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ABSTRACT

Empirical evidence suggests that excess bond returns are forecastable by financial indicators such

as forward spreads and yield spreads, a violation of the expectations hypothesis based on constant

risk premia. But existing evidence does not tie the forecastable variation in excess bond returns to

underlying macroeconomic fundamentals, as would be expected if the forecastability were

attributable to time variation in risk premia. We use the methodology of dynamic factor analysis for

large datasets to investigate possible empirical linkages between forecastable variation in excess

bond returns and macroeconomic fundamentals. We find that several common factors estimated from

a large dataset on U.S. economic activity have important forecasting power for future excess returns

on U.S. government bonds. Following Cochrane and Piazzesi (2005), we also construct single

predictor state variables by forming linear combinations of either five or six estimated common

factors. The single state variables forecast excess bond returns at maturities from two to five years,

and do so virtually as well as an unrestricted regression model that includes each common factor as

a separate predictor variable. The linear combinations we form are driven by both "real" and

"inflation" macro factors, in addition to financial factors, and contain important information about

one year ahead excess bond returns that is not captured by forward spreads, yield spreads, or the

principal components of the yield covariance matrix.
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1 Introduction

Recent empirical research has uncovered signi�cant forecastable variation in the excess re-

turns of U.S. government bonds. Cochrane and Piazzesi (2005), building o¤ of earlier work

by Fama and Bliss (1987) and Campbell and Shiller (1991), �nd that a linear combination

of �ve forward spreads explains between 30 and 35 percent of the variation in next year�s

excess returns on bonds with maturities ranging from two to �ve years. Fama and Bliss

(1987) report that n-year excess bond returns are forecastable by the spread between the

n-year forward rate and the one-year yield. Campbell and Shiller (1991) �nd that excess

bond returns are forecastable by Treasury yield spreads.

Forecastable variation in excess bond returns is a violation of the expectations hypothesis,

which presumes that risk premia are constant. As a consequence, forecastability of excess

bond returns is often interpreted as evidence of time-varying risk premia, implicitly driven by

rational variation in risk or risk-aversion. But economic theories that deliver such rational

variation almost always posit that risk premia vary with macroeconomic variables. For

example, Campbell and Cochrane (1999) posit that risk premia vary with a slow-moving

habit driven by shocks to aggregate consumption. Brandt and Wang (2003) argue that

risk premia are driven by shocks to in�ation, as well as shocks to aggregate consumption.

The empirical evidence cited above, by contrast, �nds that risk premia �uctuate not with

macroeconomic variables such as aggregate consumption or in�ation, but rather with pure

�nancial indicators such as forward spreads and yield spreads. At the same time, common

variation in excess returns that is entirely unrelated to aggregate quantities is sometimes

interpreted as evidence of irrational investor sentiment rather than rational variation in risk

premia (e.g., Campbell, Polk, and Voulteenaho (2005)).

These considerations suggest that if rational variation in risk premia exists, it should be

evident from forecasting regressions of excess bond returns on macroeconomic fundamen-

tals. As yet, however, there is little evidence that macroeconomic variables forecast bond

returns. Unfortunately, there are several reasons why a judicious, theory-guided empirical

investigation using a few macroeconomic series may fail to uncover the predictable dynamics

of �nancial market returns. First, some driving variables may be latent and impossible to

summarize with a few observable series. The Campbell-Cochrane habit may fall into this

category. Second, macro variables are more likely than �nancial series to be imperfectly

measured and less likely to correspond to the precise economic concepts provided by theo-

retical models. As one example, aggregate consumption is often measured as nondurables
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and services expenditure, but this measure omits an important component of theoretical con-

sumption, namely the service �ow from the stock of durables. Third, the models themselves

are imperfect descriptions of reality and may restrict attention to a small set of variables

that fail to span the information sets of �nancial market participants.

This paper considers one way around these di¢ culties using the methodology of dynamic

factor analysis for large datasets. Recent research on dynamic factor analysis �nds that

the information in a large number of economic time series can be e¤ectively summarized

by a relatively small number of estimated factors, a¤ording the opportunity to exploit a

much richer information base than what has been possible in prior empirical study of bond

risk premia. In this methodology, �a large number�can mean hundreds or, perhaps, even

more than one thousand economic time series. By summarizing the information from a large

number of series in a few estimated factors, we eliminate the arbitrary reliance on a small

number of imperfectly measured indicators to proxy for macroeconomic fundamentals, and

make feasible the use of a vast set of economic variables that are more likely to span the

unobservable information sets of �nancial market participants. We use this methodology to

investigate possible empirical linkages between predictable variation in excess bond returns

and macroeconomic fundamentals.

Our results indicate bond premia are indeed forecastable by macroeconomic fundamen-

tals, as well as by �nancial indicators. To implement the dynamic factor analysis methodol-

ogy, we estimate common factors from a monthly panel of 132 measures of economic activity

using the method of principal components. We �nd that several estimated common fac-

tors have important forecasting power for future excess returns on U.S. government bonds.

Following Cochrane and Piazzesi (2005), we also construct single predictor state variables

from these factors by forming linear combinations of the either �ve or six estimated common

factors (denoted F5t and F6t, respectively). We �nd that such state variables forecast excess

bond returns at all maturities (two to �ve years), and do so virtually as well as a regression

model that includes each common factor in the linear combination as a separate predictor

variable.

The estimated factors have their strongest predictive power for two-year bonds, explaining

up to 26 percent of the one year ahead variation in their excess returns. But they also

display strong forecasting power for excess returns on three-, four-, and �ve-year government

bonds. The magnitude of the predictability we uncover is less than that found by Cochrane

and Piazzesi (their single factor, which we denote CPt, explains 31 percent of next year�s

variation in the two-year bond), but is typically more than that found by Fama and Bliss
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(1987) and Campbell and Shiller (1991). We also �nd that our estimated factors have strong

out-of-sample forecasting power for excess bond returns of all maturities. The out-of-sample

predictive power is stable over time and strongly statistically signi�cant. Finally, the factors

continue to exhibit signi�cant predictive power for excess bond returns even when the small

sample properties of the data are taken into account.

Of all the estimated factors we study, the single most important in the linear combinations

we form is the �rst common factor from the panel of economic activity. The cubic in this

factor also displays predictive power for excess bond returns. This factor is a �real�factor,

since it is highly correlated with measures of real output and employment but not highly

correlated with prices or �nancial variables. The third and fourth estimated factors, by

contrast, are highly correlated with measures of in�ation. Thus, the real and �in�ation�

factors found in aggregate economic activity are also important factors in the time variation

of expected excess bond returns. We discuss the interpretation of the factors further below.

The estimated factors we study are not pure macro variables, since the panel of economic

indicators from which they are estimated contain �nancial variables as well as macro vari-

ables.1 This is important because neither theory nor empirical evidence would suggest that

macroeconomic variables contain information that is orthogonal to that contained in �nan-

cial indicators.2 Thus, the key empirical question we seek to address is not whether macro

variables uncover entirely new predictable dynamics not revealed by �nancial indicators, but

rather whether there is any evidence that bond risk premia vary with macroeconomic funda-

mentals. As it turns out, we �nd that much of the information contained in the factors that

load heavily on the �nancial variables is already captured by the Cochrane-Piazzesi factor.

This is especially true of the second estimated factor, which loads heavily on interest rate

spreads. An exception is the eighth factor, which is highly correlated with the stock mar-

ket. Nevertheless, we �nd that much of the information contained in our estimated factors

is independent of that contained in the Cochrane-Piazzesi factor. As a consequence, when

both CPt and either F5t or F6t are included together as predictor variables, the regression

model can explain as much as 44 percent of next year�s two-year excess bond return. This is

an improvement of 13 percent over what is possible using CPt alone, and an improvement of

18 percent over what is possible using F5t alone. The results for bonds of other maturities

are similar.
1Nevertheless, in the interest of brevity, and with slight abuse of terminology, we hereafter refer to the

estimated factors from our panel of economic activity simply as �macro factors.�
2For example, the monetary policy literature emphasizes both empirical and theoretical linkages between

bond yields and contemporaneous measures of output and in�ation.
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The rest of this paper is organized as follows. In the next section we brie�y review related

literature not discussed above. Section 3 lays out the econometric framework and discusses

the use of principal components analysis to estimate common factors. Section 4 explains the

empirical implementation and describes the data. We move on in Section 5 to present our

empirical �ndings, including the results of one year ahead predictive regressions for excess

bond returns. Two additional analyses are performed as robustness checks: out-of-sample

investigations, and small-sample inference. Section 6 concludes.

2 Related Literature

Our use of dynamic factor analysis is an application of statistical procedures developed

elsewhere for the case where both the number of economic time series used to construct

common factors, N , and the number of time periods, T , are large and converge to in�nity

(Stock and Watson (2002b); Stock and Watson (2002a); Bai and Ng (2002); Bai and Ng

(2005)). Dynamic factor analysis with large N and large T is preceded by a literature

studying classical factor analysis for the case where N is relatively small and �xed but

T !1. See for example, Sargent and Sims (1977); Sargent (1989), and Stock and Watson
(1989, 1991). By contrast, Connor and Korajczyk (1986, 1988) pioneered techniques for

undertaking dynamic factor analysis when T is �xed and N !1.
The presumption of the dynamic factor model is that the covariation among economic

time series is captured by a few unobserved common factors. Stock and Watson (2002b)

show that consistent estimates of the space spanned by the common factors may be con-

structed by principal components analysis. Bai and Ng (2005) show that if
p
T=N ! 0,

the least squares estimates from factor-augmented forecasting regressions are
p
T consistent

and asymptotically normal, and that pre-estimation of the factors does not a¤ect the consis-

tency of the second-stage parameter estimates or the regression standard errors. A large and

growing body of literature has applied dynamic factor analysis in a variety of empirical set-

tings. Stock and Watson (2002b) and Stock and Watson (2004) �nd that predictions of real

economic activity and in�ation are greatly improved relative to low-dimensional forecasting

regressions when the forecasts are based on the estimated factors of large datasets. An added

bene�t of this approach is that the use of common factors can provide robustness against the

structural instability that plagues low-dimensional forecasting regressions (Stock and Wat-

son (2002a)). The reason is that such instabilities may �average out�in the construction of

common factors if the instability is su¢ ciently dissimilar from one series to the next. Several

authors have combined dynamic factor analysis with a vector autoregressive framework to
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study the macroeconomic e¤ects of policy interventions or patterns of comovement in eco-

nomic activity (Bernanke and Boivin (2003); Bernanke, Boivin, and Eliasz (2005), Giannone,

Reichlin and Sala (2004, 2005); Stock and Watson (2005) ). Boivin and Giannoni (2005) use

dynamic factor analysis of large datasets to form empirical inputs into dynamic stochastic

general equilibrium models. Ludvigson and Ng (2005) use dynamic factor analysis to model

the conditional mean and conditional volatility of excess stock market returns.

Our work is also related to research in asset pricing that looks for connections between

bond prices and macroeconomic fundamentals. In data spanning the period 1988-2003,

Piazzesi and Swanson (2004) �nd that the growth of nonfarm payroll employment is a strong

predictor of excess returns on federal funds futures contracts. Ang and Piazzesi (2003)

investigate possible empirical linkages between macroeconomic variables and bond prices in

a no-arbitrage factor model of the term structure of interest rates. Building o¤ of earlier

work by Du¤ee (2002) and Dai and Singleton (2002), Ang and Piazzesi study a bond pricing

model that allows for time-varying risk premia, consistent with the evidence cited above that

excess bond returns are forecastable by forward and yield spreads. But unlike the earlier

work, the Ang-Piazzesi pricing kernel is driven by shocks to both observed macro variables

and unobserved yield factors; they �nd empirical support for this model. The investigation

of this paper di¤ers in two important respects from that of Ang and Piazzesi. First, we form

macro factors from a large set of 132 economic indicators, whereas they study (summary

factors from) a small set of macro variables comprised of three in�ation measures and four

measures of real activity. Second, Ang and Piazzesi focus on yield spread variation and

forecasting, whereas we focus on variation in expected excess returns. This latter distinction

is important because, as Cochrane and Piazzesi (2005) point out, variables that are relevant

for explaining �uctuations in yields may be relatively unimportant for explaining �uctuations

in expected excess returns, and vice versa. Of course, yields and excess returns are di¤erent

transformations of the same underlying bond price data, thus we view our investigation as

complimentary to that of Ang and Piazzesi.

3 Econometric Framework

In this section we describe our econometric framework, which involves estimating common

factors from a large dataset of economic activity. Such estimation is carried out using prin-

cipal components analysis, a procedure that has been described and implemented elsewhere

for forecasting measures of macroeconomic activity and in�ation (e.g., Stock and Watson

(2002b), Stock and Watson (2002a), Stock and Watson (2004)). Our notation for excess
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bond returns and yields closely follows that in Cochrane (2005). We refer the reader to

those papers for a detailed description of this procedure; here we only outline how the im-

plementation relates to our application.

The goal of our econometric application is to assess whether forecastable variation in

excess bond returns is related to macroeconomic fundamentals. For t = 1; : : : T , let rx(n)t+1
denote the continuously compounded (log) excess return on an n-year discount bond in

period t + 1. Excess returns are de�ned rx(n)t+1 � r
(n)
t+1 � y

(1)
t , where r

(n)
t+1 is the log holding

period return from buying an n-year bond at time t and selling it as an n � 1 year bond
at time t + 1, and y(1)t is the log yield on the one-year bond. Cochrane and Piazzesi (2005)

forecast excess bond returns with a linear combination of y(1)t and four forward rates, denoted

g
(2)
t ; g

(3)
t ; :::; g

(5)
t .

3

A standard approach to assessing whether excess bond returns are predictable is to select

a set of K predetermined conditioning variables at time t, given by the K� 1 vector Zt, and
then estimate

rx
(n)
t+1 = �

0Zt + �t+1 (1)

by least squares. For example, Zt could include the individual forward rates studied in

Fama and Bliss (1987), the single forward factor studied in Cochrane and Piazzesi (2005),

or other predictor variables based on a few macroeconomic series. For reasons discussed

above, however, such a procedure may be restrictive, especially when investigating potential

links between bond premia and macroeconomic fundamentals. In particular, suppose we

observe a T � N panel of macroeconomic data with elements xit; i = 1; : : : N , t = 1; :::; T ,

where the cross-sectional dimension, N , is large, and possibly larger than the number of

time periods, T . With standard econometric tools, it is not obvious how a researcher could

use the information contained in the panel because, unless we have a way of ordering the

importance of the N series in forming conditional expectations (as in an autoregression),

there are potentially 2N possible combinations to consider. Furthermore, letting xt denote

the N � 1 vector of panel observations at time t, estimates from the regression

rx
(n)
t+1 = 

0xt + �
0Zt + �t+1 (2)

quickly run into degrees-of-freedom problems as the dimension of xt increases, and estimation

is not even feasible when N +K > T .

3Let p(n)t =log price of n-year discount bond at time t. Then the log yield is y(n)t � � (1=n) p(n)t ; and the

log holding period return is r(n)tt+1 � p
(n�1)
t+1 � p(n)t : The log forward rate at time t for loans between t+ n� 1

and t+ n is g(n)t � p(n�1)t � p(n)t :
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The approach we consider is to posit that xit has a factor structure taking the form

xit = �
0
ift + eit; (3)

where ft is a r � 1 vector of latent common factors, �i is a corresponding r � 1 vector of
latent factor loadings, and eit is a vector of idiosyncratic errors.4 The crucial point here is

that r << N , so that substantial dimension reduction can be achieved by considering the

regression

rx
(n)
t+1 = �

0Ft + �
0Zt + �t+1; (4)

where Ft � ft. Equation (1) is nested within the factor-augmented regression, making (4)

a convenient framework to assess the importance of xit via Ft, even in the presence of Zt.

But the distinction between Ft and ft is important, because factors that are pervasive for

the panel of data xit need not be important for predicting rx
(n)
t+1.

As common factors are not observed, we replace ft by bft, estimates that, whenN; T !1,
span the same space as ft. (Since ft and �i cannot be separately identi�ed, the factors are

only identi�able up to an r�r matrix.) In practice, ft are estimated by principal components
analysis (PCA).5 Let the � be the N � r matrix de�ned as � � (�01; :::; �

0
N)

0
: Intuitively,

the estimated time t factors bft are linear combinations of each element of the N � 1 vector
xt = (x1t; :::; xNt)

0, where the linear combination is chosen optimally to minimize the sum of

squared residuals xt��ft. Throughout the paper, we use �hats�to denote estimated values.
To determine the composition of bFt, we form di¤erent subsets of bft, and/or functions ofbft (such as bf 21t). For each candidate set of factors, bFt, we regress rx(n)t+1 on bFt and Zt and

evaluate the corresponding BIC and �R2. Following Stock and Watson (2002b), minimizing

the BIC yields the preferred set of factors bFt. Zt contains additional (non-factor) regressors
that are thought to be related to future bond returns. For the results reported below, we set

4We consider an approximate dynamic factor structure, in which the idiosyncratic errors eit are permitted
to have a limited amount of cross-sectional correlation. The approximate factor speci�cation limits the
contribution of the idiosyncratic covariances to the total variance of x as N gets large:

N�1
NX
i=1

NX
j=1

jE (eitejt)j �M:

5To be precise, the T�r matrix bf ispT times the r eigenvectors corresponding to the r largest eigenvalues
of the T �T matrix xx0=(TN) in decreasing order. Let � be the N�r matrix of factor loadings

�
�01; :::; �

0
N

�0
:

� and f are not separately identi�able, so the normalization f 0f=T = Ir is imposed, where Ir is the r-

dimensional identity matrix. With this normalization, we can additionally obtain b� = x0 bf=T , and b�it = b�0i bft
denotes the estimated common component in series i at time t. The number of common factors, r, is
determined by the panel information criteria developed in Bai and Ng (2002).
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Zt equal to a single variable, the Cochrane-Piazzesi forward factor CPt, since this variable

subsumes the information about bond premia that is contained in the the individual forward

spreads used by Fama and Bliss (1987) and yield spreads used by Campbell and Shiller

(1991). The �nal regression model for excess returns is based on Zt plus this optimal bFt.
That is,

rx
(n)
t+1 = �

0 bFt + �0Zt + �t+1: (5)

Notice that although we have written (5) so that bFt and Zt enter as separate regressors,
there is no theoretical reason that macro factors should contain information that is entirely

orthogonal to the information in �nancial predictor variables that might be contained in

Zt. Thus, our main empirical question asks whether factors bFt have unconditional predictive
power for future returns. This amounts to asking whether the coe¢ cients � from a restricted

version of (5) given by

rx
(n)
t+1 = �

0 bFt + �t+1 (6)

are di¤erent from zero. At the same time, an interesting empirical question is whether

the information contained in macro factors bFt overlaps substantially with that contained in
�nancial predictor variables. Therefore we also evaluate regressions of the form (5), in which

Zt includes proven �nancial predictor variables. This allows us to assess whether bFt has
predictive power for excess bond returns, conditional on the information in Zt: In each case,

the null hypothesis is that excess bond returns are unpredictable.

Under the assumption that N; T !1 with
p
T=N ! 0, Bai and Ng (2005) showed that

(i) (b�; b�) obtained from least squares estimation of (5) are pT consistent and asymptotically
normal, and the asymptotic variance is such that inference can proceed as though ft is

observed, (ii) the estimated conditional mean, bF 0tb� + Z 0tb� is min[pN;pT ] consistent and
asymptotically normal, and (iii) the h period forecast error from (5) is dominated in large

samples by the variance of the error term, just as if ft is observed. The importance of a

large N must be stressed, however, as without it, the factor space cannot be consistently

estimated however large T becomes.

Although our estimates of the predictable dynamics in excess bond returns will clearly de-

pend on the extracted factors and conditioning variables we use, the combination of dynamic

factor analysis applied to very large datasets, along with a statistical criterion for choosing

parsimonious models of relevant factors and conditioning variables, makes our analysis less

dependent than previous applications on only a handful of predetermined conditioning vari-

ables. The use of dynamic factor analysis allows us to entertain a much larger set of predictor

variables than what has been entertained previously, while the BIC criterion provides a means
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of choosing among summary factors and conditioning variables by indicating whether these

variables have important additional forecasting power for excess bond returns.

4 Empirical Implementation and Data

A detailed description of the data and our sources is given in the Data Appendix. We study

monthly data spanning the period 1964:1 to 2003:12, the same sample studied by Cochrane

and Piazzesi (2005).

The bond return data are taken from the Fama-Bliss dataset available from the Center

for Research in Securities Prices (CRSP), and contain observations on one- through �ve-year

zero coupon U.S. Treasury bond prices. These are used to construct data on excess bond

returns, yields and forward rates, as described above. Annual returns are constructed by

continuously compounding monthly return observations.

We estimate factors from a balanced panel of 132 monthly economic series, each span-

ning the period 1964:1 to 2003:12. Following Stock and Watson (2002b, 2004, 2005), the

series were selected to represent broad categories of macroeconomic time series: real output

and income, employment and hours, real retail, manufacturing and trade sales, consumer

spending, housing starts, inventories and inventory sales ratios, orders and un�lled orders,

compensation and labor costs, capacity utilization measures, price indexes, interest rates and

interest rate spreads, stock market indicators and foreign exchange measures. The complete

list of series is given in the Appendix, where a coding system indicates how the data were

transformed so as to insure stationarity. All of the raw data in xt are standardized prior to

estimation.

For the speci�cations in which we include additional predictor variables in Zt; we report

results in which Zt contains the single variable CPt. We do so because the Cochrane-Piazzesi

factor summarizes virtually all the information in individual yield spreads and forward spread

that had been the focus of prior work on predictability in bond returns. We also experimented

with including the dividend yield on the Standard and Poor composite stock market index

in Zt, since Fama and French (1989) �nd that this variable has modest forecasting power for

bond returns. We do not report those results, however, since the dividend yield has little

forecasting power for future bond returns in our sample and has even less once the macro

factors bFt or the Cochrane and Piazzesi factor are included in the forecasting regression.
In estimating the time-t common factors, we face a decision over how much of the time-

series dimension of the panel to use. We take two approaches. First, we run in-sample

regressions in which the full sample of time-series information is used to estimate the common
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factors at each date t. This approach can be thought of as providing smoothed estimates of

the latent factors, ft. Smoothed estimates of the latent factors are the most e¢ cient means of

summarizing the covariation in the data x because the estimates do not discard information

in the sample. Second, we conduct an out-of-sample forecasting investigation in which the

predictor factors are reestimated recursively each period using data only up to time t. A

description of this procedure is given below.

5 Empirical Results

Table 1 presents summary statistics for our estimated factors bft: The number of factors, r, is
determined by the information criteria developed in Bai and Ng (2002). The criteria indicate

that the factor structure is well described by eight common factors. The �rst factor explains

the largest fraction of the total variation in the panel of data x, where total variation is

measured as the sum of the variances of the individual xit. The second factor explains the

largest fraction of variation in x, controlling for the �rst factor, and so on. The estimated

factors are mutually orthogonal by construction. Table 1 reports the fraction of variation

in the data explained by factors 1 to i.6 Table 1 shows that a small number of factors

account for a large fraction of the variance in the panel dataset we explore. The �rst �ve

common factors of the macro dataset account for about 40 percent of the variation in the

macroeconomic series.

To get an idea of the persistence of the estimated factors, Table 1 also displays the �rst-

order autoregressive, AR(1), coe¢ cient for each factor. None of the factors have a persistence

greater than 0.77, but there is considerable heterogeneity across estimated factors, with

coe¢ cients ranging from -0.17, to 0.77.

As mentioned, we formally choose among a range of possible speci�cations for the fore-

casting regressions of excess bond returns based on the estimated common factors (and

possibly nonlinear functions of those factors such as bf 31t) using the BIC criterion. Given

the large number of possible speci�cations, we report only the subset of those speci�cations

analyzed that have the lowest BIC criterion.7 Results not reported indicate that, when the

Cochrane-Piazzesi factor is excluded as a predictor, the six-factor subset Ft � ft given by

Ft =
�!
F6t =

� bF1t; bF 31t; bF2t; bF3t; bF4t; bF8t�0 minimizes the BIC criterion across a range of pos-
6This is given as the the sum of the �rst i largest eigenvalues of the matrix xx0 divided by the sum of all

eigenvalues.
7Speci�cations that include lagged values of the factors beyond the �rst were also examined, but additional

lags were found to contain little information for future returns that was not already contained in the one-
period lag speci�cations.
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sible speci�cations based on the �rst eight common factors of our panel dataset, as well

as nonlinear basis functions of these factors. bF 31t; above, denotes the cubic function in the
�rst estimated factor. The estimated factors bF5t and bF6t exhibit little forecasting power for
excess bond returns. When CPt is included, by contrast, the �ve-factor subset Ft � ft given
by Ft =

�!
F5t =

� bF1t; bF 31t; bF3t; bF4t; bF8t�0 minimizes the BIC criterion. As we shall see, the
second estimated factor bF2t is highly correlated with interest rates spreads. As a result, the
information it contains about future bond premia is subsumed in CPt.

The subsets Ft contain �ve or six factors. To assess whether a single linear combination

of these factors forecasts excess bond returns at all maturities, we follow Cochrane and

Piazzesi (2005) and form single predictor factors as the �tted values from a regression of

average (across maturity) excess returns on the set of six and �ve factors, respectively. We

denote these single factors F6t and F5t, respectively:

1

4

5X
n=2

rx
(n)
t+1 = 0 + 1 bF1t + 2 bF 31t + 3 bF2t + 4 bF3t + 5 bF4t + 6 bF8t + ut+1; (7)

F6t � b0�!F6t;
1

4

5X
n=2

rx
(n)
t+1 = �0 + �1 bF1t + �2 bF 31t + �3 bF3t + �4 bF4t + �5 bF8t + vt+1; (8)

F5t � b�0�!F5t;
where b and b� denote the 6� 1 and 5� 1 vectors of estimated coe¢ cients from (7) and (8),

respectively. With these factors in hand, we now turn to an empirical investigation of their

forecasting properties for excess bond returns.

5.1 In-Sample Analysis

Tables 2a-2d present results from in-sample forecasting regressions of the general form (5),

for two-year, three-, four-, and �ve-year log excess bond returns.8 In this section, we in-

vestigate the two hypotheses discussed above. First we ask whether the estimated factors

have unconditional predictive power for excess bond returns; this amounts to estimating the

restricted version of (5) given in (6), where �0 is restricted to zero. Next we ask whether

the estimated factors have predictive power for excess bond returns conditional on Zt. This

amounts to estimating the unrestriced regression (5) with �0 freely estimated. The statistical

signi�cance of the factors is assessed using asymptotic standard errors. Section 5.3, below,

investigates the �nite sample properties of the data.
8The results reported below for log returns are nearly identical for raw excess returns.
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For each regression, the regression coe¢ cients, heteroskedasticity and serial-correlation

robust t-statistics, and adjusted R2 statistic are reported. The asymptotic standard errors

use the Newey and West (1987) correction for serial correlation with 18 lags. The correction

is needed because the continuously compounded annual return has an MA(12) error structure

under the null hypothesis that one-period returns are unpredictable. Because the Newey-

West correction down-weights higher order autocorrelations, we follow Cochrane and Piazzesi

(2005) and use an 18 lag correction to better insure that the procedure fully corrects for the

MA(12) error structure.

We begin with the results in Table 2a, predictive regressions for excess returns on two-

year bonds rx(2)t+1. As a benchmark, column a reports the results from a speci�cation that

includes only the Cochrane-Piazzesi factor CPt as a predictor variable. This variable, a linear

combination of y(1)t and four forward rates, g(2)t ; g
(3)
t ; :::; g

(5)
t , is strongly statistically signi�cant

and explains 31 percent of next year�s two-year excess bond return. By comparison, column

b shows that the six factors contained in the vector
�!
F6t are also strong predictors of the

two-year excess return, with t-statistics in excess of �ve for the �rst estimated factor bF1t,
but with all factors statistically signi�cant at the 5 percent or better level. Together these

factors explain 26 percent of the variation in one year ahead returns. Although the second

factor, bF2t, is strongly statistically signi�cant in column b, column c shows that once CPt is
included in the regression, it loses its marginal predictive power and the adjusted R2 statistic

rises from 26 to 45 percent. This implies that the information contained in bF2t is more than
captured by CPt. Because we �nd similar results for the excess returns on bonds of all

maturities, we hereafter omit output from multivariate regressions using bF2t and CPt as a
separate predictors in subsequent tables.

Columns d through h display estimates of the marginal predictive power of the estimated

factors in
�!
F5t and the single predictor factors F5t and F6t. The single predictor factors ex-

plain virtually the same fraction of future excess returns as do the unrestricted speci�cations

that include each factor as separate predictor variables. For example, both
�!
F6t and F6t

explain 26 percent of next year�s excess bond return; both
�!
F5t and F5t explain 22 percent.

Column e shows that the �ve factors in
�!
F5t are strongly statistically signi�cant even when

CPt is included, implying that these factors contain information about future returns that

is not contained in forward spreads. The 45 percent R
2
from this regression indicates an

economically large degree of predictability of future bond returns. About the same degree

of predictability is found when the single factor F5t is included with CPt (R
2
= 44 percent).

The results in Tables 2b-2d for excess returns on three-, four-, and �ve-year bonds are
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similar to those reported in Table 2a for two-year bonds. In particular, (i) the single factors

F5t and F6t predict future bond returns just as well than the unrestricted regressions that

include each factor as separate predictor variables, (ii) the �rst estimated factor continues to

display strongly statistically signi�cant predictive power for bonds of all maturities, and (iii)

the speci�cations explain an economically large fraction of the variation in future returns.

There are, however, a few notable di¤erences from Table 2a. The coe¢ cients on the third

and fourth common factors are more imprecisely estimated in unrestricted regressions of

rx
(3)
t+1, rx

(5)
t+1, and rx

(5)
t+1 on

�!
F5t, as evident from the lower t-statistics. But notice that, in

every case, the third factor retains the strong predictive power it exhibited for rx(2)t+1 once

CPt is included as an additional predictor (column c of Tables 2b-2d). Moreover, the single

factors F5t and F6t remain strongly statistically signi�cant predictors of excess returns on

bonds of all maturities and continue to deliver high R
2
. F6t alone explains 24, 23, and 21

percent of next years excess return on the three-, four-, and �ve-year bond, respectively; F5t
explains 19, 17, and 14 percent of next years excess returns on these bonds, and F5t and

CPt together explain 44, 45, and 42 percent of next years excess returns.

In summary, the results reported in Tables 2a-2b indicate that good forecasts of excess

bond returns can be made with only a few macro factors, and that the best forecasts are based

on combinations of macro factors and the Cochrane-Piazzesi factor CPt. It is reassuring

that some of estimated factors ( bF2t in particular, and to a lesser extent bF3t) are found to
contain information that is common to that the Cochrane-Piazzesi factor, suggesting that

CPt summarizes a large body of information about economic and �nancial activity. The

Cochrane-Piazzesi factor CPt contains more overall information about future bond returns

than what is contained in the estimated macro factors. This is evident from a comparison

of R
2
statistics. The crucial point, however, is that measures of real activity and in�ation

in the aggregate economy contain economically meaningful information about future bond

returns that is not contained in CPt. This implies not only that returns are signi�cantly

more forecastable than what is indicated by CPt alone, but also that speci�cations using

pure �nancial variables omit pertinent information about future bond returns associated

with macroeconomic fundamentals. As a consequence, when the information in CPt and the

macro factors is combined, the magnitude of forecastability exhibited by excess bond returns

is remarkable.

What economic interpretation can we give to the predictor factors? Because the factors

are only identi�able up to a r � r matrix, a detailed interpretation of the individual factors
would be inappropriate. Nonetheless, it is useful to brie�y characterize the factors as they
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relate to the underlying variables in our panel dataset. Figures 1 through 5 show the marginal

R2 for our estimates of F1t, F2t, F3t, F4t, and F8t. The marginal R2 is the R2 statistic from

regressions of each of the 132 individual series in our panel dataset onto each estimated

factor, one at a time, using the full sample of data. The �gures display the R2 statistics as

bar charts, with one �gure for each factor. The individual series that make up the panel

dataset are grouped by broad category and labeled using the numbered ordering given in

the Data Appendix.

The �rst factor loads heavily on measures of employment and production (employees on

nonfarm payrolls and manufacturing output, for example), but also on measures of capacity

utilization and newmanufacturing orders. It displays little correlation with prices or �nancial

variables, however, hence we call this factor a real factor. The second factor, which has a

correlation with CPt of -45%, loads heavily on several interest rate spreads, explaining almost

70 percent of the variation in the Baa�Fed funds rate spread, for example. The third and
fourth factors load most heavily on measures of in�ation and price pressure but display little

relation to employment and output. They are highly correlated with both commodity prices

and consumer prices, while bF4t is also highly correlated with the level of nominal interest
rates (for example by the �ve-year government bond yield). Nominal interest rates may

contain information about in�ationary expectations that is not contained in measures of the

price level. Notice however, that the highest marginal R2 in the regression of bF4t on in�ation
variables is less than half of that from regressions of bF3t on in�ation measures; thus the latter
is the economically more important factor related to in�ation. Nevertheless, we call bothbF3t and bF4t in�ation factors. The eighth factor loads heavily on measures of the aggregate
stock market: the log di¤erence in both the composite and industrial Standard and Poor�s

Index and the Standard and Poor�s dividend yield. It bears little relation to other variables.

We call this factor a stock market factor.9

Since the factors are orthogonal by construction, we can characterize their relative im-

portance in the linear combinations F5t and F6t by investigating the absolute value of the

coe¢ cients on each factor in the regressions (7) and (8). (Since the factors are identi�able up

to an r � r matrix, the signs of the coe¢ cients have no particular interpretation.) Because
the factors are orthogonal, it is su¢ cient for this characterization to investigate just the

9This factor is not simply picking up information contained in the stock market dividend yield (Fama and
French (1989)). Results not reported indicate that the dividend yield on Standard & Poor composite index
has only a small amount of predictive power for excess bond returns in our sample; moreover, conditional
on the dividend yield, the stock market factor we estimate has strong marginal predictive power.
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coe¢ cients from the regression on all six factors contained in
�!
F6t, as in (7).10 Using data

from 1964:1-2003:12, we �nd the following regression results (t-statistics in parentheses):

1

4

5X
n=2

rx
(n)
t+1 = 1:03

(2:96)
� 1:72
(�5:12)

� bF1t+0:13
(2:97)

� bF 31t� 1:01
(�3:90)

� bF2t+0:18
(1:18)

� bF3t� 0:56
(�2:40)

� bF4t+0:78
(4:56)

� bF8t+ut+1;
R
2
= 0:224:

The real factor, bF1t, has the largest coe¢ cient in absolute value, implying that it is the
single most important factor in the linear combinations we form. The interest rate factorbF2t is second most important, and the stock market factor bF8t third most. The in�ation
factors bF3t and bF4t are relatively less important but still contribute more than the cubic in
the real factor. ( bF3t is not marginally signi�cant in these regressions because its coe¢ cient
is imprecisely estimated in forecasts of three-, four-, and �ve-year excess bond returns when

only factors are included as predictors. The variable is nonetheless an important predictor

of future bond returns at all maturities because it is a strongly statistically signi�cant once

CPt is included as an additional regressor.)

In most empirical applications involving macro variables, researchers choose a few time

series thought to be representative of aggregate activity. In monthly data, the usual suspects

tend to be a measure of industrial production, consumer and commodity in�ation, and

unemployment. The next regression shows what happens if individual series of this type are

used instead of factors to forecast excess bond returns:

1

4

5X
n=2

rx
(n)
t+1 = 6:06

(2:88)
�28:01
(�0:74)

�IPt+0:56
(0:02)

�CPI� 0:09
(�2:55)

�CMPIt�11:80
(�0:79)

�PPIt+1:36
(0:99)

�UNt+ut+1;

R
2
= 0:113:

IPt is the log di¤erence in the industrial production index, CPIt is the log di¤erence in the

consumer price index, CMPIt is the log di¤erence in the NAPM commodity price index;

PPIt is the log di¤erence in the producer price index, and UNt is the unemployment rate for

the total population over 16 years of age. Unlike the factors, many of the usual suspect macro

series have little marginal predictive power for excess bond returns, and the R
2
statistic

is signi�cantly lower. This occurs even though, for example, IPt and bF1t have a simple
correlation of 83 percent in our sample. Of course, the choice of predictors above is somewhat

10Strictly speaking, bF 31t is not orthogonal, but in practice is found to be nearly so.
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arbitrary given the large number of series available. This fact serves to illustrate a point: not

only does the factor approach employed above free the researcher from arbitrary decisions

about which of many macro series should be used to represent aggregate activity, but it is

also likely to provide a superior means capturing time-variation in excess bond returns.

Is the forecastable variation in excess bond returns we uncover related to macroeconomic

risks in the way predicted by theory? The real factor, bF1t, captures marked cyclical variation
in real activity. This is illustrated in Figure 6, which plots the 12 month moving average

of both bF1t and IPt over time, along with shaded bars indicating dates designated by the
National Bureau of Economic Research (NBER) as recession periods. The correlation be-

tween the moving averages of these two series is 92 percent. The �gure shows that both the

�rst factor and IP growth reach peaks in the mid-to-late stages of economic expansions, and

take on their lowest values at the end of recessions. Thus recessions are characterized by

low and typically negative IP growth, while expansions are characterized by strong positive

growth. Connecting these �ndings back to forecasts of excess bond returns, the results in

Tables 2a-2d show that excess return forecasts are high when bF1t is low, implying that return
forecasts have a countercyclical component. They are high at the bottom of recessions and

low at the height of economic expansions. Such �ndings are consistent with economic the-

ories that imply investors must be compensated for bearing risks related to recessions. For

example, Campbell and Cochrane (1999) study a model in which risk aversion varies over

the business cycle and is low in good times when consumption growth is high. This implies

that risk premia are also low when the economy is growing quickly, or that excess return

forecasts are low in booms, consistent with what we �nd. By linking the forecastability of

excess returns to real economic activity, the �ndings here provide direct evidence that risk

premia are connected to macroeconomic risks in the direction predicted by economic theory.

The evidence that in�ation factors govern part of the predictable variation in excess bond

returns also provides independent empirical support for the general theoretical framework

proposed by Brandt and Wang (2003). Brandt and Wang estimate a consumption-based

asset-pricing model in which aggregate risk-aversion varies with news about in�ation, as

well as with news about real quantities. Since in their model risk-aversion varies with these

news variables, risk premia do as well. Thus excess bond returns in that framework should

be forecastable by measures of in�ation, consistent with what we �nd. Our evidence is also

consistent with �ndings in Ang and Piazzesi (2003) that in�ation and real activity contribute

signi�cantly to variation in the price of risk in term structure models where risk premia are

allowed to vary over time with macroeconomic variables.
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We emphasize an additional aspect of the results above: the macro factors we study

contain information for future bond premia that is not contained in forward spreads, yield

spreads, or even yield factors estimated as the principal components of the yield covariance

matrix. (The �rst three principal components of the yield covariance matrix are the �level,�

�slope,�and �curvature,�yield factors studied in term structure models in �nance.) This can

be understood by noting that the macro factors we study contain independent information

that is not in CPt, the linear combination of forward rates and y
(1)
t . But Cochrane and

Piazzesi have already shown in our sample that the information in individual yield spreads

and the three yield factors is subsumed by that in CPt: It follows the macro factors in
�!
F5t,

or
�!
F6t, or their corresponding linear combinations bF5t, and bF6t, contain information above

and beyond that already contained in forward spreads, yield spreads, and yield factors.

Since yield factors explain the vast majority of variation in yields, this evidence reinforces

the conclusion of Cochrane and Piazzesi, namely that information that is unimportant for

explaining bond yields can be paramount for explaining expected excess returns on bonds.

Our next two subsections present additional results that pertain to the robustness of these

forecasting relations: out-of-sample analysis and small-sample inference.

5.2 Out-of-Sample Analysis

The regression analysis described above, as well as the formation of the factors, is conducted

using the full sample of data. In this section we report results on the out-of-sample forecasting

performance of the regression models studied in the previous section.11 This procedure

involves fully recursive factor estimation and parameter estimation using data only through

time t for forecasting at time t+1. We compare the out-of-sample forecasting performance of

the �ve-factor model that includes the macro factors in
�!
F5t, to a constant expected returns

benchmark where, aside from an MA(12) error term, excess returns are unforecastable, as in

the expectations hypothesis. The results for
�!
F6t lead to the same out-of-sample performance,

if not stronger, than what is reported for
�!
F5t below, thus we omit those results to conserve

space. In addition, we do not include CPt as an additional predictor variable for these results,

since the out-of-sample performance of CPt has already been established in Cochrane and

Piazzesi (2005) and we wish to focus on the out-of-sample performance of the new factors

11An important caveat with out-of-sample statistical tests is that they lack power relative to in-sample
regression forecasts (Inoue and Kilian (2004)). With this caveat in mind, we proceed using tests known
to have the best size and power properties among those available (Clark and McCracken (2001)), but the
reader should be aware that the predictor variables we study may contain more forecasting power than what
is indicated by the out-of-sample statistical tests reported here.
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introduced here. Of course, rejections of the no-predictability null would be even stronger if

CPt were included.

Table 3 reports results from one year ahead out-of-sample forecast comparisons of log

excess bond returns, rx(n)t+1; n = 2; ::; 5. For each forecast, MSEu denotes the mean-squared

forecasting error of the unrestricted model including predictor factors
�!
F5t; MSEr denotes

the mean-squared forecasting error of the restricted benchmark (null) model that excludes

these additional forecasting variables. In the column labeled �MSEu=MSEr�, a number less

than one indicates that the model with the additional macro factors has lower forecast error

than the benchmark constant expected returns model.

Results for three forecast samples are reported: 1975:1-2003:2; 1985:1-2003:2; 1995:1-

2003:2. The results for the �rst forecast sample are reported in Rows 1, 4, 7 and 10 for

rx
(2)
t+1, ...,rx

(5)
t+1 respectively. Here the parameters and factors were estimated recursively,

with the initial estimation period using only data available from 1964:12 through 1974:12.

Next, the forecasting regressions were run over the period t =1964:12,...,1974:12 (dependent

variable from t =1965:1,...,1974:12, independent variable from t =1964:1,...,1973:12) and

the estimated parameters and values of the regressors at t =1974:1 were used to forecast

returns at 1975:1.12 All parameters and factors are then reestimated from 1964:1 through

1975:1, and forecasts were recomputed for excess returns in 1975:2, and so on, until the

�nal out-of-sample forecast is made for returns in 2003:12: The same procedure is used to

compute results reported in the other rows, where the initial estimation period is either

t =1964:1,...,1985:1 or t =1964:1,...,1995:1. The column labeled �Test Statistic�in Table 3

reports the ENC-NEW test statistic of Clark and McCracken (2001) for the null hypothesis

that the benchmark model encompasses the unrestricted model with additional predictors.

The alternative is that the unrestricted model contains information that could be used to

improve the benchmark model�s forecast. �95% Asympt. CV�gives the 95th percentile of

the asymptotic distribution of the ENC-NEW test statistic.

The results show that the model including the �ve factors in
�!
F5t improves substantially

over the constant expected returns benchmark, for excess bond returns of every maturity.

The models have a forecast error variance that is any where from 84 to 93 percent of the

constant expected returns benchmark, depending on the excess return being forecast and

the forecast period. For the period 1995:1-2003:12 the model has a forecast error variance

that is only 84, 85, 89, and 92 percent of the constant expected returns benchmark for

12Note that the regressors must be lagged 12 months to account for the 12-period overlap induced from
continuously compounding monthly returns to obtain annual returns.
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rx
(2)
t+1, ...,rx

(5)
t+1 respectively. No matter what subperiod the model is evaluated over, and

no matter what return is being forecast, the ENC-NEW test statistic always indicates that

the improvement in forecast power is strongly statistically signi�cant, at the one percent or

better level. Moreover, these results show that relative forecast improvement a¤orded by the

estimated factors is stable over time: the reduction in mean-square-error over the benchmark

is about the same regardless of which forecast period is analyzed.

Figure 6 gives a graphical impression of the predictive power of the estimated factors

by plotting the forecasted value of the two-year excess bond return along with the actual

value over the period 1975:1-2003:12. Naturally the �tted value is less volatile than actual

value, but the �gure shows that the estimated factors do a remarkable job of forecasting the

increases in excess returns in the mid 1980s to early 1990s, the declines over 1982-1985 and

1992-1995, and the �at period from 1995-2000. The period 1984-1987 is one in which the

model is noticeably o¤: it misses the dramatic surge in actual excess returns over this period,

instead predicting that they �uctuate around zero. Results not reported indicate that the

plots for bonds of other maturities are similar.

In summary, the results indicate that the real, in�ation, and stock market factors we

study have stable out-of-sample forecasting power for excess bond returns of all maturities

that is both strongly statistically signi�cant and economically large in magnitude.

5.3 Small Sample Inference

According to the asymptotic theory for PCA estimation discussed in Section 2, heteroskedas-

ticity and autocorrelation consistent standard errors that are asymptotically N(0; 1) can be

used to obtain robust t-statistics for the in-sample regressions studied in Section 5.1. More-

over, because the factors are estimated �superconsistently,�the t-statistics do not need to be

adjusted for the preestimation of the factors. To guard against inadequacy of the asymptotic

approximation in �nite samples, in this section consider bootstrap inference for speci�cations

using four regression models: (i) a model using just the estimated factors in
�!
F5t as predictor

variables, (ii) a model using the estimated factors in
�!
F5t and CPt, (iii) a model using just

the single linear combination of �ve estimated factors, F5t, and (iv) a model using F5t and

CPt: Small sample inference is especially important when the right-hand-side variables are

highly persistent (e.g., Bekaert, Hodrick, and Marshall (1997); Stambaugh (1999); Ferson,

Sarkissian, and Simin (2003)) but, as Table 1 demonstrates, none of the factors from our

preferred speci�cations are highly persistent. Nevertheless, we proceed with a bootstrap

analysis as a robustness check, by generating bootstrap samples of the exogenous predictors
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Zt (here just CPt), as well as of the estimated factors bFt:
Bootstrap samples of rx(n)t+1 are obtained in two ways, �rst by imposing the null hypothe-

sis of no predictability, and second, under the alternative that excess returns are forecastable

by the factors and conditioning variables studied above. The use of monthly bond price data

to construct continuously compounded annual returns induces an MA(12) error structure in

the annual log returns. Thus under the null hypothesis that the expectations hypothesis is

true, annual compound returns are forecastable up to an MA(12) error structure, but are

not forecastable by other predictor variables or additional moving average terms. Bootstrap

sampling that captures the serial dependence of the data is straightforward when, as in this

case, there is a parametric model (e.g., an ARMA model) for the dependence under the null

hypothesis (Horowitz (2003)). In this event, the bootstrap may be accomplished by drawing

random samples from the empirical distribution of the residuals of a
p
T consistent, asymp-

totically normal estimator of the parametric ARMAmodel, in our application a twelfth-order

moving average process. We use this approach to form bootstrap samples of excess returns

under the null. Under the alternative, excess returns still have the MA(12) error structure

induced by the use of overlapping data, but additional macro factors are presumed to contain

predictive power for excess returns.

We take into account the pre-estimation of the factors by re-sampling the T � N panel

of data, xit. This creates bootstrapped samples of the factors themselves. For each i,

least squares estimation of beit = �ibeit�1 + vit yields estimates b�i of the persistence of the
idiosyncratic errors and of the residuals bvit; t = 2; : : : T , where recall that beit = xit � b�0i bft.
Then bvit is re-sampled (while preserving the cross-section correlation structure) to yield
bootstrap samples of the idiosyncratic errors beit. Bootstrap samples are denoted eeit. In turn,
bootstrap values of xit are constructed by adding the bootstrap estimates of the idiosyncratic

errors, eeit, to b�0i bft. Estimation by the method of principal components on the bootstrapped
data then yields a new set of estimated factors. The linear combination F5t is reestimated in

each bootstrap simulation. Together with bootstrap samples of Zt (also based on an AR(1)

model), this delivers a set of bootstrap regressors. Each regression using the bootstrapped

data gives new estimates of the regression coe¢ cients in (2) and new �R2 statistics. This

is repeated B times. Bootstrap con�dence intervals for the parameter estimates and �R2

statistics are calculated from B = 10; 000 replications. The results are reported in Tables

4a-4d for two-, three-, four- and �ve-year excess bond returns, respectively.

Tables 4a-4d indicate that the results based on bootstrap inference are broadly consistent

with those based on asymptotic inference in Tables 2a-2d. Con�dence intervals from data
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generated under the alternative are reported in the columns headed �bootstrap.�Con�dence

intervals from data generated under the null are reported in the columns headed �Bootstrap

under the null.� The coe¢ cients on the exogenous predictors and estimated factors are

all well outside the 95% con�dence interval under the no-predictability null. Moreover, the

coe¢ cients on factors that are statistically di¤erent from zero in Table 2a-2d have con�dence

intervals under the alternative that exclude zero, indicating statistical signi�cance at the 5

percent level. The exceptions to this are the two in�ation factors, which display con�dence

intervals under the alternative that contain zero for some speci�cations (as in the asymptotic

analysis). However, even these coe¢ cients are too large to be explained under the null

of no predictability, and the single linear combination of factors, F5t, is always strongly

statistically signi�cant regardless of which excess return is being forecast.

We also compute the small sample distribution of the R2 statistics. For two-year bond

returns, the �ve-factor model
�!
F5t generates an adjusted R-squared statistic of 22% in histor-

ical data; by contrast, using bootstrapped data, the 95% bootstrapped con�dence interval

for this statistic under the no-predictability null ranges from 1.4% to 1.9%. Similarly, the

�ve factors and CPt deliver an adjusted R-squared statistic of 45% in historical data; by

contrast, using bootstrapped data, the 95% bootstrapped con�dence interval for this statis-

tic under the no-predictability null ranges from just 2.3% to 4.3%. The results are similar

for bonds of other maturities. In short, the magnitude of predictability found in historical

data is too large to be accounted for by sampling error in samples of the size we currently

have. The statistical relation of the factors to future returns is evident, even accounting for

the small sample distribution of standard test statistics.

6 Conclusion

We contribute to the literature on bond return forecastability by showing that measures of

macroeconomic fundamentals have important predictive power for excess returns on U.S.

government bonds. To do so, we use dynamic factor analysis to summarize the information

from a large number of macroeconomic series. The approach allows us to eliminate the

arbitrary reliance on a small number of imperfectly measured indicators to proxy for macro-

economic fundamentals, and makes feasible the use of a vast set of economic variables that

are more likely to span the unobservable information sets of �nancial market participants.

We �nd that the predictive power of the estimated factors is economically important,

with macro factors explaining between 21-26 percent of one year ahead excess bond returns.

The factors also exhibit stable and strongly statistically signi�cant out-of-sample forecasting
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power for future returns. The main predictor variable is a real factor that is highly correlated

with measures of output and employment, but two in�ation factors and a stock market factor

also contain information about future bond returns. The macro factors have predictive power

that is independent of that in the Cochrane-Piazzesi forward factor, indicating that the

information they contain about future excess returns is independent of that in the forward

rates, yields, and yield factors of bonds with maturities from one to �ve years. When the

information contained in the macro factors is combined with that in the Cochrane-Piazzesi

forward factor, we �nd remarkably large violations of the expectations hypothesis.

The results support the hypothesis that expected excess returns vary with aggregate

quantities and prices, consistent with theoretical notions that risk premia move with pref-

erences and technologies themselves driven by macroeconomic fundamentals. For example,

the real and in�ation factors we study may be reasonable proxies for the consumption and

in�ations shocks that enter models of time-varying risk premia like those of Campbell and

Cochrane (1999) and Brandt and Wang (2003). At the same time, the analysis here leaves

a number of crucial questions for future work. For one, we cannot rule out the possibility

that the evidence we uncover is driven, not by rational variation in risk premia, but instead

by behavioral biases. Moreover, the statistical evidence we o¤er falls far short of estimat-

ing a yet-to-be developed general equilibrium model that marries the dynamics of macro

variables and bond risk premia. Finally, the question of why forward rates and yields ap-

pear to contain information about future bond returns that is largely independent of that in

broad-based macro factors remains unanswered. These questions and more pose interesting

research challenges for the future.
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Data Appendix 

 

Table A.1 lists the short name of each series, its mnemonic (the series label used 

in the source database), the transformation applied to the series, and a brief data 

description. All series are from the Global Insights Basic Economics Database, unless the 

source is listed (in parentheses) as TCB (The Conference Board’s Indicators Database) or 

AC (author’s calculation based on Global Insights or TCB data).  In the transformation 

column, ln denotes logarithm, ∆ln and ∆2ln denote the first and second difference of the 

logarithm, lv denotes the level of the series, and ∆lv denotes the first difference of the 

series. 
 

Table A.1  Data sources, transformations, and definitions 
 

Series Number Short name Mnemonic Tran Description 
1 PI a0m052  ∆ln    Personal Income (AR, Bil. Chain 2000 $) (TCB) 
2 PI less transfers a0m051  ∆ln    Personal Income Less Transfer Payments (AR, Bil. Chain 2000 $) (TCB) 
3 Consumption a0m224_r  ∆ln    Real Consumption (AC) a0m224/gmdc (a0m224 is from TCB) 
4 M&T sales a0m057  ∆ln    Manufacturing And Trade Sales (Mil. Chain 1996 $)  (TCB) 
5 Retail sales a0m059  ∆ln    Sales Of Retail Stores (Mil. Chain 2000 $) (TCB) 
6 IP: total ips10  ∆ln    Industrial Production Index -  Total Index 
7 IP: products ips11  ∆ln    Industrial Production Index -  Products, Total 
8 IP: final prod ips299  ∆ln    Industrial Production  Index -  Final Products 
9 IP: cons gds ips12  ∆ln    Industrial Production Index -  Consumer Goods 
10 IP: cons dble ips13  ∆ln    Industrial Production Index -  Durable Consumer Goods 
11 IP: cons nondble ips18  ∆ln    Industrial Production Index -  Nondurable Consumer Goods 
12 IP: bus eqpt ips25  ∆ln    Industrial Production Index -  Business Equipment 
13 IP: matls ips32  ∆ln    Industrial Production Index -  Materials 
14 IP: dble matls ips34  ∆ln    Industrial Production Index -  Durable Goods Materials 
15 IP: nondble matls ips38  ∆ln    Industrial Production Index -  Nondurable Goods Materials 
16 IP: mfg ips43  ∆ln    Industrial Production Index -  Manufacturing (Sic) 
17 IP: res util ips307  ∆ln    Industrial Production  Index -  Residential Utilities 
18 IP: fuels ips306  ∆ln    Industrial Production  Index -  Fuels 
19 NAPM prodn  pmp  lv      Napm Production Index (Percent) 
20 Cap util a0m082  ∆lv   Capacity Utilization (Mfg) (TCB) 
21 Help wanted indx lhel  ∆lv   Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa) 
22 Help wanted/emp lhelx  ∆lv   Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf 
23 Emp CPS total lhem  ∆ln    Civilian Labor Force: Employed, Total (Thous.,Sa) 
24 Emp CPS nonag lhnag  ∆ln    Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa) 
25 U: all lhur  ∆lv   Unemployment Rate: All Workers, 16 Years & Over (%,Sa) 
26 U: mean duration lhu680  ∆lv   Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa) 
27 U < 5 wks lhu5  ∆ln    Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa) 
28 U 5-14 wks lhu14  ∆ln    Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa) 
29 U 15+ wks  lhu15  ∆ln    Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa) 
30 U 15-26 wks lhu26  ∆ln    Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa) 
31 U 27+ wks lhu27  ∆ln    Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa) 
32 UI claims a0m005  ∆ln    Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB) 
33 Emp: total ces002  ∆ln    Employees On Nonfarm Payrolls: Total Private 
34 Emp: gds prod ces003  ∆ln    Employees On Nonfarm Payrolls - Goods-Producing 
35 Emp: mining ces006  ∆ln    Employees On Nonfarm Payrolls - Mining 
36 Emp: const ces011  ∆ln    Employees On Nonfarm Payrolls - Construction 
37 Emp: mfg ces015  ∆ln    Employees On Nonfarm Payrolls - Manufacturing 
38 Emp: dble gds ces017  ∆ln    Employees On Nonfarm Payrolls - Durable Goods 
39 Emp: nondbles ces033  ∆ln    Employees On Nonfarm Payrolls - Nondurable Goods 
40 Emp: services ces046  ∆ln    Employees On Nonfarm Payrolls - Service-Providing 



41 Emp: TTU ces048  ∆ln    Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities 
42 Emp: wholesale ces049  ∆ln    Employees On Nonfarm Payrolls - Wholesale Trade 
43 Emp: retail ces053  ∆ln    Employees On Nonfarm Payrolls - Retail Trade 
44 Emp: FIRE ces088  ∆ln    Employees On Nonfarm Payrolls - Financial Activities 
45 Emp: Govt ces140  ∆ln    Employees On Nonfarm Payrolls - Government 
46 Emp-hrs nonag a0m048  ∆ln    Employee Hours In Nonag. Establishments (AR, Bil. Hours) (TCB) 
47 Avg hrs  ces151  lv      Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls -  

Goods-Producing 
48 Overtime: mfg ces155  ∆lv   Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls -    

Mfg Overtime Hours 
49 Avg hrs: mfg aom001  lv      Average Weekly Hours, Mfg. (Hours) (TCB) 
50 NAPM empl pmemp  lv      Napm Employment Index (Percent) 
51 Starts: nonfarm hsfr  ln Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,Saar) 
52 Starts: NE hsne  ln Housing Starts:Northeast (Thous.U.)S.A. 
53 Starts: MW hsmw  ln Housing Starts:Midwest(Thous.U.)S.A. 
54 Starts: South hssou  ln Housing Starts:South (Thous.U.)S.A. 
55 Starts: West hswst  ln Housing Starts:West (Thous.U.)S.A. 
56 BP: total hsbr  ln Housing Authorized: Total New Priv Housing Units (Thous.,Saar) 
57 BP: NE hsbne*  ln Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A 
58 BP: MW hsbmw*  ln Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A. 
58 BP: South hsbsou* ln Houses Authorized By Build. Permits:South(Thou.U.)S.A. 
60 BP: West hsbwst*  ln Houses Authorized By Build. Permits:West(Thou.U.)S.A. 
61 PMI pmi  lv      Purchasing Managers' Index (Sa) 
62 NAPM new ordrs pmno  lv      Napm New Orders Index (Percent) 
63 NAPM vendor del pmdel  lv      Napm Vendor Deliveries Index (Percent) 
64 NAPM Invent pmnv  lv      Napm Inventories Index (Percent) 
65 Orders: cons gds a0m008  ∆ln    Mfrs' New Orders, Consumer Goods And Materials (Bil. Chain 1982 $) (TCB) 
66 Orders: dble gds a0m007  ∆ln    Mfrs' New Orders, Durable Goods Industries (Bil. Chain 2000 $) (TCB) 
67 Orders: cap gds a0m027  ∆ln    Mfrs' New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) (TCB) 
68 Unf orders: dble a1m092  ∆ln    Mfrs' Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB) 
69 M&T invent a0m070  ∆ln    Manufacturing And Trade Inventories (Bil. Chain 2000 $) (TCB) 
70 M&T invent/sales a0m077  ∆lv   Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $) (TCB) 
71 M1 fm1  ∆2ln Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck'able Dep)(Bil$,Sa) 
72 M2 fm2  ∆2ln Money Stock:M2(M1+O'nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time 

Dep(Bil$,Sa) 
73 M3 fm3  ∆2ln Money Stock: M3(M2+Lg Time Dep,Term Rp's&Inst Only Mmmfs)(Bil$,Sa) 
74 M2 (real) fm2dq  ∆ln    Money Supply - M2 In 1996 Dollars (Bci) 
75 MB fmfba  ∆2ln Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa) 
76 Reserves tot fmrra  ∆2ln Depository Inst Reserves:Total, Adj For Reserve Req Chgs(Mil$,Sa) 
77 Reserves nonbor fmrnba  ∆2ln Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa) 
78 C&I loans fclnq  ∆2ln Commercial & Industrial Loans Oustanding In 1996 Dollars (Bci) 
79 ∆C&I loans fclbmc  lv      Wkly Rp Lg Com'l Banks:Net Change Com'l & Indus Loans(Bil$,Saar) 
80 Cons credit ccinrv  ∆2ln Consumer Credit Outstanding - Nonrevolving(G19) 
81 Inst cred/PI a0m095  ∆lv   Ratio, Consumer Installment Credit To Personal Income (Pct.) (TCB) 
82 S&P 500 fspcom  ∆ln    S&P's Common Stock Price Index: Composite (1941-43=10) 
83 S&P: indust fspin  ∆ln    S&P's Common Stock Price Index: Industrials (1941-43=10) 
84 S&P div yield fsdxp  ∆lv   S&P's Composite Common Stock: Dividend Yield (% Per Annum) 
85 S&P PE ratio fspxe  ∆ln    S&P's Composite Common Stock: Price-Earnings Ratio (%,Nsa) 
86 Fed Funds fyff  ∆lv   Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa) 
87 Comm paper cp90  ∆lv   Cmmercial Paper Rate (AC) 
88 3 mo T-bill fygm3  ∆lv   Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa) 
89 6 mo T-bill fygm6  ∆lv   Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa) 
90 1 yr T-bond fygt1  ∆lv   Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa) 
91 5 yr T-bond fygt5  ∆lv   Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa) 
92 10 yr T-bond fygt10  ∆lv   Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa) 
93 Aaa bond fyaaac  ∆lv   Bond Yield: Moody's Aaa Corporate (% Per Annum) 
94 Baa bond fybaac  ∆lv   Bond Yield: Moody's Baa Corporate (% Per Annum) 
95 CP-FF spread scp90  lv      cp90-fyff (AC) 
96 3 mo-FF spread sfygm3  lv      fygm3-fyff (AC) 
97 6 mo-FF spread sfygm6  lv      fygm6-fyff (AC) 
98 1 yr-FF spread sfygt1  lv      fygt1-fyff (AC) 
99 5 yr-FF spread sfygt5  lv      fygt5-fyff (AC) 
100 10 yr-FF spread sfygt10  lv      fygt10-fyff (AC) 
101 Aaa-FF spread sfyaaac  lv      fyaaac-fyff (AC) 
102 Baa-FF spread sfybaac  lv      fybaac-fyff (AC) 
103 Ex rate: avg exrus  ∆ln    United States;Effective Exchange Rate(Merm)(Index No.) 



104 Ex rate: Switz exrsw  ∆ln    Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$) 
105 Ex rate: Japan exrjan  ∆ln    Foreign Exchange Rate: Japan (Yen Per U.S.$) 
106 Ex rate: UK exruk  ∆ln    Foreign Exchange Rate: United Kingdom (Cents Per Pound) 
107 EX rate: Canada exrcan  ∆ln    Foreign Exchange Rate: Canada (Canadian $ Per U.S.$) 
108 PPI: fin gds pwfsa  ∆2ln Producer Price Index: Finished Goods (82=100,Sa) 
109 PPI: cons gds pwfcsa  ∆2ln Producer Price Index: Finished Consumer Goods (82=100,Sa) 
110 PPI: int mat’ls pwimsa  ∆2ln Producer Price Index:I ntermed Mat.Supplies & Components(82=100,Sa) 
111 PPI: crude mat’ls pwcmsa  ∆2ln Producer Price Index: Crude Materials (82=100,Sa) 
112 Spot market price psccom ∆2ln Spot market price index: bls & crb: all commodities(1967=100) 
113 Sens mat’ls price psm99q  ∆2ln Index Of Sensitive Materials Prices (1990=100)(Bci-99a) 
114 NAPM com price pmcp  lv      Napm Commodity Prices Index (Percent) 
115 CPI-U: all punew  ∆2ln Cpi-U: All Items (82-84=100,Sa) 
116 CPI-U: apparel pu83  ∆2ln Cpi-U: Apparel & Upkeep (82-84=100,Sa) 
117 CPI-U: transp pu84  ∆2ln Cpi-U: Transportation (82-84=100,Sa) 
118 CPI-U: medical pu85  ∆2ln Cpi-U: Medical Care (82-84=100,Sa) 
119 CPI-U: comm. puc  ∆2ln Cpi-U: Commodities (82-84=100,Sa) 
120 CPI-U: dbles pucd  ∆2ln Cpi-U: Durables (82-84=100,Sa) 
121 CPI-U: services pus  ∆2ln Cpi-U: Services (82-84=100,Sa) 
122 CPI-U: ex food puxf  ∆2ln Cpi-U: All Items Less Food (82-84=100,Sa) 
123 CPI-U: ex shelter puxhs  ∆2ln Cpi-U: All Items Less Shelter (82-84=100,Sa) 
124 CPI-U: ex med puxm  ∆2ln Cpi-U: All Items Less Midical Care (82-84=100,Sa) 
125 PCE defl gmdc  ∆2ln Pce, Impl Pr Defl:Pce (1987=100) 
126 PCE defl: dlbes gmdcd  ∆2ln Pce, Impl Pr Defl:Pce; Durables (1987=100) 
127 PCE defl: nondble gmdcn  ∆2ln Pce, Impl Pr Defl:Pce; Nondurables (1996=100) 
128 PCE defl: service gmdcs  ∆2ln Pce, Impl Pr Defl:Pce; Services (1987=100) 
129 AHE: goods ces275  ∆2ln Avg Hourly Earnings of Prod or Nonsup  Workers  On Private Nonfarm 

Payrolls - Goods-Producing 
130 AHE: const ces277  ∆2ln Avg Hourly Earnings of Prod or Nonsup  Workers  On Private Nonfarm 

Payrolls - Construction 
131 AHE: mfg ces278  ∆2ln Avg Hourly Earnings of Prod or Nonsup  Workers  On Private Nonfarm 

Payrolls - Manufacturing 
132 Consumer expect hhsntn  ∆lv   U. Of Mich. Index Of Consumer Expectations(Bcd-83) 
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Table 1: Summary Statistics for bfit
i AR1( bfit) R2i
1 0.767 0.177
2 0.764 0.249
3 -0.172 0.304
4 0.289 0.359
5 0.341 0.403
6 -0.0132 0.439
7 0.320 0.471
8 0.233 0.497

For i = 1; : : : 8, bf it is estimated by the method of principal components using a panel of data with 132
indicators of economic activity from t=1964:1-2003:12 (480 time series observations). The data are transformed

(taking logs and di¤erenced where appropriate) and standardized prior to estimation. AR1( bf it); is the �rst-order
autocorrelation coe¢ cients for factors i. The relative importance of the common component, R2i , is calculated as

the fraction of total variance in the data explained by factors 1 to i.



Table 2a: Regressions of Monthly Excess Bond Returns on Lagged Factors

Model: rx(2)t+1 = �0 + �
0
1
bFt + �2CPt + �t+1;

Regressor (a) (b) (c) (d) (e) (f) (g) (h)bF1t -0.93 -0.74 -0.93 -0.75
(t-stat) (-5.19) (-4.48) (-4.96) (-4.71)bF 31t 0.06 0.05 0.06 0.05
(t-stat) (2.78) (2.70) (2.87) (2.71)bF2t -0.40 0.08
(t-stat) (-3.10) (0.71)bF3t 0.18 0.24 0.18 0.24
(t-stat) (2.24) (3.84) (1.87) (3.85)bF4t -0.33 -0.24 -0.33 -0.25
(t-stat) (-2.94) (-2.51) (-2.65) (-2.61)bF8t 0.35 0.24 0.35 0.24
(t-stat) (4.35) (2.70) (3.83) (2.89)
CPt 0.45 0.41 0.40 0.39
(t-stat) ( 8.90) (5.22) (5.89) (6.0)
F5t 0.54 0.43

(t-stat) (5.52) (5.78)
F6t 0.50

(t-stat) (6.78)

R
2

0.31 0.26 0.45 0.22 0.45 0.22 0.26 0.44

Notes: The table reports estimates from OLS regressions of excess bond returns on the lagged variables named

in column 1. The dependent variable rx
(n)
t+1 is the excess log return on the n-year Treasury bond. bFt denotes

a set of regressors including F5t; F6t, and bFit. These denote factors estimated by the method of principal

components using a panel of data with 132 individual series over the period 1964:1-2003:12. F5t, is the single

factor constructed as a linear combination of the �ve estimated factors bF 1t, bF 31t, bF3t , bF 4t, and bF8t: F6t, is
the single factor constructed as a linear combination of the six estimated factors bF 1t, bF 2t; bF 31t, bF3t , bF 4t, andbF8t: CPt is the Cochrane and Piazzesi (2005) factor that is a linear combination of �ve forward spreads. Newey
and West (1987) corrected t-statistics have lag order 18 months and are reported in parentheses. Coe¢ cients that

are statistically signi�cant at the 5% or better level are highlighted in bold. A constant is always included in the

regression even though its estimate is not reported in the Table. The sample spans the period 1964:1 to 2003:12.



Table 2b: Regressions of Monthly Excess Bond Returns on Lagged Factors

Model: rx(3)t+1 = �0 + �
0
1
bFt + �2CPt + �t+1;

Regressor (a) (b) (c) (d) (e) (f)bF1t -1.59 -1.22
(t-stat) (-4.68) (-4.39)bF 31t 0.11 0.10
(t-stat) (3.12) (2.96)bF3t 0.19 0.30
(t-stat) (1.05) (2.78)bF4t -0.53 -0.36
(t-stat) (-2.23) (-2.12)bF8t 0.64 0.44
(t-stat) (3.73) (2.74)
CPt 0.85 0.76 0.75
(t-stat) ( 8.52) (6.13) (6.16)
F5t 0.91 0.69

(t-stat) (5.28) (5.55)
F6t 0.89

(t-stat) (6.57)

R
2

0.34 0.18 0.44 0.19 0.24 0.44

Notes: See Table 2a.



Table 2c: Regressions of Monthly Excess Bond Returns on Lagged Factors

Model: rx(4)t+1 = �0 + �
0
1
bFt + �2CPt + �t+1;

Regressor (a) (b) (c) (d) (e) (f)bF1t -2.05 -1.51
(t-stat) (-4.49) (-4.20)bF 31t 0.16 0.14
(t-stat) (3.20) (3.08)bF3t 0.18 0.35
(t-stat) (0.68) (2.22)bF4t -0.63 -0.37
(t-stat) (-1.77) (-1.50)bF8t 0.95 0.64
(t-stat) (3.75) (2.83)
CPt 1.24 1.13 1.11
(t-stat) ( 8.58) (6.40) (6.30)
F5t 1.19 0.87

(t-stat) (5.08) (5.39)
F6t 1.20

(t-stat) (6.57)

R
2

0.37 0.16 0.45 0.17 0.23 0.45

Notes: See Table 2a.
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Table 2d: Regressions of Monthly Excess Bond Returns on Lagged Factors

Model: rx(5)t+1 = �0 + �
0
1
bFt + �2CPt + �t+1;

Regressor (a) (b) (c) (d) (e) (f)bF1t -2.27 -1.63
(t-stat) (-4.10) (-3.86)bF 31t 0.18 0.15
(t-stat) (3.06) (2.95)bF3t 0.18 0.38
(t-stat) (0.55) (1.92)bF4t -0.78 -0.48
(t-stat) (-1.80) (-1.54)bF8t 1.13 0.76
(t-stat) (3.68) (2.76)
CPt 1.46 1.34 1.32
(t-stat) ( 7.90) (6.00) (5.87)
F5t 1.36 0.98

(t-stat) (4.80) (5.08)
F6t 1.41

(t-stat) (6.47)

R
2

0.34 0.14 0.41 0.14 0.21 0.42

Notes: See Table 2a.
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Table 3: Out-of-Sample Predictive Power of Macro Factors

Row Forecast Sample Comparison MSEu=MSEr Test Statistic 95% Asympt. CV

rx
(2)
t+1

1 1975:1-2003:12
�!
F5t v.s. const 0.848 64.87* 7.98

2 1985:1-2003:12
�!
F5t v.s. const 0.882 33.15* 4.70

3 1995:1-2003:12
�!
F5t v.s. const 0.838 25.29* 3.15

rx
(3)
t+1

4 1975:1-2003:2
�!
F5t v.s. const 0.879 47.24* 7.98

5 1985:1-2003:2
�!
F5t v.s. const 0.889 27.51* 4.70

6 1995:1-2003:2
�!
F5t v.s. const 0.854 19.86* 3.15

rx
(4)
t+1

7 1975:1-2003:12
�!
F5t v.s. const 0.905 36.32* 7.98

8 1985:1-2003:12
�!
F5t v.s. const 0.909 22.03* 4.70

9 1995:1-2003:12
�!
F5t v.s. const 0.889 16.48* 3.15

rx
(5)
t+1

10 1975:1-2003:12
�!
F5t v.s. const 0.926 29.53* 7.98

11 1985:1-2003:12
�!
F5t v.s. const 0.931 17.33* 4.70

12 1995:1-2003:12
�!
F5t v.s. const 0.924 12.07* 3.15

*Signi�cant at the one percent or better level.

Notes: The table reports results from one-year-ahead out-of-sample forecast comparisons of n-period log excess

bond returns, rx
(n)
t+1 .

�!
F5t denotes the vector of factors

� bF1t; bF 31t; bF3t; bF4t; bF8t�0 : Each row reports forecast

comparisons of an unrestricted model, which includes
�!
F5t as predictors, with a restricted, constant expected

returns benchmark (const). MSEu is the mean-squared forecasting error of the unrestricted model; MSEr is

the mean-squared forecasting error of the restricted model that excludes additional forecasting variables. In the

column labeled �MSEu=MSEr�, a number less than one indicates that theunrestricted model has lower forecast

error than the benchmark constant expected returns model. The �rst row of each panel displays results in which

the parameters and factors were estimated recursively, using an initial sample of data from 1964:1 through 1974:12.

The forecasting regressions are run for t =1964:1,...,1974:12, and the values of the regressors at t =1974:1 are used

to forecast annual returns in 1975:1. (The predictor variables are lagged 12 months since the annual returns created

by continuously compounding monthly returns over the 12 months in the year.) All parameters and factors are then

reestimated from 1964:1 through 1975:1, and forecasts are recomputed for returns in 1975:2, and so on, until the �nal

out-of-sample forecast is made for returns in 2003:12. The same procedure is used to compute results reported in the

other rows, where the initial estimation period is either t =1964:1,...,1984:12 or t =1964:1,...,1994:12. The column

labeled �Test Statistic�reports the ENC-NEW test statistic of Clark and McCracken (2001) for the null hypothesis

that the benchmark model encompasses the unrestricted model with additional predictors. The alternative is that

the unrestricted model contains information that could be used to improve the benchmark model�s forecast. �95%

Asympt. CV�gives the 95th percentile of the asymptotic distribution of the test statistic.



Table 4a: Small Sample Inference, rx(2)t+1

Model: rx(2)t+1 = �0 + �
0
1

�!
F5t + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CIbF1t -0.935 ( -1.389 -0.474) ( -1.333 -0.538) ( -0.022 -0.020) ( -0.022 -0.020)bF 31t 0.062 ( 0.023 0.102) ( 0.031 0.094) ( 0.001 0.001) ( 0.001 0.001)bF3t 0.177 ( -0.043 0.413) ( -0.009 0.371) ( -0.003 0.003) ( -0.003 0.003)bF4t -0.334 ( -0.533 -0.137) ( -0.494 -0.182) ( -0.004 0.003) ( -0.003 0.002)bF8t 0.352 ( 0.141 0.542) ( 0.184 0.511) ( -0.007 0.008) ( -0.007 0.007)
R2 0.225 ( 0.123 0.400) ( 0.139 0.381) ( 0.014 0.019) ( 0.015 0.018)
�R2 0.217 ( 0.113 0.393) ( 0.130 0.375) ( 0.004 0.008) ( 0.004 0.008)

Model: rx(2)t+1 = �0 + �
0
1

�!
F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CIbF1t -0.745 ( -1.141 -0.325) ( -1.075 -0.401) ( -0.025 -0.016) ( -0.024 -0.017)bF 31t 0.055 ( 0.020 0.091) ( 0.026 0.083) ( 0.000 0.001) ( 0.000 0.001)bF3t 0.237 ( 0.010 0.459) ( 0.046 0.412) ( -0.004 0.004) ( -0.003 0.003)bF4t -0.247 ( -0.450 -0.055) ( -0.389 -0.099) ( -0.005 0.003) ( -0.004 0.002)bF8t 0.244 ( 0.065 0.424) ( 0.095 0.394) ( -0.007 0.008) ( -0.006 0.007)
CPt 0.395 ( 0.262 0.519) ( 0.283 0.498) ( 0.004 0.012) ( 0.005 0.011)
R2 0.455 ( 0.245 0.548) ( 0.268 0.524) ( 0.022 0.047) ( 0.023 0.043)
�R2 0.448 ( 0.235 0.542) ( 0.258 0.518) ( 0.009 0.034) ( 0.010 0.031)

Model: rx(2)t+1 = �0 + �
0
1F5t + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CI
F5t 0.539 ( 0.304 0.758) ( 0.356 0.729) ( 0.008 0.011) ( 0.008 0.011)
R2 0.221 ( 0.084 0.384) ( 0.111 0.368) ( 0.008 0.015) ( 0.009 0.014)
�R2 0.219 ( 0.082 0.383) ( 0.109 0.367) ( 0.006 0.013) ( 0.007 0.012)

Model: rx(2)t+1 = �0 + �
0
1F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CI
F5t 0.427 ( 0.216 0.626) ( 0.252 0.601) ( 0.007 0.012) ( 0.007 0.012)
CPt 0.389 ( 0.255 0.516) ( 0.273 0.493) ( 0.004 0.011) ( 0.005 0.011)
R2 0.447 ( 0.215 0.530) ( 0.240 0.506) ( 0.017 0.041) ( 0.019 0.038)
�R2 0.444 ( 0.211 0.528) ( 0.237 0.504) ( 0.013 0.037) ( 0.014 0.034)

Notes: See next page.



Notes: Let xit denote the regressor variables used to predict rx
(n)
t+1: Let zit; i = 1; : : : N; t = 1; : : : T be stan-

dardized data from which the factors are extracted. The vector of factors,
�!
F5t =

� bF1t; bF 31t; bF2t; bF3t; bF4t; bF8t�0 ;
F5t is the single linear combination of these factors formed by regressing the average (across maturity) of excess

bond returns on
�!
F5t.

�!
F5t � ft, where ft is a r � 1 vector of latent common factors. Denote

�!
F5t = Ft: By

de�nition, zit = �0iFt + uit. Let �̂i and bFt be the principal components estimators of �i and Ft, and let ûit be
the estimated idiosyncratic errors. For each i = 1; : : : N , we estimate an AR(1) model ûit = �iûit�1 + wit. Let

~u1;: = u1;:. For t = 2; : : : T , let ~uit = �̂i~uit�1 + ~wit, where ~wi;t is sampled (with replacement) from ŵ:;t; t = 2; : : : T .

Then ~zit = �̂
0
i
bFt + ~uit. Estimation by principal components on the data ~z yields eFt. The remaining regressor,

CPt, is obtained by �rst estimating an AR(1), and then resampling the residuals of the autoregression. Denote

the dependent variable rx(n)t+1 as ~y: Unrestricted samples ~yt are generated as ~y = ~X�̂ + ~e, where �̂ are the least

squares estimates reported in column 2, and ~e are resampled from least squares MA(12) residuals, and ~X is a set

of bootstrapped regressors with F̂t replaced by ~Ft. Samples under the null are generated as ~y = �y + ~e0, where ~e0

is resampled form the residuals of least squares estimated MA(12) process.



Table 4b: Small Sample Inference, rx(3)t+1

Model: rx(3)t+1 = �0 + �
0
1

�!
F5t + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 99% CI 95% CI 99% CIbF1t -1.589 ( -2.547 -0.713) ( -2.356 -0.882) ( -0.022 -0.020) ( -0.022 -0.020)bF 31t 0.114 ( 0.045 0.185) ( 0.058 0.173) ( 0.001 0.001) ( 0.001 0.001)bF3t 0.185 ( -0.251 0.679) ( -0.175 0.560) ( -0.004 0.003) ( -0.003 0.002)bF4t -0.530 ( -0.933 -0.127) ( -0.849 -0.210) ( -0.004 0.003) ( -0.003 0.002)bF8t 0.645 ( 0.259 1.029) ( 0.319 0.969) ( -0.008 0.008) ( -0.006 0.008)
R2 0.189 ( 0.089 0.377) ( 0.103 0.342) ( 0.014 0.019) ( 0.015 0.018)
�R2 0.180 ( 0.079 0.370) ( 0.093 0.335) ( 0.004 0.008) ( 0.004 0.008)

Model: rx(3)t+1 = �0 + �
0
1

�!
F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CIbF1t -1.223 ( -2.015 -0.431) ( -1.875 -0.545) ( -0.033 -0.021) ( -0.032 -0.022)bF 31t 0.100 ( 0.035 0.162) ( 0.045 0.152) ( 0.000 0.002) ( 0.001 0.001)bF3t 0.300 ( -0.132 0.753) ( -0.047 0.667) ( -0.004 0.004) ( -0.004 0.003)bF4t -0.361 ( -0.702 0.018) ( -0.632 -0.058) ( -0.005 0.003) ( -0.004 0.002)bF8t 0.436 ( 0.113 0.774) ( 0.155 0.718) ( -0.008 0.010) ( -0.007 0.008)
CPt 0.764 ( 0.525 0.982) ( 0.556 0.941) ( 0.005 0.015) ( 0.006 0.014)
R2 0.446 ( 0.227 0.539) ( 0.249 0.522) ( 0.021 0.042) ( 0.022 0.040)
�R2 0.439 ( 0.217 0.533) ( 0.239 0.516) ( 0.008 0.030) ( 0.009 0.028)

Model: rx(3)t+1 = �0 + �
0
1F5t + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CI
F5t 0.911 ( 0.473 1.376 ) ( 0.560 1.285) ( 0.008 0.011) ( 0.008 0.011)
R2 0.189 ( 0.055 0.367) ( 0.076 0.335) ( 0.009 0.015) ( 0.009 0.014)
�R2 0.187 ( 0.053 0.366) ( 0.074 0.334) ( 0.006 0.013) ( 0.007 0.012)

Model: rx(3)t+1 = �0 + �
0
1F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CI
F5t 0.694 ( 0.278 1.087) ( 0.338 1.026) ( 0.007 0.012) ( 0.007 0.012)
CPt 0.754 ( 0.504 0.971) ( 0.546 0.938) ( 0.004 0.011) ( 0.005 0.010)
R2 0.442 ( 0.203 0.521) ( 0.226 0.495) ( 0.017 0.040) ( 0.018 0.037)
�R2 0.440 ( 0.199 0.519) ( 0.223 0.493) ( 0.013 0.035) ( 0.014 0.033)

Notes: See Table 4a.



Table 4c: Small Sample Inference, rx(4)t+1

Model: rx(4)t+1 = �0 + �
0
1

�!
F5t + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 99% CI 95% CI 99% CIbF1t -2.046 ( -3.281 -0.917) ( -3.155 -1.090) ( -0.022 -0.020) ( -0.022 -0.020)bF 31t 0.157 ( 0.062 0.261) ( 0.078 0.240) ( 0.001 0.001) ( 0.001 0.001)bF3t 0.183 ( -0.442 0.826) ( -0.293 0.721) ( -0.003 0.003) ( -0.003 0.002)bF4t -0.625 ( -1.165 -0.086) ( -1.076 -0.180) ( -0.004 0.003) ( -0.003 0.002)bF8t 0.948 ( 0.433 1.462) ( 0.506 1.389) ( -0.007 0.008) ( -0.006 0.007)
R2 0.167 ( 0.084 0.357) ( 0.098 0.331) ( 0.015 0.019) ( 0.015 0.018)
�R2 0.158 ( 0.074 0.350) ( 0.088 0.324) ( 0.004 0.008) ( 0.004 0.008)

Model: rx(4)t+1 = �0 + �
0
1

�!
F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CIbF1t -1.506 ( -2.518 -0.440) ( -2.338 -0.640) ( -0.045 -0.029) ( -0.042 -0.030)bF 31t 0.136 ( 0.052 0.222) ( 0.064 0.208) ( 0.001 0.002) ( 0.001 0.002)bF3t 0.353 ( -0.215 0.923) ( -0.104 0.805) ( -0.007 0.005) ( -0.006 0.004)bF4t -0.375 ( -0.849 0.131) ( -0.754 0.002) ( -0.006 0.004) ( -0.005 0.003)bF8t 0.640 ( 0.166 1.105) ( 0.244 1.027) ( -0.008 0.010) ( -0.007 0.008)
CPt 1.128 ( 0.789 1.447) ( 0.846 1.386) ( 0.008 0.019) ( 0.008 0.018)
R2 0.459 ( 0.254 0.560) ( 0.278 0.537) ( 0.021 0.041) ( 0.022 0.039)
�R2 0.452 ( 0.244 0.554) ( 0.269 0.530) ( 0.008 0.029) ( 0.009 0.027)

Model: rx(4)t+1 = �0 + �
0
1F5t + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CI
F5t 1.188 ( 0.660 1.784) ( 0.735 1.713) ( 0.008 0.011) ( 0.008 0.011)
R2 0.167 ( 0.053 0.343) ( 0.071 0.316) ( 0.008 0.015) ( 0.009 0.014)
�R2 0.165 ( 0.051 0.342) ( 0.069 0.315) ( 0.006 0.013) ( 0.007 0.012)

Model: rx(4)t+1 = �0 + �
0
1F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CI
c 0.033 ( -1.321 1.274) ( -0.163 0.623) ( 0.466 0.479) ( 0.467 0.478)
F5t 1.188 ( 0.660 1.784 ) ( -1.075 -0.401) ( -0.025 -0.016) ( -0.024 -0.017)
CPt 0.395 ( 0.262 0.519) ( 0.283 0.498) ( 0.004 0.012) ( 0.005 0.011)
R2 0.455 ( 0.245 0.548) ( 0.268 0.524) ( 0.022 0.047) ( 0.023 0.043)
�R2 0.448 ( 0.235 0.542) ( 0.258 0.518) ( 0.009 0.034) ( 0.010 0.031)

Notes: See Table 4a.



Table 4d: Small Sample Inference, rx(5)t+1

Model: rx(5)t+1 = �0 + �
0
1

�!
F5t + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 99% CI 95% CI 99% CIbF1t -2.271 ( -3.822 -0.735) ( -3.513 -1.023) ( -0.022 -0.020) ( -0.022 -0.020)bF 31t 0.179 ( 0.056 0.295) ( 0.078 0.280) ( 0.001 0.001) ( 0.001 0.001)bF3t 0.182 ( -0.612 0.929) ( -0.444 0.790) ( -0.003 0.003) ( -0.003 0.002)bF4t -0.782 ( -1.445 -0.125) ( -1.329 -0.269) ( -0.004 0.003) ( -0.003 0.002)bF8t 1.129 ( 0.481 1.841) ( 0.598 1.700) ( -0.008 0.008) ( -0.007 0.007)
R2 0.147 ( 0.069 0.315) ( 0.078 0.294) ( 0.014 0.019) ( 0.015 0.019)
�R2 0.138 ( 0.059 0.308) ( 0.068 0.286) ( 0.004 0.008) ( 0.004 0.008)

Model: rx(5)t+1 = �0 + �
0
1

�!
F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CIbF1t -1.629 ( -2.914 -0.185) ( -2.638 -0.368) ( -0.049 -0.032) ( -0.047 -0.033)bF 31t 0.154 ( 0.040 0.264) ( 0.057 0.247) ( 0.001 0.002) ( 0.001 0.002)bF3t 0.384 ( -0.404 1.112) ( -0.236 0.978) ( -0.007 0.005) ( -0.006 0.004)bF4t -0.485 ( -1.116 0.133) ( -1.025 0.017) ( -0.007 0.005) ( -0.006 0.004)bF8t 0.764 ( 0.145 1.351) ( 0.242 1.282) ( -0.010 0.012) ( -0.009 0.010)
CPt 1.341 ( 0.922 1.711) ( 0.993 1.645) ( 0.009 0.022) ( 0.009 0.021)
R2 0.421 ( 0.213 0.514) ( 0.242 0.492) ( 0.020 0.040) ( 0.021 0.038)
�R2 0.414 ( 0.203 0.508) ( 0.232 0.485) ( 0.007 0.028) ( 0.008 0.026)

Model: rx(5)t+1 = �0 + �
0
1F5t + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CI
c -0.145 ( -1.940 1.457) ( -1.725 1.238) ( 0.470 0.473) ( 0.470 0.472)
F5t 1.362 ( 0.596 2.087) ( 0.756 2.001) ( 0.008 0.011) ( 0.008 0.011)
R2 0.146 ( 0.027 0.303) ( 0.046 0.287) ( 0.008 0.015) ( 0.009 0.014)
�R2 0.145 ( 0.025 0.301) ( 0.044 0.286) ( 0.006 0.013) ( 0.007 0.012)

Model: rx(5)t+1 = �0 + �
0
1F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt �̂ 95% CI 90% CI 95% CI 90% CI
F5t -0.745 ( -1.141 -0.325) ( -1.075 -0.401) ( -0.025 -0.016) ( -0.024 -0.017)
CPt 0.395 ( 0.262 0.519) ( 0.283 0.498) ( 0.004 0.012) ( 0.005 0.011)
R2 0.455 ( 0.245 0.548) ( 0.268 0.524) ( 0.022 0.047) ( 0.023 0.043)
�R2 0.448 ( 0.235 0.542) ( 0.258 0.518) ( 0.009 0.034) ( 0.010 0.031)

Notes: See Table 4a.



Figure1: Marginal R-squares for F1
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Notes: Chart shows the R-square from regressing the series number given on the x-axis onto F1. See the appendix for a description of 
the numbered series. The factors are estimated using data from 1964:1-2003:12.   



Figure 2: Marginal R-squares for F2
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Notes: See Figure 1. 



Figure 3: Marginal R-squares for F3
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Notes: See Figure 1. 



Figure 4: Marginal R-squares for F4
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Notes: See Figure 1. 



Figure 5: Marginal R-squares for F8
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Notes: See Figure 1. 
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Figure 6: First factor and IP growth
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Figure 7: Out-of-Sample Forecasts of 2-yr Bond Returns
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