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ABSTRACT

A prominent theoretical controversy in the compensating differentials literature concerns

unobservable individual productivity. Competing models yield opposite predictions depending on

whether the unobservable productivity is safety-related skill or productivity generally. Using five

panel waves and several new measures of worker fatality risks, first-difference estimates imply that

omitting individual heterogeneity leads to overestimates of the value of statistical life, consistent

with the latent safety-related skill interpretation. Risk measures with less measurement error raise

the value of statistical life, the net effect being that estimates from the static model range from $5.3

million to $6.7 million, with dynamic model estimates somewhat higher.
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1. Introduction 

 Worker heterogeneity has played a prominent role in the compensating 

differentials literature. There could be heterogeneity in tastes where workers differ in 

willingness to accept risk for a given set of market opportunities. There could also be 

heterogeneity in productivity affecting the worker’s safety-related productivity or market 

productivity more generally. We examine econometrically the implications of individual 

heterogeneity for estimates of the value of a statistical life (VSL) and in the process 

establish that some key anomalous results in the literature disappear when panel data and 

appropriate econometric estimators are combined to estimate VSL. Our panel estimates 

also resolve an ongoing theoretical debate regarding the direction of bias in labor market 

estimates of VSL, indicating that the Shogren and Stamland (2002) assessment of the 

effect of differences in tastes and safety-related productivity is the dominant empirical 

influence.  

 By itself, preference heterogeneity presents little trouble for hedonic wage theory. 

Suppose all workers face the same market offer curve in terms of the maximum available 

wage for any given level of job risk. If workers had homogeneous tastes we would then 

observe a single wage-risk combination in the market, which reduces the empirical task 

to estimating the equilibrium point. With heterogeneous tastes workers will settle along 
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different points of the market opportunities curve, and we will observe a set of market 

equilibria for different workers. When preferences are heterogeneous the hedonic wage 

equation then traces out the set of market equilibria reflecting the various points of 

tangency between the market offer curve and workers’ constant expected utility loci. 

 Matters become more complex if there are unobservable aspects of worker 

productivity. If general labor market productivity is unobservable, Hwang, Reed, and 

Hubbard (1992) theorize that typical estimates of compensating differentials will 

understate workers’ valuation of risk. In an illustrative example using the VSL estimates 

of Thaler and Rosen (1976), Hwang et al. calculate that typical econometric estimates of 

the value of a statistical life could be too low by as much as 90 percent due to latent 

worker productivity differences. 

 Instead of overall productivity differences there may be heterogeneous attitudes 

toward risk along with what might be called safety-related productivity as workers may 

differ in their riskiness within any particular job (Viscusi and Hersch 2001). Suppose that 

firms do observe but researchers do not observe safety-related productivity. The 

information asymmetry means that workers will face different market offer curves based 

on their safety-related productivity, in contrast to the usual empirical assumption of a 

common offer curve. In the absence of variables correlated with riskiness, such as 

smoking status, econometric estimates will not then be tracing out equilibria off a single 

offer curve, as in the standard hedonic wage theory, but rather points off different market 

offer curves when safety-related productivity differs. If econometric estimates do not 

account for the influences of latent safety-related productivity, the resulting VSL 

estimates will be biased. 
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 Shogren and Stamland (2002) examine how the bias generated by ignoring 

unobservable differences in safety-related productivity may affect VSL estimates. Their 

research considers the role of heterogeneity in worker preferences as well as what they 

term skill, which parallels safety-related productivity (Viscusi and Hersch 2001) rather 

than overall market productivity (Hwang, Reed, and Hubbard 1992). In Shogren and 

Stamland’s approach both skill and preferences are unobservables, which leads to an 

upward bias in estimates of the value of a statistical life unless very strong special 

conditions are met. The practical result in their illustrative simulations is that available 

market estimates of the value of a statistical life may overstate the true value by several 

times. Both Hwang, Reed, and Hubbard (1992) and Shogren and Stamland (2002) 

theorize that conventional VSL estimates could be biased by a substantial amount, but 

they hypothesize different directions of bias. Shifting the focus from overall market 

productivity to safety-related skill reverses the expected direction of the bias from being 

an underestimate of VSL to being an overestimate of VSL. 

 Most econometric research to date has used cross-sectional data, which limit the 

ability to control for the unobserved worker heterogeneity that can lead to the large 

under- or over-estimates of VSL that have worried many researchers. Here we 

demonstrate how micro panel data used with appropriate econometric treatment of latent 

heterogeneity remove the biases that have concerned researchers such as Huang, Reed, 

and Hubbard (1992), Viscusi and Hersch (2001), and Shogren and Stamland (2002). Our 

treatment of individual heterogeneity is quite general, encompassing differences in 

traditional labor market productivity, differences in safety-related skill, and heterogeneity 

in tastes. The static model estimates range from $5.3 million to $6.7 million with 
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dynamic model estimates somewhat higher. Comparing our results using best 

econometric practices with results from more conventional models indicates situations 

where the value of life is over- versus under-estimated. VSL is overestimated by up to a 

factor of four when measurement errors are ignored and heterogeneity is omitted. VSL is 

underestimated by up to a third when measurement error is ignored and heterogeneity is 

included but improperly modeled as an uncorrelated random effect. 

2. Econometric Framework 

 Our empirical research begins with the canonical hedonic wage equation used in 

the value of statistical life literature. For worker i (i = 1,…,N) in industry j (j = 1,…,J) 

and occupation k (k = 1,…,K) at time t (t = 1,…,T) the hedonic tradeoff between the wage 

and risk of fatality is  

  ln ijkt jkt ijkt t ijktw fatal X uα γ δ= + + + ,     (1) 

where ln wijkt is the natural log of the hourly wage rate, fataljkt is the industry and 

occupation specific fatality rate, Xijkt is a vector containing dummy variables for the 

worker’s one-digit occupation (and industry in some specifications) and region of 

residence as well as usual demographic variables: worker education, age, race, marital 

status, and union status. Finally, tδ  is a vector of time effects, and uijkt is an error term 

allowing conditional heteroskedasticity and within industry-by-occupation 

autocorrelation.1

                                                 
1 We adopt a parametric specification of the regression model representing hedonic equilibrium in (1) for 
comparison purposes with the existing literature. An important emerging line of research is how more 
econometrically free-form representations of hedonic labor markets facilitates identification of  underlying 
fundamentals, which would further generalize estimates of VSL (Ekeland, Heckman, and Nesheim 2004). 
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2.1 Fixed-Effects Estimators 

 The standard panel-data estimators permitting fixed effects through person-

specific intercepts in (1) are the mean-difference (within) estimator and the time-

difference (first-differences) estimator. The fixed effects include all person-specific time-

invariant differences in tastes and all aspects of productivity. The two estimators yield 

identical results when there are only two time periods and when the number of periods 

converges towards infinity. With a finite number of periods (T > 2) estimates from the 

two different fixed-effects estimators can diverge due to possible non-stationarity in 

wages, measurement error, or model misspecification (Wooldridge 2002). Because wages 

from longitudinal data on individuals have been shown to be non-stationary in other 

contexts (MaCurdy 1982; Abowd and Card 1989), we adopt the preferred first-difference 

model. 

 The first-difference model eliminates any time-invariant effect by estimating the 

changes over time in hedonic equilibrium 

   ,    (2) ln ijkt ijk ijkt t ijktw fatal X uα γ δ∆ = ∆ + ∆ + + ∆%

where  refers to the first-difference operator and ∆ tδ%  is a re-normalized vector of time 

dummies.2

 The first-difference model could exacerbate errors-in-variables problems relative 

to the within model (Griliches and Hausman (1986). If the fatality rate is measured with a 

classical error then the first-difference estimate of α̂  may be attenuated relative to the 
                                                 
2 We also estimate a dynamic version of (2) by adding β∆ ln wijkt−1 to the right-hand side and using the first-
difference instrumental variables estimator recommended in Arellano (1989). The estimator uses the two-
period lagged level of the dependent variable as the identifying instrument for the one-period lagged 
difference in the dependent variable. The lagged dependent variable controls for additional heterogeneity 
and serial correlation plus sluggish adjustment to equilibrium. We compare the estimated short-run effect, 
α̂ , to the estimated long-run effect, ˆˆ( /1 )α β−  and their associated VSLs. 
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within estimate. An advantage of the regression specification in (2), which considers 

intertemporal changes in hedonic equilibrium outcomes, arises because we can use so-

called wider (2+ year) differences. If ∆ ≥ 2 then measurement error effects are mitigated 

in (2) relative to fixed-effects mean differences regression (Griliches and Hausman 

1986). As discussed in the data section below we address the measurement error issue in 

the fatality rate by employing multi-year averages of fatalities. For completeness we also 

note how the first-difference estimates compare to the within estimates. 

2.2 Comparison Estimators 

If , which is the standard zero conditional mean 

assumption of least squares regression, then OLS estimation of the hedonic equilibrium 

in (1) using pooled cross-section time-series data is consistent. If the zero conditional 

mean assumption holds, which is unlikely to be the case, it implies that the two 

estimators frequently employed with panel data, the between-groups estimator and the 

random-effects estimator, will yield consistent coefficient estimates. 

[ | , ] 0ijk jk ijkE u fatal X =

The between-groups estimator is a cross-sectional estimator using individuals’ 

time-means of the variables 

 ln ijk jk ijk ijkw fatal X uα γ δ= + + + ,     (3) 

where 
1

1ln ln
T

ijk ijkt
t

w
T =

= ∑ w and other variables similarly defined. A potential advantage of 

the between-groups estimator is that measurement-error induced attenuation bias in 

estimated coefficients may be reduced because averaging smoothes the data generating 

process. Because measurement error affects estimates of the VSL (Black and Kniesner 
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2003), the between-groups estimator is likely to provide improved estimates of the wage-

fatal risk tradeoff over OLS estimates of equation (1). 

 The random-effects model differs from the OLS and fixed-effects models in (1) 

and (2) by specifying components of the overall error as ijkt i ijktu µ υ= + , where iµ  is 

person-specific and time-invariant unobserved heterogeneity, and ijktυ  is an 

independently and identically distributed random error component. The random-effects 

estimator is a weighted average of the between-groups variation and the within-groups 

variation. 

 Consistency of the random-effects estimator requires [ | , ] 0i jkt ijktE fatal Xµ =  and 

[ | , ]ijkt jkt ijktE fatal X 0υ = . The first condition implies that the time-invariant unobserved 

heterogeneity is randomly distributed in the population. The implication is that selection 

into possibly risky occupations and industries on the basis of unobserved productivity and 

tastes is purely random across the population of workers. Although both the pooled least 

squares and between-groups estimators remain consistent in the presence of random 

heterogeneity, the random-effects estimator will be more efficient because it accounts for 

person-specific autocorrelation in the wage process. 

 If selection into a particular industry and occupation is not random with respect to 

time-invariant unobserved productivity and risk preferences, then estimates of the VSL 

based on the pooled cross-section, between-groups, or random-effects estimators will be 

biased and inconsistent. Indeed, Shogren and Stamland (2002) indicate that the bias will 

be positive and that failure to account for non-random time-invariant safety-related skill 
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(fixed effects) will lead to substantially upward-biased estimates of the VSL based on 

labor-market wage data.3

2.3 Research Objective 

The focal parameter of interest in each of the regression models we estimate is α̂ , 

which is used in constructing estimates of the value of a statistical life. Accounting for 

the fact that fatality risk is per 100,000 workers and that the typical work-year is about 

2000 hours, the estimated value of a statistical life at the mean level of wages is   

   
ˆ ˆ 2000 100,000wVSL w

fatal
α

⎡ ⎤∂
= = × × ×⎢ ⎥∂⎣ ⎦

.   (4) 

Although the VSL function in (4) can be evaluated at various points in the wage 

distribution, most studies report only the mean effect. To highlight the differences in 

estimates of the VSL with and without controls for unobserved individual differences, we 

follow the standard convention of focusing on VSL  in our estimates presented below. 

3. Data and Sample Descriptions 

 The main body of our data come from the 1993–2001 waves of the Panel Study of 

Income Dynamics (PSID), which provides individual-level data on wages, industry and 

occupation, and demographics. The PSID survey has followed a core set of households 

since 1968 plus newly formed households as members of the original core have split off 

into new families. 

                                                 
3 Aside from nonrandom selection based on time-invariant skills, it is possible for workers to self select 
into a given industry based on unobserved time-varying factors related to the business cycle. Keane (1993) 
examined the issue as a possible explanation for movements in inter-industry wage differentials over the 
business cycle using data from the National Longitudinal Survey of Young Men (there were no controls for 
fatal risk). He found that controlling for the fixed effect was important but, conditional on the time-
invariant skill, there was no evidence of nonrandom selection based on time-varying unobserved factors. 
Based on Keane’s evidence we make the absence of nonrandom selection base on time-varying 
unobservables a maintained assumption in our model. 
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3.1 PSID Sample 

 The sample we use consists of male heads of household ages 18–65 who (i) are in 

the random Survey Research Center (SRC) portion of the PSID, and thus excludes the 

oversample of the poor in the Survey of Economic Opportunity (SEO) and the Latino 

sub-sample, (ii) worked for hourly or salary pay at some point in the previous calendar 

year, (iii) are not permanently disabled or institutionalized, (iv) are not in agriculture or 

the armed forces, (v) have a real hourly wage greater than $2 per hour and less than $100 

per hour, and (vi) have no missing data on wages, education, region, industry, and 

occupation. 

Beginning in 1997 the PSID moved to every other year interviewing; thus, for 

consistent spacing of survey response we use data from the 1993, 1995, 1997, 1999, and 

2001 waves. Importantly, we do not require individuals to be present for the entire 

sample period; that is, we have an unbalanced panel where we assume that missing 

values are random events.4 Our sample filters yield 2,108 men and 7,937 person-years. 

Just over 40 percent of the men are present for all five waves (nine years) and another 25 

percent are present for at least four waves. 

 The focal variable from the PSID in our models of hedonic labor market 

equilibrium is the hourly wage rate. For workers paid by the hour the survey records the 

gross hourly wage rate. The interviewer asks salaried workers how frequently they are 

paid, such as weekly, bi-weekly, or monthly. The interviewer then norms a salaried 

worker's pay by a fixed number of hours worked depending on the pay period. For 

                                                 
4 In the event that item or panel nonresponse is not random then least squares estimates of the model 
parameters may be biased. However, Ziliak and Kniesner (1998) show that in the case of labor market 
behavior the propensity to attrite is well captured by a time-invariant and person-specific fixed effect. If 
such nonrandom attrition is present our differenced model in (2) should sweep it out along with the other 
time-invariant factors. 
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example, salary divided by 40 is the hourly wage rate constructed for a salaried worker 

paid weekly. We deflate this nominal wage by the personal consumption expenditure 

deflator for 2001 base year. We then take the natural log of the real wage rate to 

minimize the influence of outliers. 

 The demographic controls in the model include years of formal education, a 

quadratic in age, dummy indicators for region of country (northeast, north central, and 

west with south the omitted region), race (white = 1), union status (coverage = 1), marital 

status (married = 1), and one-digit occupation. Table 1 presents summary statistics for the 

main variables of interest. 

3.2 Fatality Risk Measures 

 The fatality risk measure we use is the fatality rate for the worker’s two-digit 

industry by one-digit occupation group. In particular, we distinguished 720 industry-

occupation groups using a breakdown of 72 two-digit SIC code industries and the 10 one-

digit occupational groups. Constructing codes for two-digit industry by one-digit 

occupation in the PSID we then matched each worker to the relevant industry-occupation 

fatality risk. 

 We constructed a worker fatality risk variable using proprietary U.S. Bureau of 

Labor Statistics data from the Census of Fatal Occupational Injuries (CFOI) for 1992–

2002.5  The CFOI provides the most comprehensive inventory to date of all work-related 

fatalities. The CFOI data come from reports by the Occupational Safety and Health 

Administration, workers’ compensation reports, death certificates, and medical examiner 

                                                 
5 The fatality data are not publicly available, but can be obtained on CD-ROM via a confidential agreement 
with the U.S. Bureau of Labor Statistics. Our variable construction procedure follows that in Viscusi 
(2004), who also compares the fatality risk measure to other death risk variables. 
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reports. In each case there is an examination of the records to determine that the fatality 

was in fact a job-related incident.  

We focus on three measures of fatal risk, which differ in construction of the 

numerator. The first measure simply uses the number of fatalities in each industry-

occupation cell. The second measure uses a three-year average of fatalities surrounding 

each PSID survey year (1992–1994 for the 1993 wave, 1994–1996 for the 1995 wave, 

and so on). The third measure uses the 11-year average (1992–2002) of fatalities in each 

industry-occupation cell. The denominator for each measure used to construct the fatality 

risk is the number of employees for that industry-occupation group in survey year t; that 

is, all three measures of the fatality risk are time-varying -- the first two because of 

changes in both the numerator and the denominator and the third because of employment 

changes used in the denominator.6  

We expect there to be less measurement error in the 3-year average and 11-year 

average fatality rates relative to the annual rate because the averaging process will reduce 

the influence of random fluctuations in fatalities as well as mitigate the small sample 

problems that arise from many narrowly defined job categories. However, we also expect 

less reporting error in the worker industry information than in worker occupation 

information, so even our annual measure should lead to less measurement error than if 

the worker’s occupation were the primary basis for the matching.7  

                                                 
6 For the measures we used the bi-annual employment averages from the U.S. Bureau of Labor Statistics, 
Current Population Survey, unpublished table, Table 6, Employed Persons by Detailed Industry and 
Occupation for 1993–2001.  
7 Brown (1980) examined compensating differentials for fatality risks and other job attributes using the 
NLSY along with risk measures for relatively high-risk jobs from the 1967 Society of Actuaries. Each of 
the job attribute measures that Brown used were for a point in time. Our fatality risk measures are time 
dependent and more refined in that more recently available data make it possible to construct risk measures 
by occupation and industry. For further discussion of the measurement issue, see Mellow and Sider (1983) 
and Black and Kniesner (2003). 
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 Table 1 lists the mean and standard deviation for the three fatality risk measures. 

The sample mean fatality risk of 5.9/100,000 is similar across all three measures. As 

expected, the variation in the annual measure exceeds that of the 3-year and 11-year 

averages. 

 A problem plaguing past attempts to estimate the wage-fatal risk tradeoff in panel 

data has been the use of aggregate fatality rates by industry or occupation because once 

the researcher applied the within transformation or the first-difference transformation 

there was little variation left in the fatality risk measure to identify credibly the fatality 

parameter. Most of the variation in aggregate fatal risk is between-groups (across 

occupations or industries) and not within-groups, but identification in the within and first-

difference estimators requires within-groups variation. In Table 2 we decompose the 

variation in our three fatal risk variables into its between-group and within-group 

components. Although cross-group variation exceeds within-group variation, the within 

variation is sufficiently substantial (60–70 percent of the between variation) so that we 

are optimistic that we can identify the fatal risk parameter and VSL in our panel data 

models. 

4. Wage Equation Estimates 

 We record our estimates of the wage fatal-risk tradeoff in Tables 3 and 4, along 

with the implied value of a statistical life evaluated at the sample mean real wage of $21. 

Although we suppress the coefficients for ease of presentation, each model controls for a 

quadratic in age, years of schooling, indicators for region, marital status, union status, 

race, one-digit occupation, and year effects. 

 12



 Because of the substantial heterogeneity of jobs in different occupations the 

regressions include a set of one-digit occupation dummies. The equations do not include 

industry dummy variables as well because it would introduce multicollinearity with 

respect to the fatality risk variable, which involves matching workers to fatality risk 

based on their industry and occupation. Indeed, including two-digit industry dummies in 

addition to occupation controls will remove all variation in the fatality risk variable. 

Moreover, the reported standard errors are clustered by industry and occupation.8 Finally, 

our first-difference regressions automatically net out the influence of industry and other 

job characteristics that do not change over time. 

4.1 Focal Estimates: First-Differences 

 Our first-difference estimates from equation (2) appear in Table 3. Comparing 

estimates down a column reveals the effect of measurement error. The results are 

reasonable from both an econometric and economic perspective and provide the basis for 

our research issue, which is how badly VSL can be mis-estimated if certain basic 

econometric issues are mis-handled. 

 The VSL implied by the coefficient for the annual fatality rate in Table 3 is $5.3 

million. A novel aspect of our research is that it may help identify the size of possible 

measurement error effects. If measurement error in fatality risk is random it will attenuate 

coefficient estimates and should be reduced by letting the fatality rate encompass wider 

and wider time intervals. Compared to VSL from the more typical annual risk measure, 

estimated VSL in Table 3 is about 15–20 percent larger when fatality risk is a three-year 

                                                 
8 Standard errors for the pooled times series cross-section estimator and the first-difference estimator are 
robust to heteroskedasticity and within industry-by-occupation autocorrelation; the standard errors for the 
random-effects estimator are robust to within-person autocorrelation. 
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average rather than the more typical annual measure and is about 25–33 percent larger 

when fatality risk is an 11-year average.9

 The last two columns of Table 3 report the results from dynamic first-difference 

regressions. The short-run effects from the dynamic model in column 2 are best 

interpreted as controlling for additional heterogeneity and serial correlation relative to the 

static results in column 1. The static and dynamic short-run estimates of VSL differ by no 

more than about 10 percent. The last column of Table 3 reports the long-run (steady state) 

estimates. Note that our first-differences estimator focuses on changes in wages in 

response to changes in risk. The mechanism by which the changes will become reflected 

in the labor market hinges on how shifts in the risk level will affect the tangencies of the 

constant expected utility loci with the market offer curve. To the extent that the updating 

of risk beliefs occurs gradually over time, which is not unreasonable because even release 

of the government risk data is not contemporaneous, one would expect the long-run 

effects on wages of changes in job risk to exceed the short-run effects. Limitations on 

mobility will reinforce a lagged influence. As would be expected, the long-run estimates 

of VSL in Table 3 are larger than the short-run estimates by about a third to a half.10

                                                 
9 By comparison to the VSL estimates in Table 3, estimates based on the within-estimator yield a VSL of 
$4.9 million with the annual fatality risk, $5.3 million with the 3-year average fatality risk, and $6.2 million 
for the 11-year average fatality risk. The within estimates are likely attenuated relative to the wider (2-year) 
differences reported in Table 3 because of greater measurement error in the deviation from time-mean 
transformation. The results in the first column of Table 3 remain statistically significant if one-digit 
industry controls are included, with VSL values of $3.3 million, $4 million, and $4.4 million. For a review 
of the literature on industry controls in compensating wage differentials research see Viscusi and Aldy 
(2003, pp. 16–17). 
10 In addition to the twice-lagged level of the log wage, the instruments include the (t−1) and (t−2) levels of 
age, age squared, occupation, marital status, union status, and region.  The first-stage F-statistic on the 
identifying instruments is 14 with a p-value < 0.000, suggesting that our dynamic estimates do not suffer 
from the common problem of weak instruments. 
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4.2 Results From Comparison Estimators 

 Table 4 presents the comparison models. The first comparison we mention is to 

the canonical cross-sectional estimates in column 1. The estimated annual fatal risk 

parameter yields an implied VSL of about $16 million, which is within the range of 

estimates summarized in Aldy and Viscusi (2003), albeit at the high end of the range, as 

is often the case for studies using the PSID. Using the smoothed average fatality rates 

raises the estimated VSL to $17.0 and $17.7 million for the 3-year and 11-year fatality 

measures. Even in the pooled cross section, which ignores the latent heterogeneity that 

have concerned many other researchers, the annual fatal risk measure attenuates the 

estimated VSL by upwards of 10 percent. 

 Column 2 of Table 4 reports estimates from the between-groups estimator. The 

between-groups estimator should mitigate the effects of measurement error in the fatality 

measures relative to the pooled cross-section estimator. The estimated coefficient on the 

fatality risk increases by about 40 percent, and the attendant mean estimate of the VSL is 

about $23 million, which is about 6 times larger than our econometrically preferred 

estimates in Table 3. 

 Column 3 of Table 4 reports estimates from the random-effects estimator. Recall 

that the random-effects estimator accounts for unobserved heterogeneity, which is 

assumed to be uncorrelated with observed covariates. It is fairly common in labor-market 

research to reject the assumption of no correlation between unobserved heterogeneity and 

observed covariates, and we find a similar rejection here.11 Allowing for the possibility of 

unobserved productivity and preferences for risk, even if it is improperly assumed to be 

                                                 
11 The Hausman Test of the null hypothesis of random effects is soundly rejected in favor of fixed effects 
with a P-value of less than 0.000. 
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randomly distributed in the population, reduces the estimated VSL by 50–55 percent 

relative to a model that ignores latent heterogeneity (the pooled least squares estimates). 

The difference in estimated VSL is consistent with the theoretical prediction in Shogren 

and Stamland (2002) that failure to control for unobserved skill results in a potentially 

substantial upward bias in the estimated VSL. 

5. Conclusion and Policy Implications 

 Obtaining reliable estimates of compensating differential equations has long been 

challenging because of the central role of individual heterogeneity in affecting both the 

market offer curve and individual preferences. The often conflicting influence of different 

unobservable factors has led to competing theories with opposite predictions; Hwang, 

Reed, and Hubbard’s (1992) unobservable productivity leads to upwardly biased VSLs 

and Shogren and Stamland’s (2002) unobservable safety-related skill and preferences 

generate a downward bias. Each article presents illustrative estimates indicating that the 

extent of the bias could be considerable. The direction and extent of the bias can best be 

resolved with an empirical test that accounts for unobservable individual differences. 

 The first-difference estimation results reported here use more refined fatality risk 

measures than used in earlier panel studies, making it possible to control for fixed effects 

and to identify the wage-fatality risk tradeoff. Comparison of the first-difference results 

with the pooled time-series cross-section estimates and the between-group estimates 

implies that controlling for fixed effects reduces the estimated VSL by more than half in 

every instance, and often by much more. Taking into account the influence of individual 

heterogeneity implies that, on balance, unobservable safety-related skill and risk 

preferences are a more powerful influence than unobservable productivity generally. 
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 Whereas previous studies using the Panel Study of Income Dynamics have often 

yielded extremely high VSL estimates, earlier research did not control for fixed effects. 

The first-difference estimates most closely paralleling the models in the existing literature 

range from $5.3 million to $6.7 million, which are at or below the median value of the 

estimates in the literature. Our estimates call into question the very high published VSL 

estimates, which may reflect the influence of omitted unobservable effects. 
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Table 1:  Selected Summary Statistics 

  Mean 
Standard 
Deviation 

   
Real Hourly Wage 21.043 13.352 
Log Real Hourly Wage 2.880 0.570 
Age 40.895 8.449 
Marital Status (1=Married) 0.820 0.384 
Race (1=White) 0.763 0.425 
Union (1=member) 0.230 0.421 
Years of Schooling 13.584 2.216 
Live in Northeast 0.177 0.381 
Live in Northcentral 0.288 0.453 
Live in South 0.372 0.483 
Live in West 0.163 0.370 
   
One-Digit Industry Groups:   
Mining 0.008 0.087 
Construction 0.106 0.308 
Manufacturing 0.259 0.438 
Transportation and Public Utilities 0.109 0.311 
Wholesale and Retail Trade 0.130 0.336 
Fire, Insurance, and Real Estate 0.045 0.208 
Business and Repair Services 0.066 0.248 
Personal Services 0.010 0.101 
Entertainment and Professional Services 0.169 0.375 
Public Administration 0.098 0.298 
   
One-Digit Occupation Groups:   
Executive and Managerial 0.186 0.389 
Professional 0.162 0.368 
Technicians 0.058 0.234 
Sales 0.032 0.177 
Administrative Support 0.066 0.248 
Services 0.086 0.280 
Precision Production Crafts 0.207 0.405 
Machine Operators 0.077 0.267 
Transportation 0.080 0.272 
Handlers and Labors 0.046 0.209 
Annual Fatality Rate (per 100,000) 5.924 9.096 
3-Year Fatality Rate (per 100,000) 5.811 8.569 
11-Year Fatality Rate (per 100,000) 5.870 8.567 
   
Number of Men = 2,108   
Number of Person Years = 7,937      
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Table 2:  Between and Within Group Variation for Industry 
by Occupation Fatality Rates 

    

 

Overall 
Standard 
Deviation

Between 
Group 

Standard 
Deviation 

Within 
Group 

Standard 
Deviation 

Annual Fatality Rate 
(per 100,000) 9.096 7.766 5.309 
3-Year Fatality Rate 
(per 100,000) 8.569 7.621 4.628 
11-Year Fatality Rate 
(per 100,000) 8.567 7.693 4.575 
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Table 3: Static and Dynamic First-Difference Estimates of Wage-Fatal Risk 
Tradeoff 

     

  
Static First-Difference 

Estimates Dynamic First-Difference Estimates 
     
   Short-Run Effect Long-Run Effect 
     
Annual Fatality Rate  0.0013 0.0014 0.0019 
  (0.0004) (0.0005) [0.0084] 
     

Implied VSL ($Millions)  5.3 5.8 8.1 
     
3-Year Fatality Rate  0.0015 0.0014 0.0020 
  (0.0005) (0.0006) [0.0284] 
     

Implied VSL ($Millions)  6.2 5.9 8.3 
     
11-Year Fatality Rate  0.0016 0.0017 0.0024 
  (0.0005) (0.0007) [0.0165] 
     

Implied VSL ($Millions)  6.7 7.3 10.3 
     
Number of Observations  5250 3379 3379 

Notes:  Standard errors are recorded in parentheses and p-values of the null hypothesis that 
the long-run effect is zero are recorded in square brackets. Standard errors for the first 
difference estimator are robust to heteroskedasticity and within industry-by-occupation 
autocorrelation. Each model controls for a quadratic in age, years of schooling, indicators for 
region, marital status, union status, race, one-digit occupation, and year effects. 

 

 20



 

Table 4:  Cross Section and Panel Data Estimates of Wage-Fatal 
Risk Tradeoff 

       

 

Pooled Cross 
Section Time 

Series Estimator 
Between-Group 

Estimator 
Random-Effects 

Estimator 
    
Annual Fatality Rate 0.0038 0.0054 0.0016 
 (0.0010) (0.0017) (0.0005) 
    

Implied VSL ($Millions) 16.0 22.8 6.9 
    
3-Year Fatality Rate 0.0041 0.0051 0.0019 
 (0.0011) (0.0017) (0.0006) 
    

Implied VSL ($Millions) 17.0 21.3 7.8 
    
11-Year Fatality Rate 0.0042 0.0050 0.0020 
 (0.0010) (0.0017) (0.0006) 
    

Implied VSL ($Millions) 17.7 21.1 8.5 
    
Number of Observations 7937 2108 7937 

Notes:  Standard errors are recorded in parentheses. Standard errors for the 
pooled times series cross-section estimator and the first difference estimator are 
robust to heteroskedasticity and within industry-by-occupation autocorrelation. 
Each model controls for a quadratic in age, years of schooling, indicators for region, 
marital status, union status, race, one-digit occupation, and year effects. 
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