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United States and the euro area, we can also compare banking system stability between the two

largest economies in the world. Finally, for Europe we assess the relative importance of cross-border

bank spillovers as compared to domestic bank spillovers. The results suggest, inter alia, that systemic
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Europe. On both sides of the Atlantic systemic risk has increased during the 1990s.
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1. Introduction

A particularly important sector for the stability of financial systems
is the banking sector. Banks play a central role in the money cre-
ation process and in the payment system. Moreover, bank credit is an
important factor in the financing of investment and growth. Faltering
banking systems have been associated with hyperinflations and depres-
sions in economic history. Hence, to preserve monetary and financial
stability central banks and supervisory authorities have a special inter-
est in assessing banking system stability.
This is a particularly complex task in very large economies with

highly developed financial systems, such as the United States and the
euro area. Moreover, structural changes in the financial systems of
both these economies make it particularly important to track risks
over time. In Europe, gradually integrating financial systems under
a common currency increase the relationships between banks across
borders. This development raises the question how banking systems
should be monitored in a context where banking supervision − in con-
trast to monetary policy − remains a national responsibility. In the
US, tremendous consolidation as well as the removal of regulatory bar-
riers to universal and cross-state banking has led to the emergence of
large and complex banking organizations (LCBOs), whose activities
and interconnections are particularly difficult to follow. For all these
reasons we present a new approach how to assess banking system risk
in this paper and apply it to the euro area and the US.
A complication in assessing banking system stability is that, in con-

trast to other elements of the financial system, such as securities values,
interbank relationships that can be at the origin of bank contagion phe-
nomena or the values of and correlations between loan portfolios are
particularly hard to measure and monitor.1 Hence, a large part of
the published banking stability literature has resorted to more indi-
rect market indicators. In particular, spillovers in bank equity prices
have been used for this purpose.2 Pioneered by Aharony and Swary
(1983) and Swary (1986) a series of papers have applied the event

1Even central banks and supervisory authorities usually do not have continuous
information about interbank exposures. For the Swedish example of a central bank
monitoring interbank exposures at a quarterly frequency, see Blavarg and Nimander
(2002).
2The choice of bank equity prices for measuring banking system risk may be mo-

tivated by Merton’s (1974) option-theoretic framework toward default. The latter
approach has become the cornerstone of a large body of approaches for quanti-
fying credit risk and modeling credit rating migrations, including J.P. Morgan’s
CreditMetrics (1999).
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study methodology to the effects of specific bank failures or bad news
for certain banks on other banks’ stock prices (see, e.g., also Wall and
Petersen, 1990; Docking, Hirschey and Jones, 1997; Slovin, Sushka
and Polonchek, 1999). In another series of papers various regression
approaches are used in order to link abnormal bank stock returns to
asset-side risks, including those related to aggregate shocks (see, e.g.,
Cornell and Shaphiro, 1986; Smirlock and Kaufold, 1987; Musumeci
and Sinkey, 1990; or Kho, Lee and Stulz, 2000). De Nicolo and Kwast
(2002) relate changes in correlations between bank stock prices over
time to banking consolidation. Gropp and Moerman (2004) measure
conditional co-movements of large abnormal bank stock returns and of
equity-derived distances to default. Gropp and Vesala (2004) apply an
ordered logit approach to estimate the effect of shocks in distances to
default for some banks on other banks’ distances to default.3

Some authors point out that most banking crises have been related to
macroeconomic fluctuations rather than to prevalent contagion. Gor-
ton (1988) provides ample historical evidence for the US, Gonzalez-
Hermosillo, Pazarbasioglu and Billings (1997) also find related evidence

3Other market indicators used in the literature to assess bank contagion include
bank debt risk premia (see, in particular, Saunders (1986) and Cooperman, Lee
and Wolfe (1992)).
A number of approaches that do not rely on market indicators have also been

developed in the literature. Grossman (1993) and Hasan and Dwyer (1994) measure
autocorrelation of bank failures after controlling for macroeconomic fundamentals
during various episodes of US banking history. Saunders and Wilson (1996) study
deposit withdrawals of failing and non-failing banks during the Great Depression.
Calomiris and Mason (1997) look at deposit withdrawals during the 1932 banking
panic and ask whether also ex ante healthy banks failed as a consequence of them.
Calomiris and Mason (2000) estimate the survival time of banks during the Great
Depression, with explanatory variables including national and regional macro fun-
damentals, dummies for well known panics and the level of deposits in the same
county (contagion effect).
A recent central banking literature attempts to assess the importance of conta-

gion risk by simulating chains of failures from (incomplete and mostly confidential)
national information about interbank exposures. See, e.g., Furfine (2003), Elsinger,
Lehar and Summer (2002), Upper and Worms (2004), Degryse and Nguyen (2004),
Lelyveld and Liedorp (2004) or Mistrulli (2005).
Chen (1999), Allen and Gale (2000) and Freixas, Parigi and Rochet (2002) de-

velop the theoretical foundations of bank contagion.
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for the Mexican crisis of 1994-1995 and Demirgüc-Kunt and Detra-
giache (1998) add substantial further support for this hypothesis using
a large multi-country panel dataset.4

The new approach for assessing banking system risk presented in
this paper also employs equity prices. It is based on extreme value
theory (EVT) and allows us to estimate the probabilities of spillovers
between banks, their vulnerability to aggregate shocks and changes in
those risks over time. More precisely, we want to make three main con-
tributions compared to the previous literature. First, we use the novel
multivariate extreme value techniques applied by Hartmann, Straet-
mans and de Vries (2003a/b and 2004) and Poon, Rockinger and Tawn
(2004) to estimate the strength of banking system risks. In particu-
lar, we distinguish conditional “co-crash” probabilities between banks
from crash probabilities conditional on aggregate shocks. While EVT
- both univariate and multivariate - has been applied to general stock
indices before, it has not yet been used to assess the extreme depen-
dence between bank stock returns with the aim to measure banking
system risk. Second, we cover both euro area countries and the United
States to compare banking system stability internationally. We are not
aware of any other study that tries to compare systemic risk between
these major economies. Third, we apply the test of structural stability
for tail indexes by Quintos, Fan and Phillips (2001) to the multivariate
case of extreme linkages and assess changes in banking system stability
over time with it. Again, whereas a few earlier papers addressed the
changing correlations between bank stock returns, none focused on the
extreme interdependence we are interested in in the present paper.
The idea behind our approach is as follows. We assume that bank

stocks are efficiently priced, in that they reflect all publicly available
information about (i) individual banks’ asset and liability side risks
and (ii) relationships between different banks’ risks (be it through cor-
relations of their loan portfolios, interbank lending or other channels).
We identify a critical situation of a bank with a dramatic slump of its
stock price. We identify the risk of a problem in one or several banks
spilling over to other banks (“contagion risk”) with extreme negative
co-movements between individual bank stocks (similar to the condi-
tional co-crash probability in our earlier stock, bond and currency pa-
pers). In addition, we identify the risk of banking system destabiliza-
tion through aggregate shocks with the help of the “tail-β” proposed
4Hellwig (1994) argues that the observed vulnerability of banks to macroeco-

nomic shocks may be explained by the fact that deposit contracts are not condi-
tional on aggregate risk. Chen (1999) models, inter alia, how macro shocks and
contagion can reinforce each other in the banking system.
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by Straetmans, Verschoor and Wolf (2003). The tail-β is measured
by conditioning our co-crash probability on a general stock index (or
another measure of systematic risk) rather than on individual banks’
stock prices. Therefore, in some respects it reflects the tail equivalent
to standard asset pricing models. In this paper we further extend the
analysis of tail-β by also using high-yield bond spreads as measures of
aggregate risk. Based on the estimated individual co-crash probabil-
ities and tail-βs, we can then test for the equality of banking system
risk between the US and the euro area and for changes in systemic risk
over time.
Our work is also related to an active literature examining which phe-

nomena constitute financial contagion and how they can be identified
empirically. In our reading, the main criteria proposed so far to identify
contagion are that (i) a problem at a financial institution adversely af-
fects other financial institutions or that a decline in an asset price leads
to declines in other asset prices; (ii) the relationships between failures
or asset price declines must be different from those observed in normal
times (regular “interdependence”); (iii) the relationships are in excess
of what can be explained by economic fundamentals; (iv) the events
constituting contagion are negative “extremes”, such as full-blown in-
stitution failures or market crashes, so that they correspond to crisis
situations; (v) the relationships are the result of propagations over time
rather than being caused by the simultaneous effects of common shocks.
Most empirical approaches proposed in the recent literature how to

measure contagion capture the first criterion (i), but this is where the
agreement usually ends. Authors differ in their view which of the other
criteria (ii) through (v) are essential for contagion. Forbes and Rigobon
(2002) stress statistically significant changes in correlations over time
as a contagion indicator and illustrate how they emerge among emerg-
ing country equity markets. Shiller (1989), Pindyck and Rotemberg
(1993) and Bekaert, Harvey and Ng (forthcoming) emphasize “excess
co-movements” between stock markets and stock prices, beyond what
is explained in various forms of regressions by dividends, macroeco-
nomic fundamentals or asset pricing “factors”. Eichengreen, Rose and
Wyplosz (1996) estimate probit models to examine whether the occur-
rence of a balance-of-payments crisis in one country increases the prob-
ability of a balance-of-payments crisis in other countries, conditional on
macroeconomic country fundamentals. Bae, Karolyi and Stulz (2003)
propose the logit regression model to estimate probabilities that several
stock markets experience large negative returns, given that a smaller
number of stock markets experience large negative returns, conditional
on interest and exchange rates. Longin and Solnik (2001) are among
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the first to apply bivariate EVT to estimate extreme equity market
correlations, also assuming the logistic distribution. Hartmann et al.
(2003a/b, 2004) stress that market co-movements far out in the tails
(“asymptotic dependence”) may be very different from regular depen-
dence in multivariate distributions and that such crisis behavior may
not have the same parametric form in different markets. Based on a
different branch of EVT, they estimate semi-parametrically for stocks,
bonds and currencies the likelihood of widespread market crashes con-
ditional on contemporaneous and lagged other market crashes. The
reason why we particularly focus on criterion (iv) is that it allows us to
concentrate on events that are severe enough to be basically always of
a concern for policy. Other criteria are also interesting and have their
own justifications, but more regular propagations or changes in them
are not necessarily a concern for policies that aim at the stability of
financial systems.5

The data we use in this work are daily bank stock excess returns
in euro area countries and the United States between April 1992 and
February 2004. For each area or country we choose 25 banks based on
the criteria of balance-sheet size and involvement in interbank lending.
So, our sample represents the systemically most relevant financial in-
stitutions, but neglects a large number of smaller banks. During our
sample period several of the banks selected faced failure-like situations
and also global markets passed several episodes of stress. All in all, we
have about 3,100 observations per bank.
Our results suggest that the risk of multivariate extreme spillovers

between US banks is higher than between European banks. Hence, de-
spite the fact that available balance-sheet data show higher interbank
exposures in the euro area, the US banking system seems to be more
prone to contagion risk. Second, the lower spillover risk among Euro-
pean banks is mainly related to relatively weak cross-border linkages.
Domestic linkages in France, Germany and Italy, for example, are of
the same order as domestic US linkages. One interpretation of this re-
sult is that further banking integration in Europe could lead to higher
cross-border contagion risk in the future, with the more integrated US
banking system providing a benchmark. Third, cross-border spillover
probabilities tend to be smaller than domestic spillover probabilities,
but only for a few countries this difference is statistically significant.

5Less extreme spillovers might still indicate some form of microeconomic ineffi-
ciencies but not necessarily widespread destabilization.
De Bandt and Hartmann (2000) provide a more complete survey of the market

and banking contagion literature. Pritsker (2001) discusses different channels of
contagion.
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For example, among the banks from a number of larger countries −
such as France, Germany, the Netherlands and Spain − extreme cross-
border linkages are statistically indistinguishable from domestic link-
ages. In contrast, the effects of banks from these larger countries on
the main banks from some smaller countries − including particularly
Finland and Greece, and sometimes also Ireland or Portugal − tend to
be significantly weaker than the effects on their domestic banks. Hence,
those smaller countries located further away from the center of Europe
seem to be more insulated from European cross-border contagion.
Fourth, the effects of macro shocks emphasized by the estimated

tail-βs are similar for the euro area and the US, and they illustrate
the relevance of aggregate risks for banking system stability. While
stock market indices perform well as indicators of aggregate risk, we
find that high-yield bond spreads capture extreme systematic risk for
banks relatively poorly, both in Europe and the US. Fifth, structural
stability tests for our indicators suggest that systemic risk, both in the
form of interbank spillovers and in the form of aggregate risk, has in-
creased in Europe and in the US. Our tests detect the break points
during the second half of the 1990s, but graphical illustrations of our
extreme dependence measures show that this was the result of devel-
opments spread out over time. In particular in Europe the process was
very gradual, in line with what one would expect during a slowly ad-
vancing financial integration process. Interestingly, the introduction of
the euro in January 1999 seems to have had a reductionary or no effect
on banking system risk in the euro area. This may be explained by
the possibility that stronger cross-border crisis transmission channels
through a common money market could be offset by better risk sharing
and the better ability of a deeper market to absorb shocks.
The paper is structured as follows. The next section describes our

theoretical indicators of banking system stability, distinguishing the
multivariate spillover or contagion measure from the aggregate tail-β
measure for stock returns. Section 3 outlines the estimation procedures
for both measures; and section 4 presents two tests, one looking at the
stability of spillover and systematic risk over time and the other looking
at the stability of both measures across countries and continents (cross-
sectional stability). Section 5 summarizes the data set we employ, in
particular how we selected the banks covered, provides some standard
statistics for the individual bank and index returns, and gives some
information about the occurrence of negative extremes for individual
banks and the related events.
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Section 6 then presents the empirical results on extreme bank spillover
risks. For both the euro area and the US we estimate the overall multi-
variate extreme dependence in the banking sector and we test whether
one is larger than the other. Moreover, for Europe we assess whether
domestic spillover risk is stronger or weaker than cross-border risk. Sec-
tion 7 turns to the empirical results for aggregate banking system risk
on both continents. We estimate individual tail-βs for European banks
and for US banks. We also aggregate those βs and test for the equality
of them in the euro area and the US. Section 8 then asks the question
whether on any of the two continents the risk of interbank spillovers
or the vulnerability of the banking system to aggregate shocks has
changed over time. The final section concludes. We have five appen-
dices. The first one (appendix A) discusses small sample properties of
estimators and tests. Appendix B lists the banks in our sample and
the abbreviations used for them across the paper. Appendix C presents
some balance-sheet information characterizing the systemic relevance
of banks. Appendix D contains the standard statistics for our return
data and for yield spreads. Finally, appendix E discusses the role of
volatility clustering for extreme dependence in bank stock returns.

2. Indicators of banking system stability

Our indicators of banking system stability are based on extreme
stock price movements. They are constructed as conditional proba-
bilities, conditioning single or multiple bank stock price “crashes” on
other banks’ stock price crashes or on crashes of the market portfolio.
Extreme co-movements, as measured by multivariate conditional prob-
abilities between individual banks’ stock returns, are meant to capture
the risk of contagion from one bank to another. Extreme co-movements
between individual banks’ stock returns and the returns of a general
stock market index or another measure of non-diversifiable risk (the so-
called “tail-β”) are used to assess the risk of banking system instability
through aggregate shocks. The two forms of banking system instability
are theoretically distinct, but in practice they may sometimes interact.
Both have been extensively referred to in the theoretical and empirical
banking literature. In what follows we describe them in more precise
terms.

2.1. Multivariate extreme spillovers: A measure of bank con-
tagion risk. Let us start with the measure of multivariate extreme
bank spillovers. The measure can be expressed in terms of marginal
(univariate) and joint (multivariate) exceedance probabilities. Con-
sider an N-dimensional banking system, i.e., a set of N banks from,
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e.g., the same country or continent. Denote the log first differences of
the price changes in bank stocks minus the risk-free interest rate by
the random variables Xi (i = 1, · · · , N). Thus, Xi describes a bank i’s
excess return. We adopt the convention to take the negative of stock
returns, so that we can define all used formulae in terms of upper tail
returns. The crisis levels or extreme quantiles Qi (i = 1, · · · , N) are
chosen such that the tail probabilities are equalized across banks, i.e.,

P {X1 > Q1} = · · · = P {Xi > Qi} = · · · = P {XN > QN} = p .

With the significance level in common, crisis levels Qi will generally
not be equal across banks, because the marginal distribution functions
P {Xi > Qi} = 1 − Fi(Qi) are bank specific. The crisis levels can be
interpreted as “barriers” that will on average only be broken once in 1/p
time periods, i.e., p−1 days if the data frequency is daily.6 Suppose now
that we want to measure the propagation of severe problems through
the European and US banking sectors by calculating the probability of
joint collapse in an arbitrarily large set of N bank stocks, conditional
on the collapse of a subset L < N banks:

PN |L = P
n\N

i=1
Xi > Qi(p)

¯̄̄\L

j=1
Xj > Qj (p)

o
(2.1)

=
P
nTN

i=1Xi > Qi(p)
o

P
nTL

j=1Xj > Qj(p)
o .

Clearly, the right-hand side immediately follows from the definition of
conditional probability. With independence the measure reduces to
pN−L. This provides a benchmark against which the dependent cases
are to be judged.
Equation (2.1) is very flexible in terms of the conditioning set on the

right-hand side. For example, the conditioning banks do not necessarily
have to be a subset of the bank set on the left-hand side. Moreover,
the conditioning random variables could also be others than just bank
stock prices.7

6Notice that the set of banks in a given country can be thought of as a “portfolio”
for which the supervisory authority is responsible. From a risk management point of
view a common significance level makes the different portfolio positions comparable
in terms of their downside risk. Moreover, we argue later on that our bivariate and
multivariate probability measures that use the common tail probability as an input
will solely reflect dependence information.
7In Hartmann, Straetmans and de Vries (2003b) we applied an analogous mea-

sure to assess the systemic breadth of currency crises.
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2.2. Tail-βs: A measure of aggregate banking system risk. Our
second measure of banking system risk is from amethodological point of
view a bivariate “variant” of (2.1), in whichN = 1 and the conditioning
set is limited to extreme downturns of the market portfolio or another
indicator of aggregate risk (L = 1).8 This tail-β measure is inspired by
portfolio theory and has been used before by Straetmans et al. (2003)
to examine the intraday effects of the September 11 catastrophe on US
stocks. Let M be the excess return on the market portfolio (e.g. using
a stock market index) and let p be the common tail probability, then
this measure can be written as:

P {Xk > Qk (p) |XM > QM (p)} =
P {Xk > Qk (p) , XM > QM (p)}

P {XM > QM (p)}

=
P {Xk > Qk (p) , XM > QM (p)}

p
.(2.2)

The measure captures how likely it is that an individual bank’s value
declines dramatically, if there is an extreme negative systematic shock.
Analogous to the multivariate spillover probability (2.1), the tail-β
(2.2) reduces to p2/p = p under the benchmark of independence. We
extend the analysis of extreme aggregate risk in this paper by also
experimenting with high-yield bond spreads as a measure XM of sys-
tematic shocks.9

3. Estimation of the indicators

The joint probabilities in (2.1) and (2.2) have to be estimated. Within
the framework of a parametric probability law, the calculation of the
proposed multivariate probability measures is straightforward, because
one can estimate the distributional parameters by, e.g., maximum like-
lihood techniques. However, if one makes the wrong distributional
assumptions, the linkage estimates may be severely biased due to mis-
specification. As there is no clear evidence that all stock returns fol-
low the same distribution − even less so for the crisis situations we
are interested in here −, we want to avoid very specific assumptions
for bank stock returns. Therefore, we implement the semi-parametric
EVT approach proposed by Ledford and Tawn (1996; see also Draisma
et al., 2001, and Poon et al., 2004, for recent applications). Loosely

8Technically, it is also possible to derive and estimate this measure for N > 1,
but we do not do this in the present paper.
9In the present paper we limit ourselves to these two measures of banking system

risk. In future research, the approach could be extended by also including further
economic variables in the conditioning set, such as interest rates or exchange rates.
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speaking, their approach consists of generalizing some “best practice”
in univariate extreme value analysis − based on the generalized Pareto
law behavior of the minima and maxima of the relevant distributions
for financial market returns − to the bivariate case. So, they derive
the tail probabilities that occur in measures (2.1) and (2.2) for the bi-
variate case. We go a step further by applying their approach to the
multivariate case.
Before going ahead with applying the Ledford-Tawn approach to our

two measures of banking system stability, it is important to stress that
the dependence between two random variables and the shape of the
marginal distributions are unrelated concepts. To extract the depen-
dence, given by the copula function, it is convenient to transform the
data and remove any possible influences of marginal aspects on the
joint tail probabilities. One can transform the different original excess
returns to ones with a common marginal distribution (see, e.g., Ledford
and Tawn, 1996, and Draisma et al., 2001). After such a transforma-
tion, differences in joint tail probabilities across banking systems (e.g.,
Europe versus the US) can be solely attributed to differences in the
tail dependence structure of the extremes. This is different, e.g., from
correlation-based measures that are still influenced by the differences
in marginal distribution shapes.
In this spirit we transform the bank stock excess returns (X 1,· · · ,X i,

· · · ,XN) to unit Pareto marginals:

eXi =
1

1− Fi (Xi)
, i = 1, · · · , N ,

with Fi (·) representing the marginal cumulative distribution function
(cdf) for Xi. However, since the marginal cdfs are unknown, we have to
replace them with their empirical counterparts. For each Xi this leads
(with a small modification to prevent division by 0) to:

(3.1) eXi =
n+ 1

n+ 1−RXi

, i = 1, · · · , N ,

where RXi = rank(Xil, l = 1, · · · , n). Using this variable transform,
we can rewrite the joint tail probability that occurs in (2.1) and (2.2):

P
n\N

i=1
Xi > Qi(p)

o
= P

n\N

i=1

eXi > q
o
,
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where q = 1/p.10 The multivariate estimation problem can now be
reduced to estimating a univariate exceedance probability for the cross-
sectional minimum of the N bank excess return series, i.e., it is always
true that:

(3.2) P
n\N

i=1

eXi > q
o
= P

½
N

min
i=1

³ eXi

´
> q

¾
= P

n eXmin > q
o
.

The marginal tail probability at the right-hand side can now be cal-
culated, provided the following additional assumption on the univariate
tail behavior of eXmin is made. Ledford and Tawn (1996) argue that the
bivariate dependence structure is a regular varying function under fairly
general conditions.11 Peng (1999) and Draisma et al. (2001) give suffi-
cient conditions and further motivation. Therefore, we assume that the
auxiliary variable eXmin has a regularly varying tail. Notice, however,
that in contrast to Ledford and Tawn (1996) we often consider more
than two dimensions.12

Assuming that eXmin exhibits heavy tails with tail index α, then the
regular variation assumption for the auxiliary variables implies that
the univariate probability in (3.2) exhibits a tail descent of the Pareto
type:

(3.3) P
n eXmin > q

o
≈ c(q)q−α , α ≥ 1 ,

with q large (p small) and where c(q) is a slowly varying function (i.e.,
limq→∞ c(xq)/c(q) = 1 for all fixed x > 0). We can now distinguish the

10The multivariate probability stays invariant under the variable transformation

(X1, · · · ,Xi, · · · ,XN) →
³ eX1, · · · , eXi, · · · , eXN

´
, because the determinant of the

Jacobian matrix can be shown to be equal to 1.
11A function F (x) is said to have a regularly varying left tail if

lim
u→∞

F (−ux)/F (−u) = x−α

for any x > 0 and tail index α > 0.
12Equation (3.2) requires a common quantile q. This can, however, be easily

generalized to the case where q differs across the marginals. Assume that we both
allow the quantiles of the original distribution function Q1 and Q2 and the corre-
sponding marginal probabilities p1 and p2 to be different from each other. For the
bivariate case this would imply, for example, that

P {X1 > Q1 (p1) ,X2 > Q2 (p2)} = P
n eX1 > q1, eX2 > q2

o
,

with qi = 1/pi (i = 1, 2). By multiplying eX2 with q1/q2 the above joint probability
again reduces to a probability with a common quantile q1 and we are back to the
framework described above, where the loading variable eXmin can be calculated.
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two cases in which the eXi are asymptotically dependent and asymptot-
ically independent. In the former case α = 1 and

lim
q→∞

P
n eXmin > q

o
P
n eXmax > q

o > 0 ,

with P
n eXmax > q

o
= P

n
maxNi=1

³ eXi

´
> q
o
. Examples of asymp-

totically dependent random variables include, e.g., the multivariate
Student-T distribution. For asymptotic independence of the random
variables α > 1, and we have that

(3.4) lim
q→∞

P
n eXmin > q

o
P
n eXmax > q

o = 0 .
An example of this case is the bivariate standard normal distribution
with correlation coefficient ρ. For this distribution α = 2/(1 + ρ) and
the limit (3.4) applies. When the normal random variables are inde-
pendent (ρ = 0), one immediately obtains that α = 2. In general,
whenever the eXi are fully independent in the N-dimensional space,
α = N and P

n eXmin > q
o
= pN . But the reverse is not true, i.e.,

there are joint N-dimensional distributions with non-zero pairwise cor-
relation that nevertheless have α = N . The Morgenstern distribution
constitutes an example of this tail behavior. (A bivariate version is
employed in a Monte Carlo exercise in appendix A.1.)
The steps (3.1), (3.2) and (3.3) show that the estimation of multi-

variate probabilities can be reduced to a univariate estimation problem
that is well known. Univariate tail probabilities for fat-tailed random
variables − like the one in (3.2) − can be estimated by using the semi-
parametric probability estimator from De Haan et al. (1994):

(3.5) bP n eXmin > q
o
=

m

n

µ
Cn−m,n

q

¶α

,

where the “tail cut-off point” Cn−m,n is the (n−m)-th ascending order
statistic from the cross-sectional minimum series eXmin. The estima-
tor (3.5) basically extends the empirical distribution function of eXmin

outside the domain of the sample by means of its asymptotic Pareto
tail from (3.3). An intuitive derivation of the estimator is provided in
Danielsson and de Vries (1997). The tail probability estimator is con-
ditional upon the tail index α and a choice of the threshold parameter
m.
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To estimate α we use the popular Hill (1975) estimator for the index
of regular variation:

(3.6) bη = 1

m

m−1X
j=0

ln

µ
Cn−j,n

Cn−m,n

¶
=
1bα ,

where bη is the estimate of our parameter of tail dependence and m is
the number of higher order extremes that enter the estimation. The
higher bη, and given the slowly varying function c(s), the more depen-

dent are the components
³ eX1, · · · , eXi, · · · , eXN

´
from (3.2) far out in

their joint tail. Following from the discussion above, for asymptotic
dependence our tail dependence parameter η = 1 and for asymptotic
independence η = 1/N . Draisma et al. (2001) derive asymptotic nor-

mality of
√
m
³
η
η
− 1
´
under fairly general conditions.13 The asymp-

totic normality will prove convenient for the tests implemented later
on. Further details on the Hill estimator can be found in Jansen and
De Vries (1991), for example, and in the monograph by Embrechts,
Klüppelberg and Mikosch (1997).
The optimal choice of the threshold parameterm is a point of concern

in the extreme value theory literature. Goldie and Smith (1987) suggest
to select the nuisance parameter m so as to minimize the asymptotic
mean-squared error. A widely used heuristic procedure plots the tail
estimator as a function ofm and selectsm in a region where bη is stable.
Double bootstrap techniques based upon this idea have been developed
recently (see, e.g., Danielsson et al., 2001), but these are only advisable
for sample sizes that are larger than the ones we have available for this
paper. For simplicity and in accordance with the minimization criterion
of Goldie and Smith (1987), we select m = κnγ with γ = 2/3, sample
size n and where κ is derived from the widely used Hill plot method.14

We provide in appendix A.1 a discussion of the properties of our tail
dependence parameter η in small samples.

13For discussions of alternative estimators and proper convergence behavior, see
e.g. Draisma et al. (2001), Peng (1999), and Beirlandt and Vandewalle (2002).
14Minimizing the asymptotic mean-squared error for the Hill estimator by bal-

ancing bias and variance renders a nonlinear selection rule like the one above. For
convenience, we impose the parameter restriction γ = 2/3. While simplifying, it
can be shown to hold for a wide variety of distribution functions (see Hall, 1990).
Moreover, establishing stable and accurate estimates of γ is notoriously difficult
(see, e.g., Gomes et al., 2002, for a recent example). κ is calibrated by means of
the heuristic Hill plot method. Once a value of m∗ is selected in a horizontal range
of bη = bη (m), the scale factor immediately follows from κ = m∗/n2/3.
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4. Hypothesis testing

In this section we introduce some tests that can be used to assess
various hypotheses regarding the evolution and structure of systemic
risk in the banking system. The first one allows to test for the structural
stability of the amount of risk found with our two indicators. The
second test allows us to compare the systemic risk across countries and
continents.

4.1. Time variation. The multivariate linkage estimator (2.1) and its
bivariate counterpart in (2.2) were presented so far assuming stationar-
ity of tail behavior over time. From a policy perspective, however, it is
important to know whether systemic risk in the banking system − ei-
ther in terms of contagion risk (2.1) or in terms of extreme systematic
risk (2.2) − has changed over time. As the discussion of the Led-
ford and Tawn approach toward estimating (2.1) or (2.2) has shown,
the structural (in)stability of systemic risk will critically depend on
whether the tail dependence parameter η is constant or not. We study
the occurrence of upward and downward swings in η with a recently
developed structural stability test for the Hill statistic (3.6).
Quintos, Fan and Phillips (2001) present a number of tests for iden-

tifying single unknown breaks in the estimated tail index bα. As our
estimation approach allows to map the multivariate dependence prob-
lem into a univariate estimation problem, we can choose from them the
best test procedures for our tail dependence parameter η. Balancing
the prevention of type I and type II errors we opt for the recursive
test from Quintos et al. Let t denote the endpoint of a sub-sample of
size wt < n. The recursive estimator for η is calculated from (3.6) for
sub-samples [1; t] ⊂ [1;n]:

(4.1) bηt = 1

mt

mt−1X
j=0

ln

µ
Xt−j,t

Xt−mt,t

¶
,

with mt = κt2/3.
The value of the recursive test statistic equals the supremum of the

following time series:

(4.2) Y 2
n (t) =

µ
tmt

n

¶µbηnbηt − 1
¶2

.

Expression (4.2) compares the recursive value of the estimated tail
parameter (3.6) to its full sample counterpart bηn. The null hypothesis
of interest is that the tail dependence parameter does not exhibit any
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temporal changes. More specifically, let ηt be the dependence in the
left tail of X. The null hypothesis of constancy then takes the form

(4.3) H0 : η[nr] = η, ∀r ∈ Rε = [ε; 1− ε] ⊂ [0; 1] ,

with [nr] representing the integer value of nr. Without prior knowl-
edge about the direction of a break, one is interested in testing the
null against the two-sided alternative hypothesis HA : η[nr] 6= η. For
practical reasons the above test is calculated over compact subsets of
[0; 1], i.e., t equals the integer part of nr for r ∈ Rε = [ε; 1− ε] and for
small ε > 0. Sets like Rε are often used in the construction of parame-
ter constancy tests (see, e.g., Andrews, 1993).15 In line with Quandt’s
(1960) pioneering work on endogenous breakpoint determination in lin-
ear time series models, the candidate break date r can be selected as
the maximum value of the test statistic (4.2), because at this point in
time the constancy hypothesis is most likely to be violated.
Asymptotic critical values can be derived for the sup-value of 4.2,

but if the data are temporally dependent the test sequence Y 2
n needs

to be scaled in order to guarantee convergence to the same limiting
distribution function as in the case of absence of temporal dependence.
It is well known that financial returns exhibit nonlinear dependencies
like, e.g., ARCH effects (volatility clustering). It is likely that the load-
ing variable eXmin, previously defined as the cross-sectional minimum of
the bank stock returns (transformed using their proper empirical dis-
tribution function), partly inherits these nonlinearities. The nonlinear
dependence implies that the asymptotic variance of the Hill estimator
1/bη is s2

η2
, with s some scaling factor. If the scaling factor differs from

1 (presence of temporal dependence), the asymptotic critical values of
the test statistic will depend on the scaling. Quintos et al. suggest to
pre-multiply the test statistic with the inverse of the scaling factor in
order to let it converge to the same critical values as in the i.i.d. case.
However, their scaling estimator is based upon the ARCH assumption
for univariate time series. As we do not want to make very specific
assumptions on the precise structure of the nonlinear dependence in
the marginals, we apply a block bootstrap to the asymptotic variance

15The restricted choice of r implies that εn ≤ t ≤ (1− ε)n. When the lower
bound would be violated the recursive estimates might become too unstable and
inefficient because of too small sub-sample sizes. On the other hand, the test
will never find a break for t equal or very close to n, because the test value (4.2)
is close to zero in that latter case. Thus, for computational efficieny one might
stop calculating the tests beyond the upper bound of (1− ε)n < n. In line with
Andrews, we search for breaks in the [0.15n; 0.85n] subset of the total sample.
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of the Hill statistic 1/bη and thus the scaling factor s.16 Following Hall,
Horowitz and Jing (1995), the optimal block length is set equal to n1/3.
One now selects r for the recursive test such that Y 2

n (t)− appropriately
scaled − is maximal:

(4.4) Ωr∈Rτ = sup bs−1Y 2
n (t) ,

with bs the estimate of the scaling factor. The null of parameter con-
stancy is rejected if the sup-value exceeds the asymptotic critical values.
Quintos et al. provide a Monte Carlo study that shows convinc-

ingly the very good small sample power, size and bias properties of
the recursive break test. Only in the case of a decrease of extreme tail
dependence under the alternative hypothesis (η1 > η2) they detect less
acceptable power properties. We solve this problem by executing the
recursive test both in a “forward” version and a “backward” version.
The forward version calculates ηt in calender time, and the backward
version in reverse calender time. If a downward break in η occurs and
the forward test does not pick it up, then the backward test corrects
for this. Appendix A.2 provides a further Monte Carlo study of the
small-sample properties of the recursive structural break test.

4.2. Cross-sectional variation. Apart from testing whether systemic
banking risk is stable over time, we would also like to know whether
cross-sectional differences between various groups of banks or different
banking systems, say between the US and Europe or between different
European countries, are statistically and economically significant. The
asymptotic normality of tail dependence coefficient estimates bη referred
to above enables some straightforward hypothesis testing. A test for
the equality of tail dependence parameters between, e.g., Europe and
the United States can thus be based on the following T -statistic:

(4.5) T =
bη1 − bη2

s.e. (bη1 − bη2) ,
which converges to a standard normal distribution in large samples.17

In the empirical applications below the asymptotic standard error in
the test’s denominator (4.5) is estimated using a block bootstrap with
1,000 replications. Again following Hall et al. (1995), we set the op-
timal block length equal to n1/3. Similar to the structural stability

16The scale is estimated by s = bηmbσ2 (1/bη) with bσ2 the block bootstrapped
variance of the Hill statistic.
17One can safely assume that T comes sufficiently close to normality for empirical

sample sizes as the one used in this paper (see, e.g., Hall, 1982, or Embrechts et
al., 1997).
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test above, we opt for bootstrapping in blocks because of the nonlinear
dependencies that might be present in the return data.

5. Data and descriptive statistics

We collected daily stock price data (total return indexes including
dividends) for 25 euro area banks and 25 US banks. Excess returns
are constructed by taking log first differences and deducting 3-month
LIBOR rates (adjusted linearly to derive daily from annual rates). They
are expressed in local currency, so that they do not vary directly with
exchange rates. The market risk factor or aggregate shocks to the euro
area and US banking systems are proxied by several measures with
an eye toward some sensitivity analysis. First, we employ a general
stock index and the banking sector sub-index for the euro area and the
US, respectively. Second, we use the spread between below-investment-
grade and treasury bond yields for each of these economies. Finally,
we use a global stock index and the global banking sector sub-index.
All series, except one, start on 2 April 1992 and end on 27 Febru-

ary 2004, rendering 3,106 return observations per bank. The euro area
high-yield bond spread is only available from 1 January 1998 onwards,
yielding 1,497 observations. All series are downloaded from Datas-
tream, whose source for high-yield bond spreads is Merrill Lynch.18

The stock indices are the total return indices calculated by the data
provider.
The following sub-section provides detailed information about how

the 50 banks were chosen, based on balance sheet items for European
and US banks. The subsequent section discusses the return data in
greater depth, referring to the typical host of standard descriptive sta-
tistics.

5.1. Bank selection and balance sheet information. The time di-
mension of this dataset was very much constrained by the unavailability
of longer stock price series for European banks. Before the 1990s fewer
large European banks were privately quoted on stock exchanges and
also many banks disappeared as a consequence of mergers. Ten out of
12 euro area countries have banks in our sample. There is no Austrian
bank, as we could not construct a long enough stock price series for any
of the two largest banks from this country. We deliberately excluded
banks from Luxembourg, as they are considerably smaller than the
larger banks from all other euro area countries. Roughly in proportion
to the sizes of their economies in terms of GDP and the sizes of their
18See de Bondt and Marques (2004) for an in-depth discussion of high-yield bond

spreads.
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banking systems in terms of assets, we have 6 banks from Germany, 4
banks from France, 4 banks from Italy, 3 banks from Spain, 2 banks
each from the Netherlands and from Belgium and one bank from Fin-
land, Greece, Ireland and Portugal, respectively. Appendix B contains
the full list of banks, the abbreviations used in the tables and their
country of origin.
Apart from the above constraints, banks were chosen on the basis of

two main criteria: First, their size (as measured mainly by assets and
deposits) and, second, their involvement in interbank lending (as mea-
sured by interbank loans, amounts due to and due from other banks
and total money market funding). The necessary balance-sheet infor-
mation was taken from Bureau van Dijk’s Bankscope database (consid-
ering end of year values between 1992 and 2003). For the United States,
the choice of banks was double-checked on the basis of the Federal Re-
serve Bank of Chicago commercial bank and bank holding company
databases.
We used this balance-sheet information to identify the “systemically

most important” banks across all the twelve years. By using several
criteria, naturally some choices had to be made. This is illustrated
in appendix C, which reports data for one size (total assets) and one
interbank trading (“due from banks”) measure, all expressed in US
dollars. Table C.2 displays the assets of all 25 US banks over the
sample period, by declining order of average size. The corresponding
table for “due from banks” is C.4. It turns out that the most important
US bank according to the latter criterion is State Street, although in
terms of assets it only comes at number 13. Similar phenomena can
also be observed for other “clearing banks”, such as Northern Trust
(5th by interbank linkages and only 24th by assets), Bank of New York
and Mellon, whose sizes are relatively poor indicators for their role
in interbank relationships. We were particularly careful to have these
banks that are most active in clearing and settlement in our sample.
The justification for this is that failures of one or several main clearing
banks may constitute a particularly severe source of contagion risk,
even though they may not be very large compared to other players.19

Interestingly, as one can see by comparing tables C.1 and C.3 size and
interbank activity are much more aligned for euro area banks.
Moreover, by comparing table C.1 with table C.2 we can see that

the banks chosen for the euro area and the ones chosen for the US
19For example, the failure of Continental Illinois in 1983-84 and the computer

problem of Bank of New York in 1985 raised major concerns and were accompanied
by public action in order to prevent those incidents from spreading through the
banking system.
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are of comparable size, even though the aggregate balance sheet of the
euro area banks is overall larger than the US aggregate. The same
similarity, however, does not apply to the “due from banks” measure
of interbank relations, which is significantly larger in Europe than in
the US (see tables C.3 and C.4). The larger interbank relationships in
Europe compared to the US is an interesting finding in itself, which− to
our knowledge − has not been emphasized in the literature on banking
system risk before.20 It will be interesting to verify below whether
this aggregate information from balance sheets is informative about
the relative importance of systemic risk in the euro area as compared
to the US banking system. In particular, does the greater amount of
interbank lending in Europe translate into larger systemic risk?

5.2. Descriptive statistics for stock returns and yield spreads.
Appendix D presents the typical host of standard descriptive statistics
for our 50 bank stock return series and three of the factors capturing
aggregate risk (the banking sector indices, the general stock indices and
the yield spread). Tables D.1 and D.2 report on the left-hand side mean
excess returns, standard deviations, skew and kurtosis as well as on the
right-hand side correlations between the individual bank stock returns
and the three aggregate risk factors for the euro area and the United
States, respectively. Mean returns are basically zero, as one would
expect, whereas standard deviations of returns tend to be around 2.
Naturally, the volatility of the two stock indices is significantly lower
than the one of the individual bank stocks. While there are little signs
of skew, except for the troubled bank Banesto (see next sub-section
for details) that shows some right skew, the high kurtosis signals that
most series are leptokurtic.
As regards the correlations between bank stocks and aggregate risk

factors, they are pretty high for the two stock indices, as could have
been expected. Many correlation coefficients (though not all) reach
levels of the order of 0.6 or higher, and plausibly the banking sector
sub-index tends to be slightly more related to the individual stocks than
the general stock market index. The picture is different for correlations
between individual stock returns and the high-yield bond spread. First
of all, correlation coefficients tend to be very low, varying between 0
and 0.05 in absolute value. Moreover, many of the US correlations
have the “wrong” sign (a small positive correlation coefficient). This

20As we were concerend about differences in reporting conventions or standards
across the Atlantic, we discussed the difference with the data provider. No evidence
of mistakes or different standards came out of this discussion.
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provides first evidence that the high-yield bond spread might not be a
good predictor of aggregate banking system risk.
We complete the discussion of standard return statistics with the

correlation matrices of individual bank stock returns. Table D.3 shows
the correlation matrix for the euro area. Euro area bank returns seem to
be generally positively correlated, with correlation coefficients varying
between 0.05 and 0.77. For the US, table D.4 provides a similar picture,
although correlation coefficients appear to be more uniform (varying
only between 0.32 and 0.66) and on average slightly higher.
For the purpose of the present paper, we are particularly interested

in extreme negative returns. The left-hand sides of tables 1 and 2
report the three largest negative excess returns (in absolute value) for
all the banks in the sample and for the two banking sector stock indices.
Starting with Europe, the largest stock price decline in the sample (a
massive daily collapse of 85%) happens for Banesto (Banco Espanol de
Credito) in February 1994. Around that time, this Spanish bank faced
major difficulties and was rescued by an initial public intervention in
December 1993. Another bank in major difficulties during our sample
period is Berliner Bankgesellschaft from Germany. This is reflected
in two consecutive stock price “crashes” of 38% and 27% during the
summer of 2001. Ultimately, also this bank was saved by the federal
state of Berlin. As regards the United States, the largest daily stock
price slump happens to Unionbancal Corporation. The market value
of this troubled Californian bank declined in June 2000 by as much
as 36%, as a consequence of credit quality problems. The next most
significant corrections of just above 20% occur for Comerica Inc. and
AmSouth Bancorporation.21 These examples illustrate that we have a
number of individual bank crises in the sample.
[Insert table 1 about here]
Extreme negative returns of stock indices are obviously smaller than

the ones for individual banks. In contrast to the stock returns, the
high-yield bond spreads reported at the bottom of tables 1 and 2 are
maxima, as extreme positive values indicate a situation of high risk.
One can see that in times of stress non-investment grade corporate debt
can trade at yields more than 10% above government debt.
There is also some first evidence of clustering in extreme bank stock

declines, as many of them happen around a number of well-known crisis

21As we work with individual return data from Datastream, we screened our
dataset for the problems described in Ince and Porter (2004). As one could probably
expect for the relatively large banks and developed countries we are looking at, we
did not find any signs of erroneous returns. For example, tables 1 and 2 suggest
that stock splits or re-denominations did not artificially generate any huge returns.
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episodes. For example, a significant number European and US-based
banks faced record downward corrections around the end of the sum-
mer 1998. This is the infamous episode related to the Long Term Cap-
ital Management (LTCM) collapse (and perhaps also to the Russian
default). Another similar episode, very much limited to US banks, hap-
pened in spring and summer 2000, potentially related to the burst of
the technology bubble. Interestingly, record bank stock crashes around
11 September 2001 − the time of the New York terrorist attack − are
registered for a number of European banks, but not for US banks.22 Fi-
nally, some American and European banks were hit significantly by the
onset of the Asian crisis in fall 1997. These examples illustrate, first,
that our sample covers a number of stress situations in global and na-
tional markets.23 Second, they also indicate the relevance of systematic
shocks for banking stability, which motivates our tail-β indicator.
[Insert table 2 about here]
As mentioned already above, many series indicate a high kurtosis,

which might be caused by the fat tail property of bank stock returns.
To address this issue more systematically, we report in tables 1 and
2 the estimated tail indexes bα for individual banks and for the stock
indices. It turns out that the tail indexes vary around 3, which is
in line with the evidence presented in Jansen and De Vries (1991),
further illustrating the non-normality of bank stock returns and the
non-existence of higher-order moments.24 If anything, the tails of a
number of European banks seem to be slightly fatter (smaller α) than

22The less extreme reactions of US bank stocks may, however, also have to do
with a four-day suspension of trading at the New York stock exchange.
23The presence of single and aggregate crisis situations in our sample is reassur-

ing, as the interest of our paper is financial stability. At the same time, however, we
would like to note that extreme-value methods do not require the presence of indi-
vidual or aggregate failures in the sample. In contrast to fully non-parametric and
parametric approaches, our semi-parametric approach allows to estimate reliably
extremal behavior even beyond the sample boundaries.
A related issue is whether the absence of some banks from our sample, due to

their failure or their merger with other banks, could imply sample selection bias.
First of all, outright bank failures tend to be rare, so that related selection bias
should be quite limited. A more intricate issue is banking consolidation. If mergers
lead to the exlusion of relatively similar, highly connected banks, then a downward
bias in measured systemic risk might occur. If they lead to the exclusion of dif-
ferent and little connected banks, then the amount of systemic risk in our sample
should not be biased. As efficient mergers would often require the diversification of
business, we might conclude that the overall room for sample selection bias in our
sample is relatively contained.
24The non-normality of stock returns in general is a well-known fact in financial

economics since at least the fundamental work by Mandelbrot (1963). For a related



BANKING SYSTEM STABILITY: A CROSS-ATLANTIC PERSPECTIVE 23

the ones of US banks. In addition to the larger interbank lending
in Europe referred to above, this observation raises again the issue
whether systemic risk on this side of the Atlantic is more pronounced
than on the other. Another observation is that the yield spreads have
much thinner tails than stock index returns.
The right-hand sides of tables 1 and 2 show the estimated quantiles

for all the banks, when assuming a common percentile (or crash proba-
bility). In this paper, we experiment with percentiles p between 0.02%
and 0.05% (explicitly reporting results for the latter), as for these val-
ues the implied crisis levels tend to be close to or slightly beyond the
historical extremes (see left-hand side). In other words, there cannot
be any doubt about the fact that the phenomona considered consti-
tute critical situations for banks. In terms of sensitivity analysis, all
our qualitative results reported below are robust to varying the crash
probability p within this range. Finally, as was to be expected, the
extreme quantiles implied by the common crash probability p exhibit
some variation across banks.

6. Bank contagion risk

In this section we report the results from our multivariate bank
spillover measure. We are trying to answer two main sets of questions.
1) How large is bank contagion risk in euro area countries? And, in
particular, what do our stock market indicators suggest about the rel-
ative importance of the risk of domestic spillovers between banks as
compared to the risk of cross-border spillovers? Answers to the latter
question are particularly important for macroprudential surveillance
and for the ongoing debate about supervisory co-operation and the
structure of supervisory authorities in Europe. 2) What do our indica-
tors say about the relative size of bank contagion risk when comparing
the euro area with the United States? Is one banking system more
at risk than the other? The former set of questions is addressed in
sub-section 6.1 and the latter in sub-section 6.2. In the present section
we still abstract from extreme systematic risk for the euro area and US
banking system, as this is addressed in the following section (section
7). For expositional reasons, we also abstract here from changes of
spillover risk over time, which are addressed in section 8.

6.1. Euro area. In order to assess the exposure of euro area banks to
each other, as derived from their extreme stock price co-movements, we

discussion of non-normality and the difficulty of parametric distributions to accu-
rately capture the behavior of large bank stock returns for a wider cross-section of
European banks, see Gropp and Moerman (2004).
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report in table 3 the estimation results for our measure (2.1). To keep
the amount of information manageable, we do not show the extreme
dependence parameters η that enter in the estimation of (2.1) and
we only display the spillovers to the largest banks of the countries
listed on the left-hand side. We calculate the co-crash probabilities
conditional on the second (column bP1), second and third (column bP2),
second, third and fourth (column bP3) and so on largest banks from
Germany (upper panel), from Spain (upper middle panel), from Italy
(lower middle panel) and from France (lower panel). All probabilities
refer to the crisis levels (extreme quantiles) reported in table 1 for
p = 0.05%.
For example, the value 22.4% in the row “Germany” and the col-

umn “ bP1” in the upper panel, refers to the probability that Deutsche
Bank (the largest German bank) faces an extreme spillover from Hy-
poVereinsbank (the second largest German bank). Going a few cells
down, the value 11.2% describes the probability that Banco Santander
Central Hispano (the largest Spanish bank) faces an extreme spillover
from HypoVereinsbank. The difference between these two values would
suggest that the likelihood of cross-border contagion could only be half
of the likelihood of domestic contagion. When going through the table
more systematically (in particular through the columns for more than
one conditioning bank crash), it turns out that cross-border contagion
risk is generally estimated to be smaller than domestic contagion risk
in the euro area banking system, indeed. To pick just another example,
the probability that the largest French bank (BNP Paribas) faces an
extreme stock price slump given that the second (Crédit Agricole) and
third largest French bank (Société Générale) have experienced one is a
non-negligible 35.9% (see column bP2, upper middle panel, row France).
The same probability for the largest Italian bank (Banca Intesa) is
7.5.% (see column bP2, upper middle panel, row Italy). The proba-
bilities in the first row of each panel are very often higher than the
probabilities in the rows underneath.
There are also some exceptions, in particular among the bivariate

probabilities reflecting linkages between two large banks (column bP1).
This is not too surprising, as the largest players will have more ex-
tensive international operations, implying more scope for cross-border
contagion. In particular, ABN AMRO − the largest Dutch bank − is
more affected by problems of HypoVereinsbank than Deutsche Bank
(26.5%>22.4%). Actually, the linkages between Dutch and German
banks tend to be among the largest cross-border linkages in our sam-
ple. Other important cross-border linkages exist between the top banks
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of France, Germany and the Netherlands and the top Spanish bank.
Moreover, as in the case of BNP Paribas, Crédit Agricole and Société
Générale, the largest institutions of a country must not always be very
strongly interlinked in the home market. As a consequence, the French
panel shows that ABN AMRO and Fortis − the largest Belgian bank
− are more exposed to the second and third largest French bank than
is BNP Paribas. The fact that Belgian and Dutch banks are associated
with the largest cross-border spillover risks is also intuitive, since the
banking sectors of these countries are dominated by a small number
of very large international financial conglomerates. Also the results
of Degryse and Nguyen (2004) and van Lelyveld and Liedorp (2004)
suggest their special exposure to cross-border risk.
[Insert table 3 about here]
Another observation from table 3 is that the main Finnish and Greek

banks, located in two countries next to the outside “border” of the euro
area, tend to be least affected by problems of large banks from other
euro area countries. Something similar, but to a lesser extent, can be
observed for Ireland and, with exceptions, for Portugal. Apparently,
smaller banking systems located more in the periphery of the euro
area are more insulated from foreign spillovers than larger systems in
the center. Overall, the level of spillover risk seems to be economically
relevant, both domestically and across borders, in particular when more
than one large bank face a stock price crash. Contagion risk for single
crashes tends, however, to be markedly lower.
An interesting exception is Italy. While being a larger core country in

the euro area, it is much less affected by problems in French, German
or Spanish banks than other core countries. This is also consistent
with the findings of Mistrulli (2005). In addition, spillovers from the
largest Italian banks to other main banking systems in Europe seem
also quite limited. One explanation for this phenomenon could be
the low penetration of the Italian banking system from abroad and
the limited number of acquisitions by Italian banks in other European
countries.25

The test results in table 4 show whether the differences between do-
mestic and cross-country contagion risk are statistically significant or
not. Rows and columns refer to the same banks as in table 3, but
the cells now show T-statistics of the cross-sectional test described in
sub-section 4.2. The null hypothesis is that domestic spillovers equal

25This must, however, not remain like this, as the recent acquisition of HypoVere-
insbank by UniCredito suggests.
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cross-border spillovers.26 The test statistics partly qualify the interpre-
tation of some of the contagion probabilities in table 3. Extreme cross-
border linkages between Belgian, Dutch, French, German and Spanish
banks are not (statistically) significantly different from domestic link-
ages within the major countries. In contrast, for Finland and Greece
the null hypothesis is rejected in all cases. Moreover, the same hap-
pens in many cases for Ireland and Portugal. So, severe problems of
larger French, German, Italian and Spanish banks may create similar
problems for other large banks at home or in other central euro area
countries, but often would do much less so for the largest banks of those
smaller countries close to the outside “border” of the euro area. Hence,
for the latter countries the tests of table 4 confirm the impression from
the estimations in table 3.
[Insert table 4 about here]
The T-tests also confirm the special situation of Italy among the

larger euro area countries. In many cases the exposure of Italian banks
to foreign problems is significantly lower than domestic exposures in the
other main countries. In addition, the greater exposure of ABN AMRO
to Crédit Agricole (cross-border) than BNP Paribas to Crédit Agricole
(domestic) is statistically significant at the 1% level. And, similarly,
the greater exposure of Fortis to Crédit Agricole (cross-border) than
BNP Paribas to Crédit Agricole (domestic) is significant at the 10%
level.
The probabilities in table 3 allow one to derive a relationship between

the likelihood of a bank crash as a function of the number of other banks
crashing. In our previous paper on currencies, we have denoted this
relationship between the probability of crises and the number of condi-
tioning events as “contamination function” (see Hartmann, et al., 2003,
figures 1 to 7). Bae et al. (2003) speak in their international equity
market contagion paper of “co-exceedance response curves”. Gropp
and Vesala (2004) apply the latter concept to European banks. While
the results in table 3 suggest that most contamination functions in
European banking are monotonously increasing (as for currencies), at
least over certain ranges of conditioning events, there are also some

26The T-statistics result from comparing cross-border η-values with domestic η-
values (ceteris paribus the number of conditioning banks), as used for the spillover
probabilities of table 3. The estimation of tail dependence parameters η have been
described in equation (3.6). For example, the T-statistic in row Netherlands and col-
umn T1 in table 4 results from testing whether the η-value for the largest Dutch bank
(ABN AMRO) with respect to the second largest German bank (HypoVereinsbank)
significantly differs from the domestic η-value of the largest German bank (Deutsche
Bank) with respect to the second largest German bank (HypoVereinsbank).
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exceptions. Witness, for example, the exposure of Banco Commer-
cial Portugues (the largest Portuguese bank) to problems of German
banks. Going from bP4 to bP5 implies a reduction in the crash probability
of BCP.
One potential explanation for this phenomenon is “flight to quality”,

“flight to safety” or “competitive effects”. Some banks may benefit
from the troubles at other banks, as e.g. depositors withdraw their
funds from the bad banks to put them in good banks. Such behav-
ior has been referred to by Kaufman (1988) in relation to US banking
history, and Saunders and Wilson (1996) provided some evidence for
it during two years of the Great Depression. For a more recent time
period, Slovin, Sushka and Polonchek (1999) find regional “competi-
tive effects” in response to dividend reduction and regulatory action
announcements. Non-monotonicity of contamination functions might
also occur for the curse of dimensionality, as very few observations may
enter the joint failure area for more than two banks.
The finding of statistically similar spillover risk between major euro

area banks within and between some large countries could be important
for surveillance of the banking system and supervisory policies. One
explanation for it may be the strong involvement of those banks in the
unsecured euro interbank market. As these large players interact di-
rectly with each other, and in large amounts, one channel of contagion
risk could be the exposures resulting from such trading. For exam-
ple, Gropp and Vesala (2004) find interbank exposures at the country
level to be a variable explaining part of spillovers in default risk be-
tween European banks. One implication of the similarity of domestic
and cross-border spillover risks for some countries is that macropruden-
tial surveillance and banking supervision need to have a cross-border
dimension in the euro area. This is currently happening through the
Eurosystemmonitoring banking developments, through the application
of the home-country principle (the home supervisor considers domestic
and foreign operations of a bank), through the existence of various bi-
lateral memoranda of understanding between supervisory authorities,
through multilateral “colleges” of supervisors for specific groups and
now also through the newly established “Lamfalussy Committees” in
banking. The results could provide some arguments in favor of an
increasing European-wide component in macroprudential surveillance
and supervisory structures over time.
It is also interesting to see that in some smaller and less central coun-

tries in the area cross-border risk is more contained. This could suggest
that even the larger players from those countries are still less interlinked
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with the larger players from the bigger countries. The existence of sig-
nificant differences in the degree of cross-border risks between different
groups of European countries could make the development of homoge-
nous supervisory structures more complicated.
Overall, one could perhaps conclude that the results so far suggest

that the still relatively limited cross-border integration of banking in
the euro area does not seem to eliminate any contagion risk among the
larger players from some key countries to levels that are so low that
they can be simply ignored. This conclusion is also consistent with
Degryse and Nguyen (2004) and Lelyveld and Liedorp (2004), whose
analyses of interbank exposures suggest that risks from abroad may be
larger than domestic risks in the Belgian and Dutch banking systems.
One explanation for the relevance of cross-border bank risks could be
that while bank mergers have been mainly national and traditional
loan and deposit business of banks are only to a very limited extent
expanding across national borders (see, e.g., the recent evidence pro-
vided in Hartmann, Maddaloni and Manganelli; 2003, figures 10 and
11), much of the wholesale business of these large players happens in
international markets that are highly interlinked.

6.2. Cross-Atlantic comparison. Our final step to examine inter-
bank spillovers consists of comparing them between the euro area and
US banking systems. To do so, we calculate for each system the tail
dependence parameter η that governs the estimate of the multivariate
contagion risk measure (2.1). Notice that for each continent ηUS and
ηEA are derived from all the extreme stock return linkages (bilateral
and multilateral) between the respective N = 25 banks, following the
estimation procedure described in section 3.
As indicated in table 5, we obtain bηUS = 0.39 and bηEA = 0.17. The

evidence thus suggests that overall contagion risk in the US banking
system is higher than contagion risk among euro area banks (about
two times).27 Moreover, knowing that for the case of independence
η = 1/N = 0.04, the amount of multivariate linkage is of economically
relevant magnitude. The bP values in the table describe the probability
that all 25 banks in the euro area or the US crash, given that any
of them crashes. These probabilities illustrate that overall systemic
risk related to the crash of a single bank is extremely low. Of course,
multivariate contagion risk increases for multiple bank crashes.

27Strictly speaking, this and related statements below make the plausible as-
sumption that the dependence structure is sufficiently similar on both sides of the
Atlantic for the slowly varying function c(q) in 3.1 not to have a large impact on
relative probabilities.
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[Insert table 5 about here]
Is this difference between the US and the euro area statistically sig-

nificant? We apply the cross-sectional stability test (4.5) described in
sub-section 4.2, with the following null hypothesis:

H0 : ηUS = ηEA .

It turns out that the T-statistic reaches T=7.25. In other words, our
indicators and tests suggest that the difference in systemic spillover
risk between the US and the euro area is statistically significant, way
beyond the 1% confidence level.
One explanation could be that in a much more integrated banking

system, such as the one of the United States, area-wide systemic risk
is higher, as banking business is much more interconnected. We exam-
ine this hypothesis by also estimating the multivariate contagion risk
for individual European countries. If the explanation above was true,
then overall systemic spillover risk should not be lower within France,
Germany or Italy than it is in the US.28 The bottom part of table 5
shows that this is actually the case. Overall domestic spillover risk in
France and Germany is about the same as in the US; in Italy it is even
larger than in the US (see also figure 1 in sub-section 8.1). Our cross-
sectional test cannot reject parameter equality between France and the
US or between Germany and the US, but it rejects it between Italy
and the US (as Italy is even more risky). In other words, the lower
overall spillover risk in Europe is explained by the quite weak extreme
cross-border linkages.
Having said all this, we need to note that there is some structural

instability in the extreme dependence of bank stock returns on both
sides of the Atlantic. As we will discuss in depth in section 8 below,
the risk of spillovers has quite generally increased in the course of our
sample period. We will, however, also show that all our conclusions
here are robust to taking structural instability into account. The only
caveat we have to keep in mind is that the probabilities in table 3
represent averages across the whole sample period, so that they tend
to overestimate the risk of spillovers at the start of the sample and
underestimate it towards the end of the sample.
Looking ahead, the analysis in the present section suggests that − as

the European banking system integrates further over time − it could
become more similar to the US system in terms of contagion risk. In
other words, the ongoing and gradual integration process should be

28We thank Christian Upper for suggesting this exercise to us.
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accompanied by appropriate changes in macroprudential surveillance
and supervisory structures.

7. Aggregate banking system risk

Next we turn to the analysis based on our measure of extreme sys-
tematic risk. We are interested in assessing to which extent individual
banks and banking systems are vulnerable to an aggregate shock, as
captured by an extreme downturn of the market risk factor or an ex-
treme upturn of high-yield bond spreads. Across this section we assume
stability of estimated tail-βs over time. The same caveat applies as in
the previous section, as structural breaks of extreme systematic bank-
ing system risk are only considered in section 8.
The results are summarized in tables 6 and 7 for the euro area and

the US, respectively, and for all measures of aggregate risk listed in
sub-section 5.2. The different stock indices capture market risk, as in
traditional asset pricing theory. The high-yield bond spread is also
“tested” as a measure of aggregate risk. For example, Gertler and
Lown (1999) have shown that it can be a good predictor of the business
cycle, at least in the US, and fluctuations in economic activity are the
most important determinant of banks’ asset quality. Some might also
regard high-yield spreads as a particularly suitable indicator for crisis
situations.
[Insert table 6 about here]
The upper part of the tables report tail-βs for individual banks. To

take an example, the value 12.1 in the row “IRBAN” and column “stock
index” of table 6 means that a very large downturn in the general euro
area stock index is usually associated with a 12% probability that Allied
Irish Banks, a top Irish bank, faces an extreme stock price decline.
The value 30.2 in row “BNPPAR” and column “stock index” suggests
that the same probability for the largest French bank is substantially
higher. Going more systematically up and down the columns as well
as right and left in the rows, one can see (i) that tail-βs can be quite
different across banks, both in Europe and in the US, and (ii) that the
relative sizes of tail-βs seem to be quite similar for different measures
of aggregate risk. For example, a number of banks from some more
peripheral and smaller euro area countries or smaller banks from large
euro area countries can have quite low tail-βs. One interpretation of
this result is that the more local business of the latter banks exposes
them less to aggregate euro area risk. Similar cases can be found for
the US in table 7. For example, some players focussing on regional
or local retail business, such as e.g. a savings&loans association like
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Washington Mutual, have relatively low tail-βs (in this specific case 3%
for the US stock index as aggregate risk factor). In contrast, large and
geographically broad banks − such as Deutsche Bank, BNP Paribas,
Citigroup or JP Morgan Chase − exhibit larger tail-βs, as they are
much more diversified.
[Insert table 7 about here]
The bottom of tables 6 and 7 report the means and standard devia-

tions of tail-βs across the 25 banks for each continent. Overall, tail-βs
in Europe and in the US are of similar order of magnitude, although
the US βs tend to be slightly less variable (except for yield spreads).
We can use a cross-sectional T-test to compare aggregate banking risk
across the Atlantic. Table 8 shows the average extreme dependence
parameters η derived from the individual η parameters governing the
tail-βs of the 25 banks on each continent. It also shows the T-values
for a test with the following null hypothesis:

H0 : ηUS = ηEA .

The equality of extreme dependence between stock returns and the
market risk factor in Europe and the United States cannot be rejected.
[Insert table 8 about here]
When turning to extreme systematic risk associated with high-yield

bond spreads (see the right-hand side of tables 6 and 7), the results are
somewhat different. Most importantly, tail-βs for spreads are extremely
small. Extreme positive levels of spreads on average do not seem to be
associated with a high likelihood of banking problems. Quite the con-
trary, the probabilities are almost zero. This also confirms the simple
correlation analysis reported in sub-section 5.2 and appendix D.
Accordingly, the tail dependence parameters η for spreads in table

8 are much smaller than the ones for stock indices. And note that the
mean dependence parameters for yield spreads are all estimated to be
quite close to the level associated with asymptotic independence for
this two-dimensional measure, ηindep = 1/N = 0.5. Then it does not
come as a surprise that the T-tests show that − as for the market risk
factor − the level of extreme aggregate risk in the US and in the euro
area is statistically indistinguishable.
We conclude from this that high-yield bond spreads are not very in-

formative about extreme aggregate banking system risk on both sides of
the Atlantic. This finding could mean, for example, that credit spreads
are a less good predictor of business cycle fluctuations − in particular
of severe ones − than previously thought. It could also mean that the
banks in our sample hold only a very limited amount of loans from
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borrowers that are rated below investment grade. Still, future research
could address whether they have at least some incremental explanatory
value for banking problems when other variables are controlled for as
well.

8. Has systemic risk increased?

A crucial issue for macroprudential surveillance and supervisory poli-
cies is whether banking system risks change over time. In particular, it
would be important to know whether they may have increased lately.
Therefore, we apply in the present section our multivariate application
of the structural stability test by Quintos, Fan and Phillips (2001; see
sub-section 4.2) to the estimators of multivariate spillovers and system-
atic risk (sub-sections 8.1 and 8.2, respectively).

8.1. Time variation of bank contagion risk. We apply the recur-
sive structural stability test described in equations (4.1), (4.2) and (4.4)
to the extreme tail dependence parameters η that govern the spillover
probabilities reported in table 3. The null hypothesis of constancy of η
for the cases in the table is given by (4.3). The test results are reported
in table 9, with the different cases structured in the same way as in
tables 3 and 4.
[Insert table 9 about here]
Each entry first shows the endogenously estimated break point, if

any, and then the value of the test statistic in parentheses. It turns
out that the forward version of the recursive test discovers a significant
upward break in spillover risk in almost every case, be it a domestic
linkage or a cross-border linkage. For spillovers conditioned on German,
Italian and Spanish banks almost all increases in risk occur some time
during the year 1997. If crashes of French banks are the conditioning
events, breaks tend to occur somewhat later, most often around the
year 2000. While there have been economic events in the vicinity of
the break point times found by the test that could have contributed
to increases in spillover risks (e.g. the Asian financial crisis or the
end of the technology boom), we would not pay too much attention to
the exact dates. The reason is that further evidence presented below
suggests that changes in risk exhibit a fairly gradual patterns, so that
just singling out the most important break point could be misleading.
[Insert table 10 about here]
These results suggest that there was also an increase in system-wide

spillover risks. We examine this question in table 10. We first calculate
the 25-dimensional (N=25) tail dependence parameter values that span
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the whole US block bηUS and the whole euro area block bηEA (as in sub-
section 6.2, table 5) and test for structural change. The same we do
for Germany (N=6), France (N=4) and Italy (N=4), separately. The
null is again like in (4.3). The table shows on the left-hand side break
points and test statistics for the full sample; in the middle of table 10
estimated sub-sample values for the different ηs are reported. Finally,
the right-hand side of the table also displays the results of two further
structural stability tests, limited to the second half of the sample after
the first endogenous break. The first test is another Quintos et al.
endogenous stability test, and the second an exogenous stability test
(TEMU), in which the break point is chosen to be 1 January 1999, the
start of Economic and Monetary Union in Europe.
The tests indicate a significant upward break in euro area systemic

risk around mid 1996 (test value 4.9) and in US systemic risk at the
end of 1995 (test value 18.5). These breaks are both slightly earlier
than the lower-dimensional ones in table 9.29 bηUS increases from 0.20
to 0.41 and bηEA from 0.13 to 0.20. Gropp and Vesala (2004) also find
an increase in bank spillover risk in Europe, using a different method-
ology, but they impose the break point at the time of the introduction
of the euro. For France, Germany and Italy, our test also indicates
strong domestic upward breaks, but in addition France and Germany
experience a (weaker) downward break (as indicated by the backward
version of the test). In sum, we detect a significant increase of mul-
tivariate spillover risk both in the euro area and in the US banking
system. Both systems seem to be more vulnerable to contagion risk
today than they have been in the early 1990s, the US even more so
than the euro area.
The increase of spillover risk found for the US is consistent with

the findings of de Nicolo and Kwast (2002), who detect an upward
trend of regular correlations between US large and complex banking
organizations (LCBOs) during the period 1988 to 1999 and interpret it
as a sign of increasing systemic risk.30 The authors estimate that part
of the increase is likely to be related to consolidation among LCBOs.
The timing of structural change in de Nicolo and Kwast’s paper is
not exactly the same as in ours but quite similar, as they find most
correlation changes during 1996 and perhaps 1997. Mistrulli (2005)

29Quintos et al. (2001) report critical values in the table of their appendix A (p.
662), which are reproduced in the notes to our tables 9 and 10.
One explanation for the earlier increase in fully systemic risk could be that the

(many) cases not covered in table 9 have earlier breaks than the ones shown.
30Within the group of about 22 LCBOs, however, most of the increase in corre-

lations is concentrated among the less complex banks.
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argues that some increase in domestic contagion risk in the Italian
banking sector has been caused by new interbank lending structures
that emerged from consolidation. And the risk seems to pick up around
1997, similar to our break points. Hence, banking consolidation may
be one important explanation for a higher contagion risk within the
countries dicussed. It is, however, a less likely explanation for the
increase in η for the euro area banking system as a whole. The reason
is that cross-border bank mergers are still relatively rare in Europe
(see, e.g., Hartmann et al., 2003, figure 10).
In order to get a better view of the evolution of multivariate con-

tagion risk over time, we plot in figure 1 the recursive estimates of
η for the euro area, the US, France, Germany and Italy. In addition
to unfiltered results (solid lines), we also display results for GARCH-
filtered return data (dotted lines). For the reasons given in appendix E,
however, we mainly focus on the unfiltered results. Comparing the two
upper panels of the figure, we can see the smaller and gradual character
of the increase in spillover risk in the euro area. Notice the consistency
of this evolution with a slowly advancing integration process. Multi-
variate risk in the US starts at a higher level and begins to rise later
but at a much faster pace. The lower panels of the figure confirm the
results discussed in sub-section 6.2, in so far as general spillover risk
within France, Germany and Italy is higher than in the euro area as a
whole and, on average, of a similar order of magnitude as within the
United States. (The results are qualitatively the same for filtered data,
although the strength of changes is sometimes muted.31) All these
findings are consistent with the hypothesis advanced in section 6 that
banks are more exposed to each other within a country than across
borders. So far, this even remains true in the euro area, which shares
a common currency and a common interbank market.
[Insert figure 1 about here]
Figure 2 shows then the recursive statistics of the cross-sectional tests

comparing US multivariate spillover risk with euro area, French, Ger-
man and Italian spillover risk. We would like to learn from this whether
the similarities and differences in multivariate risk across those banking
systems established in section 6 generally hold across our sample pe-
riod. Each panel exhibits the difference in η between the first country
(always the US) and the second area or country. The straight dashed
lines describe two standard deviation confidence intervals. So, when
a solid curve moves out of a confidence interval, then the test rejects

31A similar phenomenon for general stock market data has already been observed
by Poon et al. (2004).
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the equality of multivariate tail dependence parameters between the
two countries. If a curve is above the confidence interval, then the
first country is more susceptible to contagion. In the opposite case,
the second country is the more risky one. We can immediately confirm
from the upper left-hand chart in figure 2 that the US is more risky
than the euro area, except for the very start of the sample. The lower
right-hand chart illustrates that Italy is more risky than the US.
[Insert figure 2 about here]
Finally, we turn to the results of the two structural stability tests

for the second half of the sample on the right of table 10. Interestingly
enough, the endogenous test (backward version) finds a second break
point for the euro area in January 1999 reducing η (test value 3.2 com-
pared to a critical value of 2.6 for a significant change at the 1% level).
In other words, it indicates that multivariate contagion risk decreased
in parallel with the introduction of the euro. As we are concerned about
the validity of the asymptotic properties of the Quintos et al. test when
it is applied in a sequential way, we also conduct an exogenous stability
test for which we impose 1 January 1999 as the break point. This test
exploits the asymptotic normality of the tail dependence parameter, as
in the case of cross-sectional differences discussed earlier. It confirms
that there is some decline in ηEA at the time of the euro changeover,
but this decline is not statistically significant (test value 1.4 compared
to a critical value of 1.9 for a significant change at the 5% level).
While it is often assumed that the introduction of the euro with a

common money market should have led to an increase in contagion risk
in the euro area, our results do not provide any evidence of that actually
happening. On the contrary, if anything there was a slight decrease
of multivariate extreme dependence between all euro area banks. One
explanation for such a development would be as follows. Whereas the
introduction of a single currency with a common (and fully integrated)
money market could increase the interbank linkages between banks
across borders, and thereby the risk of contagion, on the other hand
the much larger and more liquid money market as well as the wider
access to different contingent claims under a single currency could also
increase the money market’s resilience against shocks and improve risk
sharing. If the latter effects dominate the former, then the banking
system could well become less prone to extreme spillovers.
As for the three larger euro area countries, Germany experiences a

similar reduction in risk as the area as a whole. But in this case the
reduction is also statistically significant for the exogenous break test, at
least at the 10% level. France and Italy also have some further breaks.
While statistically significant, they do not happen in the vicinity of the
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euro changeover. The United States banking system faces a further
increase in multivariate spillover risk at the end of 1997.
We close this sub-section with a word of caution. While the evidence

supporting increases in multivariate extreme dependencies among banks
in both the euro area and the United States seems statistically rela-
tively strong, we should not forget that our sample period extends
“only” over 12 years. This means, first, that we cover only a small
number of economic cycles.32 Since there was a relatively long up-
turn during the 1990s, there may be a risk that this had an impact
on extreme bank stock return dependence. More generally, similar to
correlation extreme dependence can oscillate over time. Obviously, we
cannot know whether there was already a period of higher extreme
linkages between banks before our sample starts or whether the high
linkages observed towards the end of our sample will come down again
in the future.

8.2. Time variation of aggregate banking system risk. Now we
apply the structural stability test to extreme systematic risk in banking
systems. More precisely, we study whether the bivariate extreme de-
pendence parameters η that enter our estimates of tail-βs have changed
between 1992 and 2004. Table 11 reports the results for each euro area
bank in our sample and table 12 for each US bank. Each table shows for
the respective banks the estimated break points, if any, with test values
in parentheses. Tests are performed for all aggregate risk measures on
which we condition the tail-βs.
[Insert table 11 about here]
The general result is that extreme systematic risk has increased over

time. In other words, both the euro area and the US banking system
seem to be more exposed to aggregate shocks today than they were
in the early 1990s. We further illustrate this at the system-wide level
in figure 3, which gives us a better insight into the time evolution of
extreme systematic risk. The lines in the two panels refer to averages
of ηs across the 25 euro area and 25 US banks, respectively. We choose
the general local stock indices as aggregate risk factors, but the picture
is unchanged for other stock indices. Similar to figure 1 above for inter-
bank spillover risk, the η-values entering the figure are calculated recur-
sively. One can see that the increase in aggregate banking system risk

32Following the NBER and CEPR business cycle dating programs, we
cover at most two full cycles; see http://www.nber.org/cycles.html and
http://www.cepr.org/data/Dating/.
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is also economically significant, both in the euro area and in the US.33

While results corrected for time-varying volatility (GARCH-filtered re-
turns) are somewhat more muted, qualitatively they are unchanged.
Moreover, the similarity of extreme aggregate banking system risk in
the euro area and the US established in section 7 seems to be valid for
the entire sample period.
[Insert figure 3 about here]
Table 11 locates the timing of most European break points for the

stock indices around 1997 and for some cases in 1996. In the US they
happen somewhat earlier, with many breaks in 1996 (table 12). For
Europe the timing is roughly in line with, but not identical to inter-
bank spillover risks (see the previous sub-section), for the US the tail-β
breaks happen somewhat later than the contagion breaks. Similar to
the spillover risks discussed earlier, the time evolution visible in figure
3, however, suggests that not too much importance should be given to
the exact break dates.
We do not report the pre- and post-break tail-β and η values in

the tables in order to save space and since figure 3 provided already a
good general impression.34 We just mention that economically relevant
changes apply also to some of the most important players, such as
the largest US banks (Citigroup and JP Morgan Chase). The βs of
important clearing banks, such as Bank of New York, State Street or
Northern Trust, changed as well, sometimes by even more than the
former. The main US clearers have also some of the statistically most
significant breaks (table 12). Similarly significant changes can also be
observed for the euro area.
[Insert table 12 about here]
Both in Europe and in the US there are also breaks in tail-βs for yield

spreads. They happen, however, with surprising regularity in 2000, the
time of the burst of the technology bubble. In any case, given the very
low extreme systematic risk associated with yield spreads, not too much
importance should be given to this result. Finally, the same words of
caution about business cycles and time-varying co-movements should
be kept in mind as for the previous sub-section.

33Notice that these results are different from the ones by de Nicolo and Kwast
(2002) using standard market model βs among US LCBOs. They do not identify
any increase of the impact of the general market index on LCBO stock returns
between 1992 and 1999. They only observe an increase of the impact of a special
sectoral LCBO index in late 1992/early 1993, conditional on the general market
index.
34They are available from the authors on request.
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9. Conclusions

In this paper we made a new attempt to assess banking system risk,
by applying recent multivariate extreme-value estimators and tests to
excess returns of the major banks in the euro area and the United
States. We distinguish two types of measures, one capturing extreme
spillovers among banks (“contagion risk”) and another capturing the
exposure of banks to extreme systematic shocks (which we denote as
tail-β). We compare the importance of those forms of systemic risk
across countries and over time.
Our results suggest that bank spillover risk in the euro area seems

to be significantly lower than in the US. As domestic linkages in the
euro area are comparable to extreme linkages among US banks, this
finding seems to be related to weak cross-border linkages in Europe. For
example, the largest banks of some smaller countries at the periphery
of the area seem to be more protected from cross-border contagion risk
than some of the major European banks originating from some central
European countries. Extreme systematic risk for banks seems to be
roughly comparable across the Atlantic. In contrast to stock indices,
high-yield bond spreads in general do not seem to be very informative
about aggregate banking risks. Structural stability tests for both our
banking system risk indicators suggest a general increase in systemic
risk taking place over the second half of the 1990s, both in Europe
and the US. We do not find, however, that the introduction of the
euro had any adverse effect on cross-border banking risks, quite the
contrary. Overall, the increase of risk in the euro area as a whole seems
to have happened extremely gradually, as one would expect from the
slow integration of traditional banking business. For the US it may be
noteworthy that some of the strongest increases in extreme systematic
risk seem to be concentrated among the largest players and the main
clearing banks.
Our results provide some interesting perspectives on the ongoing de-

bate on financial stability policies in Europe. For example, the bench-
mark of the US seems to indicate that cross-border risks may further
increase in the future, as banking business becomes better integrated.
At the same time, it should be recognized that the direction of this
process is not unique to Europe. And in addition, our twelve-year
sample period includes one long economic cycle that may have over-
emphasized commonality in banking risks. Keeping these caveats in
mind, the results in this paper underline the importance of macropru-
dential surveillance that takes a cross-border perspective, in particular
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in Europe. They also encourage further thinking about the best insti-
tutional structures for supervision in a European banking system that
slowly overcomes the barriers imposed by national and economic bor-
ders. While important steps have already been taken in this regard,
if one thinks for example of the newly established Lamfalussy Com-
mittees in banking, it is nevertheless important to prepare for a future
that may be different from the status quo.
–––––––––
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Table 1. Historical minima, tail indexes and quantile
estimates for excess stock returns of euro area banks

Bank |Extreme negative returns| in % bα ¯̄̄ bQ(p)¯̄̄ in %
X1,n (date) X2,n (date) X3,n (date) p = 0.05% p = 0.02%

DEUTSCHE 12.4 (09/11/01) 12.0 (03/09/00) 10.1 (09/19/01) 3.3 13.8 18.2
HYPO 17.3 (10/23/02) 14.3 (09/30/02) 11.5 (09/11/01) 3.1 17.9 24.0
DRESDNER 11.1 (10/28/97) 9.9 (07/22/02) 9.7 (03/09/00) 3.2 16.1 21.5
COMMERZ 13.3 (09/11/01) 13.1 (09/20/01) 13.1 (10/23/02) 2.9 15.9 21.9
BGBERLIN 37.9 (08/30/01) 27.0 (09/10/01) 17.1 (01/17/94) 2.4 23.4 34.2
DEPFA 16.5 (11/29/00) 10.4 (10/08/98) 10.3 (07/23/02) 3.2 13.4 17.6
BNPPAR 12.5 (09/30/98) 11.2 (09/30/02) 11.0 (10/04/02) 3.0 15.4 20.8
CA 19.6 (11/19/01) 12.4 (07/12/01) 10.5 (09/12/02) 2.4 13.3 19.4
SGENERAL 12.5 (09/10/98) 11.6 (09/30/02) 10.4 (07/19/02) 2.7 17.1 23.6
NATEXIS 13.6 (10/08/97) 10.8 (09/25/96) 10.6 (03/25/94) 3.6 9.6 12.3
INTESA 12.7 (11/07/94) 12.2 (09/20/01) 11.6 (10/28/97) 3.9 13.7 17.4
UNICREDIT 10.9 (07/20/92) 10.3 (09/10/98) 9.9 (10/21/92) 3.6 12.9 16.7
PAOLO 9.9 (12/04/00) 9.7 (09/10/98) 9.5 (09/20/01) 3.5 13.3 17.3
CAPITA 18.2 (03/07/00) 12.0 (10/01/98) 11.5 (06/20/94) 3.3 16.7 24.6
SANTANDER 15.9 (10/01/98) 12.8 (01/13/99) 11.4 (07/30/02) 3.0 15.8 21.4
BILBAO 14.5 (01/13/99) 11.8 (09/10/98) 10.7 (09/24/92) 2.6 17.4 24.8
BANESP 84.8 (02/02/94) 18.9 (11/27/02) 15.5 (08/28/98) 2.2 20.1 30.6
ING 16.1 (10/15/01) 14.0 (10/02/98) 13.9 (09/11/01) 2.4 23.4 34.4
ABNAMRO 12.6 (09/14/01) 11.9 (09/11/01) 11.3 (09/30/02) 2.5 19.6 28.3
FORTIS 11.0 (08/01/02) 10.6 (09/30/02) 10.6 (09/11/01) 3.1 14.6 19.7
ALMANIJ 8.7 (11/26/99) 8.0 (04/30/92) 6.2 (08/01/02) 3.8 9.7 12.4
ALPHA 9.4 (04/27/98) 9.4 (09/09/93) 9.1 (01/13/99) 3.1 14.4 19.3
BCP 17.1 (10/23/02) 9.9 (02/25/03) 9.1 (04/16/99) 2.5 13.8 19.8
SAMPO 20.7 (08/17/92) 18.3 (12/21/92) 15.6 (08/26/92) 2.6 23.8 33.7
IRBAN 18.2 (02/06/02) 10.3 (10/08/98) 10.1 (10/28/97) 2.9 12.7 17.4
BANK INDEX 6.9 (09/11/01) 6.7 (10/01/98) 6.3 (09/10/98) 2.5 11.2 16.1
STOCK INDEX 6.3 (09/11/01) 5.3 (10/28/97) 5.0 (09/14/01) 3.2 7.7 10.2
YIELD SPREAD 16.6 (10/02/01) 16.5 (10/03/01) 16.3 (10/01/01) 9.1 22.3 24.7

Note: Returns and quantiles are reported in absolute values and therefore positive. X1,n,X2,n

and X3,n are the three smallest daily excess returns in the sample for each bank or each index.
The last line describes the largest values (maxima) for high-yield bond spreads. Dates in
parentheses are denoted XX/YY/ZZ, where XX=month, YY=day and ZZ=year. bα is the
tail index, estimated with the method by Hill (1975). bQ(p) is the estimated quantile (crisis
level) for each bank, as implied by the estimated tail index and the assumed percentile (crisis
probability). The quantiles are calculated for two percentiles p that correspond to an in-sample
quantile (p = 0.05%) and an out-of-sample quantile (p = 0.02%). Data are from 2 April 1992
to 27 February 2004. The source of raw data is Datastream.
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Table 2. Historical minima, tail indexes and quantile
estimates for excess stock returns of US banks

Bank |Extreme negative returns| in % bα ¯̄̄ bQ(p)¯̄̄ in %
X1,n (date) X2,n (date) X3,n (date) p = 0.05% p = 0.02%

CITIG 17.1 (07/23/02) 11.7 (07/22/02) 11.5 (10/27/97) 3.3 13.7 18.0
JP MORGAN 20.0 (07/23/02) 10.8 (09/03/98) 10.1 (09/13/00) 3.7 12.9 16.6
BAMERICA 11.6 (10/14/98) 10.7 (10/27/03) 9.1 (06/16/00) 3.6 12.0 15.5
WACHOVIA 9.2 (11/14/00) 9.1 (05/25/99) 9.0 (01/27/99) 3.5 10.9 14.1
FARGO 9.2 (06/16/00) 7.5 (06/08/98) 7.3 (04/14/00) 3.7 9.6 12.3
BONE 25.8 (08/25/99) 11.4 (11/10/99) 9.5 (10/27/97) 3.0 13.5 18.4
WASHING 11.7 (10/17/01) 10.3 (09/04/98) 9.3 (12/09/03) 3.5 12.7 16.5
FLEET 11.2 (07/16/02) 10.2 (02/21/95) 8.0 (07/23/02) 3.7 11.7 15.0
BNYORK 16.9 (12/18/02) 13.9 (07/16/01) 11.1 (10/03/02) 3.4 12.6 16.5
SSTREET 19.7 (04/14/93) 12.1 (03/21/03) 11.9 (10/12/00) 3.0 14.8 20.0
NTRUST 10.6 (10/03/02) 9.1 (04/14/00) 8.5 (05/25/00) 3.5 11.8 15.4
MELLON 13.0 (10/27/97) 10.6 (01/22/03) 9.8 (03/08/96) 3.3 12.7 16.7
BCORP 17.4 (10/05/01) 15.9 (06/30/92) 10.7 (10/04/00) 2.9 14.4 19.8
CITYCO 9.5 (04/14/00) 8.2 (10/27/97) 7.7 (02/04/00) 3.1 11.3 15.2
PNC 16.1 (07/18/02) 10.3 (10/17/02) 9.8 (01/29/02) 3.4 10.9 14.3
KEYCO 8.9 (08/31/98) 8.3 (03/07/00) 8.2 (06/30/00) 3.4 11.4 14.9
SOTRUST 10.6 (04/26/93) 10.3 (01/03/00) 9.7 (03/17/00) 3.1 12.0 16.2
COMERICA 22.7 (10/02/02) 9.1 (04/17/01) 9.1 (04/14/00) 3.4 10.7 14.0
UNIONBANK 36.4 (06/16/00) 15.5 (03/17/00) 10.9 (12/15/00) 3.0 15.1 20.6
AMSOUTH 20.9 (09/22/00) 15.0 (06/01/99) 6.9 (01/10/00) 3.5 9.4 12.2
HUNTING 18.3 (09/29/00) 10.4 (01/18/01) 10.0 (08/31/98) 3.1 13.2 17.8
BBT 8.2 (01/21/03) 7.2 (06/15/00) 7.0 (04/14/00) 3.4 10.1 13.2
53BANCO 8.5 (11/15/02) 7.3 (01/14/99) 7.0 (04/14/00) 3.8 9.6 12.3
SUTRUST 10.2 (07/20/98) 9.5 (04/14/00) 8.9 (06/16/00) 3.2 10.6 14.2
REGIONS 11.2 (12/15/03) 9.1 (08/31/98) 8.5 (06/15/00) 3.5 10.2 13.2
BANK INDEX 7.0 (04/14/00) 6.8 (07/23/02) 6.7 (10/27/97) 3.4 9.1 12.0
STOCK INDEX 7.0 (08/31/98) 6.8 (04/14/00) 6.8 (10/27/97) 3.7 6.3 8.0
YIELD SPREAD 10.8 (10/10/02) 10.7 (10/09/02) 10.7 (10/11/02) 15.8 12.1 12.9

Note: Returns and quantiles are reported in absolute values and therefore positive. X1,n,X2,n

and X3,n are the three smallest daily excess returns in the sample for each bank or each index.
The last line describes the largest values (maxima) for high-yield bond spreads. Dates in
parentheses are denoted XX/YY/ZZ, where XX=month, YY=day and ZZ=year. bα is the
tail index, estimated with the method by Hill (1975). bQ(p) is the estimated quantile (crisis
level) for each bank, as implied by the estimated tail index and the assumed percentile (crisis
probability). The quantiles are calculated for two percentiles p that correspond to an in-sample
quantile (p = 0.05%) and an out-of-sample quantile (p = 0.02%). Data are from 2 April 1992
to 27 February 2004. The source of raw data is Datastream.
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Table 3. Domestic versus cross-border extreme spillover
risk among euro area banks: Estimations

Largest bank P1 P2 P3 P4 P5
Conditioning banks: German

Germany 22.4 65.1 74.3 72.7 55.4
Netherlands 26.5 54.1 70.1 43.0 34.2
France 8.2 25.2 35.8 31.0 16.2
Spain 11.2 17.4 24.2 44.1 40.3
Italy 7.5 13.6 12.9 7.5 10.8
Belgium 16.1 44.2 42.6 28.5 9.2
Ireland 4.0 5.5 5.4 24.7 16.5
Portugal 7.7 13.6 21.7 25.1 18.0
Finland 0.9 1.7 2.3 4.0 4.5
Greece 0.9 1.4 1.3 1.3 2.1

Conditioning banks: French
France 2.9 35.9 76.6
Germany 3.1 23.9 69.5
Netherlands 8.2 48.7 71.8
Italy 1.5 7.5 13.1
Spain 3.3 27.4 70.1
Belgium 6.7 38.0 56.3
Ireland 1.0 1.8 6.9
Portugal 2.5 6.5 26.5
Finland 0.0 0.2 0.7
Greece 0.2 0.3 0.6

Conditioning banks: Italian
Italy 9.6 16.4 16.6
Germany 5.1 12.4 18.8
Netherlands 7.2 16.1 18.0
Spain 4.6 11.7 14.6
France 5.2 7.3 8.6
Belgium 4.7 12.0 11.4
Ireland 1.6 2.6 5.1
Portugal 1.8 2.5 3.3
Finland 1.9 3.2 2.5
Greece 0.8 0.8 0.7

Conditioning banks: Spanish
Spain 45.4 31.6
Germany 22.4 13.9
Netherlands 26.5 15.6
France 25.8 21.6
Italy 8.3 9.0
Belgium 13.7 5.6
Ireland 4.1 3.3
Portugal 6.2 6.5
Finland 1.1 1.4
Greece 1.7 1.1

Note: The table reports estimated extreme spillover probabilities between banks, as defined in (2.1). Each
column Pj shows the spillover probabilities for the largest bank of the country mentioned on the left-hand
side conditional on a set of banks j from either the same country or other countries. The number of
conditioning banks varies from 1 to 5 for Germany (top panel), 1 to 3 for France (upper middle panel), 1 to
3 for Italy (lower middle panel) and 1 to 2 for Spain (bottom panel). For example, the P2 column contains
probabilities for a stock market crash of the largest bank in each country, conditional on crashes of the 2nd
and 3rd largest bank in Germany, France, Italy or Spain. All probabilities are estimated with the extension
of the approach by Ledford and Tawn (1996) described in section 3 and reported in %. Univariate crash
probabilities (crisis levels) are set to p = 0.05%.
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Table 4. Domestic versus cross-border extreme spillover
risk among euro area banks: Tests

Largest bank T1 T2 T3 T4 T5
Conditioning banks: German

Netherlands -1.01 0.00 -0.50 0.66 0.59
France 1.61 1.58 1.20 0.83 1.52
Spain 0.98 **2.51 **2.19 0.50 0.21
Italy 1.56 ***2.58 ***3.10 ***2.59 *1.91
Belgium 0.12 0.26 0.83 0.98 *1.86
Ireland **2.08 **-2.15 ***3.78 1.36 1.51
Portugal 1.28 **2.49 *1.90 0.91 1.17
Finland ***3.93 ***4.82 ***4.32 ***3.09 ***2.62
Greece ***3.61 ***4.47 ***4.44 ***3.28 ***2.66

Conditioning banks: French
Germany -0.31 0.86 -0.39
Netherlands **-2.50 -1.11 -0.75
Spain -0.24 0.48 0.08
Italy 1.03 ***2.75 *1.92
Belgium *-1.85 -0.51 0.37
Ireland 1.32 ***3.20 ***2.58
Portugal 0.11 **2.36 1.04
Finland ***3.56 ***3.96 ***3.93
Greece **2.56 ***3.73 ***3.65

Conditioning banks: Italian
Germany 1.11 0.42 -0.09
Netherlands 0.41 -0.17 -0.56
Spain 1.33 0.45 -0.01
France 0.96 1.27 -0.09
Belgium 1.01 0.31 -0.36
Ireland **2.50 **2.52 1.46
Portugal ***2.70 **2.57 **2.07
Finland **2.33 **2.10 **2.16
Greece ***3.90 ***3.59 ***3.34

Conditioning banks: Spanish
Germany 1.41 1.04
Netherlands 0.89 1.00
France 0.68 0.31
Italy ***2.83 1.51
Belgium *1.83 *1.91
Ireland ***4.21 ***3.00
Portugal ***3.47 **2.05
Finland ***5.40 ***3.92
Greece ***4.58 ***3.39

Note: The table reports the statistics for the cross sectional test (4.5). Within each panel the degree
of extreme domestic spillover risk is compared with the degree of extreme cross-border spillover risk for a
given fixed number of conditioning banks. So, each T-statistic describes whether the differences between
domestic and cross-border values of η that entered the estimations in table 3 are statistically significant. For
example, in the top panel the test statistic in the row "Netherlands" and the column T1 indicates whether
the difference between the η for the spillover probability between ABN AMRO and HypoVereinsbank and
the η between Deutsche Bank and HypoVereinsbank is statistically signifcant. The null hypothesis is that
the respective two ηs are equal. Insignificant T-statistics imply that the domestic and cross-border spillover
risks are indistinguishable. A significant rejection with positive sign implies that cross-border spillover risk
is statistically smaller than its domestic counterpart; and a rejection with negative sign implies that cross-
border risk is larger than domestic risk. The critical values of the test are 1.65, 1.96 and 2.58 for the 10%,
5% and 1% levels, respectively. Asterisks *, ** and *** indicate rejections of the null hypothesis at 10%,
5% and 1% significance.
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Table 5. Multivariate extreme spillover risk among
euro area and US banks

Country/Area Estimations Cross-sectionalbη bP test T
United States (N=25) 0.39 2.8E-4 H0 : ηUS = ηEA
Euro area (N=25) 0.17 6.7E-15 T = 7.25
Germany (N=6) 0.42 1.5E-3
France (N=4) 0.48 1.4E-2
Italy (N=4) 0.62 0.6

Note: The table reports in the column bη the coefficient that governs the multivariate extreme
tail dependence for all the banks of the countries/areas detailed on the left-hand side. In the
column bP it shows the probabililty that all banks of a specific country/area crash given that
one of them crashes. Both statistics are estimates of system-wide extreme spillover risks.
Univariate crash probabilities (crisis levels) are set to p = 0.05%. The right-hand column
describes the cross-sectional test (4.5) for the whole US and euro area banking systems. A
positive (negative) test statistic indicates that the US (euro area) η is larger than the euro
area (US) η. The critical values of the test are 1.65, 1.96 and 2.58 for the 10%, 5% and 1%
levels, respectively. Note that η values for countries/areas with different numbers of banks
may not be comparable.
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Table 6. Extreme systematic risk (tail-βs) of euro area
banks

Bank Aggregate risk factor
Bank index Stock index Global bank Global stock Yield spread

DEUTSCHE 51.1 35.0 25.6 13.0 3.8E-5
HYPO 22.3 20.8 9.3 5.5 0.1
DRESDNER 37.9 27.7 19.1 11.6 0.3
COMMERZ 39.5 30.8 15.2 13.9 0.2
BGBERLIN 2.8 1.6 0.8 0.7 0.8
DEPFA 6.2 7.3 3.0 2.9 3.4E-2
BNPPAR 42.1 30.2 23.2 13.2 2.7E-2
CA 9.2 6.7 1.6 2.0 0.4
SGENERAL 45.8 30.0 22.7 16.0 6.9E-2
NATEXIS 1.8 1.9 2.2 1.7 9.1E-3
INTESA 19.1 11.2 7.2 5.9 0.4
UNICREDIT 14.5 9.5 10.5 5.0 0.3
PAOLO 36.7 28.5 15.2 10.2 0.3
CAPITA 16.5 9.3 9.4 6.4 0.3
SANTANDER 36.4 33.4 17.4 14.5 0.6
BILBAO 41.6 31.1 20.4 13.4 0.6
BANESP 2.6 1.2 1.4 0.6 2.7E-3
ING 61.7 46.0 23.1 14.1 0.5
ABNAMRO 50.3 46.3 23.7 13.9 0.2
FORTIS 48.5 36.3 11.8 10.9 0.1
ALMANIJ 11.9 11.1 7.4 4.5 0.2
ALPHA 3.7 4.1 1.5 1.2 8.0E-3
BCP 17.0 11.9 9.3 7.5 0.3
SAMPO 2.7 2.2 3.4 1.4 2.1E-2
IRBAN 13.9 12.1 6.9 4.6 0.1

average 25.4 19.4 11.6 7.8 0.2
st. dev. 18.8 14.5 8.3 5.3 0.2

Note: The table exhibits the estimates of extreme systematic risk (2.2) (tail-βs) for indi-
vidual euro area banks and for the euro area banking system as a whole. The entries show
the probability that a given bank crashes given that a market indicator of aggregate risk
crashes (or in the case of the yield spread booms). Results are reported for five different
aggregate risk factors: The euro area banking sector sub-index, the euro area stock index,
the world banking sector sub-index, the world stock index and the euro area high-yield
bond spread. Data for the euro area yield spread are only available from 1998 to 2004. All
probabilities are estimated with the extension of the approach by Ledford and Tawn (1996)
described in section 3 and reported in %. Univariate crash probabilities (crisis levels) are
set to p = 0.05%. The average and the standard deviation at the bottom of the table are
calculated over the 25 individual tail-βs in the upper rows, respectively.
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Table 7. Extreme systematic risk (tail-βs) of US banks

Bank Aggregate risk factor
Bank index Stock index Global bank Global stock Yield spread

CITIG 41.1 26.5 16.5 17.4 0.3
JPMORGAN 39.4 18.0 15.2 16.4 1.3
BOA 37.7 12.4 6.4 7.1 0.2
WACHO 27.2 9.6 8.6 9.3 0.5
FARGO 17.1 7.1 4.5 3.8 2.4E-2
BONEC 31.0 14.0 9.7 10.0 0.4
WASHMU 9.5 2.8 4.7 1.8 0.1
FLEET 38.8 13.1 10.6 10.1 0.6
BNYORK 25.2 12.9 10.9 11.3 1.0
STATEST 26.8 19.0 10.9 18.3 1.0
NOTRUST 26.7 17.4 12.0 10.0 0.9
MELLON 29.4 16.4 10.6 10.4 0.8
USBANC 19.6 6.6 7.8 4.8 0.3
CITYCO 32.3 8.9 7.4 6.7 0.2
PNC 25.8 12.7 10.2 8.9 0.3
KEYCO 24.9 8.4 6.1 6.1 0.2
SUNTRUST 32.0 11.7 8.9 7.8 0.3
COMERICA 24.0 13.5 7.1 7.1 0.5
UNIONBAN 11.2 3.9 5.9 3.8 0.1
AMSOUTH 15.1 7.5 8.7 6.4 0.3
HUNTING 17.5 7.0 8.3 6.0 0.1
BBT 19.9 6.6 5.3 5.4 0.2
53BANCO 21.7 8.6 4.9 3.6 0.2
SOTRUST 33.3 7.3 6.8 4.4 0.3
RFCORP 26.5 11.6 8.4 7.8 0.2
average 26.2 11.3 8.6 8.2 0.4
st. dev. 8.5 4.4 3.0 4.2 0.3

Note: The table exhibits the estimates of extreme systematic risk (2.2) (tail-βs) for individ-
ual US banks and for the US banking system as a whole. The entries show the probability
that a given bank crashes given that a market indicator of aggregate risk crashes (or in
the case of the yield spread booms). Results are reported for five different aggregate risk
factors: The US banking sector sub-index, the US stock index, the world banking sector
sub-index, the world stock index and the US high-yield bond spread. All probabilities are
estimated with the extension of the approach by Ledford and Tawn (1996) described in sec-
tion 3 and reported in %. Univariate crash probabilities (crisis levels) are set to p = 0.05%.
The average and the standard deviation at the bottom of the table are calculated over the
25 individual tail-βs in the upper rows, respectively.
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Table 8. Comparisons of extreme systematic risk across
different banking systems

Aggregate risk factor
Banking system Bank index Stock index Global bank Global stock Yield spread

ηUS 0.87 0.79 0.78 0.77 0.55
ηEA 0.86 0.83 0.80 0.76 0.53
ηFR 0.85 0.82 0.79 0.76 0.50
ηGE 0.86 0.84 0.80 0.76 0.53
ηIT 0.88 0.83 0.82 0.78 0.57

Null hypothesis
ηUS = ηEA 0.19 -0.94 -0.44 0.21 0.30
ηUS = ηFR 0.34 -0.59 -0.32 0.14 1.18
ηUS = ηGE 0.20 -1.05 -0.47 0.30 0.48
ηUS = ηIT -0.08 -0.63 -0.81 -0.16 -0.48

Note: the table exhibits the average tail dependence parameters η that govern the tail-β
estimates reported in tables 6 and 7 for the US, euro area, French, German and Italian
banking system (upper panel) and the statistics of tests examining differences in extreme
systematic risk between the US and euro area banking systems (lower panel). Each η is
calculated as the mean of tail-β dependence parameters across all the banks in our sample
for the respective country/area. The tests are applications of the cross-sectional test (4.5).
The null hypothesis is that extreme systematic risk in the US banking system is the same
as in the other banking systems. A positive (negative) test statistic indicates that extreme
systematic risk in the US banking system (in the respective euro area banking system) is
larger than in the respective euro area (US) banking system. The critical values of the test
are 1.65, 1.96 and 2.58 for the 10%, 5% and 1% levels, respectively. All results are reported
for the five different aggregate risk factors: The euro area/US banking sector sub-index, the
euro area/US stock index, the world banking sector sub-index, the world stock index and
the euro area/US high-yield bond spread. Univariate crash probabilities (crisis levels) are
set to p = 0.05%.
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Table 9. Domestic and cross-border extreme spillover
risk among euro area banks: Time variation

Largest bank η1 η2 η3 η4 η5
Conditioning banks: German

Germany 3/31/97 (43.5) 8/1/97 (62.0) 4/2/97 (38.4) 8/15/97 (7.2) 7/23/97 (17.3)
Netherlands 3/31/97 (81.1) 4/2/97 (77.9) 4/2/97 (66.2) 8/21/97 (16.9) 4/2/97 (7.3)
France 7/23/97 (25.6) 8/1/97 (37.5) 9/9/97 (41.2) 7/23/97 (19.3) 8/15/97 (8.4)
Spain 7/21/97 (68.8) 5/27/97 (39.7) 5/29/97 (55.9) 7/23/97 (18.9) 8/14/97 (5.5)
Italy 7/21/97 (49.2) 9/9/97 (46.2) 9/9/97 (41.4) 8/21/97 (20.2) 8/21/97 (9.3)
Belgium 8/21/97 (62.2) 4/2/97 (50.1) 3/27/97 (56.7) 7/23/97 (25.9) 6/12/98 (6.9)
Ireland 8/20/97 (43.0) 10/16/97 (24.3) 8/15/97 (21.9) 8/14/97 (11.3) 8/15/97 (4.7)
Portugal 9/9/97 (27.5) 1/14/94 (37.1) 1/25/94 (50.1) 7/23/97 (23.2) 7/23/97 (7.5)
Finland 10/16/97 (30.5) 10/16/97 (26.3) 5/23/94 (37.2) 8/22/97 (23.6) 7/23/97 (9.6)
Greece 3/27/97 (64.0) 3/27/97 (58.8) 4/2/97 (47.8) 3/27/97 (18.8) 8/15/97 (7.4)

Conditioning banks: French
France 2/15/02 (25.3) 9/19/00 (32.8) 6/17/94 (22.5)
Germany 10/9/00 (52.6) 11/21/00 (36.3) 5/21/96 (4.4)
Netherlands 10/10/00 (54.4) 9/20/00 (44.9) 10/22/97 (39.0)
Italy 1/11/02 (20.1) 1/31/01 (37.8) 10/22/97 (32.5)
Spain 10/10/00 (34.3) 9/19/00 (40.6) 10/13/97 (32.1)
Belgium 9/1/00 (47.7) 11/27/01 (52.4) 6/9/98 (40.8)
Ireland 9/20/00 (13.8) 11/21/00 (19.4) 12/7/01 (12.2)
Portugal 1/25/02 (24.8) 1/29/02 (30.4) 10/22/97 (20.4)
Finland 4/14/00 (6.1) 5/31/94 (26.0) 11/4/96 (27.5)
Greece 6/11/98 (15.5) 2/28/97 (32.5) 2/28/97 (19.2)

Conditioning banks: Italian
Italy 9/30/97 (5.4) 9/25/ 97 (9.0) 9/30/97 (3.6)
Germany 7/25/97 (23.9) 7/25/97 (31.7) 10/8/97 (18.8)
Netherlands 10/7/97 (16.6) 8/1/97 (27.7) 8/7/97 (18.7)
Spain 6/27/97 (7.6) 7/14/97 (19.9) 9/9/97 (12.1)
France 10/8/97 (9.9) 10/22/97 (8.3) 9/9/97 (7.9)
Belgium 7/31/97 (25.8) 8/1/97 (44.8) 10/8/97 (30.2)
Ireland 8/22/97 (4.9) 10/8/97 (7.0) 8/7/97 (6.7)
Portugal 8/1/97 (9.1) 8/1/97 (18.2) 8/7/97 (13.6)
Finland - 7/25/97 (8.5) 10/24/97 (5.9)
Greece 9/9/97 (15.3) 10/17/97 (19.2) 8/15/97 (13.4)

Conditioning banks: Spanish
Spain 7/16/97 (33.1) 7/16/97 (4.0)
Germany 3/17/97 (88.0) 5/21/97 (9.0)
Netherlands 7/21/97 (39.0) 7/3/97 (7.3)
France 10/22/97 (34.6) 5/27/97 (5.4)
Italy 7/28/97 (33.2) 6/18/97 (3.8)
Belgium 7/17/97 (47.7) 2/25/97 (12.4)
Ireland 7/16/97 (22.7) -
Portugal 6/16/97 (42.7) 3/31/97 (12.8)
Finland 10/24/97 (21.3) 7/23/97 (3.9)
Greece 6/2/97 (37.9) 3/27/97 (12.4)

Note: The table reports the results of tests examining the structural stability of the extreme spillover
risks documented in table 3. This is done by testing for the constancy of the η tail dependence
parameters (null hypothesis) that govern the spillover probabilities in table 3. Applying the recursive
test (4.1) through (4.4) by Quintos et al. (2001), each cell shows the endogenously found break date
and the test value in parentheses. Dates are denoted XX/YY/ZZ, where XX=month, YY=day and
ZZ=year. The critical values of the test are 1.46, 1.78 and 2.54 for the 10%, 5% and 1% levels,
respectively. A test value exceeding these numbers implies an increase in extreme dependence over
time. The absence of a break over the sample period is marked with a dash.
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Table 10. Multivariate extreme spillover risk among
euro area and US banks: Time variation

Country/Area Full sample Sub-sample estimates Second sub-sample break tests
break test bη1 bη2 Endogenous Exogenous

United States (N=25) 11/22/95 (18.5) 0.20 0.41 3/11/97 (2.2) n.a.
Euro area (N=25) 12/5/96 (4.9) 0.13 0.20 (B) 1/18/99 (3.2) (1.4)
Germany (N=6) 7/23/97 (17.6) 0.24 0.52 - (1.9)

(B) 4/2/97 (2.1) (B) 1/22/99 (3.9)
France (N=4) 6/17/94 (21.9) 0.19 0.52 12/7/01 (12.8) (-3.0)

(B) 5/21/96 (4.3) (B) 2/24/97 (3.0)
Italy (N=4) 09/30/97 (3.4) 0.45 0.72 (B) 4/11/03 (2.2) (2.1)

Note: The table reports tests and estimations assessing time variation in the multivariate spillover
probabilities of table 5. The column on the left displays estimated break dates and values from the
recursive Quintos et al. (2001) test (4.1) through (4.4) applied to the η parameter governing the
extreme tail dependence of the banks located in the countries/areas displayed on the extreme left.
Dates are denoted XX/YY/ZZ, where XX=month, YY=day and ZZ=year. The forward recursive
version of the test is used, unless marked otherwise. (B) marks the backward recursive version of
the test. The critical values of the test are 1.46, 1.78 and 2.54 for the 10%, 5% and 1% levels,
respectively. The middle columns show pre- and post-break estimates for η. The columns on the
right display two tests that assess the occurrence of further breaks in the second half of the sample.
The first one is the same as the one on the left-hand side. The second one is a simple differences-
in-means test based on (4.5). The exogenous break point is chosen to be 1/1/99, the time of the
introduction of the euro. Critical values for this test are 1.65, 1.96 and 2.58 for the 10%, 5% and
1% significance levels. Note that η values for countries/areas with different numbers of banks may
not be comparable.
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Figure 1. Evolution of multivariate extreme spillover
risk among euro area and US banks
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Figure 2. Comparisons of the evolution of extreme
bank spillover risk across countries
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Table 11. Extreme systematic risk (tail-βs) of euro area
banks: Time variation

Bank Aggregate risk factor
Bank index Stock index Global bank Global stock Yield spread

DEUTSCHE 3/12/97 (45.3) 3/12/97 (57.7) 8/15/97 (53.3) 12/5/96 (86.1) 9/14/00 (153.4)
HYPO 7/21/97 (40.1) 10/22/97 (60.0) 9/9/97 (62.8) 10/22/97 (60.5) 10/4/00 (124.1)
DRESDNER 8/1/97 (69.1) 12/5/96 (53.1) 12/5/96 (48.5) 12/5/96 (59.5) 8/22/00 (44.1)
COMMERZ 7/21/97 (22.8) 3/19/97 (34.8) 8/1/97 (30.4) 8/21/97 (70.4) 10/3/00 (142.7)
BGBERLIN 12/3/96 (7.9) 12/3/96 (10.9) 12/5/96 (11.8) 7/3/97 (19.2) 1/4/01 (496.6)
DEPFA 7/5/96 (33.7) 7/15/96 (37.6) 8/21/97 (19.4) 8/12/97 (33.6) 9/13/00 (97.5)
BNPPAR 8/15/97 (34.7) 7/17/97 (41.1) 10/22/97 (27.5) 8/27/97 (34.0) 9/15/00 (77.3)
CA 10/5/00 (50.4) 9/19/00 (52.7) 10/9/00 (26.6) 9/19/00 (31.7) 7/21/00 (127.3)
SGENER 10/22/97 (40.9) 10/22/97 (35.4) 10/22/97 (37.4) 10/22/97 (42.6) 9/21/00 (114.5)
NATEXIS 12/5/96 (6.0) 12/3/96 (8.5) 8/28/97 (11.0) 8/28/97 (21.1) 9/15/00 (155.1)
INTESA 7/31/97 (25.6) 7/28/97 (39.7) 9/9/97 (14.5) 7/31/97 (24.4) 7/24/00 (183.9)
UNICRED 10/8/97 (23.8) 9/25/97 (14.2) 10/8/97 (18.7) 9/9/97 (18.0) 9/11/00 (123.4)
PAOLO 7/28/97 (52.6) 9/25/97 (51.4) 10/24/97 (43.8) 10/8/97 (58.7) 8/17/00 (218.4)
CAPITA 8/12/97 (17.0) 9/10/97 (15.7) 9/9/97 (13.1) 9/9/97 (16.0) 9/15/00 (170.6)
SANTANDER 7/23/97 (60.3) 5/27/97 (64.0) 8/21/97 (28.3) 10/8/97 (51.5) 9/15/00 (207.3)
BILBAO 10/8/97 (54.0) 10/16/97 (58.7) 10/7/97 (36.2) 10/22/97 (68.7) 9/11/00 (209.3)
BANESP 5/16/97 (6.3) 10/16/97 (5.3) 10/22/97 (2.5) 10/22/97 (2.3) 7/21/00 (29.3)
ING 11/26/96 (43.7) 10/22/96 (36.4) 8/21/97 (57.2) 7/5/96 (51.7) 9/20/00 (186.5)
ABNAMRO 11/26/96 (48.1) 12/5/96 (56.3) 7/4/96 (73.9) 7/4/96 (61.6) 9/15/00 (132.5)
FORTIS 3/17/97 (65.4) 12/10/96 (41.1) 12/10/96 (33.0) 7/17/97 (36.7) 9/15/00 (161.2)
ALMANIJ 3/14/97 (59.4) 1/23/97 (56.7) 1/23/97 (54.5) 8/7/97 (77.1) 9/14/00 (238.2)
ALPHA 2/24/97 (52.7) 2/27/97 (64.5) 1/8/97 (36.6) 2/6/97 (66.1) 9/29/00 (80.7)
BCP 6/16/97 (37.8) 7/3/97 (42.2) 8/26/97 (28.7) 7/17/97 (57.6) 9/15/00 (129.0)
SAMPO 10/16/97 (15.2) 10/24/97 (15.6) 10/24/97 (6.0) 10/16/97 (11.5) 8/16/00 (151.6)
IRBAN 8/12/97 (22.4) 3/12/97 (25.2) 8/21/97 (16.5) 8/20/97 (25.3) 9/29/00 (164.7)

Note: The table reports the results of tests examining the structural stability of the extreme sys-
tematic risks of euro area banks documented in table 6. This is done by testing for the constancy of
the η tail dependence parameters (null hypothesis) that govern the tail-βs in table 6. Applying the
recursive test (4.1) through (4.4) by Quintos et al. (2001), each cell shows the endogenously found
break date and the test value in parentheses. Dates are denoted XX/YY/ZZ, where XX=month,
YY=day and ZZ=year. The critical values of the test are 1.46, 1.78 and 2.54 for the 10%, 5%
and 1% levels, respectively. A test value exceeding these numbers implies an increase in extreme
dependence over time. The absence of a break over the sample period is marked with a dash.
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Figure 3. Evolution of extreme systematic risk in the
euro area and the US banking systems
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Table 12. Extreme systematic risk (tail-βs) of US
banks: Time variation

Bank Aggregate risk factor
Bank index Stock index Global bank Global stock Yield spread

CITIG 12/20/96 (28.0) 12/15/95 (17.8) 10/22/97 (34.0) 10/23/97 (30.8) 10/20/00 (93.5)
JPMORGAN 2/25/97 (34.1) 3/11/97 (28.3) 10/13/97 (33.1) 10/16/97 (40.0) 10/17/00 (87.4)
BOA 12/2/96 (27.4) 12/10/96 (27.9) 11/29/96 (33.1) 12/2/96 (38.6) 9/25/00 (64.7)
WACHO 3/10/97 (14.9) 12/10/96 (22.0) 2/26/97 (66.4) 2/26/97 (41.3) 10/10/00 (64.5)
FARGO 1/3/96 (14.4) 12/15/95 (14.7) 2/27/97 (23.4) 2/26/97 (15.6) 10/5/00 (35.4)
BONEC 12/6/95 (23.7) 12/13/95 (32.3) 11/29/96 (47.6) 2/19/96 (40.3) 10/5/00 (98.8)
WASHMU 2/27/97 (8.1) 2/23/96 (10.6) 10/16/97 (20.2) 2/24/97 (9.9) 11/21/00 (33.6)
FLEET 4/22/98 (33.8) 12/10/96 (25.5) 4/17/98 (39.2) 12/10/96 (36.2) 11/30/00 (52.6)
BNYORK 2/19/96 (20.2) 1/8/96 (17.7) 12/11/96 (41.3) 2/6/97 (47.0) 9/19/00 (77.8)
STATEST 3/11/97 (35.8) 12/2/96 (49.4) 12/2/96 (41.7) 10/16/97 (58.2) 10/5/00 (158.3)
NOTRUST 11/29/96 (33.8) 12/2/96 (51.7) 10/22/97 (35.3) 12/5/96 (52.8) 9/29/00 (107.8)
MELLON 12/4/95 (13.4) 12/13/95 (25.4) 10/24/97 (38.3) 10/24/97 (26.0) 10/11/00 (108.6)
USBANC 2/25/97 (40.1) 1/23/97 (48.3) 9/25/97 (57.9) 9/25/97 (39.5) 11/10/00 (37.0)
CITYCO 11/29/96 (26.7) 12/2/96 (28.8) 11/29/96 (45.9) 12/2/96 (44.7) 10/10/00 (38.9)
PNC 12/10/96 (24.3) 12/13/95 (26.3) 12/10/96 (34.6) 3/7/96 (34.5) 11/30/00 (51.6)
KEYCO 12/2/96 (12.1) 12/6/95 (18.1) 12/5/96 (19.5) 12/2/96 (27.3) 9/28/00 (56.7)
SUNTRUST 12/2/96 (29.0) 12/13/95 (38.7) 12/5/96 (31.8) 12/5/96 (31.6) 10/20/00 (40.8)
COMERICA 1/3/96 (11.3) 12/13/95 (17.9) 2/25/97 (27.8) 1/8/96 (23.4) 10/11/00 (64.2)
UNIONBAN 7/21/97 (29.6) 10/24/97 (44.6) 6/26/97 (6.4) 10/23/97 (17.2) 9/26/00 (19.6)
AMSOUTH 12/19/95 (18.4) 1/8/96 (24.9) 12/10/96 (23.8) 1/1/97 (17.5) 9/19/00 (45.4)
HUNTING 2/6/97 (34.2) 1/22/97 (67.3) 10/13/97 (29.9) 10/16/97 (40.9) 10/5/00 (30.3)
BBT 3/28/97 (22.3) 3/28/97 (24.7) 10/22/97 (16.7) 10/29/97 (19.4) 9/19/00 (24.6)
53BANCO 12/2/96 (31.6) 12/2/96 (26.2) 12/5/96 (59.2) 4/9/97 (34.3) 10/16/00 (42.0)
SOTRUST 2/26/97 (47.4) 2/24/97 (36.6) 10/13/97 (35.6) 10/8/97 (44.2) 12/1/00 (41.5)
RFCORP 3/7/96 (36.4) 2/23/96 (40.7) 12/10/96 (23.3) 12/10/96 (33.9) 10/10/00 (24.0)

Note: The table reports the results of tests examining the structural stability of the extreme system-
atic risks of US banks documented in table 7. This is done by testing for the constancy of the η tail
dependence parameters (null hypothesis) that govern the tail-βs in table 7. Applying the recursive
test (4.1) through (4.4) by Quintos et al. (2001), each cell shows the endogenously found break date
and the test value in parentheses. Dates are denoted XX/YY/ZZ, where XX=month, YY=day and
ZZ=year. The critical values of the test are 1.46, 1.78 and 2.54 for the 10%, 5% and 1% levels,
respectively. A test value exceeding these numbers implies an increase in extreme dependence over
time. The absence of a break over the sample period is marked with a dash.
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Appendix A. Small sample properties of estimators and
tests

A.1. Small sample properties of the bivariate estimator. In this
section we investigate the small sample properties of our estimators.
We limit our attention to the bivariate version, which could either be a
spillover probability between two banks or a tail-β, and the respective
dependence parameter. Without loss of generality, we will always refer
to tail-β below. Three different data generating processes are inves-
tigated: The bivariate Pareto distribution, the bivariate Morgenstern
distribution (1956) with Pareto marginals and the bivariate standard
normal distribution. The first two distributions both have Pareto mar-
ginals, but only the first distribution exhibits asymptotic dependence
(in which case η = 1). The bivariate normal is also asymptotically
independent (as long as |ρ| 6= 1). The normal distribution has a depen-
dence parameter η that varies with the correlation coefficient, and we
investigate different configurations. The precise specifications of the
distributions are as follows:
1/ Bivariate Pareto

F (x, y) = 1− x−α − y−α + (x+ y − 1)−α ,
ρ = 1/α for α > 2,

η = 1.

2/ Bivariate Morgenstern distribution with Pareto marginals

F (x, y) =
¡
1− x−α

¢ ¡
1− y−α

¢ ¡
1 + δx−αy−α

¢
, − 1 ≤ δ ≤ 1,

ρ = δα(α− 2)(2α− 1)−2 for α > 2,

η = 1/2.

3/ Bivariate normal with correlation coefficient ρ and dependence
parameter

η =
1 + ρ

2
.

The three specific distributions have the advantage that they allow
us to calculate the true value of η and the tail-β (τβ). Thus, the
estimation bias and asymptotic mean-squared error can be calculated
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explicitly. The true “benchmark” values of the tail-βs are:

τβ =
¡
2− p1/α

¢−α
(bivariate Pareto),

τβ = (1 + δ) p− 2δp2 + δp3 (bivariate Morgenstern),

τβ =
Φ (−x,−x, ρ)

p
, (bivariate standard normal),

where p = P {X > x}. In the tables below we evaluate the tail-βs and
dependence parameters at p = 0.05% which is one of the marginal sig-
nificance levels we also use in the empirical applications. Two different
sample sizes are considered, a truly small sample of 500 observations
and a larger sample of 3,106, corresponding to the actual sample size
in the empirical application to bank stocks.
The following three tables report true values of τβ as well as estimates

of the average, bias and standard deviation of η and τβ for 5,000 Monte
Carlo replications. Notice that biases are reported in absolute and not
in percentage terms. Back-of-the-envelope calculations of the relative
(percentage) biases may nevertheless be handy for sake of comparing
the bias across different parametrizations but were omitted for sake
of space considerations.35 Averages, biases and standard deviations
are multiplied with 100 for sake of convenience. The estimates are
conditioned on cutoff points m∗ that minimize the Asymptotic Mean
Squared error (AMSE). The AMSE is calculated for 5,000 Monte Carlo
replications.36

We start with an evaluation for the Morgenstern distribution with
Pareto marginals (see table A.1).
[Insert table A.1 about here]
Analytic tail-β values are small which makes this model the least

realistic as a benchmark for comparison with the tail-βs we found in
practice. We let both the tail index α and the parameter δ vary. The
table shows that the Morgenstern bias in η and τβ does depend on δ but
not on α. This is not surprising given that α does not enter the analytic
expression of the Morgenstern tail-β,i.e., the tail-β is independent from

35Relative or percentage measures of the bias can be calculated as
100× (E (bη)− η) /η and 100× (E(bτβ)− τβ) /τβ for the tail dependence parameter
and the tail-β, respectively.
36If two (unit Pareto) random variables are independent, we previously noted

that P {X > q, Y > q} = p2 with p = P {X > q} = P {Y > q} . This exact Pareto
tail allows the use of all extreme observations in estimation because of the unbi-
asedness of the Hill statistic under the Pareto law, i.e., m∗ = n− 1.
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marginal properties in this case.37 Biases are small for small δ but
become substantial in both absolute and relative terms when δ is large.
Also, the estimation accuracy - as reflected by the standard errors s.e.
- is found to be higher for small values of δ.
Next we turn to the results for the Pareto distribution. The results

are in table A.2.
[Insert table A.2 about here]

In contrast to table A.1, there now appears a considerable downward
bias in absolute terms for both η and τβ. However, the relative (per-
centage) biases can be shown to be smaller than in the Morgenstern
case. Recall that the true value of η is equal to the boundary of 1 in
this case, so that in any empirical exercise one expects at least some
downward bias. Moreover, (absolute and relative) biases and standard
errors decreases with a decrease in correlation (an increase in α).
Lastly, we consider the small sample performance for the bivariate

normal distribution (see table A.3).
[Insert table A.3 about here]

For the normal distribution the estimators appear to behave quite rea-
sonably. Absolute and relative biases are found to be smaller than in
the Pareto case. Moreover, it may be difficult to distinguish the normal
distribution from the Pareto distribution just on the basis of, say, the
dependence parameter estimate. To this end it would be helpful to
investigate the tail properties of the marginals as well.

A.2. Small sample properties of the endogenous break test. In
this part of the appendix we investigate the small sample properties
of the recursive test for a single endogenous break in η. This is done
through a simulation study in which we use the bivariate normal as the
data-generating process (see table A.4).
[Insert table A.4 about here]
Recall that in this case η = (1 + ρ) /2. By changing the correlation

coefficient, we can easily change the dependence parameter η.
The breaks are engineered at five different points in the sample (see

r-columns in the table). Three different combinations of pre and post-
break ηs are considered (see rows of the table). The sample size is
3,000. The table shows that the test has more difficulty in accurately
locating the break if it is close to the start or the end of the sample.
The reason is that in these cases one has fewer observations available
for one of the two sub-samples. When the change in the dependence

37It can be easily shown that the analytic expressions for Morgenstern bias and
AMSE do not depend on the marginal distributional properties like scale and tail
indices.
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parameter is small, then the standard errors tend to be more sizable.
For example, the standard errors in the first and third scenario are
about twice as large as in the second scenario. In sum, the cases in
which we have to be more cautious in interpreting the test results are
when the changes in η are small and when they occur close to the
boundaries of the sample.

Table A.1. Small sample behavior of tail betas for bi-
variate Morgenstern distribution

bη bτβ (×100) τβ (×100)
p = 0.05%

(α; δ) m∗ aver. bias s.e. aver. bias s.e.
panel A: n=500

(2; 0) 499 0.499 -0.001 0.013 0.052 0.002 0.021 0.05
(3; 0) 499 0.499 -0.001 0.013 0.052 0.002 0.021 0.05
(4; 0) 499 0.499 -0.001 0.013 0.052 0.002 0.021 0.05
(2; 0.5) 150 0.546 0.046 0.034 0.231 0.156 0.190 0.075
(3; 0.5) 150 0.545 0.045 0.034 0.226 0.151 0.189 0.075
(4; 0.5) 150 0.546 0.046 0.034 0.232 0.157 0.198 0.075
(2; 0.9) 134 0.570 0.070 0.036 0.424 0.329 0.338 0.095
(3; 0.9) 134 0.570 0.070 0.037 0.427 0.332 0.349 0.095
(4; 0.9) 134 0.570 0.070 0.037 0.419 0.324 0.327 0.095

Panel B: n=3,106
(2; 0) 3,105 0.500 0 0.005 0.050 0 0.008 0.05
(3; 0) 3,105 0.500 0 0.005 0.050 0 0.008 0.05
(4; 0) 3,105 0.500 0 0.005 0.050 0 0.008 0.05
(2; 0.5) 376 0.532 0.032 0.023 0.152 0.077 0.083 0.075
(3; 0.5) 376 0.532 0.032 0.023 0.151 0.076 0.083 0.075
(4; 0.5) 376 0.532 0.032 0.023 0.148 0.073 0.080 0.075
(2; 0.9) 335 0.543 0.043 0.025 0.225 0.130 0.121 0.095
(3; 0.9) 335 0.543 0.043 0.025 0.224 0.129 0.120 0.095
(4; 0.9) 335 0.543 0.043 0.025 0.225 0.130 0.120 0.095

Note: The table reports estimated values and true (analytic) values of the
tail dependence parameter η and the tail-β (τβ) for different sample sizes
and different parameter configurations (α, δ) . Tail-βs and corresponding
biases, accuracy are expressed in percentage terms (%). Moreover, the
linkage estimates are conditioned on the cutoff pointm∗ that minimizes the
Asymptotic Mean Squared Error of bη. The conditioning quantiles for the
tail-β are chosen such that the corresponding marginal excess probabilities
are equal to 0.05%.
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Table A.2. Small sample behavior of tail betas for bi-
variate Pareto distribution

α m∗ bη bτβ (p) (×100) τβ (p) (×100) η
p = 0.05%

aver. bias s.e. aver. bias s.e.
Panel A: n=500

2 31 0.831 -0.169 0.113 15.44 -10.12 13.15 25.57 1
3 26 0.763 -0.237 0.126 8.33 -5.79 9.49 14.11 1
4 22 0.719 -0.280 0.134 5.49 -3.04 7.40 8.53 1

indep. 499 0.498 0 0.013 0.05 0 0.02 0.05 1/2
Panel B: n=3,106

2 89 0.889 -0.111 0.073 19.19 -6.38 8.73 25.57 1
3 45 0.832 -0.168 0.106 10.61 -3.50 7.51 14.11 1
4 42 0.777 -0.222 0.110 6.28 -2.25 5.37 8.53 1

indep. 3,105 0.500 0 0.005 0.05 0 0 0.05 1/2

Note: The table reports estimated values and true (analytic) values of the tail
dependence parameter η and the tail-β (τβ) for different sample sizes and different
values of α. Tail-βs and corresponding biases, accuracy are expressed in percentage
terms (%). Moreover, the linkage estimates are conditioned on the cutoff point
m∗ that minimizes the Asymptotic Mean Squared Error of bη. The conditioning
quantiles for the tail-β are chosen such that the corresponding marginal excess
probabilities are equal to 0.05%.

Table A.3. Small sample behavior of tail betas for bi-
variate normal distribution

ρ m∗ bη bτβ (×100) τβ (×100) η = 1+ρ
2

p = 0.05%
aver. bias s.e. aver. bias s.e.

panel A: n=500
3/4 138 0.795 -0.080 0.038 13.55 -4.59 5.11 18.14 0.875
1/2 154 0.684 -0.065 0.038 3.09 -1.12 1.69 4.21 0.75
1/4 233 0.583 -0.042 0.026 0.47 -0.19 0.27 0.67 0.625
0 499 0.499 -0.001 0.013 0.05 0 0.02 0.05 0.5

Panel B: n=3,106
3/4 299 0.815 -0.060 0.031 15.74 -2.40 4.10 18.14 0.875
1/2 403 0.699 -0.051 0.027 3.47 -0.74 1.20 4.21 0.75
1/4 574 0.594 -0.031 0.020 0.54 -0.12 0.20 0.67 0.625
0 3105 0.500 0 0.005 0.05 0 0 0.05 0.5

Note: The table reports estimated values and true (analytic) values of the tail
dependence parameter η and the tail-β (τβ) for different sample sizes and different
correlations ρ. Tail-βs and corresponding biases, accuracy are expressed in per-
centage terms (%). Moreover, the linkage estimates are conditioned on the cutoff
point m∗ that minimizes the Asymptotic Mean Squared Error of bη. The condition-
ing quantiles for the tail-β are chosen such that the corresponding marginal excess
probabilities are equal to 0.05%.
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Table A.4. Simulated breakpoints

Estimated breakpoints
(standard error)

(η1; η2) r=1/3 r=1/2 r=2/3
(0.5; 0.7) 0.364 0.514 0.617

(0.190) (0.166) (0.117)
(0.5; 0.9) 0.264 0.485 0.636

(0.095) (0.078) (0.092)
(0.7; 0.9) 0.394 0.508 0.587

(0.209) (0.172) (0.194)

Note: Estimated breakpoints are reported for the tail dependence parameter of
the bivariate normal df. The break estimates are reported for varying locations of
the true breakpoints (r=1/3,1/2,2/3). The number of Monte Carlo replications is
set to 1,000. The accompanying sampling errors are reported between brackets.
Q-tests are calculated starting with a minimum sample size of 500. For sake of
convenience, we set the number of upper order extremes used in estimating the tail
index equal to 2n2/3
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Appendix B List of banks in the sample
Table B.1: List of banks in the sample
Euro area United States
Bank name Abbreviation Bank name Abbreviation
Germany Citigroup CITIG 

Deutsche Bank DEUTSCHE JP Morgan Chase JP MORGAN

Bayerische Hypo- und Vereinsbank HYPO Bank of America BOA BAMERICA

Dresdner Bank DRESDNER Wachovia Corporation WACHOVIA

Commerzbank COMMERZ Wells Fargo and Company FARGO 

Bankgesellschaft Berlin BGBERLIN Bank One Corporation BONE

DePfa Group DEPFA Washington Mutual Inc WASHING

France Fleet Boston Financial Corporation FLEET 

BNP Paribas BNPPAR Bank of New York BNYORK 

Crédit Agricole CA State Street SSTREET

Societe Generale SGENER Northern Trust NTRUST 

Natexis Banques Populaires NATEXIS Mellon MELLON 

Italy US Bancorp BCORP 

Banca Intesa INTESA National City Corporation CITYCO

UniCredito Italiano UNICREDIT PNC Financial Services Group PNC 

Sanpaolo IMI  PAOLO Keycorp KEYCO

Capitalia CAPITA Sun Trust SUTRUST

Spain Comerica Incorporated COMERICA 

Banco Santander Central Hispano SANTANDER Unionbancal Corporation UNIONBANK

Banco Bilbao Vizcaya Argentaria BILBAO AmSouth Bancorp AMSOUTH 

Banco Espagnol de Credito BANESP Huntington Bancshares Inc HUNTING 

Netherlands BBT Corporation BBT 

ABN AMRO ABNAMRO Fifth Third Bancorp 53BANCO

ING Bank ING Southtrust SOTRUST 

Belgium Regions Financial Corporation REGIONS

Fortis FORTIS 

Almanij ALMANIJ 

Finland
Sampo Leonia SAMPO

Greece
Alpha Bank ALPHA

Ireland
Allied Irish Banks IRBAN

Portugal
Banco Commercial Portugues BCP
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Appendix C: Balance sheet data 
Table C.1: Total assets of euro area banks (million US$)

Bank Name 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992  Average
Average 

1998-2003
Average 

1992-1997

DEUTSCHE 934,434 730,301 641,826 647,186 569,127 555,446 419,892 386,645 461,180 352,740 308,790 297,200 525,397 679,720 371,075

BNPPAR 988,881 744,867 727,318 644,886 700,675 378,990 339,817 355,299 325,880 271,640 250,440 275,310 500,334 697,603 303,064

CA 1,105,378 609,055 496,421 498,433 441,524 455,781 419,971 477,591 387,130 328,130 282,870 292,090 482,864 601,099 364,630

ABNAMRO 707,801 583,073 526,450 505,419 460,000 504,122 414,655 343,699 340,640 290,800 252,990 246,980 431,386 547,811 314,961

HYPO 597,584 552,068 631,216 646,016 485,099 521,336 453,909 n.a. 203,960 173,600 151,150 134,300 413,658 572,220 223,384

SGENER 681,216 525,789 451,660 424,198 437,558 447,486 410,655 339,586 326,670 277,550 259,790 251,320 402,790 494,651 310,929

DRESDNER 602,461 433,489 446,238 449,036 397,944 424,620 372,779 n.a. 330,340 252,180 215,190 199,820 374,918 458,965 274,062

COMMERZ 481,653 442,333 441,510 422,867 371,134 374,896 294,671 n.a. 275,700 217,640 162,120 142,130 329,696 422,399 218,452

ING 684,004 500,326 390,725 378,149 351,234 326,813 190,269 179,933 154,050 125,330 105,880 109,540 291,354 438,542 144,167

INTESA 327,353 290,917 275,967 308,334 309,719 330,138 158,597 163,712 n.a. n.a. n.a. n.a. 270,592 307,071 161,154

FORTIS 536,857 396,107 327,451 309,011 330,835 333,608 n.a. n.a. 19,650 16,690 14,220 14,520 229,895 372,312 16,270

BILBAO 356,921 288,311 269,208 272,225 236,802 235,799 214,978 213,680 115,820 98,820 81,420 87,640 205,969 276,544 135,393

UNICREDIT 300,652 226,638 188,380 188,565 169,705 175,346 161,206 n.a. n.a. n.a. n.a. n.a. 201,499 208,214 161,206

BGBERLIN 191,936 182,046 165,227 189,389 192,212 217,785 195,372 206,377 34,060 20,650 n.a. n.a. 159,505 189,766 114,115

SANTANDER 250,904 188,024 159,505 160,325 n.a. n.a. n.a. n.a. 135,060 113,920 73,120 61,310 142,771 189,689 95,853

CAPITA 159,915 146,148 115,815 123,504 134,397 142,745 114,969 140,831 n.a. n.a. n.a. n.a. 134,790 137,087 127,900

ALMANIJ 327,898 265,080 228,521 202,453 187,390 198,213 187,745 740 3,300 2,810 2,370 1,310 133,986 234,926 33,046

DEPFA 219,708 152,944 159,425 n.a. n.a. n.a. n.a. n.a. 103,580 76,800 62,850 56,150 118,779 177,359 74,845

NATEXIS 171,646 139,891 97,254 105,268 94,861 49,558 49,972 110,159 n.a. n.a. n.a. n.a. 102,326 109,746 80,066

IRBAN 98,699 87,717 76,551 72,516 65,548 61,439 52,815 43,105 37,810 32,200 29,430 29,940 57,314 77,078 37,550

BANESP 72,923 51,919 39,384 41,296 39,958 42,800 36,606 42,715 41,760 43,120 53,210 61,750 47,287 48,047 46,527

BCP 85,483 64,861 55,479 57,552 35,211 33,955 29,662 n.a. 36,170 13,960 10,900 10,370 39,418 55,423 20,212

SAMPO 21,454 18,255 15,126 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18,278 18,278 n.a.

ALPHA 38,902 30,123 26,052 28,420 25,445 16,372 12,409 11,680 9,250 7,130 5,610 5,020 18,034 27,552 8,517

PAOLO 8,807 7,073 5,586 6,133 5,375 6,056 5,163 4,791 4,643 4,100 3,729 4,608 5,505 6,505 4,506

Sum 9,953,470 7,657,353 6,958,293 6,681,182 6,041,753 5,833,304 4,536,112 3,020,543 3,346,653 2,719,810 2,326,079 2,281,308 5,638,347 7,348,608 3,641,882

Notes: BNP PARIBAS until 1995 BNP. Banks are ordered in declining size of average assets over the sample period. n.a. means data not available.
Data source: Bankscope and own calculations.
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Appendix C: Balance sheet data 
Table C.2: Total assets of US banks (million US$)

Bank Name 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 Average
Average 

1998-2003
Average 

1992-1997

CITIG 1,264,032 1,097,190 1,051,450 902,210 716,937 668,641 n.a. n.a. 220,110 210,487 175,712 163,846 647,062 950,077 192,539

JP MORGAN 770,912 758,800 693,575 715,348 406,105 365,875 365,521 336,099 184,879 154,917 133,888 102,941 415,738 618,436 213,041

BAMERICA 736,445 660,458 621,764 642,191 632,574 617,679 264,562 185,794 163,398 147,670 136,693 133,449 411,890 651,852 171,928

BONE 326,563 277,383 268,954 269,300 269,425 261,496 115,901 101,848 n.a. n.a. n.a. n.a. 236,359 278,854 108,875

FARGO 387,798 349,259 307,569 272,426 218,102 202,475 88,540 80,175 50,316 53,374 52,513 52,537 176,257 289,605 62,909

WACHOVIA 401,032 341,839 330,452 74,032 67,353 64,123 65,397 46,886 44,964 39,171 36,514 33,356 128,760 213,138 44,382

FLEET 200,356 190,589 203,638 179,519 190,692 104,554 85,690 85,555 11,037 9,757 8,246 8,288 106,493 178,225 34,762

BCORP 189,286 180,027 171,390 87,336 81,530 76,438 71,295 36,489 31,865 21,784 21,458 20,773 82,473 131,001 33,944

CITYCO 113,934 118,258 105,817 88,535 87,122 88,246 54,684 50,856 36,199 32,114 31,068 28,964 69,649 100,318 38,981

KEYCO 84,147 84,710 80,400 87,165 83,344 79,966 73,625 67,688 66,339 66,798 32,648 25,457 69,357 83,289 55,426

PNC 68,193 66,410 69,570 69,916 75,428 77,232 75,101 73,174 73,507 64,221 61,945 51,523 68,852 71,125 66,578

BNYORK 89,258 74,948 78,019 74,266 71,795 60,078 56,154 52,121 42,712 39,287 36,088 36,644 59,281 74,727 43,834

SSTREET 80,435 79,621 65,410 64,644 56,226 43,185 37,450 31,390 25,785 21,744 18,720 16,490 45,092 64,920 25,263

SOTRUST 51,885 50,570 48,850 45,170 43,203 38,054 30,715 13,339 n.a. n.a. n.a. n.a. 40,223 46,288 22,027

BBT 90,467 80,217 70,870 59,340 43,481 34,427 29,178 21,247 15,992 9,179 7,794 6,256 39,037 63,134 14,941

53BANCO 91,143 80,899 71,026 45,857 41,590 28,922 21,375 20,549 17,057 14,973 11,981 10,232 37,967 59,906 16,028

MELLON 20,839 26,841 27,813 41,974 39,619 42,235 38,802 37,339 40,734 38,716 36,050 31,541 35,209 33,220 37,197

COMERICA 52,684 39,643 37,256 33,697 31,243 29,375 28,936 27,052 28,394 27,044 24,935 22,364 31,885 37,317 26,454

REGIONS 48,881 47,939 45,383 43,688 42,714 36,832 23,034 18,930 13,709 12,839 10,476 7,881 29,359 44,240 14,478

UNIONBANK 42,488 40,193 36,078 35,170 33,685 32,301 30,612 29,304 19,518 16,761 16,391 16,844 29,112 36,652 21,572

AMSOUTH 45,670 40,598 38,622 38,968 43,427 19,919 18,657 18,440 17,740 16,845 12,584 9,790 26,772 37,867 15,676

WASHING 29,327 26,723 31,639 34,715 35,036 32,466 26,070 21,241 21,633 18,458 15,827 n.a. 26,649 31,651 20,646

HUNTING 30,566 27,702 28,497 28,599 29,037 28,296 26,731 20,852 20,255 17,771 17,619 16,247 24,347 28,783 19,912

NTRUST 33,403 31,974 32,758 29,709 23,500 23,304 21,185 18,127 15,231 14,736 13,538 11,907 22,448 29,108 15,787

SUTRUST n.a. 4,638 3,991 3,459 3,504 3,478 2,292 n.a. 46,472 42,534 40,728 36,647 18,774 3,814 33,735

Sum 5,249,743 4,777,430 4,520,789 3,967,235 3,366,670 3,059,596 1,651,505 1,394,493 1,207,844 1,091,179 953,416 843,975 2,879,044 4,157,546 1,350,913
Notes: Comerica until 1995 Comerica Detroit. Banks are ordered in declining size of average assets over the sample period. n.a. means data not available.
Data source: Bankscope and own calculations. 
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Appendix C: Balance sheet data 
Table C.3: Due from banks for euro area banks (million US$)  

Bank Name 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 Average
 Average 

1998-2003
 Average 

1992-1997

BNPPAR 205,797 153,641 164,469 121,536 160,510 83,169 82,147 103,735 96,870 77,920 72,780 87,370 117,495 148,187 86,804

DEUTSCHE 180,570 147,226 136,059 135,624 134,235 124,204 100,119 99,183 77,060 63,300 54,860 56,490 109,078 142,986 75,169

CA 119,534 70,083 56,052 61,259 62,275 79,898 78,699 112,656 98,490 78,040 68,290 63,250 79,044 74,850 83,237

DRESDNER 154,862 92,666 68,276 83,419 56,934 77,022 68,836 n.a. 55,910 40,830 29,470 32,300 69,139 88,863 45,469

SGENER 76,133 56,999 56,004 50,409 55,263 77,499 89,485 66,669 72,850 66,720 61,240 62,910 66,015 62,051 69,979

ABNAMRO 74,261 43,964 43,729 45,205 47,419 71,047 69,495 68,983 81,860 73,220 65,820 65,080 62,507 54,271 70,743

COMMERZ 65,191 56,900 55,770 69,266 50,026 67,994 49,210 n.a. 59,180 44,880 32,660 23,250 52,212 60,858 41,836

HYPO 66,489 60,068 78,634 84,804 56,089 67,207 68,637 0 25,000 17,000 18,050 12,910 50,444 68,882 28,319

FORTIS 105,699 87,860 57,640 60,307 82,766 68,522 n.a. n.a. 2,150 2,620 2,530 2,570 47,266 77,132 2,468

INTESA 36,657 31,916 35,400 44,249 44,398 64,423 33,975 34,586 n.a. n.a. n.a. n.a. 40,701 42,841 34,281

ALMANIJ 47,735 39,979 34,662 28,575 27,128 43,366 53,842 n.a. n.a. n.a. n.a. n.a. 39,327 36,907 53,842

ING 77,115 47,905 47,662 41,087 42,126 59,516 26,071 21,783 22,000 16,850 13,840 16,320 36,023 52,568 19,477

BGBERLIN 35,502 32,286 29,606 35,579 36,738 45,972 43,037 43,984 14,340 6,710 n.a. n.a. 32,375 35,947 27,018

UNICREDIT 41,404 30,915 23,319 23,173 20,100 27,181 35,089 n.a. n.a. n.a. n.a. n.a. 28,740 27,682 35,089

BILBAO 12,129 12,371 8,691 19,582 22,621 31,674 41,493 43,787 35,430 31,930 27,030 24,580 25,943 17,845 34,042

SANTANDER 35,994 35,630 29,007 25,513 n.a. n.a. n.a. n.a. 28,570 20,990 17,390 12,470 25,695 31,536 19,855

NATEXIS 54,015 38,767 14,694 14,853 23,422 7,821 8,874 20,808 n.a. n.a. n.a. n.a. 22,907 25,595 14,841

CAPITA 21,622 21,410 17,360 15,500 18,592 23,072 23,793 26,081 n.a. n.a. n.a. n.a. 20,929 19,593 24,937

DEPFA 23,323 14,117 12,373 n.a. n.a. n.a. n.a. n.a. 4,170 4,320 3,540 4,620 9,495 16,604 4,163

BANESP 5,461 2,521 1,804 4,663 4,965 7,802 6,486 8,069 10,470 8,410 7,920 6,940 6,293 4,536 8,049

IRBAN 4,069 5,198 5,828 4,312 4,122 6,186 6,270 4,645 3,950 4,070 3,740 2,980 4,614 4,953 4,276

BCP 4,724 3,515 4,104 5,531 2,376 3,568 5,951 n.a. 7,720 4,140 2,690 1,500 4,165 3,970 4,400

ALPHA 2,130 1,728 2,563 5,399 4,239 3,338 1,592 2,449 1,540 1,340 290 390 2,250 3,233 1,267

SAMPO 1,284 2,707 1,790 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1,927 1,927 n.a.

PAOLO 2,323 1,681 1,262 1,528 863 1,690 1,391 1,233 1,356 1,226 1,298 1,577 1,453 1,558 1,347

Sum 1,454,021 1,092,053 986,757 981,372 957,208 1,042,172 894,490 658,649 698,916 564,516 483,438 477,507 956,035 1,105,375 790,906
Notes: BNP PARIBAS until 1995 BNP. Banks are ordered in declining size of average amounts due from banks over the sample period. n.a. means data not available. 
Data source: Bankscope and own calculations.
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Appendix C: Balance sheet data 
Table C.4: Due from banks for US banks (million US$)

Bank Name 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 Average
Average 

1998-2003
Average 

1992-1997

SSTREET 21,628 28,133 20,306 21,289 16,902 12,008 10,076 7,562 5,975 4,847 5,148 4,803 13,223 20,044 6,402

CITIG 19,777 16,382 19,216 17,274 13,429 13,425 n.a. n.a. 9,256 7,201 7,137 6,249 12,935 16,584 7,461

JP MORGAN 10,175 8,942 12,743 8,333 28,076 7,212 2,886 8,344 1,986 1,362 1,221 1,516 7,733 12,580 2,886

BAMERICA 8,051 6,813 5,932 5,448 4,838 6,750 2,395 1,843 5,899 6,771 2,956 2,779 5,040 6,305 3,774

NTRUST 8,766 8,267 6,954 5,191 2,291 3,264 2,282 2,060 1,567 1,865 2,090 1,860 3,871 5,789 1,954

BONE 3,093 1,503 1,030 5,210 6,645 4,642 n.a. n.a. n.a. n.a. n.a. n.a. 3,687 3,687 n.a.

BNYORK 7,154 4,418 5,924 4,949 6,208 4,134 1,343 809 644 854 652 672 3,147 5,464 829

WACHOVIA 2,308 3,512 6,875 3,239 1,073 2,916 710 316 451 7 13 190 1,801 3,321 281

MELLON 2,770 1,768 4,089 2,349 657 991 925 790 553 433 889 992 1,434 2,104 764

FLEET 2,695 3,679 3,744 2,826 1,772 444 76 858 0 1,000 0 0 1,425 2,527 322

UNIONBANK 235 279 64 74 183 210 629 1,131 505 1,030 1,200 1,201 562 174 949

PNC 493 518 413 380 207 174 570 145 139 149 233 695 343 364 322

CITYCO 592 615 120 49 129 141 49 282 51 97 543 1,234 325 274 376

SUTRUST n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 29 56 476 695 314 n.a. 314

FARGO 988 352 206 95 421 113 47 1,238 10 7 0 0 290 363 217

BCORP n.a. 434 625 200 897 76 238 50 11 7 33 46 238 446 64

COMERICA 23 14 43 24 13 8 1 26 1 377 897 1,231 221 21 422

KEYCO 186 112 83 34 35 20 531 217 45 381 14 141 150 78 221

REGIONS n.a. 304 667 3 10 144 30 33 47 0 11 0 114 226 20

BBT 271 148 115 39 71 5 27 1 1 4 7 n.a. 63 108 8

53BANCO 58 198 152 109 82 51 27 31 1 11 1 1 60 108 12

HUNTING 34 37 21 5 7 103 40 2 284 3 13 134 57 34 79

WASHING 17 16 28 18 15 15 n.a. n.a. n.a. n.a. n.a. n.a. 18 18 n.a.

AMSOUTH 7 28 12 61 24 29 0 0 1 1 1 0 14 27 0

SOTRUST 5 4 6 1 0 1 0 0 n.a. n.a. n.a. n.a. 2 3 0

Sum 89,325 86,476 89,369 77,200 83,984 56,875 22,881 25,736 27,458 26,460 23,534 24,437 57,064 80,650 27,677
Notes: Comerica until 1995 Comerica Detroit. Banks are ordered in declining size of average amounts due from banks over the sample period. n.a. means data not available. 
Data source: Bankscope and own calculations.
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Appendix D: Return and spread data
Table D.1: Moments of euro area returns and correlations with aggregate risk factors

Bank Mean
Standard 
Deviation Skewness Kurtosis

Correlation, 
Bank index

Correlation, 
Stock index

Correlation, Yield 
spread, 1998-2004

Correlation, 
Yield spread

DEUTSCHE 0.01 2.0 -0.1 4.0 76.8 69.2 -2.8 n.a.

HYPO -0.01 2.4 0.1 6.1 65.7 57.1 -5.3 n.a.

DRESDNER 0.01 2.1 0.2 5.9 67.2 59.3 -2.8 n.a.

COMMERZ 0.00 2.0 0.2 6.9 68.2 62.3 -5.3 n.a.

BGBERLIN -0.06 2.4 -1.4 32.8 20.4 17.6 -5.1 n.a.

DEPFA 0.05 1.9 0.2 6.2 31.2 30.3 -5.5 n.a.

BNPPAR 0.03 2.2 0.1 3.7 69.8 64.1 -1.3 n.a.

CA 0.02 1.4 -0.8 21.3 29.6 25.7 -2.6 n.a.

SGENER 0.04 2.2 0.1 3.9 72.7 66.1 -1.7 n.a.

NATEXIS 0.01 1.7 0.3 6.3 34.8 34.4 -2.7 n.a.

INTESA 0.02 2.5 0.3 2.9 55.5 48.8 -2.9 n.a.

UNICREDIT 0.04 2.3 0.9 8.5 57.5 52.2 -1.0 n.a.

PAOLO 0.00 2.3 0.2 2.1 65.5 59.5 -4.0 n.a.

CAPITA -0.04 2.6 0.3 5.2 51.4 46.5 -5.0 n.a.

SANTANDER 0.04 2.1 -0.1 5.1 74.4 69.0 -1.8 n.a.

BILBAO 0.04 2.0 0.0 5.5 76.6 71.4 -1.3 n.a.

BANESP -0.02 2.4 -14.5 543.2 23.3 19.9 -6.4 n.a.

ABNAMRO 0.04 2.0 -0.1 5.3 77.7 72.5 -1.3 n.a.

ING 0.04 2.2 -0.1 7.5 76.8 73.7 -3.1 n.a.

FORTIS 0.03 2.0 0.2 8.4 68.3 63.0 -1.3 n.a.

ALMANIJ 0.03 1.6 0.4 5.1 48.3 44.9 -1.9 n.a.

ALPHA 0.03 2.1 0.4 3.7 23.4 24.3 -6.1 n.a.

BCP 0.00 1.5 -0.2 12.2 39.4 37.6 -5.3 n.a.

SAMPO 0.07 2.8 0.3 7.7 26.5 27.6 -2.5 n.a.

IRBAN 0.05 1.7 -0.4 7.4 44.5 43.2 1.5 n.a.

POOLED Euro area 0.02 2.1 -0.7 41.2

Bank index 0.02 0.5 -0.2 5.6

Stock index 0.02 0.5 -0.3 3.5
Yield spread, 1998-2004 8.05 3.2 0.6 -0.7

Data source: Datastream and own calculations. 

Notes: Returns for individual bank stocks are daily excess returns, calculated as total return indices minus 1-month LIBORs. Returns for indices are calculated without 
substracting LIBOR. Means, standard deviations and correlation coefficients are in %. Return data series run from 2 April 1992 to 27 February 2004. n.a. means not 
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Appendix D: Return and spread data
Table D.2: Moments of US returns and correlations with aggregate risk factors

Bank Mean
Standard 
Deviation Skewness Kurtosis

Correlation, 
Bank index

Correlation, 
Stock index

Correlation, Yield 
spread, 1998-2004

Correlation, 
Yield spread

CITIG 0.08 2.2 0.1 4.3 80.0 68.8 -0.5 0.0

JP MORGAN 0.04 2.3 0.1 5.0 81.2 67.1 -1.5 -1.3

WACHOVIA 0.03 1.8 0.0 2.9 77.8 58.0 0.5 2.1

FARGO 0.05 1.7 0.1 2.2 74.1 54.3 0.0 1.5

BONE 0.02 1.9 -0.6 13.0 74.8 56.5 0.7 1.6

WASHING 0.06 2.1 0.3 3.8 53.0 40.3 0.8 1.6

FLEET 0.04 2.0 0.5 6.5 76.2 59.6 -0.7 -0.1

BNYORK 0.05 2.1 0.0 4.7 76.8 60.4 -2.6 -2.1

SSTREET 0.05 2.1 -0.2 6.7 67.8 57.5 -1.4 -1.3

NTRUST 0.05 2.0 0.6 6.5 68.5 58.4 -2.8 -2.7

MELLON 0.05 2.0 0.1 3.7 76.2 60.1 -1.6 -0.8

BCORP 0.07 1.9 0.5 16.4 61.8 45.7 -1.0 0.6

CITYCO 0.04 1.6 0.0 3.0 75.7 56.5 0.6 2.6

PNC 0.03 1.8 -0.2 5.0 77.3 59.3 -0.5 0.1

KEYCO 0.03 1.7 0.1 3.5 75.9 57.5 0.4 1.9

SUTRUST 0.04 1.6 0.0 3.5 79.6 61.4 -0.1 1.9

COMERICA 0.03 1.7 -0.7 12.0 74.0 57.3 -1.8 -0.5

UNIONBANK 0.06 2.1 -1.7 33.3 47.9 35.8 0.4 2.5

AMSOUTH 0.04 1.6 -0.6 14.5 65.0 48.1 1.0 3.4

HUNTING 0.03 1.9 0.1 9.6 60.4 47.3 0.9 3.0

BBT 0.05 1.6 0.5 5.9 68.4 53.0 0.0 1.9

53BANCO 0.05 1.7 0.3 2.6 66.5 53.3 -0.6 0.8

SOTRUST 0.05 1.7 0.0 4.0 64.2 48.6 1.2 3.8

REGIONS 0.03 1.7 0.0 3.2 66.2 51.1 1.2 4.3

BAMERICA 0.04 1.9 -0.2 2.8 82.8 59.1 0.7 2.0

POOLED US 0.04 1.9 -0.1 8.1

Bank index 0.03 0.6 0.1 3.4

Stock index 0.02 0.5 -0.1 4.1

Yield spread, 1998-2004 6.18 1.9 0.4 -0.8

Yield spread 5.41 1.7 1.0 0.1

Data source: Datastream and own calculations. 

Notes: Returns for individual bank stocks are daily excess returns, calculated as total return indices minus 1-month LIBORs. Returns for indices are calculated without 
substracting LIBOR. Means, standard deviations and correlation coefficients are in %. Return data series run from 2 April 1992 to 27 February 2004. n.a. means not available. 
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Appendix D: Return and spread data

Table D.3: Correlations of euro area bank returns 

DEUTSCHE HYPO DRESDNER COMMERZ BGBERLIN DEPFA BNPPAR CA SGENER NATEXIS INTESA UNICREDIT PAOLO CAPITA SANTANDER BILBAO BANESP ING ABNAMRO FORTIS ALMANIJ ALPHA BCP SAMPO IRBAN

DEUTSCHE 100.0 60.8 67.6 64.8 16.8 24.7 48.6 19.5 52.6 24.2 33.6 35.9 43.1 31.9 48.0 49.1 12.6 55.9 56.2 47.7 33.8 17.1 27.9 17.4 27.1

HYPO 60.8 100.0 56.4 62.0 14.7 21.0 40.8 21.8 43.1 19.9 33.1 29.9 40.0 28.8 39.8 42.3 10.2 48.5 47.1 42.0 28.4 15.1 25.5 13.9 23.6

DRESDNER 67.6 56.4 100.0 61.3 13.6 21.5 42.9 19.1 43.6 22.0 31.9 28.1 37.3 25.2 42.4 43.8 13.6 50.0 49.6 43.9 31.0 15.0 25.7 17.3 23.5

COMMERZ 64.8 62.0 61.3 100.0 16.3 24.2 42.4 21.7 43.7 21.2 32.7 32.0 39.8 30.9 43.5 45.9 11.9 51.7 49.6 45.4 28.5 14.8 25.8 15.5 24.5

BGBERLIN 16.8 14.7 13.6 16.3 100.0 11.6 11.9 2.7 12.5 7.1 9.3 8.9 8.6 7.8 13.8 12.1 3.0 12.0 10.0 9.4 7.6 7.4 9.6 9.3 13.3

DEPFA 24.7 21.0 21.5 24.2 11.6 100.0 19.1 11.4 21.8 14.3 13.6 15.8 16.4 11.0 19.3 20.7 5.8 24.3 22.9 21.8 17.7 9.1 14.1 13.2 19.1

BNPPAR 48.6 40.8 42.9 42.4 11.9 19.1 100.0 25.0 66.1 31.1 34.8 37.4 42.8 33.9 49.8 51.0 16.7 54.2 52.8 46.3 29.9 14.2 25.4 19.0 30.3

CA 19.5 21.8 19.1 21.7 2.7 11.4 25.0 100.0 25.0 12.3 15.4 10.4 19.3 11.3 20.2 22.2 5.3 28.2 24.7 26.0 15.9 4.8 10.3 6.0 11.8

SGENER 52.6 43.1 43.6 43.7 12.5 21.8 66.1 25.0 100.0 29.9 34.1 38.9 44.1 32.9 51.3 52.5 15.4 57.2 55.3 48.8 32.7 17.3 24.9 19.6 33.8

NATEXIS 24.2 19.9 22.0 21.2 7.1 14.3 31.1 12.3 29.9 100.0 16.5 18.5 21.1 13.4 24.2 26.4 9.8 27.1 27.7 21.7 15.5 10.7 16.1 13.4 18.7

INTESA 33.6 33.1 31.9 32.7 9.3 13.6 34.8 15.4 34.1 16.5 100.0 46.5 49.3 48.1 36.3 38.1 11.1 39.6 37.9 36.8 23.7 11.9 20.5 15.3 22.1

UNICREDIT 35.9 29.9 28.1 32.0 8.9 15.8 37.4 10.4 38.9 18.5 46.5 100.0 50.5 48.3 35.7 39.5 12.3 40.1 40.6 34.6 23.6 9.0 18.4 13.6 21.9

PAOLO 43.1 40.0 37.3 39.8 8.6 16.4 42.8 19.3 44.1 21.1 49.3 50.5 100.0 47.6 46.1 47.9 12.2 48.6 48.5 41.3 27.4 12.3 24.4 17.3 26.0

CAPITA 31.9 28.8 25.2 30.9 7.8 11.0 33.9 11.3 32.9 13.4 48.1 48.3 47.6 100.0 34.3 36.6 9.5 34.6 33.3 30.7 19.6 5.6 16.2 13.9 20.8

SANTANDER 48.0 39.8 42.4 43.5 13.8 19.3 49.8 20.2 51.3 24.2 36.3 35.7 46.1 34.3 100.0 76.8 22.3 55.1 55.7 46.6 30.3 17.0 29.7 18.9 30.8

BILBAO 49.1 42.3 43.8 45.9 12.1 20.7 51.0 22.2 52.5 26.4 38.1 39.5 47.9 36.6 76.8 100.0 21.1 56.0 56.4 48.9 32.9 18.0 31.0 18.5 30.6

BANESP 12.6 10.2 13.6 11.9 3.0 5.8 16.7 5.3 15.4 9.8 11.1 12.3 12.2 9.5 22.3 21.1 100.0 12.5 13.0 11.0 6.4 5.1 10.8 5.8 9.0

ABNAMRO 56.2 47.1 49.6 49.6 10.0 22.9 52.8 24.7 55.3 27.7 37.9 40.6 48.5 33.3 55.7 56.4 13.0 73.7 100.0 59.1 40.0 18.1 28.5 19.1 33.6

ING 55.9 48.5 50.0 51.7 12.0 24.3 54.2 28.2 57.2 27.1 39.6 40.1 48.6 34.6 55.1 56.0 12.5 100.0 73.7 65.1 42.3 18.7 29.9 21.7 35.7

FORTIS 47.7 42.0 43.9 45.4 9.4 21.8 46.3 26.0 48.8 21.7 36.8 34.6 41.3 30.7 46.6 48.9 11.0 65.1 59.1 100.0 45.0 17.3 24.3 19.1 30.0

ALMANIJ 33.8 28.4 31.0 28.5 7.6 17.7 29.9 15.9 32.7 15.5 23.7 23.6 27.4 19.6 30.3 32.9 6.4 42.3 40.0 45.0 100.0 12.5 20.4 15.9 23.7

ALPHA 17.1 15.1 15.0 14.8 7.4 9.1 14.2 4.8 17.3 10.7 11.9 9.0 12.3 5.6 17.0 18.0 5.1 18.7 18.1 17.3 12.5 100.0 14.4 13.1 13.9

BCP 27.9 25.5 25.7 25.8 9.6 14.1 25.4 10.3 24.9 16.1 20.5 18.4 24.4 16.2 29.7 31.0 10.8 29.9 28.5 24.3 20.4 14.4 100.0 13.1 19.2

SAMPO 17.4 13.9 17.3 15.5 9.3 13.2 19.0 6.0 19.6 13.4 15.3 13.6 17.3 13.9 18.9 18.5 5.8 21.7 19.1 19.1 15.9 13.1 13.1 100.0 20.4

IRBAN 27.1 23.6 23.5 24.5 13.3 19.1 30.3 11.8 33.8 18.7 22.1 21.9 26.0 20.8 30.8 30.6 9.0 35.7 33.6 30.0 23.7 13.9 19.2 20.4 100.0

Data source: Datastream and own calculations.
Notes: Correlation coefficients between individual banks are in %. Return data series run from 2 April 1992 to 27 February 2004. n.a. means not available. 
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Appendix D: Return and spread data

Table D.4: Correlations of US bank returns 

CITIG JP MORGAN WACHOVIA FARGO BONE WASHING FLEET BNYORK SSTREET NTRUST MELLON BCORP CITYCO PNC KEYCO SUTRUST COMERICA UNIONBANK AMSOUTH HUNTING BBT 53BANCO SOTRUST REGIONS BAMERICA

CITIG 100.0 64.8 55.9 51.7 52.6 38.1 55.7 55.8 51.6 50.6 55.0 41.2 53.0 54.4 53.2 56.5 51.7 33.5 46.1 41.1 50.0 47.0 45.0 44.3 61.0

JP MORGAN 64.8 100.0 59.2 54.6 56.7 39.3 60.9 61.2 52.7 52.1 60.7 43.4 56.4 58.1 56.8 58.2 55.6 33.7 47.9 44.4 50.3 47.5 46.1 48.6 64.7

WACHOVIA 55.9 59.2 100.0 56.6 60.2 40.5 60.0 56.9 50.0 51.8 58.6 48.6 61.2 61.6 61.9 64.5 59.2 38.4 51.3 48.5 55.0 51.7 48.8 51.5 65.9

FARGO 51.7 54.6 56.6 100.0 53.0 41.5 55.2 57.4 50.7 48.8 56.7 46.2 58.4 59.6 58.3 63.0 55.7 33.6 48.7 42.9 52.5 51.1 49.0 49.6 60.4

BONE 52.6 56.7 60.2 53.0 100.0 40.7 55.2 55.5 50.2 49.1 55.6 45.0 58.2 59.4 57.5 61.4 54.8 35.2 47.4 44.5 50.0 48.5 45.8 49.2 59.7

WASHING 38.1 39.3 40.5 41.5 40.7 100.0 39.3 40.7 39.1 40.6 41.6 35.1 43.9 44.2 45.1 43.9 42.4 27.4 37.5 34.1 41.9 41.7 41.5 40.3 41.2

FLEET 55.7 60.9 60.0 55.2 55.2 39.3 100.0 59.6 51.4 52.8 60.5 48.9 60.6 60.4 59.0 62.6 59.6 36.8 52.2 46.7 53.8 51.0 49.0 52.3 59.3

BNYORK 55.8 61.2 56.9 57.4 55.5 40.7 59.6 100.0 58.0 59.1 63.4 49.2 58.4 61.6 59.5 63.7 59.7 35.7 50.6 46.9 54.5 52.2 47.9 51.8 60.1

SSTREET 51.6 52.7 50.0 50.7 50.2 39.1 51.4 58.0 100.0 59.8 58.1 45.3 51.4 53.5 50.6 56.2 51.8 33.9 46.6 43.8 46.3 49.5 44.4 47.2 52.4

NTRUST 50.6 52.1 51.8 48.8 49.1 40.6 52.8 59.1 59.8 100.0 55.3 48.4 51.7 54.9 52.7 54.4 53.1 37.2 48.2 46.6 50.0 51.9 46.9 49.8 49.9

MELLON 55.0 60.7 58.6 56.7 55.6 41.6 60.5 63.4 58.1 55.3 100.0 48.6 59.1 62.9 60.5 63.5 57.7 37.0 51.5 45.1 53.8 50.1 50.7 52.9 60.5

BCORP 41.2 43.4 48.6 46.2 45.0 35.1 48.9 49.2 45.3 48.4 48.6 100.0 49.9 51.0 49.5 50.3 48.8 33.4 45.6 44.0 48.7 43.1 45.3 46.5 46.2

CITYCO 53.0 56.4 61.2 58.4 58.2 43.9 60.6 58.4 51.4 51.7 59.1 49.9 100.0 62.3 63.0 65.9 60.6 36.9 54.6 49.0 54.1 53.1 52.7 54.4 61.3

PNC 54.4 58.1 61.6 59.6 59.4 44.2 60.4 61.6 53.5 54.9 62.9 51.0 62.3 100.0 64.0 66.2 62.2 36.7 52.7 47.8 55.7 53.2 52.3 53.8 62.0

KEYCO 53.2 56.8 61.9 58.3 57.5 45.1 59.0 59.5 50.6 52.7 60.5 49.5 63.0 64.0 100.0 66.2 63.1 37.4 52.7 51.1 57.1 53.9 53.4 55.9 59.3

SUTRUST 56.5 58.2 64.5 63.0 61.4 43.9 62.6 63.7 56.2 54.4 63.5 50.3 65.9 66.2 66.2 100.0 64.1 40.0 55.6 48.9 56.9 55.5 53.7 57.2 64.7

COMERICA 51.7 55.6 59.2 55.7 54.8 42.4 59.6 59.7 51.8 53.1 57.7 48.8 60.6 62.2 63.1 64.1 100.0 37.7 53.7 50.0 55.9 54.1 51.4 55.6 58.6

UNIONBANK 33.5 33.7 38.4 33.6 35.2 27.4 36.8 35.7 33.9 37.2 37.0 33.4 36.9 36.7 37.4 40.0 37.7 100.0 37.2 31.8 35.6 31.7 36.6 35.2 38.4

AMSOUTH 46.1 47.9 51.3 48.7 47.4 37.5 52.2 50.6 46.6 48.2 51.5 45.6 54.6 52.7 52.7 55.6 53.7 37.2 100.0 46.1 51.1 45.5 48.9 52.0 50.3

HUNTING 41.1 44.4 48.5 42.9 44.5 34.1 46.7 46.9 43.8 46.6 45.1 44.0 49.0 47.8 51.1 48.9 50.0 31.8 46.1 100.0 49.2 46.7 48.0 47.8 46.2

BBT 50.0 50.3 55.0 52.5 50.0 41.9 53.8 54.5 46.3 50.0 53.8 48.7 54.1 55.7 57.1 56.9 55.9 35.6 51.1 49.2 100.0 52.5 51.7 52.0 52.5

53BANCO 47.0 47.5 51.7 51.1 48.5 41.7 51.0 52.2 49.5 51.9 50.1 43.1 53.1 53.2 53.9 55.5 54.1 31.7 45.5 46.7 52.5 100.0 49.4 49.5 48.8

SOTRUST 45.0 46.1 48.8 49.0 45.8 41.5 49.0 47.9 44.4 46.9 50.7 45.3 52.7 52.3 53.4 53.7 51.4 36.6 48.9 48.0 51.7 49.4 100.0 52.0 49.4

REGIONS 44.3 48.6 51.5 49.6 49.2 40.3 52.3 51.8 47.2 49.8 52.9 46.5 54.4 53.8 55.9 57.2 55.6 35.2 52.0 47.8 52.0 49.5 52.0 100.0 51.2

BAMERICA 61.0 64.7 65.9 60.4 59.7 41.2 59.3 60.1 52.4 49.9 60.5 46.2 61.3 62.0 59.3 64.7 58.6 38.4 50.3 46.2 52.5 48.8 49.4 51.2 100.0

Data source: Datastream and own calculations.
Notes: Correlation coefficients between individual banks are in %. Return data series run from 2 April 1992 to 27 February 2004. n.a. means not available. 
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Appendix E. Results for GARCH-filtered data

A widely recognized feature of financial market returns is volatility
clustering (see, e.g., Bollerslev, Chou and Kroner, 1992). So, a ques-
tion that comes to mind is to which extent the extreme dependence
between bank stock returns and its changes we discover in this paper
is associated with changes in volatility. In this appendix we therefore
reproduce the results of the paper for return data that are filtered of
conditional heteroskedasticity.
Before providing some answers to this question, we need to first

establish the relationship between the filtered data and the objectives of
our paper. The main objective of our work is to measure systemic risk
in banking on the basis of market data. The amount of systemic risk
in banking is instrumental for the assessment of financial stability and
for the design of policies to preserve the stability of financial systems,
such as banking regulation and crisis management.
The indicators of banking system stability we are using are designed

to satisfy the demand by policy makers who need to have a view about
the likelihood of crises and who need to devise the best financial regula-
tions to preserve financial stability. To assess system stability banking
supervisors need to know how likely it is that one or several banks
break down given that other banks break down or how likely it is
that one or several banks break down given that there is an adverse
macroeconomic shock. They are not interested in two-sided volatility
of bank stock returns per se or in its persistence. In addition, bank-
ing regulations are determined in advance for longer periods of time.
They cannot be changed within a few days. So, they need to be based
on long-term structural risk assessments and not on the likelihood of
volatility tomorrow given today’s volatility. This is why for the ques-
tions we are interested in straight returns are preferable to volatility of
returns and unconditional modelling is preferable to conditional mod-
els. In contrast, conditional models will be preferable for short-term
volatility forecasting, as today’s volatility is informative for tomorrow’s
volatility. This type of analysis maybe more important for short-term
pricing of financial instruments.
Although the indicators (2.1) and (2.2) are the right ones for answer-

ing the questions of interest in this paper, we may learn from unclus-
tered return data more about the statistical components of spillover and
extreme systematic risk in banking. For example, Poon et al. (2004)
argue that conditional heteroskedasticity is an important source of ex-
treme dependence in stock markets in general, but not the only one.



BANKING SYSTEM STABILITY: A CROSS-ATLANTIC PERSPECTIVE 75

So, in this appendix we ask to which extent the extreme dependence
of bank stock returns uncovered above results from univariate volatil-
ity clustering or multivariate dependence in volatilities. The next sub-
section reports the multivariate spillover probabilities (2.1) for unclus-
tered return data and the subsequent one the tail-β estimations (2.2).
The filter used in both cases is a standard GARCH(1,1) process.

E.1. Bank contagion risk. Tables E.1 through E.5 reproduce tables
3, 4, 5, 9 and 10 in the main text for GARCH-filtered returns. While
extreme dependence generally tends to decrease, the qualitative results
are quite similar to the ones for plain bank returns. Only very few
of the spillover risk changes in Europe (table 9) seem to be entirely
related to volatility clustering. But clustering plays more of a role
in the differences between domestic and cross-border spillovers (table
4). Multivariate spillover risk in the US and Europe, as well as its
changes over time seem little related to volatility clustering (tables 5
and 10). This is also confirmed by the dotted lines in figures 1 and 2,
which describe the same stastics as the solid lines for GARCH-filtered
returns.
[Insert tables E.1, E.2, E.3, E.4 and E.5 about here]

E.2. Aggregate banking system risk. Tables E.6 through E.10 re-
produce tables 6, 7, 8, 11 and 12 in the main text for unclustered
returns. As for the spillover risk above, dependencies generally de-
crease, but none of the qualitative results is fundamentally changed.
Again this is also confirmed by the dotted lines in figure 3, which illus-
trate the more muted changes in GARCH-filtered tail-βs and the same
direction of their movements.
Overall, we can conclude that in line with the results of Poon et al.

(2004) for stock markets in general, part of the extreme dependencies
in bank stock returns we find in this paper are related to time-varying
volatility and volatility clustering. From the little exercise in this ap-
pendix we can not ascertain whether this phenomenon is related to
the marginal distributions or to multivariate dependence of volatilities.
Nevertheless, the primary results that supervisors should pay atten-
tion to in order to assess general banking system stability and decide
upon regulatory policies are the unadjusted spillover and systematic
risk probabilities.
[Insert tables E.6, E.7, E.8, E.9 and E.10 about here]
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Table E.1. Domestic versus cross-border extreme spillover
risk among euro area banks for GARCH-filtered data: Esti-
mations

Largest bank P1 P2 P3 P4 P5
Conditioning banks: German

Germany 12.3 63.7 70.7 57.0 35.0
Netherlands 5.1 23.3 35.9 6.3 19.4
France 1.6 20.7 32.1 9.4 10.3
Spain 1.8 12.1 14.4 8.9 31.0
Italy 1.5 3.7 6.6 1.2 5.5
Belgium 3.1 18.0 18.7 6.5 4.2
Ireland 1.9 4.2 7.4 7.4 19.8
Portugal 1.4 6.7 11.2 5.6 8.3
Finland 0.6 2.5 5.4 1.0 3.3
Greece 0.7 0.9 2.5 0.2 0.8

Conditioning banks: French
France 1.4 30.2 6.6
Germany 0.4 15.0 3.0
Netherlands 1.6 14.8 7.7
Italy 0.7 5.3 1.7
Spain 1.3 23.4 5.2
Belgium 0.9 12.0 4.3
Ireland 0.8 3.2 3.0
Portugal 1.0 4.9 10.1
Finland 0.1 0.6 1.5
Greece 0.2 0.7 0.3

Conditioning banks: Italian
Italy 3.2 13.4 18.9
Germany 2.4 8.8 7.6
Netherlands 1.5 10.2 8.2
Spain 1.1 9.1 3.7
France 1.2 6.6 2.4
Belgium 1.1 5.5 2.5
Ireland 1.1 2.3 3.6
Portugal 0.5 1.1 1.9
Finland 0.4 1.4 1.5
Greece 1.6E-0.2 0.3 0.6

Conditioning banks: Spanish
Spain 21.6 13.5
Germany 3.8 3.0
Netherlands 6.4 6.8
France 7.0 7.8
Italy 0.8 1.9
Belgium 3.6 1.5
Ireland 2.7 1.9
Portugal 1.4 0.6
Finland 0.3 0.5
Greece 0.5 0.4

Note: The table shows the same results as table 3 in the main text for data that have been filtered for volatility
clustering. The returns used here are the residuals of a GARCH(1,1) process fitted on the original excess returns.
The table reports estimated extreme spillover probabilities between banks, as defined in (2.1). Each column Pj
shows the spillover probabilities for the largest bank of the country mentioned on the left-hand side conditional
on a set of banks j from either the same country or other countries. The number of conditioning banks varies
from 1 to 5 for Germany (top panel), 1 to 3 for France (upper middle panel), 1 to 3 for Italy (lower middle panel)
and 1 to 2 for Spain (bottom panel). For example, the P2 column contains probabilities for a stock market crash
of the largest bank in each country, conditional on crashes of the 2nd and 3rd largest bank in Germany, France,
Italy or Spain. All probabilities are estimated with the extension of the approach by Ledford and Tawn (1996)
described in section 3 and reported in %. Univariate crash probabilities (crisis levels) are set to p = 0.05%.
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Table E.2. Domestic versus cross-border extreme spillover
risk among euro area banks for GARCH-filtered data: Tests

Largest bank T1 T2 T3 T4 T5
Conditioning banks: German

Netherlands 1.49 1.56 0.84 0.81 0.11
France ***3.30 1.23 0.30 0.51 1.06
Spain ***2.93 **2.11 -0.18 -0.28 0.29
Italy ***2.82 ***3.75 -0.35 -0.13 -0.50
Belgium **2.07 1.55 0.46 -0.26 -0.76
Ireland **2.47 ***3.34 -1.54 1.20 0.91
Portugal ***3.06 ***3.71 0.46 1.31 0.29
Finland ***4.21 ***2.67 -1.55 -0.10 -0.83
Greece ***3.59 ***4.12 ***-3.15 -1.31 -0.61

Conditioning banks: French
Germany **2.02 -0.49 0.85
Netherlands -0.25 1.25 1.37
Spain 0.07 -0.84 0.22
Italy 0.84 -1.53 -0.03
Belgium 0.63 0.84 1.28
Ireland 0.58 ***-3.34 -1.39
Portugal 0.36 -1.50 1.13
Finland ***2.91 ***-4.22 **-2.21
Greece **2.29 ***-3.76 ***-2.77

Conditioning banks: Italian
Germany 0.26 0.28 -0.09
Netherlands 1.18 1.06 0.21
Spain 1.51 -0.59 -0.27
France 1.32 0.28 -0.09
Belgium 1.25 -0.52 -0.72
Ireland 1.07 -0.75 -1.00
Portugal **2.01 -0.65 -1.42
Finland **2.54 -0.90 -1.47
Greece ***3.36 -1.86 **-2.20

Conditioning banks: Spanish
Germany ***2.88 -0.69
Netherlands **2.17 -0.30
France *1.82 -0.05
Italy ***4.35 -0.57
Belgium ***2.84 -0.62
Ireland ***2.82 -0.91
Portugal ***4.03 -0.77
Finland ***5.55 -1.05
Greece ***4.47 -1.29

Note: The table shows the same results as table 4 in the main text for data that have been filtered for volatility
clustering. The returns used here are the residuals of a GARCH(1,1) process fitted on the original excess
returns. The table reports the statistics for the cross sectional test (4.5). Within each panel the degree of
extreme domestic spillover risk is compared with the degree of extreme cross-border spillover risk for a given
fixed number of conditioning banks. So, each T-statistic describes whether the differences between domestic and
cross-border values of η that entered the estimations in table 3 are statistically significant. For example, in the
top panel the test statistic in the row "Netherlands" and the column T1 indicates whether the difference between
the η for the spillover probability between ABN AMRO and HypoVereinsbank and the η between Deutsche
Bank and HypoVereinsbank is statistically signifcant. The null hypothesis is that the respective two ηs are
equal. Insignificant T-statistics imply that the domestic and cross-border spillover risks are indistinguishable.
A significant rejection with positive sign implies that cross-border spillover risk is statistically smaller than its
domestic counterpart; and a rejection with negative sign implies that cross-border risk is larger than domestic
risk. The critical values of the test are 1.65, 1.96 and 2.58 for the 10%, 5% and 1% levels, respectively. Asterisks
*, ** and *** indicate rejections of the null hypothesis at 10%, 5% and 1% significance.



78 P. HARTMANN, S. STRAETMANS, AND C.G. DE VRIES

Table E.3. Domestic and cross-border extreme spillover
risk among euro area banks for GARCH-filtered data: Time
variation

Largest bank η1 η2 η3 η4 η5
Conditioning banks: German

Germany - - - 9/30/98 ( 2.8) -
Netherlands 4/14/00 (6.1) 9/9/97 (3.8) 8/27/01 (5.6) - 10/27/97 (2.6)
France - 9/11/97 (8.9) 9/9/97 (7.8) 8/15/97 (6.0) 8/15/97 (3.9)
Spain 3/31/97 (2.8) 10/22/97 (6.8) 10/16/97 (6.2) 8/27/97 (2.4) 1/22/99 (6.5)
Italy 10/24/97 (16.9) 9/9/97 (8.6) 1/20/94 (8.6) 8/21/97 (6.6) 10/24/97 (5.6)
Belgium 8/4/98 (8.7) 2/28/01 (6.2) 1/19/94 (3.5) - 10/22/97 (3.0)
Ireland 10/22/97 (5.0) 10/22/97 (2.2) - - 10/24/97 (2.2)
Portugal 2/4/94 (5.3) 2/4/94 (10.9) 1/25/94 (21.7) 8/28/97 (5.2) 10/22/97 (2.1)
Finland 10/22/97 (5.4) 6/6/94 (15.0) 6/6/94 (31.9) 10/16/97 (12.1) 7/23/97 (6.7)
Greece 5/29/97 (14.1) 5/29/97 (8.7) 5/29/97 (10.3) 8/15/97 (8.3) -

Conditioning banks: French
France 10/10/00 (26.5) 1/25/02 (32.6) 6/7/95 (34.0)
Germany 10/9/00 (22.4) 11/21/00 (29.3) 12/11/01 (33.8)
Netherlands 10/9/00 (17.8) 9/20/00 (39.5) 10/22/97 (44.0)
Italy 2/19/01 (10.2) 10/24/97 (44.3) 8/22/97 (50.8)
Spain 10/10/00 (11.4) 9/19/00 (27.3) 10/22/97 (37.9)
Belgium 2/21/01 (15.1) 2/3/94 (68.2) 8/4/98 (67.2)
Ireland 9/20/00 (3.1) 2/1/94 (19.2) 12/7/01 (13.4)
Portugal 10/12/00 (5.5) 10/10/00 (27.6) 6/19/97 (34.3)
Finland 4/14/00 (3.9) 5/31/94 (49.2) 3/1/96 (43.2)
Greece 8/4/98 (10.2) 7/23/98 (27.3) 12/7/01 (34.2)

Conditioning banks: Italian
Italy - - -
Germany 7/31/97 (4.6) 10/8/97 (10.1) 9/9/97 (5.5)
Netherlands 8/4/98 (3.4) 8/7/97 (17.7) 8/6/97 (11.8)
Spain 8/5/98 (2.9) 4/22/98 (16.2) 10/8/97 (8.8)
France 8/7/98 (3.5) 4/15/94 (4.6) 4/21/94 (9.1)
Belgium 6/18/97 (17.4) 10/8/97 (25.2) 10/8/97 (15.1)
Ireland - 2/21/94 (6.1) 2/21/94 (7.6)
Portugal 2/21/94 (7.4) 8/1/97 (11.9) 2/21/94 (12.4)
Finland - 6/13/94 (9.0) 6/17/94 (7.4)
Greece 2/12/97 (10.3) 9/9/97 (16.9) 9/9/97 (22.7)

Conditioning banks: Spanish
Spain 10/1/97 (7.2) 1/14/99 (3.4)
Germany 2/24/97 (10.0) 3/31/99 (4.4)
Netherlands 10/8/97 (4.9) 3/9/99 (6.5)
France 10/22/97 (9.2) 1/14/99 (5.9)
Italy 9/10/97 (3.4) 1/25/99 (6.3)
Belgium 11/26/96 (10.5) 2/4/94 (3.0)
Ireland 12/10/96 (6.3) 3/8/99 (5.1)
Portugal 9/10/97 (15.5) 6/27/97 (6.0)
Finland 10/16/97 (3.6) 3/3/99 (4.0)
Greece 5/15/97 (16.7) 2/27/97 (9.5)

Note: The table shows the same results as table 9 in the main text for data that have been filtered for volatility
clustering. The returns used here are the residuals of a GARCH(1,1) process fitted on the original excess returns.
The table reports the results of tests examining the structural stability of the extreme spillover risks documented
in table E.1. This is done by testing for the constancy of the η tail dependence parameters (null hypothesis)
that govern the spillover probabilities in table E.1. Applying the recursive test (4.1) through (4.4) by Quintos
et al. (2001), each cell shows the endogenously found break date and the test value in parentheses. Dates are
denoted XX/YY/ZZ, where XX=month, YY=day and ZZ=year. The critical values of the test are 1.46, 1.78
and 2.54 for the 10%, 5% and 1% levels, respectively. A test value exceeding these numbers implies an increase
in extreme dependence over time. The absence of a break over the sample period is marked with a dash.
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Table E.4. Multivariate extreme spillover risk among
euro area and US banks for GARCH-filtered data

Country/Area Estimations Cross-sectionalbη bP test T
United States (N=25) 0.32 4.7E-6 H0 : ηUS = ηEA
Euro area (N=25) 0.17 3.9E-15 T = 5.58
Germany (N=6) 0.38 2.3E-4
France (N=4) 0.50 2.6E-2
Italy (N=4) 0.58 2.7E-0.3

Note: The table shows the same results as table 5 in the main text for data that have been
filtered for volatility clustering. The returns used here are the residuals of a GARCH(1,1)
process fitted on the original excess returns. The table reports in the column bη the co-
efficient that governs the multivariate extreme tail dependence for all the banks of the
countries/areas detailed on the left-hand side. In the column bP it shows the probabililty
that all banks of a specific country/area crash given that one of them crashes. Both sta-
tistics are estimates of system-wide extreme spillover risks. Univariate crash probabilities
(crisis levels) are set to p = 0.05%. The right-hand column describes the cross-sectional test
(4.5) for the whole US and euro area banking systems. A positive (negative) test statistic
indicates that the US (euro area) η is larger than the euro area (US) η. The critical values
of the test are 1.65, 1.96 and 2.58 for the 10%, 5% and 1% levels, respectively. Note that η
values for countries/areas with different numbers of banks may not be comparable.
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Table E.5. Multivariate extreme spillover risk among
euro area and US banks for GARCH-filtered data: Time
variation

Country/Area Full sample Second sub-sample break tests
break test Endogenous Exogenous

United States (N=25) 11/13/95 (4.8) - n.a.
Euro area (N=25) 12/5/96 (4.9) (B) 1/18/99 (5.3) (1.5)
Germany (N=6) - - (1.6)

- -
France (N=4) 6/7/95 (19.1) 11/27/01 (23.7) (-2.8)

(B) 3/4/97 (4.6) (B) 8/25/00 (3.8)
Italy (N=4) - - (1.4)

Note: The table shows the same results as table 10 in the main text for data that have been
filtered for volatility clustering. The returns used here are the residuals of a GARCH(1,1)
process fitted on the original excess returns. The table reports tests and estimations assess-
ing time variation in the multivariate spillover probabilities of table E.4. The column on
the left displays estimated break dates and values from the recursive Quintos et al. (2001)
test (4.1) through (4.4) applied to the η parameter governing the extreme tail dependence
of the banks located in the countries/areas displayed on the extreme left. Dates are denoted
XX/YY/ZZ, where XX=month, YY=day and ZZ=year. The forward recursive version of
the test is used, unless marked otherwise. (B) marks the backward recursive version of the
test. The critical values of the test are 1.46, 1.78 and 2.54 for the 10%, 5% and 1% levels,
respectively. The middle columns show pre- and post-break estimates for η. The columns
on the right display two tests that assess the occurrence of further breaks in the second half
of the sample. The first one is the same as the one on the left-hand side. The second one is a
simple differences-in-means test based on (4.5). The exogenous break point is chosen to be
1/1/99, the time of the introduction of the euro. Critical values for this test are 1.65, 1.96
and 2.58 for the 10%, 5% and 1% significance levels. Note that η values for countries/areas
with different numbers of banks may not be comparable.
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Table E.6. Extreme systematic risk (tail-βs) of euro
area banks for GARCH-filtered data

Bank Aggregate risk factor
Bank index Stock index Global bank Global stock Yield spread

DEUTSCHE 34.3 19.1 8.1 4.2 9.0E-6
HYPO 12.7 6.9 1.7 1.2 3.0E-2
DRESDNER 20.1 17.3 7.1 3.7 7.7E-3
COMMERZ 14.8 11.0 3.0 1.9 6.9E-2
BGBERLIN 2.0 1.4 0.6 0.4 7.3E-2
DEPFA 2.1 2.1 0.7 0.9 6.2E-2
BNPPAR 12.7 8.5 5.3 3.6 3.9E-2
CA 2.2 1.4 0.4 0.6 0.2
SGENERAL 19.3 11.8 5.8 4.2 4.8E-2
NATEXIS 0.8 1.0 1.5 0.7 3.5E-2
INTESA 4.6 3.5 1.7 1.9 1.7E-0.2
UNICREDIT 4.3 3.7 3.6 2.2 6.8E-2
PAOLO 10.7 10.8 4.3 2.9 6.0E-2
CAPITA 6.1 5.5 2.3 2.6 0.1
SANTANDER 9.8 10.9 4.5 3.4 7.0E-2
BILBAO 16.0 11.6 6.0 5.3 7.0E-2
BANESP 1.5 0.9 0.6 0.3 2.0E-3
ING 22.7 23.4 8.5 4.2 8.5E-2
ABNAMRO 14.3 12.3 6.7 3.6 4.5E-2
FORTIS 17.2 10.1 4.9 2.7 2.2E-2
ALMANIJ 2.7 3.1 1.8 1.0 8.5E-2
ALPHA 1.9 2.5 0.9 0.6 2.2E-2
BCP 4.0 3.2 2.3 1.3 0.1
SAMPO 1.6 1.9 0.6 0.5 3.8E-2
IRBAN 6.3 6.5 2.0 1.7 1.8E-2

average 9.8 7.6 3.4 2.2 6.5E-2
st. dev. 8.5 6.1 2.5 1.5 4.4E-2

Note: The table shows the same results as table 6 in the main text for data that have been
filtered for volatility clustering. The returns used here are the residuals of a GARCH(1,1)
process fitted on the original excess returns. The table exhibits the estimates of extreme
systematic risk (2.2) (tail-βs) for individual euro area banks and for the euro area banking
system as a whole. The entries show the probability that a given bank crashes given that
a market indicator of aggregate risk crashes (or in the case of the yield spread booms).
Results are reported for five different aggregate risk factors: The euro area banking sector
sub-index, the euro area stock index, the world banking sector sub-index, the world stock
index and the euro area high-yield bond spread. Data for the euro area yield spread are
only available from 1998 to 2004. All probabilities are estimated with the extension of the
approach by Ledford and Tawn (1996) described in section 3 and reported in %. Univariate
crash probabilities (crisis levels) are set to p = 0.05%. The average and the standard
deviation at the bottom of the table are calculated over the 25 individual tail-βs in the
upper rows, respectively.



82 P. HARTMANN, S. STRAETMANS, AND C.G. DE VRIES

Table E.7. Extreme systematic risk (tail-βs) of US
banks for GARCH-filtered data

Bank Aggregate risk factor
Bank index Stock index Global bank Global stock Yield spread

CITIG 32.6 24.8 6.3 11.7 6.9E-2
JPMORGAN 24.9 9.0 3.3 4.9 0.1
BOA 28.2 12.4 5.9 7.2 0.2
WACHO 25.2 10.5 4.1 5.2 0.2
FARGO 14.6 7.5 4.5 6.5 4.1E-2
BONEC 27.1 12.6 3.6 6.0 0.1
WASHMU 9.8 4.5 2.3 2.4 0.1
FLEET 15.2 13.9 5.4 6.4 0.2
BNYORK 17.5 9.5 4.9 7.1 0.1
STATEST 16.0 14.3 7.2 10.3 0.4
NOTRUST 14.6 9.9 4.2 5.6 0.2
MELLON 25.0 19.6 5.7 10.2 0.3
USBANC 10.9 3.8 3.5 2.4 6.4E-2
CITYCO 24.9 11.8 4.7 7.0 9.9E-2
PNC 14.6 10.4 5.3 6.9 0.1
KEYCO 23.6 11.0 2.3 4.9 8.8E-2
SUNTRUST 19.7 15.4 5.7 8.9 0.2
COMERICA 24.3 14.0 4.7 7.3 0.2
UNIONBAN 5.9 2.7 2.3 2.8 0.1
AMSOUTH 10.5 6.5 6.6 4.5 0.2
HUNTING 10.4 5.5 4.3 3.3 0.1
BBT 9.8 5.0 4.1 4.2 0.1
53BANCO 11.2 5.9 2.0 2.5 9.7E-2
SOTRUST 12.6 4.3 3.0 2.6 0.1
RFCORP 11.4 9.5 3.8 4.5 0.2
average 17.6 78.4 4.4 5.8 0.1
st. dev. 7.3 4.7 1.4 2.6 7.1E-2

Note: The table shows the same results as table 7 in the main text for data that have been
filtered for volatility clustering. The returns used here are the residuals of a GARCH(1,1)
process fitted on the original excess returns. The table exhibits the estimates of extreme
systematic risk (2.2) (tail-βs) for individual US banks and for the US banking system as
a whole. The entries show the probability that a given bank crashes given that a market
indicator of aggregate risk crashes (or in the case of the yield spread booms). Results are
reported for five different aggregate risk factors: The US banking sector sub-index, the
US stock index, the world banking sector sub-index, the world stock index and the US
high-yield bond spread. All probabilities are estimated with the extension of the approach
by Ledford and Tawn (1996) described in section 3 and reported in %. Univariate crash
probabilities (crisis levels) are set to p = 0.05%. The average and the standard deviation
at the bottom of the table are calculated over the 25 individual tail-βs in the upper rows,
respectively.
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Table E.8. Comparisons of extreme systematic risk
across different banking systems for GARCH-filtered
data

Aggregate risk factor
Banking system Bank index Stock index Global bank Global stock Yield spread

ηUS 0.83 0.78 0.72 0.74 0.53
ηEA 0.76 0.74 0.69 0.67 0.50
ηFR 0.74 0.71 0.69 0.67 0.50
ηGE 0.79 0.76 0.69 0.66 0.50
ηIT 0.74 0.74 0.70 0.69 0.53

Null hypothesis
ηUS = ηEA **2.09 1.25 0.85 **2.28 0.71
ηUS = ηFR **2.25 **1.99 1.12 **2.35 0.72
ηUS = ηGE 0.91 0.56 1.16 ***2.72 0.87
ηUS = ηIT *1.92 1.14 0.54 1.60 0.19

Note: The table shows the same results as table 9 in the main text for data that have been
filtered for volatility clustering. The returns used here are the residuals of a GARCH(1,1)
process fitted on the original excess returns. The table exhibits the average tail dependence
parameters η that govern the tail-β estimates reported in tables E.6 and E.7 for the US, euro
area, French, German and Italian banking system (upper panel) and the statistics of tests
examining differences in extreme systematic risk between the US and euro area banking
systems (lower panel). Each η is calculated as the mean of tail-β dependence parameters
across all the banks in our sample for the respective country/area. The tests are applications
of the cross-sectional test (4.5). The null hypothesis is that extreme systematic risk in the
US banking system is the same as in the other banking systems. A positive (negative) test
statistic indicates that extreme systematic risk in the US banking system (in the respective
euro area banking system) is larger than in the respective euro area (US) banking system.
The critical values of the test are 1.65, 1.96 and 2.58 for the 10%, 5% and 1% levels,
respectively. All results are reported for the five different aggregate risk factors: The euro
area/US banking sector sub-index, the euro area/US stock index, the world banking sector
sub-index, the world stock index and the euro area/US high-yield bond spread. Univariate
crash probabilities (crisis levels) are set to p = 0.05%.
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Table E.9. Extreme systematic risk (tail-βs) of euro
area banks for GARCH-filtered data: Time variation

Bank Aggregate risk factor
EMU banks EMU stocks World Banks World Stocks Yield spread

DEUTSCHE 10/8/97 (2.9) - 12/3/96 (7.0) 12/3/96 (4.3) 9/14/00 (139.5)
HYPO - - 3/13/98 (3.3) 10/22/97 (7.1) 10/4/00 (135.7)
DRESDNER - 12/5/96 (1.9) 12/3/96 (9.6) 12/5/96 (8.5) 9/13/00 (123.3)
COMMERZ - - - 10/22/97 (4.5) 8/22/00 (158.6)
BGBERLIN - 2/27/97 (1.9) 2/6/97 (2.8) 2/24/97 (3.3) 9/27/00 (188.4)
DEPFA 7/4/96 (5.1) 9/21/95 (4.4) - 9/21/95 (4.8) 9/13/00 (118.2)
BNPPAR 10/8/97 (3.8) 10/8/97 (5.2) 8/28/97 (6.8) 8/26/97 (5.2) 9/15/00 (128.5)
CA 10/10/00 (17.4) 10/5/00 (13.3) 2/19/01 (12.4) 9/19/00 (11.9) 7/21/00 (133.2)
SGENERAL 10/22/97 (3.3) - 12/5/96 (8.0) 12/5/96 (6.6) 9/21/00 (152.9)
NATEXIS - - 10/27/97 (3.9) 8/28/97 (5.8) 7/21/00 (172.7)
INTESA - 7/4/96 (3.2) - 9/10/97 (2.8) 7/24/00 (142.9)
UNICREDIT 8/1/97 (1.8) - 9/9/97 (5.6) 10/22/97 (4.9) 8/15/00 (168.0)
PAOLO 9/9/97 (2.6) 2/4/94 (4.5) 9/25/97 (7.1) 9/9/97 (6.9) 8/17/00 (186.1)
CAPITA - - 9/9/97 (3.9) 9/10/97 (3.3) 9/15/00 (141.8)
SANTANDER 10/8/97 (4.3) 12/5/96 (9.1) 12/10/96 (9.1) 12/10/96 (7.3) 9/12/00 (162.0)
BILBAO 10/22/97 (6.7) 11/26/96 (9.3) 12/10/96 (13.1) 10/8/97 (24.7) 10/3/00 (172.9)
BANESP - - - - 7/6/00 (33.1)
ING - - 8/21/97 (13.3) 7/5/96 (8.4) 9/11/00 (144.6)
ABNAMRO 8/4/98 (3.3) 7/12/96 (4.0) 7/4/96 (8.1) 7/4/96 (4.5) 9/15/00 (136.5)
FORTIS 2/16/96 (5.6) - 7/17/97 (14.8) 7/3/97 (6.7) 9/14/00 (127.0)
ALMANIJ 8/8/97 (5.2) 3/8/96 (4.8) 6/1/94 (8.5) 9/21/94 (13.3) 9/21/00 (234.4)
ALPHA 2/27/97 (19.3) 5/29/97 (18.0) 2/26/97 (12.0) 7/3/97 (19.1) 7/26/00 (92.5)
BCP 1/31/94 (5.4) 2/4/94 (8.6) 2/4/94 (10.7) 2/4/94 (16.5) 8/31/00 (106.7)
SAMPO 5/20/94 (3.6) 5/20/94 (3.2) 12/18/97 (4.6) 12/17/97 (2.5) 8/1/00 (209.2)
IRBAN 6/6/96 (2.4) - - - 9/29/00 (106.3)

Note: The table shows the same results as table 11 in the main text for data that have been filtered
for volatility clustering. The returns used here are the residuals of a GARCH(1,1) process fitted on
the original excess returns. The table reports the results of tests examining the structural stability of
the extreme systematic risks of euro area banks documented in table E.6. This is done by testing for
the constancy of the η tail dependence parameters (null hypothesis) that govern the tail-βs in table
E.6. Applying the recursive test (4.1) through (4.4) by Quintos et al. (2001), each cell shows the
endogenously found break date and the test value in parentheses. Dates are denoted XX/YY/ZZ,
where XX=month, YY=day and ZZ=year. The critical values of the test are 1.46, 1.78 and 2.54 for
the 10%, 5% and 1% levels, respectively. A test value exceeding these numbers implies an increase
in extreme dependence over time. The absence of a break over the sample period is marked with a
dash.
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Table E.10. Extreme systematic risk (tail-βs) of US
banks for GARCH-filtered data: Time variation

Bank Aggregate risk factor
Bank index Stock index Global bank Global stock Yield spread

CITIG - - 7/4/96 (7.7) 11/18/94 (8.4) 10/24/00 (97.9)
JPMORGAN - - 2/19/96 (3.6) 1/8/96 (3.3) 10/16/00 (74.8)
BOA - 4/1/96 (5.4) 12/5/96 (13.6) 2/15/96 (11.8) 9/26/00 (65.7)
WACHO - - 9/16/94 (8.7) 12/4/95 (5.2) 10/16/00 (66.4)
FARGO 3/7/96 (2.9) - 9/21/95 (7.2) 1/8/96 (5.6) 9/28/00 (35.3)
BONEC 9/15/95 (2.2) 10/19/95 (3.8) 10/23/95 (7.1) 6/5/95 (9.0) 10/20/00 (78.8)
WASHMU 3/1/96 (1.8) 2/26/96 (2.2) 2/27/97 (10.8) 2/23/96 (7.2) 12/13/00 (57.6)
FLEET 12/6/95 (2.1) 3/12/97 (7.7) 10/7/97 (13.7) 1/9/96 (12.2) 10/5/00 (52.3)
BNYORK - 1/8/96 (1.9) 7/4/96 (10.6) 1/8/96 (13.9) 9/22/00 (49.5)
STATEST 12/15/95 (12.9) 12/15/95 (11.9) 9/29/95 (12.1) 9/15/95 (7.5) 10/11/00 (139.1)
NOTRUST 12/3/96 (6.1) 12/15/95 (4.2) 10/7/97 (3.3) 12/5/96 (5.7) 9/29/00 (60.3)
MELLON 9/15/95 (2.8) 10/19/95 (4.2) 9/9/97 (7.7) 11/18/94 (10.2) 10/16/00 (90.3)
USBANC 12/15/95 (5.4) 12/11/95 (2.1) 10/13/97 (9.2) 9/15/95 (8.0) 2/19/01 (58.3)
CITYCO 12/10/96 (2.4) 12/2/96 (4.7) 1/8/96 (9.6) 12/15/95 (11.4) 10/5/00 (37.7)
PNC 3/7/96 (2.2) 10/19/95 (5.5) 7/4/96 (18.8) 10/20/95 (14.5) 11/9/00 (39.4)
KEYCO - 10/24/95 (3.1) 6/19/96 (2.4) 10/24/95 (7.1) 1/1/01 (44.7)
SUNTRUST 10/6/95 (5.3) 12/4/95 (5.1) 10/24/95 (8.7) 10/24/95 (16.9) 12/5/00 (42.4)
COMERICA - 1/8/96 (2.3) 7/4/96 (7.0) 9/15/95 (10.2) 10/4/00 (61.1)
UNIONBAN 6/27/97 (6.3) 3/4/98 (5.4) 1/5/98 (2.9) 1/5/98 (6.5) 10/25/00 (32.3)
AMSOUTH 11/13/95 (3.4) 12/4/95 (4.3) 12/10/96 (7.7) 1/5/96 (4.4) 10/17/00 (54.5)
HUNTING 2/4/97 (5.9) 1/22/97 (8.2) 2/27/97 (9.1) 1/22/97 (9.3) 10/5/00 (50.5)
BBT 3/6/96 (4.7) 7/20/98 (7.2) 5/22/98 (14.0) 3/7/96 (8.1) 10/5/00 (35.5)
53BANCO 1/2/96 (2.3) 12/13/95 (1.3) 1/8/96 (9.1) 12/7/95 (3.9) 10/17/00 (44.5)
SOTRUST 2/26/97 (10.6) 6/17/96 (9.2) 7/4/96 (9.0) 3/7/96 (7.0) 11/21/00 (41.1)
RFCORP 3/7/96 (4.1) 2/23/96 (12.3) 12/5/96 (9.2) 2/23/96 (12.7) 9/20/00 (46.4)

Note: The table shows the same results as table 12 in the main text for data that have been filtered
for volatility clustering. The returns used here are the residuals of a GARCH(1,1) process fitted on
the original excess returns. The table reports the results of tests examining the structural stability
of the extreme systematic risks of US banks documented in table E.7. This is done by testing for
the constancy of the η tail dependence parameters (null hypothesis) that govern the tail-βs in table
E.7. Applying the recursive test (4.1) through (4.4) by Quintos et al. (2001), each cell shows the
endogenously found break date and the test value in parentheses. Dates are denoted XX/YY/ZZ,
where XX=month, YY=day and ZZ=year. The critical values of the test are 1.46, 1.78 and 2.54 for
the 10%, 5% and 1% levels, respectively. A test value exceeding these numbers implies an increase
in extreme dependence over time. The absence of a break over the sample period is marked with a
dash.



86 P. HARTMANN, S. STRAETMANS, AND C.G. DE VRIES

Current address: Philipp Hartmann, European Central Bank and CEPR, DG
Research, Kaiserstraße 29, 60311 Frankfurt, Germany
E-mail address: philipp.hartmann@ecb.int
URL: http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=229414

Current address: Stefan Straetmans, Limburg Institute of Financial Economics
(LIFE), Economics Faculty, Maastricht University, P.O.Box 616, 6200 MD Maas-
tricht, The Netherlands
E-mail address: s.straetmans@berfin.unimaas.nl
URL: http://www.fdewb.unimaas.nl/finance/faculty/straetmans/

Current address: Casper G. de Vries, Erasmus Universiteit Rotterdam, Econom-
ics, P. O. Box 1738, 3000 DR Rotterdam, The Netherlands
E-mail address: cdevries@few.eur.nl
URL: http://www.few.eur.nl/people/cdevries/




