (i.e., sample selection) could

also plausibly directly determine wage rates.

Thus, this paper develops an alternative method, a general procedure for bounding the treatment ef-

fects. The method amounts to �rst identifying the excess number of individuals who are induced to be

selected (employed) because of the treatment, and then �trimming� the upper and lower tails of the out-

come (e.g., wage) distribution by this number, yielding a worst-case scenario bound. The assumptions for

identifying the bounds are already assumed in conventional models for sample selection: 1) the regressor

of interest is independent of the errors in the outcome and selection equation, and 2) the selection equation

can be written as a standard latent variable binary response model. In the case of an experiment, random

2 In the 2004 �scal year, the U.S. Department of Labor's Employment and Training Administration spent $1.54 billion for the
operation of the Job Corps. By comparison, it spent about $893 million on "Adult Employment and Training Activities" (job
search assistance for anyone and job training available to anyone if such training is needed for obtaining or retaining employ-
ment) and about $1.44 billion on "Dislocated Workers Employment and Training Activities" (employment and training services for
unemployment and underemployed workers) [U.S. Department of Labor 2005a].
3 A summary of services provided and costs can be found in Burghardt, Schochet, McConnell, Johnson, Gritz, Glazerman,
Homrighausen and Jackson [2001].
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assignment ensures the �rst assumption holds. It is proven that the trimming procedure yields the tightest

bounds for the average treatment effect that are consistent with the observed data. No exclusion restrictions

are required and the bounds do not require a bounded support for the outcome variable.

An estimator for the bounds is introduced and shown to be
p
n consistent and asymptotically normal

with an intuitive expression for its asymptotic variance. It not only depends on the variance of the trimmed

outcome variable, but also on the trimming threshold, which is an estimated quantile. There is also an added

term that accounts for the estimation of which quantile (e.g., the 10th, 11th, 12th, etc. percentile) of the

distribution to use as the trimming threshold.

For the analysis of Job Corps, the trimming procedure is instrumental to measuring the wage effects,

producing bounds that are somewhat narrow. For example, at week 90 after random assignment, the esti-

mated interval for the treatment effect is 4.2 to 4.3 percent, therefore ruling out a zero effect, even when

wages are missing for about 54 percent of individuals. By the end of the 4-year follow-up period, the in-

terval is still somewhat informative, more consistent with positive than negative effects, with an interval of

-2 to 9 percent. By comparison, the assumption-free, �worst-case scenario� bounds proposed by Horowitz

and Manski [2000a] produce a lower bound of -74 percent effect and an upper bound of 80 percent.

Overall, the evidence presented here points to a positive causal effect of the program on wage rates,

although the magnitude probably does not exceed 10 percent. This is consistent with the view that the Job

Corps program represents a human capital investment, rather than a means to improve earnings through

raising work effort alone.

The proposed trimming procedure is neither speci�c to this application nor to randomized experiments.

It will generally be applicable to treatment evaluation problems when outcomes are missing, a problem that

often arises in applied research. Reasons for missing outcomes range from survey non-response (e.g., stu-

dents not taking tests) to sample attrition (e.g., inability to follow individuals over time), to other structural

reasons (e.g., mortality). Generally, this estimator is well-suited for cases where the researcher is uncom-

fortable imposing exclusion restrictions in the standard two-equation sample selection model, and when the

support of the outcome variable is too wide to yield informative boudns on treatment effects.
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This paper is organized as follows. It begins, in Section II, with a description of the Job Corps program,

the randomized experiment, and the nature of the sample selection problem. After this initial analysis, the

proposed bounding procedure is described in Sections III and IV. Section III presents the identi�cation

results, while Section IV introduces a consistent and asymptotically normal estimator of the bounds, and

discusses inference. Section V reports the results from the empirical analysis of the Job Corps. Section VI

concludes.

II. The National Job Corps Study and Sample Selection

This section describes the Job Corps program and the data used for the analysis, replicates the main

earnings results of the recently-completed randomized evaluation, and illustrates the nature of the sample

selection problem. It is argued below that standard sample selection correction procedures are not appropri-

ate for this context. Also, in order to provide an initial benchmark, the approach of Horowitz and Manski

[2000a] is used to provide bounds on the Job Corps' effect on wages. They are to be compared to the

�trimming� bounds presented in Section V, which implements the estimator developed in Sections III and

IV.

II.A. The Job Corps Program and the Randomized Experiment

The U.S. Department of Labor describes the Job Corps program today as �a no-cost education and

vocational training program ... that helps young people ages 16 through 24 get a better job, make more

money and take control of their lives� [U.S. Department of Labor 2005b]. To be eligible, an individual

must be a legal resident of the United States, be between the ages of 16 and 24, and come from a low-

income household.4 The administration of the Job Corps is considered to be somewhat uniform across the

110 local Job Corps centers in the United States.

Perhaps the most distinctive feature of the program is that most participants live at the local Job Corps

center while enrolled. This residential component of the program includes formal social skills training,

meals, and a dormitory-style life. During the stay, with the help of counselors, they develop individualized,

4 Information on the Job Corps and the National Job Corps Study can be found in Schochet, Burghardt and Glazerman [2001].
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self-paced programs which will consist of a combination of remedial high school education, including

consumer and driver education, as well as vocational training in a number of areas, including clerical work,

carpentry, automotive repair, building and apartment maintenance, and health related work. On average,

enrollees can expect to receive about 440 hours of academic instruction and about 700 hours of vocational

training, over an average of 30 weeks. Centers also provide health services, as well as job search assistance

upon students' exit from the Job Corps.

In the mid-1990s, three decades after the creation of Job Corps, the U.S. Department of Labor funded

a randomized evaluation of the program.5 Persons who applied for the program for the �rst time between

November 1994 and December 1995, and were found to be eligible (80,883 persons) were randomized

into a �program� and �control� group. The control group of 5977 individuals were essentially embargoed

from the program for three years, while the remaining applicants could enroll in the Job Corps as usual.

Since those who were still eligible after randomization were not compelled to participate, the differences in

outcomes between program and control group members represents the reduced-form effect of eligibility, or

the �intent-to-treat� effect. This treatment effect is the focus of the empirical analysis presented below.6

Of the program group, 9409 applicants were randomly selected to be followed for data collection.

The research sample of 15386 individuals were interviewed at random assignment, and at three subsequent

points in time, 12, 30, and 48 months after random assignment. Due to programmatic reasons, some

subpopulations were randomized into the program group with differing, but known, probabilities. Thus,

analyzing the data requires the use of the design-weights in the analysis.7

This paper uses the public-release data of the National Job Corps Study. Table I provides descriptive

statistics for the data used in the analysis below. For baseline as well as post-assignment variables, it

reports the treatment and control group means, standard deviations, proportion of the observations with

non-missing values for the speci�ed variable, as well as the difference in the means and associated standard

error. The table shows that the proportion non-missing and the means for the demographic variables (the

5 The study was conducted by Mathematica Policy Research, Inc.
6 Throughout the paper, when I use the phrase �effect of the program�, I am referring to this reduced-form treatment effect.
7 This paper uses the variable DSGN_WGT as described in Schochet, Cao, Glazerman, Grady, Gritz, McConnell, Johnson and
Burghardt [2003].
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�rst 12 rows), education and background variables (the next 4 rows), income at baseline (the next 9 rows),

and employment information (the next 6 rows) are quite similar. For only one of the variables � usual

weekly hours on the most recent job at the baseline � is the difference (0.91 hours) statistically signi�cant.

A logit of the treatment indicator on all baseline characteristics in Table I was estimated; the chi-square

test of the coef�cients all being zero yielded a p-value of 0.577.8 The overall comparability between the

treatment and control groups is consistent with successful randomization of the treatment.

It is important to note that the analysis in this paper abstracts from missing values due to interview

non-response and sample attrition over time. Thus, only individuals who had non-missing values for weekly

earnings and weekly hours for every week after the random assignment are used; the estimation sample is

thus somewhat smaller (9145 vs. 15386). It will become clear below that the trimming procedure could

be applied exclusively to the attrition/non-response problem, which is a mechanism for sample selection

that is quite distinct from the selection into employment status. More intensive data collection can solve

the attrition/non-response problem, but not the sample selection on wages caused by employment. For this

reason, the analysis below focuses exclusively on the latter problem, and analyzes the data conditional on

having continuously valid earnings and hours data.9

The bottom of Table I shows that the only set of variables that show important (and statistically sig-

ni�cant) differences between treatment and control are the post-assignment labor market outcomes. The

treatment group has lower weekly hours and earnings at week 52, but higher hours and earnings at the

3-year and 4-year marks. At week 208, the earnings gain is about 27 dollars, with the control mean of about

200 dollars. The effect on weekly hours at that time is a statistically signi�cant 1.95 hours.10

8 Missing values for each of the baseline variables were imputed with the mean of the variable. The analysis below uses this
imputed data.
9 Although the analysis here abstracts from the non-response problem, there is some evidence that it is a second-order issue. The
proportion of control group individuals, at week 90, that have continuously non-missing earnings and hours data is 0.822, and the
proportion is 0.003 smaller (standard error of 0.006) for the treatment group. If the analysis below is applied to the attrition problem,
it implies that there is no attrition bias. An analogous calculation for any week from the 48-month interview (including week 208)
will necessarily not yield the same zero effect. This is because, by design, fewer treatment group individuals were contacted, due
to data collection costs. Mathematica Policy Research, Inc. �randomly selected for 48-month interviewing 93 percent of program
group members who were eligible for 48-month interviews� [Schochet et al. 2003].
10 This is consistent with Mathematica's �nal report, which showed that the program had about a 12 percent positive effect on
earnings by the fourth year after enrollment, and suggested that lifetime gains in earnings could very well exceed the program's
costs [Burghardt et al. 2001].
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Figure I illustrates the treatment effects on earnings for each week subsequent to random assignment.

It shows an initial negative impact on earnings for the �rst 80 weeks, after which point a positive treat-

ment effect appears and grows. The estimates in the bottom of Table I and plotted in Figure I are similar

qualitatively and quantitatively to the impact estimates reported in Schochet et al. [2001].11

II.B. The Effect on Wages and the Sample Selection Problem

It seems useful to assess the impact of the program on wage rates, as distinct from total earnings

� which is a product of both the price of labor (the wage) and labor supply (whether the person works,

and if so, how many hours). Distinguishing between price and quantity effects is important for better

understanding the mechanism through which Job Corps leads to more favorable labor market outcomes.

On the one hand, one of the goals of the Job Corps is to encourage work and self-suf�ciency; thus,

participants' total earnings might rise simply because the program succeeds in raising the likelihood that

they will be employed, while at the same time leaving the market wage for their labor unaffected. On the

other hand, the main component of the Job Corps is signi�cant academic and vocational training, which

could be expected to raise wages. There is a great deal of empirical evidence to suggest a positive causal

effect of education on wages.12

Unfortunately, even though the National Job Corps study was a randomized experiment, one cannot

use simple treatment-control differences to estimate the effect of the program on wage rates. This is be-

cause the effective �prices� of labor for these individuals are only observed to the econometrician when

the individuals are employed. This gives rise to the classic sample selection problem (e.g., see Heckman

[1979]).

Figure II suggests that sample selection may well be a problem for the analysis of wage effects of the

Job Corps. It reports employment rates (the proportion of the sample that has positive work hours in the

week) for both treated and control individuals, for each week following random assignment. The results

11 In Schochet et al. [2001], the reported estimates used a less stringent sample criterion. Instead of requiring non-missing values
for 208 consecutive weeks, individuals only needed to complete the 48-month interview (11313 individuals). Therefore, for that
sample, some weeks' data will be missing. Despite the difference in the samples, both the levels, impact estimates, and time pro�le
reported in Schochet et al. [2001] are also quite similar to those found in Figures II, and III (below).
12 For a survey of the recent literature on the causal effect of education on earnings, see Card [1999].
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show that the program had a negative impact on employment propensities in the �rst half of the follow-up,

and a positive effect in the latter half. This shows that the Job Corps itself affected whether individuals

would have a non-missing wage rate.

Put another way, Figure II illustrates that even though proper random assignment will imply treated

and control groups are comparable at the baseline, they may well be systematically different conditional on

being employed in a given period subsequent to the random assignment. As a result, the treatment-control

difference in mean log-hourly wages, as plotted in Figure III, may not represent the true causal effect of the

program.13

There are two other reasons why sample selection can potentially be important in this case. As shown

in Figure II, a large fraction of individuals are not employed: employment rates start at about 20 percent and

grow to at most 60 percent at the four-year mark. Second, non-employed and employed individuals appear

to be systematically different on a number of important observable dimensions. Table II reports log-odds

coef�cients from a logit of employment in week 208 on the treatment dummy and the baseline character-

istics listed in Table I. As might be expected, gender, race, education, criminal history, and employment

status at the baseline are all very strong predictors of employment in week 208.

The problem of non-random sample selection is well understood in the training literature; it may be

one of the reasons why most evaluations of job training programs focus on total earnings, including zeros

for those without a job, rather than on wages conditional on employment. Of the 24 studies referenced in a

survey of experimental and non-experimental studies of U.S. employment and training programs [Heckman

et al. 1999], most examine annual, quarterly, or monthly earnings without discussing the sample selection

problem of examining wage rates.14 As for the Job Corps, when reporting results on hourly wages for

the working, Schochet et al. [2001] is careful to note that because of the selection into employment, the

13 Hourly wage is computed by dividing weekly earnings by weekly hours worked, for the treatment and control group. Note
the pattern of �kinks� that occur at the 12- and 30-month marks, which is also apparent in Figure I. This could be caused by the
retrospective nature of the interviews that occur at 12-, 30-, and 48-months post-random-assignment. This pattern would be found
if there were systematic over-estimation of earnings on employment that was further away from the interview date. The lines would
�connect� if respondents were reminded of their answer from the previous interview. Note that these potential errors do not seem
to be too different between the treatment and control groups, as there are no obvious kinks in the difference (solid squares).
14 The exceptions include Kiefer [1979], Hollister, Kemper and Maynard [1984], and Barnow [1987]. The sources from Tables
22 and 24 in Heckman et al. [1999] were surveyed.
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treatment-control differences cannot be interpreted as impact estimates.

II.C. Existing Approaches

Currently, there are two general approaches to addressing the sample selection problem. The �rst is

to explicitly model the process determining selection. The conventional setup, following Heckman [1979],

models the wage determining process as

Y � = D� +X�1 + U(1)

Z� = D
 +X�2 + V

Y = 1 [Z� � 0] � Y �

where Y � is the offered market wage as of a particular point in time (e.g., week 208 after randomization),

D is the indicator variable of receiving the treatment of being given access to the Job Corps program, and

X is a vector of baseline characteristics. Z� is a latent variable representing the propensity to be employed.


 represents the causal effect of the treatment on employment propensities, while � is the causal parameter

of interest.15

Both Y � and Z� are unobserved, but the wage conditional on employment Y is observed, where 1 [�]

is the indicator variable. (U; V ) are assumed to be jointly independent of the regressors (D;X).16 As in

Heckman [1979], sample selection bias can be seen as speci�cation error in the conditional expectation

E [Y jD;X;Z� � 0] = D� +X�1 + E [U jD;X; V � �D
 �X�2]

One modeling approach is to assume that data are missing at random, perhaps conditional on a set of

covariates [Rubin 1976]. This amounts to assuming that U and V are independent of one another, or that

employment status is unrelated to the determination of wages. This assumption is strictly inconsistent with

standard models of labor supply that account for the participation decision (e.g., see Heckman [1974]).

A more common modeling assumption is that some of the exogenous variables determine sample

selection, but do not have its own direct impact on the outcome of interest; that is, some of the elements

15 In this speci�cation, the treatment effect is constant.
16 This assumption, which is stronger than necessary, is invoked now for expositional purposes. It will be shown below that what
is required is instead independence of (U; V ) andD, conditional onX .
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of �1 are zero while corresponding elements of �2 are nonzero). Such exclusion restrictions are utilized in

parametric and semi-parametric models of the censored selection process (e.g., Heckman [1979], Heckman

[1990], Ahn and Powell [1993], Andrews and Schafgans [1998], and Das, Newey and Vella [2003]).

The practical limitation to relying on exclusion restrictions for the sample selection problem is that

there may not exist credible �instruments� that can be excluded from the outcome equation. This seems to

be true for an analysis of the Job Corps experiment. There are many variables available to the researcher

from the Job Corps evaluation, and many of the key variables are listed in Tables I and II. But for each of the

variables in Table II that have signi�cant associations with employment, there is a well-developed literature

suggesting that those variables may also in�uence wage offers. For example, race, gender, education, and

criminal histories all could potentially impact wages. Household income and past employment experiences

are also likely to be correlated with unobserved determinants of wages.

Researchers' reluctance to rely upon speci�c exclusion restrictions motivates a second, general ap-

proach to addressing the sample selection problem: the construction of �worst-case� bounds of the treat-

ment effect. When the support of the outcome is bounded, the idea is to impute the missing data with

either the largest or smallest possible values to compute the largest and smallest possible treatment effects

consistent with the data that is observed. Horowitz and Manski [2000a] use this notion to provide a general

framework for constructing bounds for treatment effect parameters when outcome and covariate data are

non-randomly missing in an experimental setting.17 This strategy is discussed in detail in Horowitz and

Manski [2000a], who show the approach can be useful when Y is a binary outcome.

This imputation procedure cannot be used when the support is unbounded. Even when the support

is bounded, if it is very wide, so too will the width of the treatment effect bounds. In the context of the

Job Corps program, the bounds are somewhat uninformative. Table III computes the Horowitz and Manski

[2000a] bounds for the treatment effect of the Job Corps program on log-wages in week 208. Speci�cally,

17 Others [Balke and Pearl 1997, Heckman and Vytlacil 1999, Heckman and Vytlacil 2000b, Heckman and Vytlacil 2000a] have
constructed such bounds to address a very different problem � that of imperfect compliance of the treatment, even when �intention�
to treat is effectively randomized [Bloom 1984, Robins 1989, Imbens and Angrist 1994, Angrist, Imbens and Rubin 1996].
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it calculates the upper bound of the treatment effect as

Pr [Z� � 0jD = 1]E [Y jD = 1] + Pr [Z� < 0jD = 1]Y UB

�Pr [Z� � 0jD = 0]E [Y jD = 0] + Pr [Z� < 0jD = 0]Y LB

where all population quantities can be estimated, and Y UB and Y LB are the upper and lower bounds of the

support of log-wages; as reported in the Table, Y UB and Y LB are taken to be 2.77 and 0.90 ($15.96 and

$2.46 an hour), respectively.18

Table III shows that the lower bound for the treatment effect on week 208 log-wages is -0.75 and the

upper bound is 0.80. Thus, the interval is almost as consistent with extremely large negative effects as

it is with extremely large positive effects. The reason for this wide interval is that more than 40 percent

of the individuals are not employed in week 208. In this context, imputing the missing values with the

maximal and minimal values of Y is so extreme as to yield an interval that includes effect sizes that are

arguably implausible. Nevertheless, the Horowitz and Manski [2000a] bounds provide a useful benchmark,

and highlights that some restrictions on the sample selection process are needed to produce tighter bounds

[Horowitz and Manski 2000b].

The procedure proposed below is a kind of �hybrid� of the two general approaches to the sample

selection problem. It yields bounds on the treatment effect, even when the outcome is unbounded. It does

so by imposing some structure on the sample selection process, but without requiring exclusion restrictions.

III. Identi�cation of Bounds on Treatment Effects

This section �rst uses a simple case in order to illustrate the intuition behind the main identi�cation

result, and then generalizes it for a very unrestrictive sample selection model.

Consider the case where there is only the treatment indicator, with no other covariates. That is, X

is a constant, so that �1 and �2 will be intercept terms. It will become clear that the result below is also

18 The wage variable was transformed before the being analyzed, in order to minimize the effect of outliers, and also so that the
Horowitz andManski [2000a] bounds would not have to rely on these outliers. Speci�cally, the entire observed wage distristribution
was split into 20 categories, according to the 5th, 10th, 15th, ... 95th percentile wages, and the individual was assigned the mean
wage within each of the 20 groups. Thus, the upper �bound� of the support , for example, is really the mean log-wage for those
earning more than the 95th percentile. The same data are used for the trimming procedure described below.
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valid conditional for any value of X . Describing the identi�cation result in this simple case makes clear

that the proposed procedure does not rely on exclusion restrictions. In addition, this section and the next

assumes that U (and hence Y ) has a continuous distribution. Doing so will simplify the exposition; it can

be shown that the proposed procedure can be applied to discrete outcome variables as well.19 Without loss

of generality, assume that 
 > 0, so that the treatment causes an increase in the likelihood of the outcome

being observed.

From Equation (1), the observed population means for the control and treatment groups can be written

as

E [Y jD = 0; Z� � 0] = �1 + E [U jD = 0; V � ��2](2)

and

E [Y jD = 1; Z� � 0] = �1 + � + E [U jD = 1; V � ��2 � 
](3)

This shows that when U and V are correlated, the difference in the means will generally be biased for �.

Identi�cation of � would be possible if we could estimate

E [Y jD = 1; V � ��2] = �1 + � + E [U jD = 1; V � ��2](4)

because (2) could be subtracted to yield the effect � (since D is independent of (U; V )). But the mean in

(4) is not observed.

It can be bounded, however. This is because all observations on Y needed to compute this mean are a

subset of the selected population (V � ��2 � 
). For example, we know that

E [Y jD = 1; Z� � 0] = (1� p)E [Y jD = 1; V � ��2] + pE [Y jD = 1;��2 � 
 � V < ��2]

where p = Pr[��2�
�V <��2]
Pr[��2�
�V ] . The observed treatment mean is a weighted average of (4) and the mean for

a sub-population of �marginal� individuals (��2 � 
 � V < ��2) who are induced to be selected into the

sample because of the treatment.

E [Y jD = 1; V � ��2] is therefore bounded above by E [Y jD = 1; Z� � 0; Y � yp], where yp is the

pth quantile of the treatment group's observed Y distribution. This is true because among the selected

19 See Lee [2002], for an implementation of the bounds for a binary response outcome.
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population V � ��2�
; D = 1, no sub-population with proportion (1� p) can have a mean that is larger

than the average of the largest (1� p) values of Y .

Put another way, we cannot identify which observations are inframarginal (V � ��2) and which are

marginal (��2 � 
 � V < ��2). But the �worst-case� scenario is that the smallest p values of Y belong

to the marginal group and the largest 1�p values belong to the inframarginal group. Thus, by trimming the

lower tail of the Y distribution by the proportion p, we obtain an upper bound for the inframarginal group's

mean in (4). Consequently, E[Y j D = 1; Z� � 0; Y � yp]� E [Y jD = 0; Z� � 0] is an upper bound for

�. Note that the trimming proportion p is equal to

Pr [Z� � 0jD = 1]� Pr [Z� � 0jD = 0]

Pr [Z� � 0jD = 1]

where each of these probabilities is identi�ed by the data.

To summarize, a standard latent-variable sample selection model implies that the observed outcome

distribution for the treatment group is a mixture of two distributions: 1) the distribution for those who

would have been selected irrespective of the treatment (the inframarginal group), and 2) the distribution for

those induced into being selected because of the treatment (the marginal group). It is possible to quantify

the proportion of the treatment group that belongs to this second group, using a simple comparison of the

selection probabilities of the treatment and control groups. Although it is impossible to identify speci�cally

which treated individuals belong to the second group, worst-case scenarios can be constructed by assuming

that they are either at the very top or the very bottom of the distribution. Thus, trimming the data by the

known proportion of excess individuals should yield bounds on the mean for the inframarginal group.

III.A. Identi�cation under a Generalized Sample Selection Model

This identi�cation result applies to a much wider class of sample selection models. It depends neither

on a constant treatment effect, nor on homoskedasticity, which are both implicitly assumed in Equation (1).

To see this, consider a general sample selection model that allows for heterogeneity in treatment ef-
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fects:

(Y �1 ; Y
�
0 ; S1; S0; D) is i.i.d. across individuals(5)

S = S1D + S0 (1�D)

Y = S � fY �1 D + Y �0 (1�D)g

(Y; S;D) is observed

where D, S, S0, and S1 are all binary indicator variables. D denotes treatment status; S1 and S0 are

�potential� sample selection indicators for the treated and control states. For example, when an individual

has S1 = 1 and S0 = 0, this means the outcome Y will be observed (S = 1) if treatment is given, and will

not be observed (S = 0) if treatment is denied. The second line highlights the fact that for each individual

we only observe S1 or S0. Y �1 and Y �0 are latent potential outcomes for the treated and control states, and

the third line points out we observe either latent outcome Y �1 or Y �0 , and only if the individual is selected

into the sample S = 1. It is assumed throughout that E [SjD = 1] ; E [SjD = 0] > 0.

Assumption 1 (Independence): (Y �1 ; Y �0 ; S1; S0) is independent of D.

This assumption corresponds to the independence of (U; V ) and (D;X) in the previous section. In the

context of experiments, random assignment will ensure this assumption will hold.

Assumption 2 (Monotonicity): Either S1 � S0 with probability 1, or S0 � S1 with probability
1.

This assumption implies that treatment assignment can only affect sample selection in �one direction�.

Some individuals will never be observed, regardless of treatment assignment (S0 = S1 = 0), others will

always be observed (S0 = 1; S1 = 1), and others will be selected into the sample because of the treatment

(S0 = 0, S1 = 1). This assumption is commonly invoked in studies of imperfect compliance of treatment

[Imbens and Angrist 1994, Angrist et al. 1996]; the difference is that in those studies, monotonicity is

for how an instrument affects treatment status; here, the monotonicity is for how treatment effects sample
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selection. It should be noted that monotonicity has been shown to be equivalent to assuming a latent-

variable threshold-crossing model [Vytlacil 2002], which is the basis for virtually all sample selection

models in econometrics.

Proposition 1: Let Y �0 and Y �1 be continuous random variables. If Assumptions 1 and 2 hold, and
without loss of generality let S1 � S0 with probability 1, then �LB0 and �UB0 are sharp lower and
upper bounds for the average treatment effect E [Y �1 � Y �0 jS0 = 1; S1 = 1], where

�LB0 � E [Y jD = 1; S = 1; Y � y1�p0 ]� E [Y jD = 0; S = 1]

�UB0 � E [Y jD = 1; S = 1; Y � yp0 ]� E [Y jD = 0; S = 1]

yq � G�1 (q) , with G the cdf of Y , conditional on D = 1; S = 1

p0 � Pr [S = 1jD = 1]� Pr [S = 1jD = 0]

Pr [S = 1jD = 1]

The bounds are sharp in the sense that�LB0 (�UB0 ) is the largest (smallest) lower (upper) bound that
is consistent with the observed data.20

Remark 1. The sharpness of the bound �UB0 , for example, means that it is the �best� upper bound

that is consistent with the data. A speci�c example of where this proposition can be applied is in Krueger

and Whitmore [2001], who study the impact of the Tennessee STAR class-size experiment. In that study,

students are randomly assigned to a regular or a small class and the outcome of interest is the SAT (or ACT)

scores, but not all students take the exam. On p. 25, Krueger and Whitmore [2001] utilize Assumptions

1 and 2 to derive a different upper bound, given by B � E[Y j D = 1; S = 1] � Pr[S=1jD=1]
Pr[S=1jD=0] � E[Y j

D = 0; S = 1]. Proposition 1 implies that this bound B, like any other proposed bound utilizing these

assumptions, cannot be smaller than �UB0 .21

Remark 2. An important practical implication of Assumptions 1 and 2 is that as p0 vanishes, so

does the sample selection bias.22 The intuition is that if p0 = 0, then under the monotonicity assumption,

both treatment and control groups are comprised of individuals whose sample selection was unaffected
20 If S0 � S1 with probability 1, then the control group's, rather than the treatment group's, outcome distribution must be
trimmed.
21 Thus, in the context of Krueger and Whitmore [2001], Proposition 1 implies that computing the bound B is unncessary after
already computing a very different estimate T , their �linear truncation� estimate. They justify T under a different set of assump-
tions: 1) that �the additional small-class students induced to take the ACT exam are from the left tail of the distribution� and 2) �if
attending a small class did not change the ranking of students in small classes.� Their estimate T is mechanically equivalent to the
bound �UB

0 . Therefore, Proposition 1 implies that their estimate T is actually the sharp upper bound given the mild assumptions
that were used to justify their bound B.
22 A vanishing p corresponds to individuals with the same value of the sample selection correction term, and it is well known that
there is no selection bias, conditional on the correction term. See, for example, Heckman and Robb [1986], Heckman [1990], Ahn
and Powell [1993], and Angrist [1997].
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by the assignment to treatment, and therefore the two groups are comparable23. Thus, when analyzing

randomized experiments, if the sample selection rates in the treatment and control groups are similar, and

if the monotonicity condition is believed to hold, then a comparison of the treatment and control means is a

valid estimate of an average treatment effect.24

Remark 3. Assumptions 1 and 2 are minimally suf�cient for computing the bounds. Monotonicity

ensures that the sample-selected control group consists only of those individuals with S0 = 1; S1 = 1.

Without monotonicity, the control group could consist solely of observations with S0 = 1; S1 = 0, and the

treatment group solely of observations with S0 = 0; S1 = 1. Since the two sub-populations do not �over-

lap�, the difference in the means could not be interpreted as a causal effect. The independence assumption

is also important, since it is what justi�es the contrast between the trimmed treatment group and the control

group.

Remark 4. When p0 = 0 in a randomized experimental setting, there is a limited test of whether

the simple difference in means suffers from sample selection bias. Suppose that each of the four sub-

populations, de�ned by (S0 = 0; S1 = 1), (S0 = 1; S1 = 0), (S0 = 0; S1 = 0), or (S0 = 1; S1 = 1), have

a different distribution of baseline characteristicsX . If p0 = 0 and monotonicity holds, then both treatment

groups will consist solely of the (S0 = 1; S1 = 1) group; thus, the of Xs should be the same in the treated

and control groups, conditional on being selected. If monotonicity does not hold, then the selected, treated

group will comprise of two sub-populations, (S0 = 1; S1 = 1) and (S0 = 0; S1 = 1), while the control

group will be comprised of the groups (S0 = 1; S1 = 1) and (S0 = 1; S1 = 0), which predicts that there

should be treatment-control differences in the distribution of Xs, conditional on being selected.

Finally, the trimming procedure described above places sharp bounds on the average treatment effect

for a particular sub-population � those individuals who will be selected irrespective of the treatment assign-

ment (S0 = 0; S1 = 1). It should be noted, however, that this sub-population is the only one for which

23 These individuals can be thought of as the �always-takers� sub-population [Angrist et al. 1996], except that �taking� is not the
taking of the treatment, but rather selection into the sample.
24 Note that p0 here is proportional to the difference in the fraction that are sample selected between the treatment and control
groups. Thus, the notion of a vanishing p should not be confused with �identi�cation at in�nity� in Heckman [1990], in which the
bias term vanishes as the fraction that is selected into the sample tends to 1.
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it is possible to learn about treatment effects, given Assumptions 1 and 2 (at least, in this missing data

problem). For the marginal (S0 = 0; S1 = 1) observations, the outcomes are missing in the control regime.

For the remaining (S0 = 0; S1 = 0) observations, outcomes are missing in both the treatment and control

regimes. It would still be possible to appeal to the bounds of Horowitz and Manski [2000a] to construct

bounds on this remaining population of the �never observed�, but this interval (whose width would be 2

times the width of the outcome variable's support) would not require any data. Whether the sub-population

of the �always observed� is of interest will depend on the context. In the case of the Job Corps program, for

example, it is useful to assess the impact of the program on wage rates for those whose employment status

was not affected by the program.

IV. Estimation and Inference

This section proposes and discusses an estimator for the bounds. The estimator can be shown to be

p
n consistent and asymptotically normal. The asymptotic variance is comprised of three components,

re�ecting 1) the variance of the trimmed distribution, 2) the variance of the estimated trimming threshold,

and 3) the variance in the estimate of how much of the distribution to trim. To minimize redundancies, the

discussion below continues to consider the case that S1 � S0 with probability 1 (from Assumption 2); the

results are also analogously valid for the reverse case of S0 � S1.

IV.A. Estimation

The estimates of the bounds are sample analogs to the parameters de�ned in Proposition 1. First, the

trimming proportion bp is estimated by taking the treatment-control difference in the proportion with non-
missing outcomes, and dividing by the proportion that is selected in the treatment group. Next, the bpth (or
the (1� bp)th) quantile of the treatment group's outcome distribution is calculated. Finally, these quantiles
are used to trim the data for the treatment group's outcomes and compute the bounds[�LB and[�UB .

Formally, we have
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De�nition of Estimator.

[�LB �
P
Y � S �D � 1

�
Y � dy1�bp�P

S �D � 1
�
Y � dy1�bp� �

P
Y � S � (1�D)P
S � (1�D)(6)

[�UB �
P
Y � S �D � 1

�
Y � bybp�P

S �D � 1
�
Y � bybp� �

P
Y � S � (1�D)P
S � (1�D)

byq � min

�
y :

P
S �D � 1[Y � y]P

S �D � q
�

bp �
�P

S �DP
D

�
P
S � (1�D)P
(1�D)

���P
S �DP
D

�
where the summation is over the entire sample of size n.

IV.B. Consistency, Asymptotic Normality, Variance Estimation, and Inference

The estimators[�LB and[�UB are consistent for �LB0 and �UB0 under fairly standard conditions:

Proposition 2 (Consistency): Let �LB0 ,�UB0 2 �, which is compact, and E [jY j] < 1. Then
[�LB p! �LB0 and[�UB p! �UB0

As shown in the Appendix, the proof involves showing that the estimator is a solution to a GMM

problem, showing that the moment function vector is, with probability 1, continuous at each �LB0 ;�UB0 2

�, and applying Theorem 2.6 of Newey and McFadden [1994].

The estimators [�LB and [�UB are also asymptotically normal, with an intuitive expression for the

variance.

Proposition 3 (Asymptotic Normality): De�ne �LB � E[Y j D = 1; S = 1; Y � y1�p0 ]
and �UB � E[Y j D = 1; S = 1; Y � yp0 ]. In addition to the conditions in Proposition 2, let
�LB0 ;�UB0 be interior points in�, and let E jY j2+� for some � > 0. Then

p
n
�
[�LB ��LB0

�
d!

N
�
0; V LB + VC

�
and

p
n
�
[�UB ��UB0

�
d! N

�
0; V UB + VC

�
, where

V LB =
1

E [SD] (1� p0)

n
V ar [Y jD = 1; S = 1; Y � y1�p0 ] +

�
y1�p0 � �LB

�2
p0

o
(7)

+
�
y1�p0 � �LB

�2�(1� E [SjD = 0])� p0 (1� E [D])
E [D] � E [SjD = 0] � (1� E [D])

�
V UB =

1

E [SD] (1� p0)

n
V ar [Y jD = 1; S = 1; Y � yp0 ] +

�
yp0 � �UB

�2
p0

o
+
�
yp0 � �UB

�2�(1� E [SjD = 0])� p0 (1� E [D])
E [D] � E [SjD = 0] � (1� E [D])

�
and VC is the usual asymptotic variance of the estimated mean for the control group (divided by
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E [S (1�D)]).25

Consider the three terms in V LB . The �rst term in curly braces would be the variance of the estimate

if the trimming threshold y1�p0 were known.26 The second term in curly braces re�ects the fact that the

threshold is a quantile that needs to be estimated. Taken together, the �rst two terms are exactly equivalent to

the expression given in Stigler [1973], who derives the asymptotic distribution of a one-sided �p0-trimmed�

mean, when p0 is known. But p0 is not known, and must be estimated, which is re�ected in the third term.

The Appendix contains the proof, which involves applying Theorem 7.2 of Newey and McFadden [1994],

an asymptotic normality result for GMM estimators when the moment function is not smooth.

Estimation of the variances is easily carried out by replacing all of the above quantities (e.g., E [SD] ;

yp0) with either their sample analogs (e.g., 1n
P
SD, bybp). After assuming a �nite second moment for Y ,

consistency follows because the resulting estimator is a continuous function of consistent estimators for

each part.

There are two simple ways to compute con�dence intervals. First, one can compute the interval [[�LB

�1:96d�LBp
n
; [�UB + 1:96 � d�UBp

n
], d�LB � r

\
V
�
[�LB

�
, d�UB � r

\
V
�
[�UB

�
. This interval will asymp-

totically contain the region
�
�LB0 ;�UB0

�
with at least 0:95 probability.27 Imbens and Manski [2004] point

out that this same interval will contain the parameter E [Y �1 � Y �1 jS0 = 1; S1 = 1] with an even greater

probability, suggesting the con�dence interval for the parameter will be narrower for the same coverage

rate. The results of Imbens and Manski [2004] imply that a (smaller) interval of [[�LB �Cn� d�LBpn ;[�UB +
Cn

d�UBp
n
], where Cn satis�es

�

 
Cn +

p
n

[�UB �[�LB
max (d�LB;d�UB)

!
� �

�
�Cn

�
= 0:95,

25 It is divided by E [S (1�D)], because n here is the total number of observations (selected and non-selected, treated and
control).
26 The term 1

E[SD](1�p0) exists because n is the size of the entire sample (both treatment and control, and all observations
including those with missing outcomes).
27 To see this, note that Pr[[�LB� 1:96�LB < �LB

0 ; [�UB+ 1:96�UB > �UB
0 ] is equivalent to Pr[

\�LB��LB
0

�LB
< 1:96;

\�UB��UB
0

�UB
>�1:96] = 1�Pr[

\�LB��LB
0

�LB
> 1:96]�Pr[

\�UB��UB
0

�UB
< �1:96]+Pr[

\�LB��LB
0

�LB
> 1:96;

\�UB��UB
0

�UB
< �1:96],

which is equal to 1� 0:025� 0:025+ Pr[
\�LB��LB

0

�LB
> 1:96;

\�UB��UB
0

�UB
< �1:96], when

\�LB��LB
0

�LB
;
\�UB��UB

0

�UB
is standard

bivariate normal.
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can be computed, and it will contain the parameter E [Y �1 � Y �1 jS0 = 1; S1 = 1] with a probability of at

least 0.95.

The interval of Imbens and Manski [2004] is more appropriate here since the object of interest is the

treatment effect, and not the region of all rationalizable treatment effects. Nevertheless, for completeness,

both intervals are reported in the presentation of the results.

V. Empirical Results

This section uses the trimming estimator to compute bounds on the treatment effect of the Job Corps

on wage rates. The procedure is �rst employed for wages at week 208, 4-years after the date of random

assignment. The width of the bounds are reasonably narrow and are suggestive of positive wage effects of

the program. The bounds for the effect at week 208 do contain zero, but the bounds at week 90 do not.

Overall, the evidence presented below points towards positive treatment effect, but not too much more than

a 10 percent effect.

V.A. Main Results at Week 208

Table IV reports the estimates of the bounds of the treatment effect on wages at week 208. The

construction of the bounds and their standard errors are illustrated in the table. Rows (iii) and (vi) report the

means of log-wages for the treated and control groups. Rows (ii) and (v) report that about 61 percent of the

treated group has non-missing wages while about 57 percent of the control group have non-missing wages.

This implies a trimming proportion of about 6.8 percent of the treated group sample. The pth quantile is

about 1.64, and therefore the upper bound for the treated group is the mean after trimming the tail of the

distribution below 1.64.28 After trimming, the resulting mean is about 2.09, and so the upper bound of the

treatment effect[�UB is 0.093 (row (xi)). A symmetric procedure yields[�LB of -0.019 (row (xii)).

The width of these bounds is about 0.11. Note that this is 1/14th the width of the bounds yielded by

28 The procedure can be easily adapted to the case of a dependent variable with discrete support. Suppose there are nT observa-
tions with non-missing wages in the treatment group. Then the data can be sorted by the dependent variable and the �rst [p � nT ]
observations can be thrown out (where [�] is the greatest integer function), before calculating the trimmed mean. This procedure
was used here, with the slight modi�cation that the design weights were used, so the observations were dropped until the cumulated
sum of the weights equaled the trimming proportion times the total sum of the weights in the treatment group.
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existing �imputation� procedures as reported in Table III (calculate 1.55 from rows (xi) and (xii)). The

much larger interval in Table III is clearly driven by the relatively wide support of the outcome variable.29

The difference between the two sets of bounds make an important difference in gauging the magnitude of

the effects of the program. From Table III, the negative region covered by the bounds is almost as large as

the positive region contained by the bounds. In this sense, the bounds from Table III are almost as consistent

with large negative effects as they are with large positive effects.

The width of the trimming bounds in Table IV are also narrow enough to rule out plausible effect

sizes. For example, suppose the training component of the Job Corps program were ineffective at raising

the marketable skills of the participants. We would then expect Job Corps to have a negative impact on

wages, insofar as the time spent in the program caused a delay in accumulating labor market experience.

Suppose annual wage growth is about 8 percent a year, and the program group spent more time in

education and training programs than the control group by an amount equivalent to 0.72 of a school year.30

If a full school year in training causes a year delay in earnings growth, this would imply Job Corps impact

of about -0.058. The lower bound in Table IV is -0.019. Thus, the scenario described above is ruled out

by the trimming bounds computed in Table IV. By contrast, an impact of -0.058 is easily contained by the

support-dependent interval [-0.746,0.802] of Table III.

An impact of -0.058 is also outside the interval after accounting for sampling errors of the estimated

bounds. The right side of Table IV illustrates the construction of these standard errors. For the estimate of

the upper bound for the treatment group, Component 1 is the standard error associated with the �rst term in

Equation (7).31 Component 2 re�ects sampling error in estimating the trimming threshold.32 Component

3 re�ects sampling error in estimating the trimming proportion.33 In this case, the largest source of the

29 For a detailed theoretical discussion of how the imputation bounds (e.g. Table III) compare to the trimming bounds (e.g. Table
IV) when the outcome is binary, see Lee [2002].
30 From Figure II, there appears to be about 40 percent nominal wage growth over 4 years. In�ation over that length of time in
the late 1990s was about 9 percent (CPI-U for 1995: 152.4; for 1999; 166.6). Schochet et al. [2001] �nd that the Job Corps impact
on time spent in any education and training programs amounted to about one school year per participant. The estimated impact per
eligible applicant was 28 percent lower.
31 Speci�cally, it is the square root of the sample analog of 1

n�E[SD](1�p0)V ar[Y j D = 1; S = 1; Y � yp0 ]. In this case
1

n�E[SD](1�p0) = 1=3148.
32 It is the square root of the sample analog of 1

nE[SD](1�p0)
�
yp0 � �UB

�2
p0.

33 It is the square root of the sample analog of 1
n

�
yp0 � �UB

�2 � (1�E[SjD=0])�p0(1�E[D])
E[D]�E[SjD=0]�(1�E[D])

�
.
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variance in the upper bound comes from the estimation of the trimming proportion. The total of 0.0092 is

the square root of the sum of the squared components.

Doing a similar calculation for the lower bound, and then using the standard error on the mean for the

control group yields standard errors for [�UB and[�LB of 0.0123 and 0.0165, as shown in the bottom of

Table IV. These standard errors can then be used to compute two types of 95 percent con�dence intervals.

The �rst, covers the entire set of possible treatment effects with at least 0.95 probability, while the second

interval, using the result from Imbens and Manski [2004], covers the true treatment effect at least 95 percent

of the time. A plausible negative impact of -0.058 is outside both of these intervals.

V.B. Using Covariates

The width of the bounds can, in principle, be made narrower with the use of covariates. To gain

intuition for the result, suppose half of the workers in the treatment group earn the wage wH , while the

other half earns the lower wage of wL. The trimming procedure described in the previous sections suggest

removing only low wage individuals, by a proportion p0 to obtain an upper bound of the mean for the

�inframarginally� selected. The trimmed mean will necessarily be larger.

Suppose now there is a baseline covariateX that perfectly predicts whether an individual will earn wH

or wL. Then, due to the random assignment of treatment, Assumptions 1 and 2 also hold conditional onX .

Therefore, the results in the previous section can be applied separately for the two types of workers. If, for

both groups, the same proportion of observations are trimmed, the overall mean will not be altered by this

trimming procedure.34

More formally, consider the following alternative to Assumption 1,

Assumption 3 (Independence): Let X be a vector of covariates, and let (Y �1 ; Y �0 ; S1; S0; X) be
independent of D.

In the case of the Job Corps Experiment, this assumption is valid when X represents baseline charac-

teristics; this is due to random assignment of treatment.
34 Strictly speaking, there are no upper or lower �tails�, in this simple example, where the outcome is discrete. Nevertheless, the
procedure can be adapted to discrete outcomes, as described in the subsection V.A.
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Proposition 4: Let Y �0 and Y �1 be continuous random variables. If Assumptions 3 and 2 hold,
and without loss of generality S1 � S0 with probability 1, then �LB0 and �UB0 are sharp lower and
upper bounds for the average treatment effect E [Y �1 � Y �0 jS0 = 1; S1 = 1], where

�LB0 �
Z
�LBx dH (x)

�UB0 �
Z
�UBx dH (x) , where H is the cdf of X conditional on D = 0; S = 1

�LBx � E [Y jD = 1; S = 1; Y � y1�px ; X = x]� E [Y jD = 0; S = 1; X = x]

�UBx � E [Y jD = 1; S = 1; Y � ypx ; X = x]� E [Y jD = 0; S = 1; X = x]

yq � G�1x (q) , with Gx the cdf of Y , conditional on D = 1; S = 1; X = x

px � Pr [S = 1jD = 1; X = x]� Pr [S = 1jD = 0; X = x]

Pr [S = 1jD = 1; X = x]

The bounds are sharp in the sense that�LB0 (�UB0 ) is the largest (smallest) lower (upper) bound that
is consistent with the observed data. Furthermore, �LB0 � �LB0 and �UB0 � �UB0 .

The �rst part of the proposition follows from applying Proposition 1 conditionally on X = x. The

second claim, that the width of the bounds must be narrower after utilizing the covariates, is seen by noting

that any treatment effect that is consistent with an observed population distribution of (Y; S;D;X), must

also be consistent with the data after throwing away information on X , and observing only the distribution

of (Y; S;D). This necessity is strictly inconsistent with �UB0 > �UB0 .

This modi�ed procedure is implemented here as follows. First, the sample is split into 5 groups, based

entirely on baseline characteristics X . Each of the �ve groups represent a different predicted wage, based

onX .35 Then a trimming analysis is conducted for each of the �ve groups separately. Note that for each of

the 5 groups, there is a different trimming proportion. The lower and upper bounds of the treatment group

means, by each of the 5 groups, are given in the left and right columns of Table V, respectively. The lower

bounds range from 1.81 to 2.11, while the upper bounds range from 1.99 to 2.20. The standard errors are

computed for each group separately in the same manner as in Table IV.

To compute the bounds for the overall average E [Y �1 jS0 = 1; S1 = 1], the group-speci�c bounds must

be averaged, weighted by the proportions Pr [Group J jS0 = 1; S1 = 1]. This is provided in the row la-

35 Week 208 wages were regressed on all baseline characteristics in Table I. The coef�cients were then applied to all individuals
to impute a predicted wage. The predicted wages were sorted, and the �ve groups were constructed according to the 20th, 40th, ...
, 80th percentiles of the predicted wage distribution. Design weights were used for both the regression, and the categorization.
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belled �Total�.36 This leads to an interval of [-0.0103, 0.0871]. This interval is about 13 percent nar-

rower than that reported in Table IV. The estimated variance for these overall averages is the sum of 1)

the weighted-average of the group-speci�c variances and 2) the (weighted-) mean squared deviation of the

group-speci�c estimates from the overall mean. This second term takes into account the sampling vari-

ability of the weights, as described in Chamberlain [1994].37 These sampling errors lead to a 95 percent

Imbens-Manski interval of [-0.034,0.111].

By statistically ruling out any effect more negative than -0.034, this suggests that after 4 years, the Job

Corps enabled program group members to offset at least 40 percent and perhaps more of the potential 0.058

loss in wages due to lost labor market experience that could have been caused by the program.

V.C. Effects by Time Horizon and Testable Implications

An analysis of the bounds at different time horizons provides further evidence that the Job Corps

program had a positive impact on wage rates. The analysis of Table IV was performed for impacts on wage

rates at weeks 45, 90, 135, and 180, and these results are reported in Table VI. At each of the four time

periods, the intervals de�ned by the bounds are more consistent with positive than negative impacts.

As would be expected, the width of the intervals are directly related to the treatment-control difference

in the proportion missing. When the proportion is the largest, as at week 45, the range is [-0.074,0.127]. At

week 180, when the proportion is 0.0724, the interval is [-0.033,0.087].

At week 90, the trimming proportion is practically zero, and so the interval is [0.042,0.043]. The

standard errors are larger for these bounds, even though they are quite similar to the untrimmed treatment-

control difference. This is partly due to the sampling error in the trimming proportion. Using these standard

errors, a 95 percent con�dence interval on the treatment effect would barely rule out a 0 effect at 90 weeks.

On the other hand, if the trimming proportion is truly zero � and such a scenario cannot be statistically

36 There are slight differences in the number of observations in each group after trimming, for the upper and lower bounds. This
is due to the use of the design weights.
37 The weighted mean of the 5 group-speci�c means, can be seen as a minimum distance estimator where the weights are the
estimated proportions in each group.Chamberlain [1994] gives the asymptotic variance for this estimator even when the moment
vector is mis-speci�ed, as would be the case if the group-speci�c means are different. The asymptotic variance is the sum of two
components: 1) the (observation-weighted) average of the asympotic variance for each group (�1 in Chamberlain [1994]), 2) the
(observation-weighted) average squared deviation of each group's estimate from the �Total� mean (�2 in Chamberlain [1994]).
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ruled out � then a more ef�cient estimate of the treatment effect is given by the untrimmed estimate of

0.043, which has a standard error of 0.011.

Examining week 90 is helpful in providing some evidence on the plausibility of the monotonicity

condition (Assumption 2). If at week 90, E [SjD = 1] � E [SjD = 0] is truly zero, this implies that the

average causal effect on sample selection E [S1 � S0] is zero. If monotonicity holds, then this can only be

true if S1 = S0 with probability 1.38

If the only data that are observed is the triple (Y; S;D), then it is impossible to test this monotonicity

assumption. On the other hand, if there exist baseline characteristics X , as in the case of the Job Corps

Experiment, then it is possible to test whether S0 = S1 with probability 1. That is, it is possible to test

whether for each value of X , whether Pr[S = 1jD = 1; X = x] = Pr[S1 = 1jX = x] is equal to

Pr[S = 1jD = 0; X = x] = Pr[S0 = 1jX = x], which should be the case for all x if S0 = S1

with probability 1. Intuitively, if it was found that for some values of X , the treatment caused wages to

be observed, while for other values of X , the treatment was found to cause wages to be missing, then

Assumption 2 must not hold.

By Bayes' Rule and independence (Assumption 1), Pr[S = 1jD = 1; X = x] = Pr[S = 1jD =

0; X = x] for all x implies that the distribution of X conditional on S = 1; D = 1 should be the same as

the distribution conditional on S = 1; D = 0.39

A simple way to check this empirically is to examine the means of the variables in Table I, but condi-

tional on having non-missing wages. This is done for week 90, and is reported in Appendix Table I. The

differences between the treatment and control means for each variable are small and consistently statisti-

cally insigni�cant. A joint test of signi�cance is given by a logistic regression of the treatment indicator

on the baseline characteristics X , using a sample of all those with non-missing wages at week 90.40 The

resulting test of all coef�cients equaling zero yields a p-value of 0.851. Thus, the data are consistent with

38 If S1 = S0 with less than probability 1, then there would be a nonzero probability of S1 < S0, and it would be equal to the
probability of S0 > S1 � thus contradicting monotonicity � in order for E [S1 � S0] = 0.
39 This is because the density ofX , conditional onD, does not depend on the value ofD, and the probability of S = 1 conditional
onD also does not depend onD, by assumption.
40 This is a valid test since in this context, Pr[S = 1jD = 1; X = x] = Pr[S = 1jD = 0; X = x] for all x, is equivalent to the
test Pr[D = 1j S = 1; X = x]= Pr[D = 0j S = 1; X = x] = Pr [D = 0] =Pr [D = 1].
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the monotonicity condition holding at week 90.

VI. Conclusion: Implications and Applications

This paper focuses on an important issue in evaluating the impact of a job training program on wage

rates � the sample selection problem. It is a serious issue even when the treatment of a training program is

believed to be independent of all other factors, as was the case in the randomized experimental evaluation

of the U.S. Job Corps. Existing sample selection correction methods are infeasible due to the absence of

plausible exclusion restrictions, and in this case, one cannot rely upon the boundedness of the outcome

variable's support to yield informative bounds on the treatment effect of interest.

In order to estimate the impact of the Job Corps on wages, this paper develops a new method for

bounding treatment effects in the presence of sample selection in the outcome. An appealing feature of

the method is that the assumptions for identi�cation, independence and monotonicity, are typically already

assumed in standard models of the sample selection process, such as in Equation (1). In the case of random-

ized experiments, the independence assumption is satis�ed, and as illustrated in the previous section, the

existence of baseline characteristics suggest a limited test of monotonicity. More importantly, the bounding

approach does not require any exclusion restrictions for the outcome equation. Nor do the trimming-bounds

rely on the bounds of the support of the outcome variable.

The analysis using the proposed �trimming� bounds point to two substantive conclusions about the Job

Corps. First, the evidence casts doubt on the notion that the program only raised earnings through raising

labor force participation. Effects more negative than -0.034 can be statistically ruled out. If there were

literally no wage effect, one might expect to see a more negative impact (perhaps around a -0.058 effect)

due to lost labor market experience, since the youth applicants are on the steep part of their wage pro�le.

More convincingly, at week 90, the estimated lower bound is 0.042, and this lower bound is on the margin

of statistical signi�cance at the 0.05 level.

Another reason to interpret the evidence as pointing to positive wage effects is that the lower bound is

based on an extreme, and unintuitive assumption � that wage outcomes are perfectly negatively correlated
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with the propensity to be employed. From a purely theoretical standpoint, a simple labor supply model

suggests that, all other things equal, those on the margin of being employed will have lowest wages, not

the highest wages (i.e. the �reservation wage� will be the smallest wage that draws the individual into the

labor force). In addition, the empirical evidence in Table II suggests that there is positive selection into

employment: those who are predicted to have higher wages are more likely to be employed (i.e. U and V

are positively correlated). If this is true, it seems relatively more plausible to trim the lower rather than the

upper tail of the distribution to get an estimate of the treatment effect.

Second, the intervals provided here are comparable to rates of return found in the returns to education

literature. At week 208, the point estimates an interval of [-0.0103,0.0871]. Program participants may be

lagging behind their control counterparts by as much as 8 months in labor market experience due to enroll-

ment in the program. As argued above, this could translate to as much as a 5.8 percent wage disadvantage

even 4 years after random assignment, because many of the individuals in this sample are still on the steep

part of their age-earnings pro�les. Projecting to ages when the wage pro�le �attens leads to an interval of

[.047,0.145]. A similar adjustment for week 90 wages yields an interval tightly centered around 0.10. As

found in a survey of studies that exploit institutional features of school systems [Card 1999], point estimates

of the return to a single year of schooling range from 0.060 to 0.153.41 Thus, the magnitudes found in this

analysis of the Job Corps are roughly consistent with viewing the program as a human capital investment

of one year of schooling.

It should be emphasized that the trimming-bounds introduced here are speci�c neither to selection into

employment nor to randomized experiments. For example, outcomes can be missing due to survey non-

response (e.g., students not taking tests), sample attrition (e.g., inability to follow individuals over time),

or other structural reasons (e.g., mortality). As long as the researcher believes that the sample selection

process can be written as a model like Equation (1) or (5), the same trimming method can be applied. Also,

the basis for matching estimators for evaluations is the weaker assumption that (Y �1 ; Y �0 ) is independent of

D, conditional on X , rather than Assumption 3. It is immediately clear that the trimming bounds proposed

41 See Table 4 in Card [1999].
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here can be applied even when (Y �1 ; Y �0 ; S0; S1) is independent ofD, but only conditional onX , as long as

Assumption 2 holds conditionally on X . In this situation, the procedure described in sub-section V.B can

be applied.42

42 But it should be noted that since the baseline characteristics X would no longer be independent of the treatment, one could no
longer use Remark 4 to test the monotonicity assumption.
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Mathematical Appendix

Lemma. Let Y be a continuous random variable and a mixture of two random variables, with cdfs
M� (y) and N� (y), and a known mixing proportion p� 2 [0; 1), so that we have F � (y) = p�M� (y)

+ (1� p�)N� (y). Consider G� (y) = max
h
0; F

�(y)�p�
1�p�

i
, which is the cdf of Y after truncating the

p� lower tail of Y . Then
R1
�1 ydG

� (y) �
R1
�1 ydN

� (y).
R1
�1 ydG

� (y) is a sharp upper bound forR1
�1 ydN

� (y).

Proof of Lemma. See Horowitz and Manski [1995], Corollary 4.1.

Proof of Proposition 1. It suf�ces to show that �UB � E [Y jD = 1; S = 1; Y � yp0 ] is a sharp

upper bound for E [Y �1 jS0 = 1; S1 = 1]. A similar argument for the sharp lower bound would follow.

Assumptions 1 and 2 imply that p0 = Pr[S=1jD=1]�Pr[S=1jD=0]
Pr[S=1jD=1] = Pr[S0=0;S1=1jD=1]

Pr[S=1jD=1] . Let F (y) be the cdf

of Y conditional on D = 1; S = 1. Assumption 2 implies that F (y) = p0M (y) + (1� p0)N (y), where

M (y) denotes the cdf of Y �1 , conditional on D = 1; S0 = 0; S1 = 1, and N (y) denotes the cdf of Y �1 ,

conditional on D = 1; S0 = 1; S1 = 1. By Assumption 1, N (y) is also the cdf of Y �1 , conditional on

S0 = 1; S1 = 1. By the Lemma, �UB � 1
1�p0

R1
yp0
ydF (y) �

R1
�1 ydN (y) = E [Y

�
1 jS0 = 1; S1 = 1].

To show that �UB equals the maximum possible value for E [Y �1 jS0 = 1; S1 = 1] that is consistent

with the distribution of the observed data on (Y; S;D), it must be shown that 1) conditional on p0, �UB

is a sharp upper bound, and 2) p0 is uniquely determined by the data. 1) follows from the Lemma. 2) is

true because the data yield a unique probability function Pr [S = s;D = d], s; d = 0; 1, which uniquely

determines p0. Q.E.D.

Proof of Proposition 2. It is suf�cient to prove consistency for the trimmed mean for the treatment

group, and only for the lower bound, since a symmetrical argument will follow for the upper bound. De-

note �0 � E [Y jD = 1; S = 1; Y � yp0 ] as the true lower bound of interest. Consistency follows from

application of Theorem 2.6 of Newey and McFadden [1994], which applies to GMM estimators. De�ne the

moment function

g (z; �) �

0BBB@
(Y �D�)SD � 1 [Y � yp]
(1 [Y > yp]� p)SD�
S �D� 1

1�p

�
D

(S � (1�D)�) (1�D)

1CCCA
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where �0 = (�; yp; p; �)
0, �00 = (�0; yp0 ; p0; �0)

0, �0 � E [S = 1jD = 0], and z0 = (Y; S;D)0. The

estimator of �0, the lower bound of E [Y �1 jS1 = 1; S1 = 1], as provided in Equation (6) is a solution to

min� (
P
g (z; �))0 � (

P
g (z; �)). It follows then that (i) through (iv) of Theorem 2.6 holds. Q.E.D.

Proof of Proposition 3. As in the proof above, it is suf�cient to focus only on the asymptotic properties

of the estimator of �0. This estimator will be independent of that for the (untrimmed) control group mean.

The proof follows by showing that the conditions of Theorem 7.2 of Newey and McFadden [1994] are

satis�ed.

De�ne g0 (�) � E [g (z; �)], and bgn (�) � n�1
P
g (z; �). (i) of Theorem 7.2 holds. (iii) holds by

assumption. (iv) holds by the central limit theorem. Let G be the derivative of g0 (�) at � = �0. An explicit

expression for G, a square matrix, is given below and will be shown to be nonsingular; hence (ii) holds as

well.

The stochastic equicontinuity condition in (v) can shown to hold using Theorem 1 of Andrews [1994].

Assumption C of this theorem holds, and Assumption A holds with envelopeM = jY�D�0j+ jDj sup� jj�0�

�jj for the �rst element, and 1 for the remaining elements of g (z; �). E jY j2+� <1 for some � > 0 implies

that E
��M ��2+� <1 for some � > 0, and therefore Assumption B holds as well.

From Theorem 7.2 of Newey and McFadden [1994], the asymptotic variance is V LB = G�1� (G0)�1

where � is the asymptotic variance of bgn (�0). After letting 
0 � (�; yp)0 and � � (p; �)0, it can be shown
that G can be written as the partitioned matrix

�
G
 G�
0 M�

�
and � can be partitioned as

�
�1 0
0 �2

�
.

The upper, left 2 � 2 block of V LB can then be shown to be equal to G�1
 �1
�
G�1


�0
+ G�1
 G�M

�1
� �2��

M�1
�

�0
G0�
�
G�1


�0. The �rst term contains the variance of the trimmed mean, if the trimming proportion
p0 is known. The second term captures the variance due to the estimation of the trimming proportion.

Consider the �rst term. After computing g0 (�), G
 can be shown to equal

E [SD]

�
� (1� p0) (yp0 � �0) f (yp0)

0 �f (yp0)

�
;

where f (�) is the density of Y conditional on D = 1; S = 1. �1 is equal to� R y1�p0
�1 (y � �0)2 f (y) dy � E [SD] 0

0 p0 (1� p0)E [SD]

�
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It follows that the upper left element of G�1
 �1
�
G�1


�0 is
1

E [SD] (1� p0)

n
V ar [Y jD = 1; S = 1; Y � y1�p0 ] + (y1�p0 � �0)2 p0

o
as stated in Equation (7).

Consider the second term. Direct calculation of G�,M�, and �2 yield

G� = E [SD]

�
0 0
�1 0

�
,M� =

� �E [D]�0 1
(1�p0)2

�E [D] 1
1�p0

0 � (1� E [D])

�
�2 =

 
�0
1�p0

�
1� �0

1�p0

�
E [D] 0

0 �0 (1� �0) (1� E [D])

!
After simplifying terms, it follows that the upper left element of G�1
 G�M

�1
� �2

�
M�1
�

�0
G0�
�
G�1


�0 is
equal to

(yp0 � �0)2
�
(1� �0)� p0 (1� E [D])
E [D]�0 (1� E [D])

�
as stated in Equation (7). Q.E.D.

31



References

Ahn, Hyungtaik and James Powell, �Semiparametric Estimation of Censored Selection Models with a Non-
parametric Selection Mechanism,� Journal of Econometrics, LVIII (1993), 3�29.

Andrews, D. and M. Schafgans, �Semiparametric Estimation of the Intercept of a Sample Selection Model,�
Review of Economic Studies, LXV (1998), 497�517.

Andrews, Donald W. K., �Empirical Process Methods in Econometrics,� in Robert F. Engle and Daniel L.
McFadden, eds., Handbook of Eonometrics, Vol. 4 (Amsterdam: North Holland, 1994).

Angrist, Joshua, �Conditional Independence in Sample Selection Models,� Economics Letters, LIV
(1997), 103�112.
, Guido Imbens, and D. Rubin, �Identi�cation of Causal Effects Using Instrumental Variables,� Jour-
nal of the American Statistical Association, XCI (1996), 444�455.

Balke, A. and J. Pearl, �Bounds on Treatment Effects from Studies With Imperfect Compliance,� Journal
of the American Statistical Association, XCII (1997), 1171�1177.

Barnow, B., �The impact of CETA on the post-program earnings of participants,� Journal of Human
Resources, XXII (1987), 157�193.

Bloom, H., �Accounting for No-Shows in Experimental Evaluation Designs,� Evaluation Review, VIII
(1984), 225�246.

Burghardt, John, Peter Z. Schochet, Sheena McConnell, Terry Johnson, R. Mark Gritz, Steven Glazerman,
John Homrighausen, and Russell Jackson, �Does Job Corps Work? Summary of the National Job
Corps Study,� Report, Washington, DC, Mathematica Policy Research, Inc., 2001.

Card, David, �The Causal Effect of Education on Earnings,� in Orley Ashenfelter and David Card, eds.,
Handbook of Labor Economics, Vol. 3A (Amsterdam: North Holland, 1999).

Chamberlain, Gary, �Quantile Regression, Censoring, and the Structure of Wages,� in C. A. Sims, ed.,
Advances in Econometrics, Sixth World Congress, Vol. 1 (Cambridge: Cambridge University Press,
1994).

Das, Mitali, Whitney K. Newey, and Francis Vella, �Nonparametric Estimation of Sample Selection Mod-
els,� Review of Economic Studies, LXX (2003), 33�58.

Heckman, James and R. Robb, �Alternative methods for solving the problem of selection bias in evaluating
the impact of treatments on outcomes,� in H. Wainer, ed., Drawing inferences from self-selected
samples, (New York, NY: Springer, 1986).

Heckman, James J., �Shadow Prices, Market Wages, and Labor Supply,� Econometrica, XLII (1974),
679�694.
, �Sample Selection Bias as a Speci�cation Error,� Econometrica, XLVII (1979), 153�161.
, �Varieties of Selection Bias,� American Economic Review, LXXX (1990), 313�318.
and Edward Vytlacil, �Local Instrumental Variables and Semiparametric Estimation and Latent Vari-
able Models for Identifying and Bounding Treatment Effects,� Proceedings of the National Academy
of Sciences, XCVI (1999), 4730�4734.
and , �Instrumental Variables, Selection Models, and Tight Bounds on the Average Treatment
Effect,� Technical Working Paper 259, National Bureau of Economic Research, 2000.
and , �Local Instrumental Variables,� Technical Working Paper 252, National Bureau of Eco-
nomic Research, 2000.
, Robert J. LaLonde, and James A. Smith, �The Economics and Econometrics of Active Labor Market
Programs,� in Orley Ashenfelter and David Card, eds., Handbook of Labor Economics, Vol. 3A
(Amsterdam: North Holland, 1999).

Hollister, R., P. Kemper, and R. Maynard, The National Supported Work Demonstration (Madison, WI:

32



University of Wisconsin Press, 1984).
Horowitz, Joel L. and Charles F. Manski, �Identi�cation and Robustness with Contaminated and Corrupted

Data,� Econometrica, LXIII (1995), 281�302.
and , �Nonparametric Analysis of Randomized Experiments with Missing Covariate and Out-
come Data,� Journal of the American Statistical Association, XCV (2000), 77�84.
and , �Rejoinder: Nonparametric Analysis of Randomized Experiments with Missing Covariate
and Outcome Data,� Journal of the American Statistical Association, XCV (2000), 87.

Imbens, Guido and Joshua Angrist, �Identi�cation and Estimation of Local Average Treatment Effects,�
Econometrica, LXII (1994), 467�476.

Imbens, GuidoW. and Charles F. Manski, �Con�dence Intervals for Partially Identi�ed Parameters,� Econo-
metrica, LXXII (2004), 1845�1857.

Kiefer, N., The economic bene�ts of four employment and training programs (New York, NY: Garland
Publishing, 1979).

Krueger, Alan B. and Diane M. Whitmore, �The Effect of Attending a Small Class in the Early Grades
on College-Test Taking and Middle School Test Results: Eviddence from Project STAR,� Economic
Journal, CXI (2001), 1�28.

Lee, David S., �Trimming for Bounds on Treatment Effects with Missing Outcomes,� Center for Labor
Economics Working Paper 38, Berkeley, University of California, 2002.

Martin, John P., �What works among Active Labour Market Policies: Evidence from OECD Countries'
Experiences,� OECD Economic Studies, XXX (2000), 79�113.

Newey, Whitney K. and Daniel McFadden, �Large Sample Estimation and Hypothesis Testing,� in Robert F.
Engle and Daniel L. McFadden, eds., Handbook of Eonometrics, Vol. 4 (Amsterdam: North Holland,
1994).

Robins, J., �The Analysis of Randomized and Non-Randomized AIDS Treatment Trials Using a New Ap-
proach to Causal Inference in Longitudinal Studies,� in L. Sechrest, H. Freeman, and A. Mulley, eds.,
Health Service Research Methodology: A Focus on AIDS, (Washington, DC: U.S. Public Health Ser-
vice, 1989).

Rubin, D., �Inference and Missing Data,� Biometrika, LXIII (1976), 581�592.
Schochet, Peter Z., Jeanne Bellotti Ruo-Jiao Cao, Steven Glazerman, April Grady, Mark Gritz, Sheena

McConnell, Terry Johnson, and John Burghardt, �National Job Corps Study: Data Documentation and
Public Use Files, Volume I,� Documentation, Washington, DC, Mathematica Policy Research, Inc.,
2003.
, John Burghardt, and Steven Glazerman, �National Job Corps Study: The Impacts of Job Corps
on Participants' Employment and Related Outcomes,� Report, Washington, DC, Mathematica Policy
Research, Inc., 2001.

Stigler, Stephen M., �The Asymptotic Distribution of the Trimmed Mean,� Annals of Statistics, I (1973),
472�477.

U.S. Department of Labor, �Summary of Budget Authority, Fiscal Years 2004-2005,� Table, Employment
and Training Administration, 2005.
, �What is Job Corps?,� Web Page, Employment and Training Administration, 2005. <http://jobcorps.
doleta.gov/about.cfm>.

Vytlacil, Edward, �Independence, Monotonicity, and Latent IndexModels: An Equivalence Result,� Econo-
metrica, LXX (2002), 331�341.

33



Figure I: Impact of Job Corps on Weekly Earnings 
 

 
Figure II: Impact of Job Corps on Employment Rates 
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Figure III: Differences in Log(Hourly Wage), Conditional on Employment 
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Table I: Summary Statistics, by Treatment Status, National Job Corps Study

Control Program Difference
Variable Prop. Non- Mean Std. Dev. Prop. Non- Mean Std. Dev. Diff. Std. Err.

Missing Missing

Female 1.00 0.458 0.498 1.00 0.452 0.498 -0.006 0.011
Age at Baseline 1.00 18.351 2.101 1.00 18.436 2.159 0.085 0.045
White, Non-Hispanic 1.00 0.263 0.440 1.00 0.266 0.442 0.002 0.009
Black, Non-Hispanic 1.00 0.491 0.500 1.00 0.493 0.500 0.003 0.011
Hispanic 1.00 0.172 0.377 1.00 0.169 0.375 -0.003 0.008
Other Race/Ethnicity 1.00 0.074 0.262 1.00 0.072 0.258 -0.002 0.006
Never married 0.98 0.916 0.278 0.98 0.917 0.275 0.002 0.006
Married 0.98 0.023 0.150 0.98 0.020 0.139 -0.003 0.003
Living together 0.98 0.040 0.197 0.98 0.039 0.193 -0.002 0.004
Separated 0.98 0.021 0.144 0.98 0.024 0.154 0.003 0.003
Has Child 0.99 0.193 0.395 0.99 0.189 0.392 -0.004 0.008
Number of children 0.99 0.268 0.640 0.99 0.270 0.650 0.002 0.014

Education 0.98 10.105 1.540 0.98 10.114 1.562 0.009 0.033
Mother's Educ. 0.81 11.461 2.589 0.82 11.483 2.562 0.022 0.061
Father's Educ. 0.61 11.540 2.789 0.62 11.394 2.853 -0.146 0.077
Ever Arrested 0.98 0.249 0.432 0.98 0.249 0.432 -0.001 0.009

Household Inc: <3000 0.65 0.251 0.434 0.63 0.253 0.435 0.002 0.012
3000-6000 0.65 0.208 0.406 0.63 0.206 0.405 -0.002 0.011
6000-9000 0.65 0.114 0.317 0.63 0.117 0.321 0.003 0.008

9000-18000 0.65 0.245 0.430 0.63 0.245 0.430 0.000 0.011
>18000 0.65 0.182 0.386 0.63 0.179 0.383 -0.003 0.010

Personal Inc: <3000 0.92 0.789 0.408 0.92 0.789 0.408 -0.001 0.009
3000-6000 0.92 0.131 0.337 0.92 0.127 0.334 -0.003 0.007
6000-9000 0.92 0.046 0.209 0.92 0.053 0.223 0.007 0.005

>9000 0.92 0.034 0.181 0.92 0.031 0.174 -0.003 0.004
At Baseline: 

Have Job 0.98 0.192 0.394 0.98 0.198 0.398 0.006 0.009
Mos. Empl. Prev. Yr. 1.00 3.530 4.238 1.00 3.596 4.249 0.066 0.091

Had Job, Prev. Yr. 0.98 0.627 0.484 0.98 0.635 0.482 0.007 0.010
Earnings, Prev. Yr. 0.93 2810.482 4435.616 0.94 2906.453 6401.328 95.971 117.097
Usual Hours/Week 1.00 20.908 20.704 1.00 21.816 21.046 0.908 * 0.446

Usual Wkly Earnings 1.00 102.894 116.465 1.00 110.993 350.613 8.099 5.093

After Random Assignment:
Week 52 Wkly Hours 1.00 17.784 23.392 1.00 15.297 22.680 -2.487 * 0.495
Week 104 Wkly Hours 1.00 21.977 26.080 1.00 22.645 26.252 0.668 0.560
Week 156 Wkly Hours 1.00 23.881 26.151 1.00 25.879 26.574 1.997 * 0.563
Week 208 Wkly Hours 1.00 25.833 26.250 1.00 27.786 25.745 1.953 * 0.558
Week 52 Wkly. Earn. 1.00 103.801 159.893 1.00 91.552 149.282 -12.249 * 3.335
Week 104 Wkly Earn. 1.00 150.407 210.241 1.00 157.423 200.266 7.015 4.417
Week 156 Wkly Earn. 1.00 180.875 224.426 1.00 203.714 239.802 22.839 * 4.936
Week 208 Wkly Earn. 1.00 200.500 230.661 1.00 227.912 250.222 27.412 * 5.106
Total Earn. (4 years) 1.00 30007 26894 1.00 30800 26437 794 572

Number of Obs 3599 5546
Note: N=9145. * denotes difference is statistically significant from 0 at the 5 percent (or less) level. Computations use design weights.
Chi-square test of all coefficients equalling zero, from a logit of the treatment indicator on all baseline characteristics (where mean
values were imputed for missing values) yields 24.95; associated p-value from a chi-squared (27 dof) distribution is 0.577.



Table II: Logit of Employment in Week 208 on Baseline Characteristics

Variable Estimate Variable Estimate

Treatment Status 0.172 * Household Inc:
(0.046) 3000-6000 0.033

Female -0.253 * (0.085)
(0.051) 6000-9000 0.213 *

Age at Baseline 0.027 (0.104)
(0.014) 9000-18000 0.149

Black, Non-Hispanic -0.471 * (0.086)
(0.060) >18000 0.103

Hispanic -0.225 * (0.095)
(0.077) Personal Inc:

Other Race/Ethnicity -0.412 * 3000-6000 0.105
(0.099) (0.080)

Married -0.193 6000-9000 0.180
(0.175) (0.127)

Living together 0.106 >9000 0.197
(0.130) (0.162)

Separated -0.261 At Baseline:
(0.165) Have Job 0.218 *

Has Child 0.121 (0.071)
(0.114) Mos. Empl. Prev. Yr. 0.049 *

Number of children -0.031 (0.011)
(0.070) Had Job, Prev. Yr. 0.306 *

Education 0.104 * (0.091)
(0.019) Earnings, Prev. Yr.  (*10000) 0.012

Mother's Educ. 0.007 (0.120)
(0.012) Usual Hours/Week (*10000) -26.580

Father's Educ. -0.006 (19.508)
(0.012) Usual Wkly Earnings (*10000) 0.845

Ever Arrested -0.223 * (1.990)
(0.055) Constant -1.288 *

(0.285)

Note: N=9415. Robust standard errors in parentheses. Table reports are (log-odds) coefficients
from a logit of employment (positive hours) in week 208 on treatment status and baseline
characteristics. * denotes statistically significance at the 0.05 (or less).



Table III: Bounds on Treatment Effects for Week 208 ln(wage) 
Utilizing Bounds of Support (Horowitz and Manski)

(i) Control Group Observations 3599
(ii) Employment Rate 0.566
(iii) Mean log(wage) 1.997
(iv) Upper Bound 2.332
(v) Lower Bound 1.520

(vi) Treatment Group Observations 5546
(vii) Employment Rate 0.607
(viii) Mean log(wage) 2.031
(ix) Upper Bound 2.321
(x) Lower Bound 1.586

(xi) Difference Upper Bound: (ix) - (v) 0.802
(xii) Lower Bound: (x) - (iv) -0.746

Note: .90 and 2.77 are the lower and upper bounds of the support of ln(hourly wage)
in Week 208 after random assignment. (iv) = (ii)*(iii) + [1-(ii)]*2.77. (v) = (ii)*(iii) +
[1-(ii)]*(.90). Rows (ix) and (x) are defined analogously. 



Table IV: Bounds on Treatment Effects for ln(wage) in Week 208 using Trimming Procedure

Control (i) Number of Observations 3599 Control Standard Error
(ii) Proportion Non-missing 0.566 Std. Error 0.0082
(iii) Mean ln(wage) for employed 1.997

Treatment UB Standard Error
Treatment (iv) Number of Observations 5546 Component 1 0.0053

(v) Proportion Non-missing 0.607 Component 2 0.0021
(vi) Mean ln(wage) for employed 2.031 Component 3 0.0072

Total 0.0092
p = [(v)-(ii)]/(v) 0.068

(vii) pth quantile 1.636 Treatment LB Standard Error
(viii)Trimmed Mean: E[Y|Y>yp] 2.090 Component 1 0.0058

Component 2 0.0037
(ix) (1-p)th quantile 2.768 Component 3 0.0125
(x) Trimmed Mean: E[Y|Y<y1-p] 1.978 Total 0.0143

Effect
Effect (xi) Upper Bound Estimate = (8)-(3) 0.093 (xiii) UB Std.Err. 0.0123

(xii) Lower Bound Estimate = (10)-(3) -0.019 (xiv) LB Std.Err. 0.0165

Confidence Interval 1 = [(xii)-1.96*(xiv),(xi)+1.96*(xiii)] [-0.052,0.117]
Confidence Interval 2 (Imbens and Manski) = [(xii)-1.645*(xiv),(xi)+1.645*(xiii)] [-0.046,0.113]

Note: After trimming, there are 3148 (3142) observations remaining in the treatment group after trimming the
lower p (upper 1-p) of the distribution. These numbers are not indentical due to using the design weights. For the
Upper Bound Standard Error, Component 1 is the usual standard error of the mean, using the trimmed sample.

Component 2 is the square root of p*(1/3148)*{(viii)-(vii)}2. Component 3 is the square root of {(1-(v))/(1-.491)-

p}*{1/((v)*5546)}*{(viii)-(vii)}2 where 0.491 is the (weighted) proportion of the entire sample that is in the
treatment group. "Total" refers to the square root of the sum the squared components. The entries for the Treatment
LB Standard Error are defined analogously. (xiii) and (xiv) are the square root of the sum of the squared standard
errors for the treatment UB (or LB) and control group. For the Imbens and Manski confidence interval 1.645
satisifies Φ(1.645+((xi)-(xii))/(max((xiii),(xiv))) - Φ(-1.645) = 0.95, where Φ is the standard normal cdf. See
Imbens and Manski (2004) for details.



Table V: Bounds on Treatment Effects for ln(wage) in Week 208
Trimming Procedure using Baseline Covariates

Lower Bound for Treatment Mean Upper Bound for Treatment Mean

Group Estimate Std. Error Obs. Estimate Std. Error Obs.
1 1.814 0.022 463 1.994 0.020 468
2 1.960 0.036 583 1.984 0.047 584
3 1.941 0.021 629 2.059 0.020 631
4 2.030 0.026 707 2.120 0.019 711
5 2.111 0.023 755 2.204 0.020 758

Total 1.987 0.012 3137 2.084 0.012 3152

Effect Lower Bound for Effect Upper Bound for Effect

-0.0103 0.0145 0.0871 0.0145

Note: Trimming procedure from Table III applied separately to each Group (defined in text). "Total"
estimates are means of the 5 groups using the observations as weights. Asymptotic variance for "Total"
is computed according to Chamberlain (1993): it is the (observation-weighted) average of the
asymptotic variance for each group plus the (observation-weighted) average squared deviation of each
group's estimate from the "Total" mean. Control mean, (iii) in Table IV, is then subtracted to obtain
bounds on the treatment effect.



Table VI: Treatment Effect Estimates and Bounds, by Week

Fraction Non-missing Effect
Trimming Untrimmed Lower Upper

Control Treatment Proportion Bound Bound

Week 45 0.4223 0.3424 0.1892 0.022 -0.074 0.127
(0.0242) (0.011) (0.014) (0.015)

Week 90 0.4600 0.4601 0.0003 0.043 0.042 0.043
(0.0204) (0.011) (0.021) (0.023)

Week 135 0.5173 0.5451 0.0509 0.028 -0.016 0.076
(0.0168) (0.011) (0.019) (0.014)

Week 180 0.5403 0.5825 0.0724 0.026 -0.033 0.087
(0.0154) (0.011) (0.017) (0.013)

Note: (N=9145 for each row). Standard errors in parentheses. Standard errors for Trimming Proportion
computed by the delta method. Bounds computed according to Table IV. See text for details.



Appendix Table I: Summary Statistics, by Treatment Status, National Job Corps Study
Conditional on Positive Earnings in Week 90

Control Program Difference
Variable Prop. Non- Mean Prop. Non- Mean Diff. Std. Err.

Missing Missing

Female 1.00 0.429 1.00 0.419 -0.009 0.016
Age at Baseline 1.00 18.691 1.00 18.729 0.038 0.068
White, Non-Hispanic 1.00 0.310 1.00 0.328 0.018 0.015
Black, Non-Hispanic 1.00 0.447 1.00 0.443 -0.004 0.016
Hispanic 1.00 0.171 1.00 0.167 -0.004 0.012
Other Race/Ethnicity 1.00 0.072 1.00 0.063 -0.009 0.008
Never married 0.99 0.909 0.99 0.909 0.000 0.009
Married 0.99 0.030 0.99 0.023 -0.007 0.005
Living together 0.99 0.039 0.99 0.045 0.006 0.006
Separated 0.99 0.022 0.99 0.022 0.001 0.005
Has Child 0.99 0.188 1.00 0.178 -0.009 0.012
Number of children 0.99 0.247 0.99 0.241 -0.007 0.019

 
Education 0.99 10.381 0.98 10.371 -0.010 0.050
Mother's Educ. 0.83 11.506 0.84 11.579 0.072 0.090
Father's Educ. 0.66 11.644 0.67 11.458 -0.186 0.111
Ever Arrested 0.99 0.238 0.99 0.232 -0.006 0.013

Household Inc: <3000 0.68 0.188 0.66 0.202 0.014 0.015
3000-6000 0.68 0.188 0.66 0.182 -0.006 0.015
6000-9000 0.68 0.116 0.66 0.119 0.003 0.012

9000-18000 0.68 0.289 0.66 0.270 -0.019 0.017
>18000 0.68 0.219 0.66 0.227 0.008 0.016

Personal Inc: <3000 0.95 0.726 0.93 0.732 0.005 0.014
3000-6000 0.95 0.164 0.93 0.154 -0.010 0.012
6000-9000 0.95 0.065 0.93 0.068 0.003 0.008

>9000 0.95 0.045 0.93 0.047 0.002 0.007
At Baseline: 

Have Job 0.98 0.251 0.98 0.254 0.002 0.014
Mos. Empl. Prev. Yr. 1.00 4.572 1.00 4.558 -0.013 0.143

Had Job, Prev. Yr. 0.99 0.725 0.99 0.727 0.002 0.014
Earnings, Prev. Yr. 0.94 3783.940 0.94 3699.524 -84.416 159.333
Usual Hours/Week 1.00 24.600 1.00 25.165 0.565 0.642

Usual Wkly Earnings 1.00 125.147 1.00 126.297 1.150 3.838

After Random Assignment:
Week 90 ln(wage) 1.00 1.827 1.00 1.870 0.043 * 0.011

Number of Obs 1660 2564

Note: N=4224. * denotes difference is statistically significant from 0 at the 5 percent level. Computations use design
weights. Chi-square test of all coefficients equalling zero, from a logit of the treatment indicator on all baseline
characteristics (where mean values were imputed for missing values) yields 19.50; associated p-value from a chi-
squared (27 dof) distribution is 0.851.




