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ABSTRACT

Empirical evidence suggests that excess bond returns are forecastable by financial indicators such
as forward spreads and yield spreads, a violation of the expectations hypothesis based on constant
risk premia. But existing evidence does not tie the forecastable variation in excess bond returns to
underlying macroeconomic fundamentals, as would be expected if the forecastability were
attributable to time variation in risk premia. We use the methodology of dynamic factor analysis for
large datasets to investigate possible empirical linkages between forecastable variation in excess
bond returns and macroeconomic fundamentals. We find that several common factors estimated from
alarge dataset on U.S. economic activity have important forecasting power for future excess returns
on U.S. government bonds. Following Cochrane and Piazzesi (2005), we also construct single
predictor state variables by forming linear combinations of either five or six estimated common
factors. The single state variables forecast excess bond returns at maturities from two to five years,
and do so virtually as well as an unrestricted regression model that includes each common factor as
a separate predictor variable. The linear combinations we form are driven by both "real" and
"inflation" macro factors, in addition to financial factors, and contain important information about
one year ahead excess bond returns that is not captured by forward spreads, yield spreads, or the

principal components of the yield covariance matrix.
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1 Introduction

Recent empirical research has uncovered significant forecastable variation in the excess re-
turns of U.S. government bonds. Cochrane and Piazzesi (2005), building off of earlier work
by Fama and Bliss (1987) and Campbell and Shiller (1991), find that a linear combination
of five forward spreads explains between 30 and 35 percent of the variation in next year’s
excess returns on bonds with maturities ranging from two to five years. Fama and Bliss
(1987) report that m-year excess bond returns are forecastable by the spread between the
n-year forward rate and the one-year yield. Campbell and Shiller (1991) find that excess
bond returns are forecastable by Treasury yield spreads.

Forecastable variation in excess bond returns is a violation of the expectations hypothesis,
which presumes that risk premia are constant. As a consequence, forecastability of excess
bond returns is often interpreted as evidence of time-varying risk premia, implicitly driven by
rational variation in risk or risk-aversion. But economic theories that deliver such rational
variation almost always posit that risk premia vary with macroeconomic variables. For
example, Campbell and Cochrane (1999) posit that risk premia vary with a slow-moving
habit driven by shocks to aggregate consumption. Brandt and Wang (2003) argue that
risk premia are driven by shocks to inflation, as well as shocks to aggregate consumption.
The empirical evidence cited above, by contrast, finds that risk premia fluctuate not with
macroeconomic variables such as aggregate consumption or inflation, but rather with pure
financial indicators such as forward spreads and yield spreads. At the same time, common
variation in excess returns that is entirely unrelated to aggregate quantities is sometimes
interpreted as evidence of irrational investor sentiment rather than rational variation in risk
premia (e.g., Campbell, Polk, and Voulteenaho (2005)).

These considerations suggest that if rational variation in risk premia exists, it should be
evident from forecasting regressions of excess bond returns on macroeconomic fundamen-
tals. As yet, however, there is little evidence that macroeconomic variables forecast bond
returns. Unfortunately, there are several reasons why a judicious, theory-guided empirical
investigation using a few macroeconomic series may fail to uncover the predictable dynamics
of financial market returns. First, some driving variables may be latent and impossible to
summarize with a few observable series. The Campbell-Cochrane habit may fall into this
category. Second, macro variables are more likely than financial series to be imperfectly
measured and less likely to correspond to the precise economic concepts provided by theo-

retical models. As one example, aggregate consumption is often measured as nondurables



and services expenditure, but this measure omits an important component of theoretical con-
sumption, namely the service flow from the stock of durables. Third, the models themselves
are imperfect descriptions of reality and may restrict attention to a small set of variables
that fail to span the information sets of financial market participants.

This paper considers one way around these difficulties using the methodology of dynamic
factor analysis for large datasets. Recent research on dynamic factor analysis finds that
the information in a large number of economic time series can be effectively summarized
by a relatively small number of estimated factors, affording the opportunity to exploit a
much richer information base than what has been possible in prior empirical study of bond
risk premia. In this methodology, “a large number” can mean hundreds or, perhaps, even
more than one thousand economic time series. By summarizing the information from a large
number of series in a few estimated factors, we eliminate the arbitrary reliance on a small
number of imperfectly measured indicators to proxy for macroeconomic fundamentals, and
make feasible the use of a vast set of economic variables that are more likely to span the
unobservable information sets of financial market participants. We use this methodology to
investigate possible empirical linkages between predictable variation in excess bond returns
and macroeconomic fundamentals.

Our results indicate bond premia are indeed forecastable by macroeconomic fundamen-
tals, as well as by financial indicators. To implement the dynamic factor analysis methodol-
ogy, we estimate common factors from a monthly panel of 132 measures of economic activity
using the method of principal components. We find that several estimated common fac-
tors have important forecasting power for future excess returns on U.S. government bonds.
Following Cochrane and Piazzesi (2005), we also construct single predictor state variables
from these factors by forming linear combinations of the either five or six estimated common
factors (denoted F'5; and F'6;, respectively). We find that such state variables forecast excess
bond returns at all maturities (two to five years), and do so virtually as well as a regression
model that includes each common factor in the linear combination as a separate predictor
variable.

The estimated factors have their strongest predictive power for two-year bonds, explaining
up to 26 percent of the one year ahead variation in their excess returns. But they also
display strong forecasting power for excess returns on three-, four-, and five-year government
bonds. The magnitude of the predictability we uncover is less than that found by Cochrane
and Piazzesi (their single factor, which we denote C'P;, explains 31 percent of next year’s

variation in the two-year bond), but is typically more than that found by Fama and Bliss



(1987) and Campbell and Shiller (1991). We also find that our estimated factors have strong
out-of-sample forecasting power for excess bond returns of all maturities. The out-of-sample
predictive power is stable over time and strongly statistically significant. Finally, the factors
continue to exhibit significant predictive power for excess bond returns even when the small
sample properties of the data are taken into account.

Of all the estimated factors we study, the single most important in the linear combinations
we form is the first common factor from the panel of economic activity. The cubic in this
factor also displays predictive power for excess bond returns. This factor is a “real” factor,
since it is highly correlated with measures of real output and employment but not highly
correlated with prices or financial variables. The third and fourth estimated factors, by
contrast, are highly correlated with measures of inflation. Thus, the real and “inflation”
factors found in aggregate economic activity are also important factors in the time variation
of expected excess bond returns. We discuss the interpretation of the factors further below.

The estimated factors we study are not pure macro variables, since the panel of economic
indicators from which they are estimated contain financial variables as well as macro vari-
ables.! This is important because neither theory nor empirical evidence would suggest that
macroeconomic variables contain information that is orthogonal to that contained in finan-
cial indicators.? Thus, the key empirical question we seek to address is not whether macro
variables uncover entirely new predictable dynamics not revealed by financial indicators, but
rather whether there is any evidence that bond risk premia vary with macroeconomic funda-
mentals. As it turns out, we find that much of the information contained in the factors that
load heavily on the financial variables is already captured by the Cochrane-Piazzesi factor.
This is especially true of the second estimated factor, which loads heavily on interest rate
spreads. An exception is the eighth factor, which is highly correlated with the stock mar-
ket. Nevertheless, we find that much of the information contained in our estimated factors
is independent of that contained in the Cochrane-Piazzesi factor. As a consequence, when
both C'P, and either F'5, or F'6, are included together as predictor variables, the regression
model can explain as much as 44 percent of next year’s two-year excess bond return. This is
an improvement of 13 percent over what is possible using C'P; alone, and an improvement of
18 percent over what is possible using F'5; alone. The results for bonds of other maturities

are similar.

INevertheless, in the interest of brevity, and with slight abuse of terminology, we hereafter refer to the
estimated factors from our panel of economic activity simply as “macro factors.”

2For example, the monetary policy literature emphasizes both empirical and theoretical linkages between
bond yields and contemporaneous measures of output and inflation.



The rest of this paper is organized as follows. In the next section we briefly review related
literature not discussed above. Section 3 lays out the econometric framework and discusses
the use of principal components analysis to estimate common factors. Section 4 explains the
empirical implementation and describes the data. We move on in Section 5 to present our
empirical findings, including the results of one year ahead predictive regressions for excess
bond returns. Two additional analyses are performed as robustness checks: out-of-sample

investigations, and small-sample inference. Section 6 concludes.

2 Related Literature

Our use of dynamic factor analysis is an application of statistical procedures developed
elsewhere for the case where both the number of economic time series used to construct
common factors, N, and the number of time periods, T, are large and converge to infinity
(Stock and Watson (2002b); Stock and Watson (2002a); Bai and Ng (2002); Bai and Ng
(2005)). Dynamic factor analysis with large N and large T' is preceded by a literature
studying classical factor analysis for the case where N is relatively small and fixed but
T — oo. See for example, Sargent and Sims (1977); Sargent (1989), and Stock and Watson
(1989, 1991). By contrast, Connor and Korajczyk (1986, 1988) pioneered techniques for
undertaking dynamic factor analysis when T is fixed and N — oc.

The presumption of the dynamic factor model is that the covariation among economic
time series is captured by a few unobserved common factors. Stock and Watson (2002b)
show that consistent estimates of the space spanned by the common factors may be con-
structed by principal components analysis. Bai and Ng (2005) show that if /T /N — 0,
the least squares estimates from factor-augmented forecasting regressions are /T’ consistent
and asymptotically normal, and that pre-estimation of the factors does not affect the consis-
tency of the second-stage parameter estimates or the regression standard errors. A large and
growing body of literature has applied dynamic factor analysis in a variety of empirical set-
tings. Stock and Watson (2002b) and Stock and Watson (2004) find that predictions of real
economic activity and inflation are greatly improved relative to low-dimensional forecasting
regressions when the forecasts are based on the estimated factors of large datasets. An added
benefit of this approach is that the use of common factors can provide robustness against the
structural instability that plagues low-dimensional forecasting regressions (Stock and Wat-
son (2002a)). The reason is that such instabilities may “average out” in the construction of
common factors if the instability is sufficiently dissimilar from one series to the next. Several

authors have combined dynamic factor analysis with a vector autoregressive framework to
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study the macroeconomic effects of policy interventions or patterns of comovement in eco-
nomic activity (Bernanke and Boivin (2003); Bernanke, Boivin, and Eliasz (2005), Giannone,
Reichlin and Sala (2004, 2005); Stock and Watson (2005) ). Boivin and Giannoni (2005) use
dynamic factor analysis of large datasets to form empirical inputs into dynamic stochastic
general equilibrium models. Ludvigson and Ng (2005) use dynamic factor analysis to model
the conditional mean and conditional volatility of excess stock market returns.

Our work is also related to research in asset pricing that looks for connections between
bond prices and macroeconomic fundamentals. In data spanning the period 1988-2003,
Piazzesi and Swanson (2004) find that the growth of nonfarm payroll employment is a strong
predictor of excess returns on federal funds futures contracts. Ang and Piazzesi (2003)
investigate possible empirical linkages between macroeconomic variables and bond prices in
a no-arbitrage factor model of the term structure of interest rates. Building off of earlier
work by Duffee (2002) and Dai and Singleton (2002), Ang and Piazzesi study a bond pricing
model that allows for time-varying risk premia, consistent with the evidence cited above that
excess bond returns are forecastable by forward and yield spreads. But unlike the earlier
work, the Ang-Piazzesi pricing kernel is driven by shocks to both observed macro variables
and unobserved yield factors; they find empirical support for this model. The investigation
of this paper differs in two important respects from that of Ang and Piazzesi. First, we form
macro factors from a large set of 132 economic indicators, whereas they study (summary
factors from) a small set of macro variables comprised of three inflation measures and four
measures of real activity. Second, Ang and Piazzesi focus on yield spread variation and
forecasting, whereas we focus on variation in expected excess returns. This latter distinction
is important because, as Cochrane and Piazzesi (2005) point out, variables that are relevant
for explaining fluctuations in yields may be relatively unimportant for explaining fluctuations
in expected excess returns, and vice versa. Of course, yields and excess returns are different
transformations of the same underlying bond price data, thus we view our investigation as

complimentary to that of Ang and Piazzesi.

3 Econometric Framework

In this section we describe our econometric framework, which involves estimating common
factors from a large dataset of economic activity. Such estimation is carried out using prin-
cipal components analysis, a procedure that has been described and implemented elsewhere
for forecasting measures of macroeconomic activity and inflation (e.g., Stock and Watson

(2002b), Stock and Watson (2002a), Stock and Watson (2004)). Our notation for excess
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bond returns and yields closely follows that in Cochrane (2005). We refer the reader to
those papers for a detailed description of this procedure; here we only outline how the im-
plementation relates to our application.

The goal of our econometric application is to assess whether forecastable variation in
excess bond returns is related to macroeconomic fundamentals. For ¢t = 1,...7T, let rxii)l
denote the continuously compounded (log) excess return on an n-year discount bond in
period ¢ + 1. Excess returns are defined rxﬁ)l = rgi)l — 4V, where rgi)l is the log holding
period return from buying an n-year bond at time t and selling it as an n — 1 year bond
at time ¢ + 1, and yt(l) is the log yield on the one-year bond. Cochrane and Piazzesi (2005)
forecast excess bond returns with a linear combination of ylfl) and four forward rates, denoted

2 3 5
g2, g g3

A standard approach to assessing whether excess bond returns are predictable is to select
a set of K predetermined conditioning variables at time ¢, given by the K x 1 vector Z;, and
then estimate

wagi)l =0'Z + e11 (1)

by least squares. For example, Z; could include the individual forward rates studied in
Fama and Bliss (1987), the single forward factor studied in Cochrane and Piazzesi (2005),
or other predictor variables based on a few macroeconomic series. For reasons discussed
above, however, such a procedure may be restrictive, especially when investigating potential
links between bond premia and macroeconomic fundamentals. In particular, suppose we
observe a T' x N panel of macroeconomic data with elements xz;;,7 =1,...N, t =1,...,T,
where the cross-sectional dimension, NN, is large, and possibly larger than the number of
time periods, T'. With standard econometric tools, it is not obvious how a researcher could
use the information contained in the panel because, unless we have a way of ordering the
importance of the N series in forming conditional expectations (as in an autoregression),
there are potentially 2V possible combinations to consider. Furthermore, letting x; denote

the IV x 1 vector of panel observations at time ¢, estimates from the regression

mﬁi)l =~ + 07 + €41 (2)

quickly run into degrees-of-freedom problems as the dimension of x; increases, and estimation
is not even feasible when N + K > T.

3Let pi") =log price of n-year discount bond at time ¢. Then the log yield is yin) =—(1/n) p§n)7 and the
log holding period return is Tii)l = pii{l) — pgn). The log forward rate at time ¢ for loans between ¢t +n — 1

(n)

and t +n is g™ = p{" Y — pi™.



The approach we consider is to posit that z;; has a factor structure taking the form
Ty = N fr + €, (3)

where f; is a r x 1 vector of latent common factors, \; is a corresponding r x 1 vector of
latent factor loadings, and e;; is a vector of idiosyncratic errors.* The crucial point here is
that » << N, so that substantial dimension reduction can be achieved by considering the
regression

ngi)l = F 4+ B'Z 4 €11, (4)

where F; C f;. Equation (1) is nested within the factor-augmented regression, making (4)
a convenient framework to assess the importance of z;; via F}, even in the presence of Z;.
But the distinction between F; and f; is important, because factors that are pervasive for
the panel of data x;; need not be important for predicting r:vgi)l.

As common factors are not observed, we replace f; by ﬁ, estimates that, when N,T" — oo,
span the same space as f;. (Since f; and \; cannot be separately identified, the factors are
only identifiable up to an r X r matrix.) In practice, f; are estimated by principal components
analysis (PCA).” Let the A be the N x r matrix defined as A = (X, ..., \y). Intuitively,
the estimated time ¢ factors fAt are linear combinations of each element of the N x 1 vector
2y = (214, ..., o) , where the linear combination is chosen optimally to minimize the sum of
squared residuals z; — A f;. Throughout the paper, we use “hats” to denote estimated values.

To determine the composition of ]3,5, we form different subsets of ﬁ, and/or functions of
ﬁ (such as j?t) For each candidate set of factors, ﬁ}, Wwe regress 7“171(51)1 on F, and Z; and
evaluate the corresponding BIC and R2. Following Stock and Watson (2002b), minimizing
the BIC yields the preferred set of factors F}. Z, contains additional (non-factor) regressors

that are thought to be related to future bond returns. For the results reported below, we set

4We consider an approzimate dynamic factor structure, in which the idiosyncratic errors e;; are permitted
to have a limited amount of cross-sectional correlation. The approximate factor specification limits the
contribution of the idiosyncratic covariances to the total variance of = as IV gets large:

N N
N7 1B (eaejo)] < M.

i=1j=1

To be precise, the T x r matrix fis VT times the r eigenvectors corresponding to the  largest eigenvalues
of the T x T’ matrix z2'/(TN) in decreasing order. Let A be the N x r matrix of factor loadings (Al ..., )\2\,)/ .
A and f are not separately identifiable, so the normalization f'f/T = I, is imposed, where I, is the r-
dimensional identity matrix. With this normalization, we can additionally obtain A=z f/ T, and x,;; = X;ft
denotes the estimated common component in series ¢ at time ¢. The number of common factors, r, is
determined by the panel information criteria developed in Bai and Ng (2002).
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Z; equal to a single variable, the Cochrane-Piazzesi forward factor C'P,, since this variable
subsumes the information about bond premia that is contained in the the individual forward
spreads used by Fama and Bliss (1987) and yield spreads used by Campbell and Shiller
(1991). The final regression model for excess returns is based on Z; plus this optimal F,.
That is,

r$§1)1 = O/E + ' Z; + €41 (5)

Notice that although we have written (5) so that ﬁt and Z; enter as separate regressors,
there is no theoretical reason that macro factors should contain information that is entirely
orthogonal to the information in financial predictor variables that might be contained in
Zy. Thus, our main empirical question asks whether factors F} have unconditional predictive
power for future returns. This amounts to asking whether the coefficients o from a restricted
version of (5) given by

ralth = o'F, + e14 (6)
are different from zero. At the same time, an interesting empirical question is whether
the information contained in macro factors ﬁt overlaps substantially with that contained in
financial predictor variables. Therefore we also evaluate regressions of the form (5), in which
Z; includes proven financial predictor variables. This allows us to assess whether E has
predictive power for excess bond returns, conditional on the information in Z;. In each case,
the null hypothesis is that excess bond returns are unpredictable.

Under the assumption that N, T — oo with v/T' /N — 0, Bai and Ng (2005) showed that
(i) (@, B) obtained from least squares estimation of (5) are /7' consistent and asymptotically
normal, and the asymptotic variance is such that inference can proceed as though f; is
observed, (ii) the estimated conditional mean, F/a + Z;B is min[v/N,+/T)] consistent and
asymptotically normal, and (iii) the i period forecast error from (5) is dominated in large
samples by the variance of the error term, just as if f; is observed. The importance of a
large N must be stressed, however, as without it, the factor space cannot be consistently
estimated however large T' becomes.

Although our estimates of the predictable dynamics in excess bond returns will clearly de-
pend on the extracted factors and conditioning variables we use, the combination of dynamic
factor analysis applied to very large datasets, along with a statistical criterion for choosing
parsimonious models of relevant factors and conditioning variables, makes our analysis less
dependent than previous applications on only a handful of predetermined conditioning vari-
ables. The use of dynamic factor analysis allows us to entertain a much larger set of predictor

variables than what has been entertained previously, while the BIC criterion provides a means
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of choosing among summary factors and conditioning variables by indicating whether these

variables have important additional forecasting power for excess bond returns.

4 Empirical Implementation and Data

A detailed description of the data and our sources is given in the Data Appendix. We study
monthly data spanning the period 1964:1 to 2003:12, the same sample studied by Cochrane
and Piazzesi (2005).

The bond return data are taken from the Fama-Bliss dataset available from the Center
for Research in Securities Prices (CRSP), and contain observations on one- through five-year
zero coupon U.S. Treasury bond prices. These are used to construct data on excess bond
returns, yields and forward rates, as described above. Annual returns are constructed by
continuously compounding monthly return observations.

We estimate factors from a balanced panel of 132 monthly economic series, each span-
ning the period 1964:1 to 2003:12. Following Stock and Watson (2002b, 2004, 2005), the
series were selected to represent broad categories of macroeconomic time series: real output
and income, employment and hours, real retail, manufacturing and trade sales, consumer
spending, housing starts, inventories and inventory sales ratios, orders and unfilled orders,
compensation and labor costs, capacity utilization measures, price indexes, interest rates and
interest rate spreads, stock market indicators and foreign exchange measures. The complete
list of series is given in the Appendix, where a coding system indicates how the data were
transformed so as to insure stationarity. All of the raw data in z; are standardized prior to
estimation.

For the specifications in which we include additional predictor variables in Z;, we report
results in which Z; contains the single variable C'P,. We do so because the Cochrane-Piazzesi
factor summarizes virtually all the information in individual yield spreads and forward spread
that had been the focus of prior work on predictability in bond returns. We also experimented
with including the dividend yield on the Standard and Poor composite stock market index
in Z;, since Fama and French (1989) find that this variable has modest forecasting power for
bond returns. We do not report those results, however, since the dividend yield has little
forecasting power for future bond returns in our sample and has even less once the macro
factors F; or the Cochrane and Piazzesi factor are included in the forecasting regression.

In estimating the time-¢ common factors, we face a decision over how much of the time-
series dimension of the panel to use. We take two approaches. First, we run in-sample

regressions in which the full sample of time-series information is used to estimate the common
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factors at each date ¢. This approach can be thought of as providing smoothed estimates of
the latent factors, f;. Smoothed estimates of the latent factors are the most efficient means of
summarizing the covariation in the data x because the estimates do not discard information
in the sample. Second, we conduct an out-of-sample forecasting investigation in which the
predictor factors are reestimated recursively each period using data only up to time ¢t. A

description of this procedure is given below.
5 Empirical Results

Table 1 presents summary statistics for our estimated factors ﬁ The number of factors, r, is
determined by the information criteria developed in Bai and Ng (2002). The criteria indicate
that the factor structure is well described by eight common factors. The first factor explains
the largest fraction of the total variation in the panel of data x, where total variation is
measured as the sum of the variances of the individual x;;. The second factor explains the
largest fraction of variation in x, controlling for the first factor, and so on. The estimated
factors are mutually orthogonal by construction. Table 1 reports the fraction of variation

6 Table 1 shows that a small number of factors

in the data explained by factors 1 to .
account for a large fraction of the variance in the panel dataset we explore. The first five
common factors of the macro dataset account for about 40 percent of the variation in the
macroeconomic series.

To get an idea of the persistence of the estimated factors, Table 1 also displays the first-
order autoregressive, AR(1), coefficient for each factor. None of the factors have a persistence
greater than 0.77, but there is considerable heterogeneity across estimated factors, with
coefficients ranging from -0.17, to 0.77.

As mentioned, we formally choose among a range of possible specifications for the fore-
casting regressions of excess bond returns based on the estimated common factors (and
possibly nonlinear functions of those factors such as ff’t) using the BIC criterion. Given
the large number of possible specifications, we report only the subset of those specifications
analyzed that have the lowest BIC criterion.” Results not reported indicate that, when the
Cochrane-Piazzesi factor is excluded as a predictor, the six-factor subset F; C f; given by

_ ~ o~ o~ o~~~/
F, = F6, = (Flt, F}, Foy, Fyy, Fy, F&:) minimizes the BIC criterion across a range of pos-

6This is given as the the sum of the first 4 largest eigenvalues of the matrix zz’ divided by the sum of all
eigenvalues.

"Specifications that include lagged values of the factors beyond the first were also examined, but additional
lags were found to contain little information for future returns that was not already contained in the one-
period lag specifications.
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sible specifications based on the first eight common factors of our panel dataset, as well
as nonlinear basis functions of these factors. ﬁf’t, above, denotes the cubic function in the
first estimated factor. The estimated factors ﬁ5t and ﬁﬁt exhibit little forecasting power for
excess bond returns. When C'P, is included, by contrast, the five-factor subset F; C f; given
by F; = ]*T5>t = (ﬁu, ﬁﬂ,ﬁgt,}at,ﬁ&), minimizes the BIC criterion. As we shall see, the
second estimated factor F\gt is highly correlated with interest rates spreads. As a result, the
information it contains about future bond premia is subsumed in C'P,.

The subsets F; contain five or six factors. To assess whether a single linear combination
of these factors forecasts excess bond returns at all maturities, we follow Cochrane and
Piazzesi (2005) and form single predictor factors as the fitted values from a regression of
average (across maturity) excess returns on the set of six and five factors, respectively. We

denote these single factors F'6;, and F'5;, respectively:

5
1 n -~ = A A ~ ~
1 Z T$£+)1 = Yo+ V1 Fu V2 FY, v P+ va P s Fae + e Fse (7)
n=2
F6t = /’?/-F—>‘6t7
5
1 n ~ ~ ~ ~ ~
ZZTJ;’E+)1 = 50+51F1t+52F13t+63F3t+(54F4t+55F8t+Ut+1, (8)
n=2
F5t = /6\/F_1>5t,

where 3 and § denote the 6 x 1 and 5 x 1 vectors of estimated coefficients from (7) and (8),
respectively. With these factors in hand, we now turn to an empirical investigation of their

forecasting properties for excess bond returns.

5.1 In-Sample Analysis

Tables 2a-2d present results from in-sample forecasting regressions of the general form (5),
for two-year, three-, four-, and five-year log excess bond returns.® In this section, we in-
vestigate the two hypotheses discussed above. First we ask whether the estimated factors
have unconditional predictive power for excess bond returns; this amounts to estimating the
restricted version of (5) given in (6), where 3’ is restricted to zero. Next we ask whether
the estimated factors have predictive power for excess bond returns conditional on Z;. This
amounts to estimating the unrestriced regression (5) with 5’ freely estimated. The statistical
significance of the factors is assessed using asymptotic standard errors. Section 5.3, below,

investigates the finite sample properties of the data.

8The results reported below for log returns are nearly identical for raw excess returns.
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For each regression, the regression coefficients, heteroskedasticity and serial-correlation
robust t-statistics, and adjusted R? statistic are reported. The asymptotic standard errors
use the Newey and West (1987) correction for serial correlation with 18 lags. The correction
is needed because the continuously compounded annual return has an MA(12) error structure
under the null hypothesis that one-period returns are unpredictable. Because the Newey-
West correction down-weights higher order autocorrelations, we follow Cochrane and Piazzesi
(2005) and use an 18 lag correction to better insure that the procedure fully corrects for the
MA(12) error structure.

We begin with the results in Table 2a, predictive regressions for excess returns on two-
year bonds mﬁ)l. As a benchmark, column a reports the results from a specification that
includes only the Cochrane-Piazzesi factor C'P; as a predictor variable. This variable, a linear
combination of yt(l) and four forward rates, g§2), gt(g), cey g§5), is strongly statistically significant
and explains 31 percent of next year’s two-year excess bond return. By comparison, column
b shows that the six factors contained in the vector I*?ét are also strong predictors of the
two-year excess return, with t-statistics in excess of five for the first estimated factor ﬁu,
but with all factors statistically significant at the 5 percent or better level. Together these
factors explain 26 percent of the variation in one year ahead returns. Although the second
factor, I*A}t, is strongly statistically significant in column b, column ¢ shows that once C'P; is
included in the regression, it loses its marginal predictive power and the adjusted R? statistic
rises from 26 to 45 percent. This implies that the information contained in F\2t is more than
captured by C'P,. Because we find similar results for the excess returns on bonds of all
maturities, we hereafter omit output from multivariate regressions using F\Qt and C'P; as a
separate predictors in subsequent tables.

Columns d through h display estimates of the marginal predictive power of the estimated
factors in ]*T5>t and the single predictor factors F'5; and F'6;. The single predictor factors ex-
plain virtually the same fraction of future excess returns as do the unrestricted specifications
that include each factor as separate predictor variables. For example, both ]*Tét and F'6;
explain 26 percent of next year’s excess bond return; both F—’5>t and F'5; explain 22 percent.
Column e shows that the five factors in F—’5>t are strongly statistically significant even when
CP, is included, implying that these factors contain information about future returns that
is not contained in forward spreads. The 45 percent R’ from this regression indicates an
economically large degree of predictability of future bond returns. About the same degree
of predictability is found when the single factor F'5; is included with C'P, (E2 = 44 percent).

The results in Tables 2b-2d for excess returns on three-, four-, and five-year bonds are
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similar to those reported in Table 2a for two-year bonds. In particular, (i) the single factors
F'5; and F'6; predict future bond returns just as well than the unrestricted regressions that
include each factor as separate predictor variables, (ii) the first estimated factor continues to
display strongly statistically significant predictive power for bonds of all maturities, and (iii)
the specifications explain an economically large fraction of the variation in future returns.
There are, however, a few notable differences from Table 2a. The coefficients on the third
and fourth common factors are more imprecisely estimated in unrestricted regressions of

N
m,ﬁf"ﬁl, m:,gi)l, and rx§?1 on F'5;, as evident from the lower ¢-statistics. But notice that, in

every case, the third factor retains the strong predictive power it exhibited for mﬁ’l once
CP, is included as an additional predictor (column ¢ of Tables 2b-2d). Moreover, the single
factors F'5; and F'6; remain strongly statistically significant predictors of excess returns on
bonds of all maturities and continue to deliver high R.F 6; alone explains 24, 23, and 21
percent of next years excess return on the three-, four-, and five-year bond, respectively; F'5;
explains 19, 17, and 14 percent of next years excess returns on these bonds, and F'5; and
C P, together explain 44, 45, and 42 percent of next years excess returns.

In summary, the results reported in Tables 2a-2b indicate that good forecasts of excess
bond returns can be made with only a few macro factors, and that the best forecasts are based
on combinations of macro factors and the Cochrane-Piazzesi factor C'P,. It is reassuring
that some of estimated factors (ﬁgt in particular, and to a lesser extent ﬁgt) are found to
contain information that is common to that the Cochrane-Piazzesi factor, suggesting that
C P, summarizes a large body of information about economic and financial activity. The
Cochrane-Piazzesi factor C P, contains more overall information about future bond returns
than what is contained in the estimated macro factors. This is evident from a comparison
of B statistics. The crucial point, however, is that measures of real activity and inflation
in the aggregate economy contain economically meaningful information about future bond
returns that is not contained in C'P;. This implies not only that returns are significantly
more forecastable than what is indicated by CP, alone, but also that specifications using
pure financial variables omit pertinent information about future bond returns associated
with macroeconomic fundamentals. As a consequence, when the information in C'P; and the
macro factors is combined, the magnitude of forecastability exhibited by excess bond returns
is remarkable.

What economic interpretation can we give to the predictor factors? Because the factors
are only identifiable up to a r X r matrix, a detailed interpretation of the individual factors

would be inappropriate. Nonetheless, it is useful to briefly characterize the factors as they
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relate to the underlying variables in our panel dataset. Figures 1 through 5 show the marginal
R? for our estimates of Fi;, Fy, Fs, Fu, and Fg. The marginal R? is the R? statistic from
regressions of each of the 132 individual series in our panel dataset onto each estimated
factor, one at a time, using the full sample of data. The figures display the R? statistics as
bar charts, with one figure for each factor. The individual series that make up the panel
dataset are grouped by broad category and labeled using the numbered ordering given in
the Data Appendix.

The first factor loads heavily on measures of employment and production (employees on
nonfarm payrolls and manufacturing output, for example), but also on measures of capacity
utilization and new manufacturing orders. It displays little correlation with prices or financial
variables, however, hence we call this factor a real factor. The second factor, which has a
correlation with C'P; of -45%, loads heavily on several interest rate spreads, explaining almost
70 percent of the variation in the Baa—Fed funds rate spread, for example. The third and
fourth factors load most heavily on measures of inflation and price pressure but display little
relation to employment and output. They are highly correlated with both commodity prices
and consumer prices, while Et is also highly correlated with the level of nominal interest
rates (for example by the five-year government bond yield). Nominal interest rates may
contain information about inflationary expectations that is not contained in measures of the
price level. Notice however, that the highest marginal R? in the regression of Zit on inflation
variables is less than half of that from regressions of I 3¢ on inflation measures; thus the latter
is the economically more important factor related to inflation. Nevertheless, we call both
F\gt and Fy, inflation factors. The eighth factor loads heavily on measures of the aggregate
stock market: the log difference in both the composite and industrial Standard and Poor’s
Index and the Standard and Poor’s dividend yield. It bears little relation to other variables.
We call this factor a stock market factor.’

Since the factors are orthogonal by construction, we can characterize their relative im-
portance in the linear combinations F'5; and F'6; by investigating the absolute value of the
coefficients on each factor in the regressions (7) and (8). (Since the factors are identifiable up
to an r x r matrix, the signs of the coefficients have no particular interpretation.) Because

the factors are orthogonal, it is sufficient for this characterization to investigate just the

9This factor is not simply picking up information contained in the stock market dividend yield (Fama and
French (1989)). Results not reported indicate that the dividend yield on Standard & Poor composite index
has only a small amount of predictive power for excess bond returns in our sample; moreover, conditional
on the dividend yield, the stock market factor we estimate has strong marginal predictive power.
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—9
coefficients from the regression on all six factors contained in F'6;, as in (7).!° Using data

from 1964:1-2003:12, we find the following regression results (¢-statistics in parentheses):

—1.03— 1.72 -F 013F3 1.01 -F 018F—056F 078F
1 T son ) 1t+( o5 Liboy 2t+(1 19 5o 4+ 8t T Utt1,

R’ =0.224.

The real factor, ﬁu, has the largest coefficient in absolute value, implying that it is the
single most important factor in the linear combinations we form. The interest rate factor
13275 is second most important, and the stock market factor ﬁgt third most. The inflation
factors F\3t and ﬁ4t are relatively less important but still contribute more than the cubic in
the real factor. (F\gt is not marginally significant in these regressions because its coefficient
is imprecisely estimated in forecasts of three-, four-, and five-year excess bond returns when
only factors are included as predictors. The variable is nonetheless an important predictor
of future bond returns at all maturities because it is a strongly statistically significant once
C'P, is included as an additional regressor.)

In most empirical applications involving macro variables, researchers choose a few time
series thought to be representative of aggregate activity. In monthly data, the usual suspects
tend to be a measure of industrial production, consumer and commodity inflation, and
unemployment. The next regression shows what happens if individual series of this type are

used instead of factors to forecast excess bond returns:

me = 6.06—28.01-1P,+0.56-CPI— 0.09 -CMPI,—11.80- PPI;+1.36-UN;+ .1,

(2.88) (—0.74) (0.02) (—2.55) (—0.79) (0.99)

R =0.113.

I P, is the log difference in the industrial production index, C'PI; is the log difference in the
consumer price index, C'M PI; is the log difference in the NAPM commodity price index;
PP, is the log difference in the producer price index, and U N, is the unemployment rate for
the total population over 16 years of age. Unlike the factors, many of the usual suspect macro
series have little marginal predictive power for excess bond returns, and the R statistic
is significantly lower. This occurs even though, for example, I P, and ]31,5 have a simple

correlation of 83 percent in our sample. Of course, the choice of predictors above is somewhat

10G¢trictly speaking, F\f’t is not orthogonal, but in practice is found to be nearly so.
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arbitrary given the large number of series available. This fact serves to illustrate a point: not
only does the factor approach employed above free the researcher from arbitrary decisions
about which of many macro series should be used to represent aggregate activity, but it is
also likely to provide a superior means capturing time-variation in excess bond returns.

Is the forecastable variation in excess bond returns we uncover related to macroeconomic
risks in the way predicted by theory? The real factor, 2 1t, captures marked cyclical variation
in real activity. This is illustrated in Figure 6, which plots the 12 month moving average
of both ﬁu and I P; over time, along with shaded bars indicating dates designated by the
National Bureau of Economic Research (NBER) as recession periods. The correlation be-
tween the moving averages of these two series is 92 percent. The figure shows that both the
first factor and IP growth reach peaks in the mid-to-late stages of economic expansions, and
take on their lowest values at the end of recessions. Thus recessions are characterized by
low and typically negative IP growth, while expansions are characterized by strong positive
growth. Connecting these findings back to forecasts of excess bond returns, the results in
Tables 2a-2d show that excess return forecasts are high when F 1t is low, implying that return
forecasts have a countercyclical component. They are high at the bottom of recessions and
low at the height of economic expansions. Such findings are consistent with economic the-
ories that imply investors must be compensated for bearing risks related to recessions. For
example, Campbell and Cochrane (1999) study a model in which risk aversion varies over
the business cycle and is low in good times when consumption growth is high. This implies
that risk premia are also low when the economy is growing quickly, or that excess return
forecasts are low in booms, consistent with what we find. By linking the forecastability of
excess returns to real economic activity, the findings here provide direct evidence that risk
premia are connected to macroeconomic risks in the direction predicted by economic theory.

The evidence that inflation factors govern part of the predictable variation in excess bond
returns also provides independent empirical support for the general theoretical framework
proposed by Brandt and Wang (2003). Brandt and Wang estimate a consumption-based
asset-pricing model in which aggregate risk-aversion varies with news about inflation, as
well as with news about real quantities. Since in their model risk-aversion varies with these
news variables, risk premia do as well. Thus excess bond returns in that framework should
be forecastable by measures of inflation, consistent with what we find. Our evidence is also
consistent with findings in Ang and Piazzesi (2003) that inflation and real activity contribute
significantly to variation in the price of risk in term structure models where risk premia are

allowed to vary over time with macroeconomic variables.
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We emphasize an additional aspect of the results above: the macro factors we study
contain information for future bond premia that is not contained in forward spreads, yield
spreads, or even yield factors estimated as the principal components of the yield covariance
matrix. (The first three principal components of the yield covariance matrix are the “level,”
“slope,” and “curvature,” yield factors studied in term structure models in finance.) This can
be understood by noting that the macro factors we study contain independent information
that is not in C'P;, the linear combination of forward rates and ygl). But Cochrane and
Piazzesi have already shown in our sample that the information in individual yield spreads
and the three yield factors is subsumed by that in C'P,. It follows the macro factors in th,
or F—’ét, or their corresponding linear combinations F 5;, and 2 6;, contain information above
and beyond that already contained in forward spreads, yield spreads, and yield factors.
Since yield factors explain the vast majority of variation in yields, this evidence reinforces
the conclusion of Cochrane and Piazzesi, namely that information that is unimportant for
explaining bond yields can be paramount for explaining expected excess returns on bonds.
Our next two subsections present additional results that pertain to the robustness of these

forecasting relations: out-of-sample analysis and small-sample inference.

5.2 Out-of-Sample Analysis

The regression analysis described above, as well as the formation of the factors, is conducted
using the full sample of data. In this section we report results on the out-of-sample forecasting

1" This procedure

performance of the regression models studied in the previous section.!
involves fully recursive factor estimation and parameter estimation using data only through
time t for forecasting at time t+1. We compare the out-of-sample forecasting performance of
the five-factor model that includes the macro factors in ﬁt, to a constant expected returns
benchmark where, aside from an MA(12) error term, excess returns are unforecastable, as in
the expectations hypothesis. The results for }—*%t lead to the same out-of-sample performance,
if not stronger, than what is reported for ]?5t below, thus we omit those results to conserve
space. In addition, we do not include C'P; as an additional predictor variable for these results,
since the out-of-sample performance of C'P; has already been established in Cochrane and

Piazzesi (2005) and we wish to focus on the out-of-sample performance of the new factors

1 An important caveat with out-of-sample statistical tests is that they lack power relative to in-sample
regression forecasts (Inoue and Kilian (2004)). With this caveat in mind, we proceed using tests known
to have the best size and power properties among those available (Clark and McCracken (2001)), but the
reader should be aware that the predictor variables we study may contain more forecasting power than what
is indicated by the out-of-sample statistical tests reported here.
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introduced here. Of course, rejections of the no-predictability null would be even stronger if
C'P, were included.

Table 3 reports results from one year ahead out-of-sample forecast comparisons of log
excess bond returns, mgi)l, n = 2,..,5. For each forecast, M SE, denotes the mean-squared
forecasting error of the unrestricted model including predictor factors F—5)t; MSE, denotes
the mean-squared forecasting error of the restricted benchmark (null) model that excludes
these additional forecasting variables. In the column labeled “M SE,/MSE,”, a number less
than one indicates that the model with the additional macro factors has lower forecast error
than the benchmark constant expected returns model.

Results for three forecast samples are reported: 1975:1-2003:2; 1985:1-2003:2; 1995:1-
2003:2. The results for the first forecast sample are reported in Rows 1, 4, 7 and 10 for
rxg)l, ...,rmS’r)l respectively. Here the parameters and factors were estimated recursively,
with the initial estimation period using only data available from 1964:12 through 1974:12.
Next, the forecasting regressions were run over the period ¢t =1964:12,...,1974:12 (dependent
variable from t =1965:1,...,1974:12, independent variable from ¢ =1964:1,...,1973:12) and
the estimated parameters and values of the regressors at ¢ =1974:1 were used to forecast
returns at 1975:1.12 All parameters and factors are then reestimated from 1964:1 through
1975:1, and forecasts were recomputed for excess returns in 1975:2, and so on, until the
final out-of-sample forecast is made for returns in 2003:12. The same procedure is used to
compute results reported in the other rows, where the initial estimation period is either
t =1964:1,...,1985:1 or t =1964:1,...,1995:1. The column labeled “Test Statistic” in Table 3
reports the ENC-NEW test statistic of Clark and McCracken (2001) for the null hypothesis
that the benchmark model encompasses the unrestricted model with additional predictors.
The alternative is that the unrestricted model contains information that could be used to
improve the benchmark model’s forecast. “95% Asympt. CV” gives the 95th percentile of
the asymptotic distribution of the ENC-NEW test statistic.

The results show that the model including the five factors in ]?5,5 improves substantially
over the constant expected returns benchmark, for excess bond returns of every maturity.
The models have a forecast error variance that is any where from 84 to 93 percent of the
constant expected returns benchmark, depending on the excess return being forecast and
the forecast period. For the period 1995:1-2003:12 the model has a forecast error variance

that is only 84, 85, 89, and 92 percent of the constant expected returns benchmark for

12Note that the regressors must be lagged 12 months to account for the 12-period overlap induced from
continuously compounding monthly returns to obtain annual returns.
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Txﬁ)l, ...,Tx,(fi)l respectively. No matter what subperiod the model is evaluated over, and

no matter what return is being forecast, the ENC-NEW test statistic always indicates that
the improvement in forecast power is strongly statistically significant, at the one percent or
better level. Moreover, these results show that relative forecast improvement afforded by the
estimated factors is stable over time: the reduction in mean-square-error over the benchmark
is about the same regardless of which forecast period is analyzed.

Figure 6 gives a graphical impression of the predictive power of the estimated factors
by plotting the forecasted value of the two-year excess bond return along with the actual
value over the period 1975:1-2003:12. Naturally the fitted value is less volatile than actual
value, but the figure shows that the estimated factors do a remarkable job of forecasting the
increases in excess returns in the mid 1980s to early 1990s, the declines over 1982-1985 and
1992-1995, and the flat period from 1995-2000. The period 1984-1987 is one in which the
model is noticeably off: it misses the dramatic surge in actual excess returns over this period,
instead predicting that they fluctuate around zero. Results not reported indicate that the
plots for bonds of other maturities are similar.

In summary, the results indicate that the real, inflation, and stock market factors we
study have stable out-of-sample forecasting power for excess bond returns of all maturities

that is both strongly statistically significant and economically large in magnitude.

5.3 Small Sample Inference

According to the asymptotic theory for PCA estimation discussed in Section 2, heteroskedas-
ticity and autocorrelation consistent standard errors that are asymptotically N (0, 1) can be
used to obtain robust ¢-statistics for the in-sample regressions studied in Section 5.1. More-
over, because the factors are estimated “superconsistently,” the t-statistics do not need to be
adjusted for the preestimation of the factors. To guard against inadequacy of the asymptotic
approximation in finite samples, in this section consider bootstrap inference for specifications
using four regression models: (i) a model using just the estimated factors in ]75>t as predictor
variables, (ii) a model using the estimated factors in F_E))t and C'P,, (iii) a model using just
the single linear combination of five estimated factors, F'5;, and (iv) a model using F'5; and
CP,. Small sample inference is especially important when the right-hand-side variables are
highly persistent (e.g., Bekaert, Hodrick, and Marshall (1997); Stambaugh (1999); Ferson,
Sarkissian, and Simin (2003)) but, as Table 1 demonstrates, none of the factors from our
preferred specifications are highly persistent. Nevertheless, we proceed with a bootstrap

analysis as a robustness check, by generating bootstrap samples of the exogenous predictors
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Zy; (here just C'P,), as well as of the estimated factors ﬁt.

Bootstrap samples of m'gi)l are obtained in two ways, first by imposing the null hypothe-
sis of no predictability, and second, under the alternative that excess returns are forecastable
by the factors and conditioning variables studied above. The use of monthly bond price data
to construct continuously compounded annual returns induces an MA(12) error structure in
the annual log returns. Thus under the null hypothesis that the expectations hypothesis is
true, annual compound returns are forecastable up to an MA(12) error structure, but are
not forecastable by other predictor variables or additional moving average terms. Bootstrap
sampling that captures the serial dependence of the data is straightforward when, as in this
case, there is a parametric model (e.g., an ARMA model) for the dependence under the null
hypothesis (Horowitz (2003)). In this event, the bootstrap may be accomplished by drawing
random samples from the empirical distribution of the residuals of a v/T consistent, asymp-
totically normal estimator of the parametric ARMA model, in our application a twelfth-order
moving average process. We use this approach to form bootstrap samples of excess returns
under the null. Under the alternative, excess returns still have the MA(12) error structure
induced by the use of overlapping data, but additional macro factors are presumed to contain
predictive power for excess returns.

We take into account the pre-estimation of the factors by re-sampling the 7' x N panel
of data, x;. This creates bootstrapped samples of the factors themselves. For each 1,
least squares estimation of €; = p,e;_1 + vy yields estimates p; of the persistence of the
idiosyncratic errors and of the residuals vy, t = 2,...T, where recall that ¢;; = x;; — X:ﬁ
Then v is re-sampled (while preserving the cross-section correlation structure) to yield
bootstrap samples of the idiosyncratic errors e;;. Bootstrap samples are denoted €;. In turn,
bootstrap values of x;; are constructed by adding the bootstrap estimates of the idiosyncratic
errors, €;, to X:ﬁ Estimation by the method of principal components on the bootstrapped
data then yields a new set of estimated factors. The linear combination F'5; is reestimated in
each bootstrap simulation. Together with bootstrap samples of Z; (also based on an AR(1)
model), this delivers a set of bootstrap regressors. Each regression using the bootstrapped
data gives new estimates of the regression coefficients in (2) and new R? statistics. This
is repeated B times. Bootstrap confidence intervals for the parameter estimates and R?
statistics are calculated from B = 10,000 replications. The results are reported in Tables
4a-4d for two-, three-, four- and five-year excess bond returns, respectively.

Tables 4a-4d indicate that the results based on bootstrap inference are broadly consistent

with those based on asymptotic inference in Tables 2a-2d. Confidence intervals from data
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generated under the alternative are reported in the columns headed “bootstrap.” Confidence
intervals from data generated under the null are reported in the columns headed “Bootstrap
under the null.” The coefficients on the exogenous predictors and estimated factors are
all well outside the 95% confidence interval under the no-predictability null. Moreover, the
coefficients on factors that are statistically different from zero in Table 2a-2d have confidence
intervals under the alternative that exclude zero, indicating statistical significance at the 5
percent level. The exceptions to this are the two inflation factors, which display confidence
intervals under the alternative that contain zero for some specifications (as in the asymptotic
analysis). However, even these coefficients are too large to be explained under the null
of no predictability, and the single linear combination of factors, F'5;, is always strongly
statistically significant regardless of which excess return is being forecast.

We also compute the small sample distribution of the R? statistics. For two-year bond
returns, the five-factor model Z*TE;t generates an adjusted R-squared statistic of 22% in histor-
ical data; by contrast, using bootstrapped data, the 95% bootstrapped confidence interval
for this statistic under the no-predictability null ranges from 1.4% to 1.9%. Similarly, the
five factors and C'P; deliver an adjusted R-squared statistic of 45% in historical data; by
contrast, using bootstrapped data, the 95% bootstrapped confidence interval for this statis-
tic under the no-predictability null ranges from just 2.3% to 4.3%. The results are similar
for bonds of other maturities. In short, the magnitude of predictability found in historical
data is too large to be accounted for by sampling error in samples of the size we currently
have. The statistical relation of the factors to future returns is evident, even accounting for

the small sample distribution of standard test statistics.

6 Conclusion

We contribute to the literature on bond return forecastability by showing that measures of
macroeconomic fundamentals have important predictive power for excess returns on U.S.
government bonds. To do so, we use dynamic factor analysis to summarize the information
from a large number of macroeconomic series. The approach allows us to eliminate the
arbitrary reliance on a small number of imperfectly measured indicators to proxy for macro-
economic fundamentals, and makes feasible the use of a vast set of economic variables that
are more likely to span the unobservable information sets of financial market participants.
We find that the predictive power of the estimated factors is economically important,
with macro factors explaining between 21-26 percent of one year ahead excess bond returns.

The factors also exhibit stable and strongly statistically significant out-of-sample forecasting
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power for future returns. The main predictor variable is a real factor that is highly correlated
with measures of output and employment, but two inflation factors and a stock market factor
also contain information about future bond returns. The macro factors have predictive power
that is independent of that in the Cochrane-Piazzesi forward factor, indicating that the
information they contain about future excess returns is independent of that in the forward
rates, yields, and yield factors of bonds with maturities from one to five years. When the
information contained in the macro factors is combined with that in the Cochrane-Piazzesi
forward factor, we find remarkably large violations of the expectations hypothesis.

The results support the hypothesis that expected excess returns vary with aggregate
quantities and prices, consistent with theoretical notions that risk premia move with pref-
erences and technologies themselves driven by macroeconomic fundamentals. For example,
the real and inflation factors we study may be reasonable proxies for the consumption and
inflations shocks that enter models of time-varying risk premia like those of Campbell and
Cochrane (1999) and Brandt and Wang (2003). At the same time, the analysis here leaves
a number of crucial questions for future work. For one, we cannot rule out the possibility
that the evidence we uncover is driven, not by rational variation in risk premia, but instead
by behavioral biases. Moreover, the statistical evidence we offer falls far short of estimat-
ing a yet-to-be developed general equilibrium model that marries the dynamics of macro
variables and bond risk premia. Finally, the question of why forward rates and yields ap-
pear to contain information about future bond returns that is largely independent of that in
broad-based macro factors remains unanswered. These questions and more pose interesting

research challenges for the future.
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Data Appendix

Table A.1 lists the short name of each series, its mnemonic (the series label used
in the source database), the transformation applied to the series, and a brief data
description. All series are from the Global Insights Basic Economics Database, unless the
source is listed (in parentheses) as TCB (The Conference Board’s Indicators Database) or
AC (author’s calculation based on Global Insights or TCB data). In the transformation
column, In denotes logarithm, Aln and A?In denote the first and second difference of the

logarithm, Iv denotes the level of the series, and Alv denotes the first difference of the

Series.
Table A.1 Data sources, transformations, and definitions

Series Number Short name Mnemonic | Tran Description
1 Pl a0m052 Aln Personal Income (AR, Bil. Chain 2000 $) (TCB)
2 Pl less transfers a0m051 Aln Personal Income Less Transfer Payments (AR, Bil. Chain 2000 $) (TCB)
3 Consumption a0m224 r Aln Real Consumption (AC) aOm224/gmdc (a0m224 is from TCB)
4 M&T sales a0m057 Aln Manufacturing And Trade Sales (Mil. Chain 1996 $) (TCB)
5 Retail sales a0m059 Aln Sales Of Retail Stores (Mil. Chain 2000 $) (TCB)
6 IP: total ips10 Aln Industrial Production Index - Total Index
7 IP: products ips11 Aln Industrial Production Index - Products, Total
8 IP: final prod ips299 Aln Industrial Production Index - Final Products
9 IP: cons gds ips12 Aln Industrial Production Index - Consumer Goods
10 IP: cons dble ips13 Aln Industrial Production Index - Durable Consumer Goods
11 IP: cons nondble ips18 Aln Industrial Production Index - Nondurable Consumer Goods
12 IP: bus eqpt ips25 Aln Industrial Production Index - Business Equipment
13 IP: matls ips32 Aln Industrial Production Index - Materials
14 IP: dble matls ips34 Aln Industrial Production Index - Durable Goods Materials
15 IP: nondble matls ips38 Aln Industrial Production Index - Nondurable Goods Materials
16 IP: mfg ips43 Aln Industrial Production Index - Manufacturing (Sic)
17 IP: res util ips307 Aln Industrial Production Index - Residential Utilities
18 IP: fuels ips306 Aln Industrial Production Index - Fuels
19 NAPM prodn pmp Iv Napm Production Index (Percent)
20 Cap util a0m082 Alv Capacity Utilization (Mfg) (TCB)
21 Help wanted indx lhel Alv Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa)
22 Help wanted/emp Ihelx Alv Employment: Ratio; Help-Wanted Ads:No. Unemployed CIf
23 Emp CPS total lhem Aln Civilian Labor Force: Employed, Total (Thous.,Sa)
24 Emp CPS nonag lhnag Aln Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa)
25 U: all lhur Alv Unemployment Rate: All Workers, 16 Years & Over (%,Sa)
26 U: mean duration 1hu680 Alv Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa)
27 U <5 wks lhus Aln Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa)
28 U 5-14 wks lhu14 Aln Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa)
29 U 15+ wks lhu15 Aln Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa)
30 U 15-26 wks Ihu26 Aln Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa)
31 U 27+ wks Ihu27 Aln Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa)
32 Ul claims a0m005 Aln Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB)
33 Emp: total ces002 Aln Employees On Nonfarm Payrolls: Total Private
34 Emp: gds prod ces003 Aln Employees On Nonfarm Payrolls - Goods-Producing
35 Emp: mining ces006 Aln Employees On Nonfarm Payrolls - Mining
36 Emp: const ces011 Aln Employees On Nonfarm Payrolls - Construction
37 Emp: mfg ces015 Aln Employees On Nonfarm Payrolls - Manufacturing
38 Emp: dble gds ces017 Aln Employees On Nonfarm Payrolls - Durable Goods
39 Emp: nondbles ces033 Aln Employees On Nonfarm Payrolls - Nondurable Goods
40 Emp: services ces046 Aln Employees On Nonfarm Payrolls - Service-Providing




41 Emp: TTU ces048 Aln Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities

42 Emp: wholesale ces049 Aln Employees On Nonfarm Payrolls - Wholesale Trade

43 Emp: retail ces053 Aln Employees On Nonfarm Payrolls - Retail Trade

44 Emp: FIRE ces088 Aln Employees On Nonfarm Payrolls - Financial Activities

45 Emp: Govt ces140 Aln Employees On Nonfarm Payrolls - Government

46 Emp-hrs nonag a0m048 Aln Employee Hours In Nonag. Establishments (AR, Bil. Hours) (TCB)

47 Avg hrs ces151 Iv Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls -
Goods-Producing

48 Overtime: mfg ces155 Alv Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls -
Mfg Overtime Hours

49 Avg hrs: mfg aom001 Iv Average Weekly Hours, Mfg. (Hours) (TCB)

50 NAPM empl pmemp Iv Napm Employment Index (Percent)

51 Starts: nonfarm hsfr In Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,Saar)

52 Starts: NE hsne In Housing Starts:Northeast (Thous.U.)S.A.

53 Starts: MW hsmw In Housing Starts:Midwest(Thous.U.)S.A.

54 Starts: South hssou In Housing Starts:South (Thous.U.)S.A.

55 Starts: West hswst In Housing Starts:West (Thous.U.)S.A.

56 BP: total hsbr In Housing Authorized: Total New Priv Housing Units (Thous.,Saar)

57 BP: NE hsbne* In Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A

58 BP: MW hsbmw* In Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A.

58 BP: South hsbsou* In Houses Authorized By Build. Permits:South(Thou.U.)S.A.

60 BP: West hsbwst* In Houses Authorized By Build. Permits:West(Thou.U.)S.A.

61 PMI pmi Iv Purchasing Managers' Index (Sa)

62 NAPM new ordrs pmno Iv Napm New Orders Index (Percent)

63 NAPM vendor del pmdel Iv Napm Vendor Deliveries Index (Percent)

64 NAPM Invent pmnv Iv Napm Inventories Index (Percent)

65 Orders: cons gds a0m008 Aln Mfrs' New Orders, Consumer Goods And Materials (Bil. Chain 1982 §) (TCB)

66 Orders: dble gds a0m007 Aln Mfrs' New Orders, Durable Goods Industries (Bil. Chain 2000 $) (TCB)

67 Orders: cap gds a0m027 Aln Mfrs' New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) (TCB)

68 Unf orders: dble a1m092 Aln Mfrs' Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB)

69 M&T invent a0m070 Aln Manufacturing And Trade Inventories (Bil. Chain 2000 $) (TCB)

70 M&T invent/sales a0mQ77 Alv Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $) (TCB)

71 M1 fm1 A’ln Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck'able Dep)(Bil$,Sa)

72 M2 fm2 A’ln Money Stock:M2(M1+QO'nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time
Dep(Bil$,Sa)

73 M3 fm3 A’ln Money Stock: M3(M2+Lg Time Dep,Term Rp's&Inst Only Mmmfs)(Bil$,Sa)

74 M2 (real) fm2dq Aln Money Supply - M2 In 1996 Dollars (Bci)

75 MB fmfba A’ln Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa)

76 Reserves tot fmrra A’ln Depository Inst Reserves:Total, Adj For Reserve Req Chgs(Mil$,Sa)

77 Reserves nonbor fmrnba A’ln Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa)

78 C&l loans fcing A’ln Commercial & Industrial Loans Oustanding In 1996 Dollars (Bci)

79 AC&l loans fclbme Iv Wkly Rp Lg Com'l Banks:Net Change Com'l & Indus Loans(Bil$,Saar)

80 Cons credit ccinrv A’In | Consumer Credit Outstanding - Nonrevolving(G19)

81 Inst cred/PI a0m095 Alv Ratio, Consumer Installment Credit To Personal Income (Pct.) (TCB)

82 S&P 500 fspcom Aln S&P's Common Stock Price Index: Composite (1941-43=10)

83 S&P: indust fspin Aln S&P's Common Stock Price Index: Industrials (1941-43=10)

84 S&P div yield fsdxp Alv S&P's Composite Common Stock: Dividend Yield (% Per Annum)

85 S&P PE ratio fspxe Aln S&P's Composite Common Stock: Price-Earnings Ratio (%,Nsa)

86 Fed Funds fyff Alv Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa)

87 Comm paper cp90 Alv Cmmercial Paper Rate (AC)

88 3 mo T-bill fygm3 Alv Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa)

89 6 mo T-bill fygm6 Alv Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa)

90 1 yr T-bond fygt1 Alv Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa)

91 5 yr T-bond fygts Alv Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa)

92 10 yr T-bond fygt10 Alv Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa)

93 Aaa bond fyaaac Alv Bond Yield: Moody's Aaa Corporate (% Per Annum)

94 Baa bond fybaac Alv Bond Yield: Moody's Baa Corporate (% Per Annum)

95 CP-FF spread scp90 Iv cp90-fyff (AC)

96 3 mo-FF spread sfygm3 Iv fygm3-fyff (AC)

97 6 mo-FF spread sfygm6 Iv fygm6-fyff (AC)

98 1 yr-FF spread sfygt1 Iv fygt1-fyff (AC)

99 5 yr-FF spread sfygts v fygt5-fyff (AC)

100 10 yr-FF spread sfygt10 Iv fygt10-fyff (AC)

101 Aaa-FF spread sfyaaac Iv fyaaac-fyff (AC)

102 Baa-FF spread sfybaac Iv fybaac-fyff (AC)

103 Ex rate: avg exrus Aln United States;Effective Exchange Rate(Merm)(Index No.)




104 Ex rate: Switz exrsw Aln Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$)

105 Ex rate: Japan exrjan Aln Foreign Exchange Rate: Japan (Yen Per U.S.$)

106 Ex rate: UK exruk Aln Foreign Exchange Rate: United Kingdom (Cents Per Pound)

107 EX rate: Canada exrcan Aln Foreign Exchange Rate: Canada (Canadian $ Per U.S.$)

108 PPI: fin gds pwfsa A’ln Producer Price Index: Finished Goods (82=100,Sa)

109 PPI: cons gds pwfcsa A’ln Producer Price Index: Finished Consumer Goods (82=100,Sa)

110 PPI: int mat'ls pwimsa A’In Producer Price Index:| ntermed Mat.Supplies & Components(82=100,Sa)

111 PPI: crude mat’ls pwcmsa A’ln Producer Price Index: Crude Materials (82=100,Sa)

112 Spot market price psccom A’ln Spot market price index: bls & crb: all commodities(1967=100)

113 Sens mat'ls price psm99q A’ln Index Of Sensitive Materials Prices (1990=100)(Bci-99a)

114 NAPM com price pmcp Iv Napm Commaodity Prices Index (Percent)

115 CPI-U: all punew A’In | Cpi-U: All ltems (82-84=100,Sa)

116 CPI-U: apparel pu83 A%ln Cpi-U: Apparel & Upkeep (82-84=100,Sa)

117 CPI-U: transp pu84 A’ln Cpi-U: Transportation (82-84=100,Sa)

118 CPI-U: medical pu85 A’In | Cpi-U: Medical Care (82-84=100,Sa)

119 CPI-U: comm. puc A’ln Cpi-U: Commaodities (82-84=100,Sa)

120 CPI-U: dbles pucd A’In Cpi-U: Durables (82-84=100,Sa)

121 CPI-U: services pus A’In | Cpi-U: Services (82-84=100,Sa)

122 CPI-U: ex food puxf A’ln | Cpi-U: All Items Less Food (82-84=100,Sa)

123 CPI-U: ex shelter puxhs A’In | Cpi-U: All Items Less Shelter (82-84=100,Sa)

124 CPI-U: ex med puxm A’ln Cpi-U: All ltems Less Midical Care (82-84=100,Sa)

125 PCE defl gmdc A’ln Pce, Impl Pr Defl:Pce (1987=100)

126 PCE defl: dibes gmdcd A’ln Pce, Impl Pr Defl:Pce; Durables (1987=100)

127 PCE defl: nondble gmdcn A°In Pce, Impl Pr Defl:Pce; Nondurables (1996=100)

128 PCE defl: service gmdcs A’ln Pce, Impl Pr Defl:Pce; Services (1987=100)

129 AHE: goods ces275 A’In | Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm
Payrolls - Goods-Producing

130 AHE: const ces277 A’In | Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm
Payrolls - Construction

131 AHE: mfg ces278 A’In | Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm
Payrolls - Manufacturing

132 Consumer expect hhsntn Alv U. Of Mich. Index Of Consumer Expectations(Bcd-83)
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Table 1: Summary Statistics for ﬁt

i | AR1(fy) | R?

1| o767 |o0.177
211 0.764 | 0.249
3| -0.172 |0.304
41 0.289 |0.359
5| 0.341 |0.403
6 || -0.0132 |0.439
71 0320 |0471
81| 0.233 |0.497

For i = 1,...8, fi is estimated by the method of principal components using a panel of data with 132
indicators of economic activity from ¢=1964:1-2003:12 (480 time series observations). The data are transformed

(taking logs and differenced where appropriate) and standardized prior to estimation. AR1(f;), is the first-order

2

~, is calculated as

autocorrelation coefficients for factors i. The relative importance of the common component, R

the fraction of total variance in the data explained by factors 1 to i.



Table 2a: Regressions of Monthly Excess Bond Returns on Lagged Factors

Model: r2\7, = By + B4 Fy + B,CPs + €41,
Regressor  (a) (0) (c) (d) (e) ) (@ (h

Iy -0.93 -0.74 -0.93 -0.75
(t-stat) (-5.19) (-4.48) (-4.96) (-4.71)

F3 0.06 0.05 0.06 0.05

(t-stat) (2.78)  (2.70) (2.87) (2.71)

b, 0.40  0.08

(t-stat) (-3.10) (0.71)

Iy, 0.18 0.24 0.18 0.24

(t-stat) (2.24) (3.84) (1.87) (3.85)

Fy, -0.33 -0.24 -0.33 -0.25

(t-stat) (-2.94) (-2.51) (-2.65) (-2.61)

Fy 0.35 0.24 0.35 0.24

(t-stat) (4.35) (2.70) (3.83) (2.89)

CP, 0.45 0.41 0.40 0.39
(t-stat)  ( 8.90) (5.22) (5.89) (6.0)
F5, 0.54 0.43
(t-stat) (5.52) (5.78)
F6, 0.50
(t-stat) (6.78)

R 031 026 045 022 045 022 026 0.44

Notes: The table reports estimates from OLS regressions of excess bond returns on the lagged variables named
in column 1. The dependent variable mfgi)l is the excess log return on the n-year Treasury bond. ﬁt denotes
a set of regressors including F'5;, F'6,, and ﬁit These denote factors estimated by the method of principal
components using a panel of data with 132 individual series over the perlod 1964:1-2003:12. F'5;, is the single
factor constructed as a linear combination of the five estimated factors F 1#s Fltv F3t o I at; and F\gt F6,, is
the single factor constructed as a linear combination of the six estimated factors I 1t I 2, 3 A I 3¢ s F 4t, and
ﬁgt. C'P, is the Cochrane and Piazzesi (2005) factor that is a linear combination of five forward spreads. Newey
and West (1987) corrected t-statistics have lag order 18 months and are reported in parentheses. Coefficients that
are statistically significant at the 5% or better level are highlighted in bold. A constant is always included in the

regression even though its estimate is not reported in the Table. The sample spans the period 1964:1 to 2003:12.



Table 2b: Regressions of Monthly Excess Bond Returns on Lagged Factors

Model: 72\, = B + B4 Fy + BoCPs + €41,

Regressor  (a) (0) (c) (d) (e) (f)
Iy -1.59 -1.22

(t-stat) (-4.68) (-4.39)

F3 0.11  0.10

(t-stat) (3.12)  (2.96)

L, 0.19  0.30

(t-stat) (1.05) (2.78)

Fy, -0.53 -0.36

(t-stat) (-2.23) (-2.12)

Fy 0.64 0.44

(t-stat) (3.73)  (2.74)

CP, 0.85 0.76 0.75
(t-stat)  ( 8.52) (6.13) (6.16)
F5, 0.91 0.69
(t-stat) (5.28) (5.55)
F6, 0.89
(t-stat) (6.57)

R 034 018 044 019 024 044

Notes: See Table 2a.



Table 2c: Regressions of Monthly Excess Bond Returns on Lagged Factors

Model: 72}, = By + 81 Fy + BCPs + €41,

Regressor

(e)  (f)

1.11
(6.30)
0.87
(5.39)

1.20

(6.57)

0.23  0.45

Notes: See Table 2a.



Table 2d: Regressions of Monthly Excess Bond Returns on Lagged Factors

Model: 727, = By + B4 Fy + BoCPs + €41,

Regressor

(e)  (f)

1.32
(5.87)
0.98
(5.08)

1.41

(6.47)

021  0.42

Notes: See Table 2a.



Table 3: Out-of-Sample Predictive Power of Macro Factors

Row Forecast Sample  Comparison MSE,/MSE, Test Statistic 95% Asympt. CV
)

"Tiy1
1 1975:1-2003:12 F—’>5t v.s. const 0.848 64.87* 7.98
2 1985:1-2003:12 F5, v.s. const 0.882 33.15* 4.70
1995:1-2003:12 F_’)E)t v.s. const 0.838 25.29%* 3.15
Txg&
1975:1-2003:2 ]*T5>t v.s. const 0.879 47.24%* 7.98
5} 1985:1-2003:2 th v.s. const 0.889 27.51% 4.70
6 1995:1-2003:2 I*Tét v.s. const 0.854 19.86* 3.15
7"%%31
7 1975:1-2003:12  F5, v.s. const 0.905 36.32* 7.98
8 1985:1-2003:12 F_’)E)t v.s. const 0.909 22.03* 4.70
9 1995:1-2003:12 th v.8. const 0.889 16.48* 3.15
T$§?1
10 1975:1-2003:12 th v.s. const 0.926 29.53* 7.98
11 1985:1-2003:12 I*Tf;t v.s. const 0.931 17.33* 4.70
12 1995:1-2003:12 F—’5>t v.8. const 0.924 12.07* 3.15

*Significant at the one percent or better level.

Notes: The table reports results from one-year-ahead out-of-sample forecast comparisons of 7n-period log excess

_) —~ A~ AN A AN ,
bond returns, T:ng_)l . F'5; denotes the vector of factors (Flt; F13ta Fs, Fyy, th> . Each row reports forecast

comparisons of an unrestricted model, which includes F'5; as predictors, with a restricted, constant expected
returns benchmark (const). M SFE,, is the mean-squared forecasting error of the unrestricted model; M SFE, is
the mean-squared forecasting error of the restricted model that excludes additional forecasting variables. In the
column labeled “M SFE,, / MSE,”, a number less than one indicates that theunrestricted model has lower forecast
error than the benchmark constant expected returns model. The first row of each panel displays results in which
the parameters and factors were estimated recursively, using an initial sample of data from 1964:1 through 1974:12.
The forecasting regressions are run for  =1964:1,...,1974:12, and the values of the regressors at t =1974:1 are used
to forecast annual returns in 1975:1. (The predictor variables are lagged 12 months since the annual returns created
by continuously compounding monthly returns over the 12 months in the year.) All parameters and factors are then
reestimated from 1964:1 through 1975:1, and forecasts are recomputed for returns in 1975:2, and so on, until the final
out-of-sample forecast is made for returns in 2003:12. The same procedure is used to compute results reported in the
other rows, where the initial estimation period is either ¢ =1964:1,...,1984:12 or t =1964:1,...,1994:12. The column
labeled “Test Statistic” reports the ENC-NEW test statistic of Clark and McCracken (2001) for the null hypothesis
that the benchmark model encompasses the unrestricted model with additional predictors. The alternative is that
the unrestricted model contains information that could be used to improve the benchmark model’s forecast. “95%

Asympt. CV” gives the 95th percentile of the asymptotic distribution of the test statistic.



Table 4a: Small Sample Inference, rz

(2)
t+1

) R I TE
Model: rz, )y = By + B1E5 + €141

Bootstrap Bootstrap under the null
Ty 15 95% CI 90% CI 95% CI 90% CI
Fiy | -0.935 | (-1.389 -0.474) (-1.333-0.538) | ( -0.022 -0.020) ( -0.022 -0.020)
ﬁf’t 0.062 | (0.023 0.102)  ( 0.031 0.094) | ( 0.001 0.001)  ( 0.001 0.001)
F\gt 0.177 | (-0.043 0.413) ( -0.009 0.371) | ( -0.003 0.003) ( -0.003 0.003)
Fy | -0.334 (-0.533-0.137) (-0.494 -0.182) | ( -0.004 0.003)  ( -0.003 0.002)
F\gt 0.352 | (0.141 0.542)  ( 0.184 0.511) | ( -0.007 0.008) ( -0.007 0.007)
R%? | 0.225 | (10.123 0.400)  (0.139 0.381) | ( 0.014 0.019)  ( 0.015 0.018)
R? 10217 | (0.1130.393)  ( 0.130 0.375) | ( 0.004 0.008)  ( 0.004 0.008)
Model: rxﬁ)l = [y + 6'1}75)& + B,CP; + €41
Bootstrap Bootstrap under the null
Xy 5] 95% CI 90% CI 95% CI 90% CI
Fy; | -0.745 | ( -1.141 -0.325) ( -1.075-0.401) | ( -0.025 -0.016) ( -0.024 -0.017)
ﬁf’t 0.055 | ( 0.020 0.091)  ( 0.026 0.083) | ( 0.000 0.001)  ( 0.000 0.001)
ﬁgt 0.237 | ( 0.010 0.459)  ( 0.046 0.412) | ( -0.004 0.004) ( -0.003 0.003)
Fy | -0.247 (-0.450 -0.055) ( -0.389 -0.099) | ( -0.005 0.003) ( -0.004 0.002)
ﬁgt 0.244 | ( 0.065 0.424)  ( 0.095 0.394) | ( -0.007 0.008) ( -0.006 0.007)
CP, 10395 | (0.262 0.519)  ( 0.283 0.498) | ( 0.004 0.012)  ( 0.005 0.011)
R* | 0.455 | (0.2450.548)  (0.268 0.524) | ( 0.022 0.047)  ( 0.023 0.043)
R? | 0.448 | (0.2350.542)  ( 0.258 0.518) | ( 0.009 0.034)  ( 0.010 0.031)
Model: 727, = By + 81 F5; + €141
Bootstrap Bootstrap under the null
v | B 95% CI 90% CI 95% CI 90% CI
F5; 10539 | (0.304 0.758) ( 0.356 0.729) | ( 0.008 0.011) ( 0.008 0.011)
R?* ]0.221 | (0.084 0.384) (0.111 0.368) | ( 0.008 0.015) ( 0.009 0.014)
R%* |0.219 | ( 0.082 0.383) ( 0.109 0.367) | ( 0.006 0.013) ( 0.007 0.012)
Model: 722, = B, + B4 F5; + 8,CPs + €141
Bootstrap Bootstrap under the null
Ty 16 95% CI 90% CI 95% CI 90% CI
F5; | 0.427 | (10.216 0.626) ( 0.252 0.601) | ( 0.007 0.012) ( 0.007 0.012)
CP, | 0.389 | (10.2550.516) ( 0.273 0.493) | ( 0.004 0.011) ( 0.005 0.011)
R?* |0.447 | (0.2150.530) ( 0.240 0.506) | ( 0.017 0.041) ( 0.019 0.038)
R? ]0.444 | (0.211 0.528) ( 0.237 0.504) | ( 0.013 0.037) ( 0.014 0.034)

Notes: See next page.



Notes: Let x;; denote the regressor variables used to predict r:cgi)l. Let z4,i=1,...N,t =1,...T be stan-
dardized data from which the factors are extracted. The vector of factors, th = (ﬁlt,ﬁﬂ,ﬁgt,ﬁgt,ﬁ4t,ﬁ8t)/;
F'5; is the single linear combination of these factors formed by regressing the average (across maturity) of excess
bond returns on F_’E))t. ﬁ)t C fi, where f; is a r x 1 vector of latent common factors. Denote F—'>5t = F;. By
definition, z; = )\éFt + u;. Let S\Z and ﬁt be the principal components estimators of A\; and F}, and let 4;; be
the estimated idiosyncratic errors. For each ¢ = 1,... N, we estimate an AR(1) model 4;; = p; Q-1 + wi. Let
U, =uq,. Fort =2,...T, let 4y = p;Uit—1 + Wi, where ;4 is sampled (with replacement) from w_;,t =2,...T.
Then z; = X;ﬁt + ;. Estimation by principal components on the data z yields E. The remaining regressor,
CP,, is obtained by first estimating an AR(1), and then resampling the residuals of the autoregression. Denote
the dependent variable r:rgi)l as §. Unrestricted samples §; are generated as § = X [3 + €, where 3 are the least
squares estimates reported in column 2, and € are resampled from least squares MA(12) residuals, and X is a set
of bootstrapped regressors with F} replaced by F;. Samples under the null are generated as § = j + ¢°, where &°

is resampled form the residuals of least squares estimated MA(12) process.
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Table 4b: Small Sample Inference, r,};

NG ' FE
Model: rz,/y = By + B1E5; + €141

Bootstrap Bootstrap under the null
Ty I6] 95% CI 99% CI 95% CI 99% CI
Fiy | -1.589 | (-2.547 -0.713) ( -2.356 -0.882) | ( -0.022 -0.020) ( -0.022 -0.020)
Z/T\f)t 0.114 | ( 0.045 0.185)  ( 0.058 0.173) | ( 0.001 0.001)  ( 0.001 0.001)
Fy | 0.185 (-0.251 0.679) (-0.175 0.560) | ( -0.004 0.003) ( -0.003 0.002)
Fy | -0.530 (-0.933-0.127) (-0.849 -0.210) | ( -0.004 0.003)  ( -0.003 0.002)
Fy | 0.645 (0.259 1.029)  (0.319 0.969) | ( -0.008 0.008) ( -0.006 0.008)
R? | 0.189 | (10.0890.377)  (0.103 0.342) | ( 0.014 0.019)  ( 0.015 0.018)
R? 1 0.180 | (0.079 0.370)  ( 0.093 0.335) | ( 0.004 0.008)  ( 0.004 0.008)
Model: rxii)l =B, + 6’1}?& + BoCP; + €41
Bootstrap Bootstrap under the null
Ty g 95% CI 90% CI 95% CI 90% CI
Fiy | -1.223 | (-2.015-0.431) ( -1.875-0.545) | ( -0.033 -0.021) ( -0.032 -0.022)
ﬁf’t 0.100 | ( 0.0350.162)  ( 0.045 0.152) | ( 0.000 0.002)  ( 0.001 0.001)
Fy | 0.300 (-0.132 0.753)  (-0.047 0.667) | ( -0.004 0.004) ( -0.004 0.003)
Fy | -0.361 (-0.702 0.018)  ( -0.632 -0.058) | ( -0.005 0.003) ( -0.004 0.002)
Fy | 0.436 (0.1130.774)  ( 0.155 0.718) | ( -0.008 0.010)  ( -0.007 0.008)
CP, | 0.764 | (0.5250.982)  ( 0.556 0.941) | ( 0.005 0.015)  ( 0.006 0.014)
R?* |0.446 | (0.227 0.539) (0.249 0.522) | ( 0.021 0.042)  ( 0.022 0.040)
R%? 0439 | (0.2170.533)  (0.239 0.516) | ( 0.008 0.030)  ( 0.009 0.028)
Model: rxf(i)l = By + B1F5: + €41
Bootstrap Bootstrap under the null
| B 95% CI 90% CI 95% CI 90% CI
F5; 10911 | (0.4731.376 ) ( 0.560 1.285) | ( 0.008 0.011) ( 0.008 0.011)
R?* ]0.189 | ( 0.055 0.367) ( 0.076 0.335) | ( 0.009 0.015) ( 0.009 0.014)
R%* | 0.187 | ( 0.053 0.366) ( 0.074 0.334) | ( 0.006 0.013) ( 0.007 0.012)
Model: mﬁ)l = By + B1F5: + ByC Py + €111
Bootstrap Bootstrap under the null
Ty g 95% CI 90% CI 95% CI 90% CI
F5; 10.694 | (0.278 1.087) ( 0.338 1.026) | ( 0.007 0.012) ( 0.007 0.012)
CP, | 0.754 | (0.504 0.971) ( 0.546 0.938) | ( 0.004 0.011) ( 0.005 0.010)
R* 10.442 | (0.203 0.521) ( 0.226 0.495) | ( 0.017 0.040) ( 0.018 0.037)
R%? ]0.440 | (10.199 0.519) ( 0.223 0.493) | ( 0.013 0.035) ( 0.014 0.033)

Notes: See Table 4a.



Table 4c: Small Sample Inference, ra,

(4)

N C I TE

Bootstrap Bootstrap under the null
x| B 95% CI 99% CI 95% CI 99% CI
Fi | -2.046 | (-3.281-0.917) ( -3.155-1.090) | ( -0.022 -0.020) ( -0.022 -0.020)
ﬁf’t 0.157 | ( 0.062 0.261)  ( 0.078 0.240) | ( 0.001 0.001)  ( 0.001 0.001)
Fy | 0.183 (-0.442 0.826)  (-0.293 0.721) | ( -0.003 0.003)  ( -0.003 0.002)
Fy | -0.625 (-1.165 -0.086) ( -1.076 -0.180) | ( -0.004 0.003)  ( -0.003 0.002)
Fy, | 0.948 (0.433 1.462)  ( 0.506 1.389) | ( -0.007 0.008) ( -0.006 0.007)
R? | 0.167 | (0.084 0.357)  (0.098 0.331) | (0.0150.019)  ( 0.015 0.018)
R? | 0.158 | (0.074 0.350)  ( 0.088 0.324) | ( 0.004 0.008)  ( 0.004 0.008)
Model: T:E,Ej_)l =fy+ 5’1]?575 + B5,CP, + €141
Bootstrap Bootstrap under the null
v | B 95% CI 90% CI 95% CI 90% CI
Fiy | -1.506 | ( -2.518 -0.440) ( -2.338 -0.640) | ( -0.045 -0.029) ( -0.042 -0.030)
ﬁf’t 0.136 | ( 0.052 0.222)  ( 0.064 0.208) | ( 0.001 0.002)  ( 0.001 0.002)
Fy | 0.353 (-0.2150.923) (-0.104 0.805) | ( -0.007 0.005) ( -0.006 0.004)
Fy |-0.375 (-0.849 0.131)  (-0.754 0.002) | ( -0.006 0.004) ( -0.005 0.003)
Fy | 0.640 (0.166 1.105)  (0.244 1.027) | ( -0.008 0.010)  ( -0.007 0.008)
CP, | 1.128 | ( 0.789 1.447)  ( 0.846 1.386) | ( 0.008 0.019)  ( 0.008 0.018)
R?* |0.459 | (0.254 0.560) (1 0.278 0.537) | ( 0.021 0.041)  ( 0.022 0.039)
R%? 0452 | (0.244 0.554)  ( 0.269 0.530) | ( 0.008 0.029)  ( 0.009 0.027)
Model: r:z;gi)l = By + B1F5; + €141
Bootstrap Bootstrap under the null
Ty 6] 95% CI 90% CI 95% CI 90% CI
F5; | 1.188 | ( 0.660 1.784) ( 0.735 1.713) | ( 0.008 0.011) ( 0.008 0.011)
R? ] 0.167 | ( 0.053 0.343) ( 0.071 0.316) | ( 0.008 0.015) ( 0.009 0.014)
R? | 0.165 | ( 0.051 0.342) ( 0.069 0.315) | ( 0.006 0.013) ( 0.007 0.012)
Model: 72\, = B, + 81 F5; + 8,CPs + €141
Bootstrap Bootstrap under the null
Ty 6] 95% CI 90% CI 95% CI 90% CI
c 0.033 | (-1.321 1.274) ( -0.163 0.623) | ( 0.466 0.479)  ( 0.467 0.478)
F5; | 1.188 | (1 0.660 1.784 ) ( -1.075-0.401) | ( -0.025 -0.016) ( -0.024 -0.017)
CP, | 0.395 | (0.262 0.519) ( 0.283 0.498) | ( 0.004 0.012)  ( 0.005 0.011)
R? |0.455 | (10.2450.548) ( 0.268 0.524) | ( 0.022 0.047)  ( 0.023 0.043)
R? |0.448 | (0.2350.542) ( 0.258 0.518) | ( 0.009 0.034)  ( 0.010 0.031)

Notes: See Table 4a.



Table 4d: Small Sample Inference, r,

(5)

N C:) I TE

Bootstrap Bootstrap under the null
x| B 95% CI 99% CI 95% CI 99% CI
Fiy | -2.271 | (-3.822-0.735) ( -3.513-1.023) | ( -0.022 -0.020) ( -0.022 -0.020)
ﬁf’t 0.179 | ( 0.056 0.295)  ( 0.078 0.280) | ( 0.001 0.001)  ( 0.001 0.001)
Fy | 0.182 (-0.612 0.929) (-0.444 0.790) | ( -0.003 0.003) ( -0.003 0.002)
Ey | -0.782 (-1.445 -0.125) ( -1.329 -0.269) | ( -0.004 0.003)  ( -0.003 0.002)
Fy | 1.129 (0.481 1.841)  (0.598 1.700) | ( -0.008 0.008) ( -0.007 0.007)
R? | 0.147 | (0.069 0.315)  (0.078 0.294) | ( 0.014 0.019)  ( 0.015 0.019)
R? 1 0.138 | (10.059 0.308)  ( 0.068 0.286) | ( 0.004 0.008)  ( 0.004 0.008)
Model: T:E,Ei_)l =fy+ 5’1]?575 + B5,CP, + €141
Bootstrap Bootstrap under the null
v | B 95% CI 90% CI 95% CI 90% CI
Fiy | -1.629 | ( -2.914 -0.185) ( -2.638 -0.368) | ( -0.049 -0.032) ( -0.047 -0.033)
]313; 0.154 | ( 0.040 0.264)  ( 0.057 0.247) | ( 0.001 0.002)  ( 0.001 0.002)
Fy | 0.384 (-0.404 1.112)  (-0.236 0.978) | ( -0.007 0.005) ( -0.006 0.004)
Fy | -0.485 (-1.116 0.133)  (-1.025 0.017) | ( -0.007 0.005) ( -0.006 0.004)
Fy | 0.764 (0.1451.351)  (0.242 1.282) | ( -0.010 0.012) ( -0.009 0.010)
CP, | 1.341 | (0.922 1.711)  (0.993 1.645) | ( 0.009 0.022)  ( 0.009 0.021)
R* |0.421 | (0.2130.514) (1 0.242 0.492) | ( 0.020 0.040)  ( 0.021 0.038)
R%* 0414 (0.203 0.508)  ( 0.232 0.485) | ( 0.007 0.028)  ( 0.008 0.026)
Model: mﬁ = By + B1F5; + €141
Bootstrap Bootstrap under the null
T 6] 95% CI 90% CI 95% CI 90% CI
c -0.145 | (-1.940 1.457) (-1.725 1.238) | ( 0.470 0.473) ( 0.470 0.472)
F5; | 1.362 | (0.596 2.087) ( 0.756 2.001) | ( 0.008 0.011) ( 0.008 0.011)
R?* ]0.146 | ( 0.027 0.303) ( 0.046 0.287) | ( 0.008 0.015) ( 0.009 0.014)
R? |0.145 | (0.0250.301) ( 0.044 0.286) | ( 0.006 0.013) ( 0.007 0.012)
Model: 727, = B, + B4 F5; + B,CPs + €141
Bootstrap Bootstrap under the null
T o] 95% CI 90% CI 95% CI 90% CI
F5; | -0.745 | ( -1.141 -0.325) ( -1.075-0.401) | ( -0.025 -0.016) ( -0.024 -0.017)
CP, | 0.395 | (0.2620.519) (0.283 0.498) | ( 0.004 0.012)  ( 0.005 0.011)
R? | 0.455 | (0.2450.548)  (0.268 0.524) | ( 0.022 0.047)  ( 0.023 0.043)
R? | 0.448 | (0.2350.542)  ( 0.258 0.518) | ( 0.009 0.034)  ( 0.010 0.031)

Notes: See Table 4a.
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Figurel: Marginal R-squares for F;
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Notes: Chart shows the R-square from regressing the series number given on the x-axis onto F,. See the appendix for a description of
the numbered series. The factors are estimated using data from 1964:1-2003:12.
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Figure 2: Marginal R-squares for F,
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Notes: See Figure 1.
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Figure 3: Marginal R-squares for F3
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Notes: See Figure 1.
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Figure 4: Marginal R-squares for F,
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Figure 5: Marginal R-squares for Fg

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125 129
Output Emp.&Hrs Orders & Housing Money, Credit & Finan Prices

Notes: See Figure 1.



12 Month moving average

Figure 6: First factor and IP growth
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