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ABSTRACT

Among the most important pieces of empirical evidence against the standard representative agent,

consumption-based asset pricing paradigm are the formidable unconditional Euler equation errors

the model produces for cross-sections of asset returns. Here we ask whether calibrated leading asset

pricing models — specifically developed to address empirical puzzles associated with the standard

paradigm — explain the mispricing of the standard consumption-based model when evaluated on

cross-sections of asset returns. We find that, in many cases, they do not. We present several results.

First, we show that if the true pricing kernel that sets the unconditional Euler equation errors to zero

is jointly lognormally distributed with aggregate consumption and returns, such a kernel will not

rationalize the magnitude of the pricing errors generated by the standard model, particularly when

the curvature of utility is high. Second, we show that leading asset pricing models also do not explain

the significant mispricing of the standard paradigm for plausibly calibrated sets of asset returns, even

though in those models the pricing kernel, returns, and consumption are not jointly lognormally

distributed. Third, in contrast to the above results, we provide one example of a limited

participation/incomplete markets model capable of explaining larger pricing errors for the standard

model; but we also find many examples of such models, in which the consumption of marginal

assetholders behaves quite differently from per capita aggregate consumption, that do not explain

the large Euler equation errors of the standard representative agent model.
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1 Introduction

Among the most important pieces of empirical evidence against the standard representative

agent, consumption-based asset pricing paradigm are the formidable unconditional Euler

equation errors the model produces for cross-sections of asset returns. Such Euler equation

errors, or pricing errors (terms we use interchangeably), are especially large for cross-sections

that include a broad stock market index return, a short term Treasury bill rate, and the

size and book-market sorted portfolio returns emphasized by Fama and French (1992,1993).

The large unconditional pricing equation errors of the standard model have been stressed

elsewhere as an indication of the model�s empirical di¢ culties, e.g., Mankiw and Shapiro

(1986), Breeden, Gibbons, and Litzenberger (1989), Campbell (1996), Cochrane (1996), and

Lettau and Ludvigson (2001). We present further evidence on the size of these errors here.

The standard model, as we de�ne it, assumes that agents have unrestricted access to

�nancial markets, that assets can be priced using the Euler equations of a representative-

consumer maximizing the discounted value of power utility functions, and that the pricing

kernel M , or stochastic discount factor, is equal to the marginal rate of substitution in

consumption. This model takes the form

E [Mt+1Rt+1] = 1; Mt+1 = � (Ct+1=Ct)
�
 ; (1)

where the �rst equality is the Euler equation, Rt+1 denotes the gross return on any tradable

asset, Ct+1 is per capita aggregate consumption, 
 is the coe¢ cient of relative risk-aversion

and � is a subjective time-discount factor. For any model, the Euler equation error of a

tradable asset is the di¤erence between E [Mt+1Rt+1] and unity.

In much of theoretical asset pricing, Euler equations give the equilibrium prices of tradable

assets, consequently the empirical errors in this equation are a fundamental measure of how

well any model explains asset returns. It is perhaps surprising, then, that little research has

been devoted to investigating whether leading asset pricing models can help us understand

the signi�cant mispricing of the standard model when confronted with cross-sections of stock

returns. After all, such models were developed with the express purpose of explaining the

empirical limitations of the standard model. Instead, theoretical research has proceeded by

focusing on well known �puzzles�generated by the standard model, for example, the equity

premium puzzle, the risk-free rate puzzle, and the time-series predictability of excess stock

market returns.

In this paper, we argue that large empirical Euler equation errors constitute a puzzle for

the standard consumption-based asset pricing model that is at least as damning as these

other, more well known, conundrums. We employ the empirical facts on Euler equation

errors to evaluate some leading asset pricing models that were speci�cally developed to
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address puzzles associated with the standard paradigm (1). This is of interest because the

underlying assumption in each of these leading models is that, by discarding the standard

pricing kernel in favor of the true kernel implied by the model, an econometrician would be

better able to model asset pricing data. In particular, if leading asset pricing models are

true, then in these models using (1) to price assets should generate large unconditional asset

pricing errors, as in the data.

We �nd that this is not always the case. Often, in leading asset pricing models, parameters

of a standard representative agent �pricing kernel�based on (1) can be found that imply the

standard model has virtually identical unconditional pricing implications as the true model

that prices assets correctly. Thus, an econometrician who observed data generated from any

of these leading models would fail to reject the standard consumption-based model in tests

of its unconditional moment restrictions, let alone replicate the sizable unconditional Euler

equation errors found when �tting (1) to historical data.1

We note that the literature has already demonstrated a set of theoretical propositions

showing that any observed joint process of aggregate consumption and returns can be an

equilibrium outcome if the second moments of the cross-sectional distribution of consump-

tion growth and asset returns covary in the right way (Constantinides and Du¢ e (1996)).

Such existence proofs, important in their own right, are not the focus of this paper. Instead,

we ask whether particular calibrated economies of leading asset pricing models are quan-

titatively capable of matching the large pricing equation errors generated by the standard

consumption-based model when �tted to historical data. This is important because it re-

mains unclear whether fully speci�ed models built on primitives of tastes, technology, and

underlying shocks, and calibrated to accord with the data in plausible ways, can in practice

generate the joint behavior of aggregate consumption and asset returns that we observe in

the data.

Our analysis uses simulated data from several leading asset pricing models: the represen-

tative agent external habit-persistence paradigms of (i) Campbell and Cochrane (1999) and

(ii) Menzly, Santos, and Veronesi (2004), (iii) the representative agent long-run risk model

based on recursive preferences of Bansal and Yaron (2004), and (iv) the limited participation

model of Guvenen (2003). Each is an explicitly parameterized economic model calibrated

1Note that these �ndings are not a statement about the �power�of empirical Euler equation moments to

distinguish among alternative asset pricing models, just as evidence that most macroeconomic models fail

to explain a large equity premium and a low and stable risk-free rate is not a statement about the power

of key asset pricing moments to distinguish among alternative business cycle models. Indeed, while the

alternative models we study clearly have distinguishing characteristics, the interesting �ndings of this paper

center around a crucial similarity: they all fail in the same way to explain the mispricing of the standard

model.
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to accord with the data, and each has proven remarkably successful in explaining a range of

asset pricing phenomena that the standard model is unable to explain.

Our focus on Euler equations is intentional, since they represent the set of theoretical

restrictions from which all asset pricing implications follow. Kocherlakota (1996) emphasizes

the importance of Euler equation errors for understanding the central empirical puzzles of

the standard consumption-based model, which he illustrates using annual data on aggregate

consumption and asset returns. Formal econometric tests of conditional Euler equations

using aggregate consumption data lead to rejections of the standard representative agent,

consumption-based asset pricing model, even when no bounds are placed on the coe¢ cient of

relative risk aversion or the rate of time preference (Hansen and Singleton (1982); Ferson and

Constantinides (1991); Hansen and Jagannathan (1991)). Similarly, we stress here that the

quarterly pricing errors for the unconditional Euler equations associated with cross-sections

of asset returns are large when �tting aggregate data to (1), even when the parameters �

and 
 are left unrestricted and chosen to minimize those errors. Such Euler equation errors

place additional testable restrictions on asset pricing models: not only must such models

have zero pricing errors when the pricing kernel is correctly speci�ed according to the model,

they must also produce large pricing errors when the pricing kernel is incorrectly speci�ed

using power utility and aggregate consumption.

Our main �ndings are as follows:

First, we consider the case in which consumption in (1) is mismeasured, perhaps because

per capita aggregate consumption is a poor measure of individual assetholder consump-

tion, or the consumption of stockholders as an aggregate. We show that if the true pricing

kernel based on assetholder consumption is jointly lognormally distributed with aggregate

consumption and returns, then estimation of (1) using per capita aggregate consumption

produces biased estimates of the assetholder�s subjective discount factor and risk aversion

parameters, but does not rationalize the magnitude of the pricing errors generated by the

standard model, particularly when 
 is large.

Second, we use simulated data from each of the leading asset pricing models mentioned

above to study the extent to which these models explain the mispricing of the standard

model. We show that some of these models can explain why an econometrician obtains

implausibly high estimates of � and 
 when freely �tting aggregate data to (1). But, none

can explain the large unconditional Euler equation errors associated with such estimates

for plausibly calibrated sets of asset returns.2 Indeed, the asset pricing models we consider

2Campbell and Cochrane (2000) evaluate the pricing errors of the standard consumption-based model

implied by the habit model of Campbell and Cochrane (1999), by looking at the pricing errors for the most

mispriced portfolio. Their results suggest that there is scope for mispricing, but do not imply signi�cant

mispricing for the sets of stock portfolios we calibrate our models to match. Our approach di¤ers from theirs
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counterfactually imply that values of � and 
 can be found for which (1) satis�es the uncon-

ditional Euler equation restrictions just as well as the true pricing kernel, implying that the

standard model generates negligible pricing errors for cross-sections of asset returns.

Third, in contrast to the above results, we provide one example of an incomplete mar-

kets/limited participation model that can rationalize larger pricing errors for the standard

model, as long as the joint distribution of aggregate consumption, individual assetholder con-

sumption, and stock returns takes a particular non-normal form. But we also �nd� within

the class of distributions we consider� that many models with non-normal distribution spec-

i�cations will not explain mispricing of the standard model, since in many cases the use of

(1) to price assets merely distorts the estimated preference parameters but not the pricing

errors.

We emphasize that this paper is not a criticism of existing asset pricing theory. In-

stead, we seek a diagnostic for understanding the directions in which future research may

be fruitfully applied by providing a di¤erent perspective on whether leading paradigms fully

rationalize the joint behavior of asset prices and aggregate quantities that is central to the

empirical failure of the standard model. We also add to the literature by outlining the econo-

metric consequences, for estimation and testing of unconditional Euler equations, of �tting

the standard pricing kernel (1) to data when the true pricing kernel that generated the data

is derived from some other model. Finally, we stress that our results do not imply that no

model can be made consistent with the testable restrictions we focus on here. Our point

is that many models written down today appear inconsistent with these restrictions and do

not explain the mispricing of the standard consumption-based model.

The rest of this paper is organized as follows. The next section lays out the empirical

Euler equation facts using post-war U.S. data on per capita aggregate consumption and

returns. Section 3 studies the implications of various economic theories for the same Euler

equation errors we measure in the data, beginning with a simple example in which the

true pricing kernel is jointly lognormally distributed with aggregate consumption growth

and asset returns. Next, we investigate the extent to which the four leading asset pricing

models mentioned above are capable of explaining the empirical facts. Our main �ndings are

shown to be robust to time-aggregation of aggregate consumption data, to the introduction

of limited participation in the representative agent models, and to the use of small samples

to compute pricing errors. Finally, we explore the pricing implications of a number of

in that we do not analyze the most mispriced portfolio (which can look nothing like the stock portfolios

observed in historical data), but instead generate speci�c cross-sections of traded assets in the models to

match the properties of cross-sections in the data by directly relying on the models�own baseline calibrations

of asset returns, or by employing calibrations which deliver spreads in risk-premia commensurate with those

in our historical data set.
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simple incomplete markets/limited participation models in which assetholder consumption

is permitted to behave quite di¤erently from per capita aggregate consumption. Section 4

concludes.

2 Euler Equation Errors: Empirical Facts

The standard consumption based model, as de�ned above,assumes a representative-consumer

with constant relative risk aversion (CRRA) preferences over consumption given by

U = E

( 1X
t=0

�t
C1�
t � 1
1� 


)
; 
 > 0: (2)

At each date, agents maximize (2) subject to an accumulation equation for wealth. Agents

have unrestricted access to �nancial markets and face no borrowing or short-sales constraints.

The asset pricing model comes from the �rst-order conditions for optimal consumption choice,

which imply that for any traded asset indexed by j, with a gross return at time t+1 of Rjt+1;

the following Euler equation holds:

Et

"
�

�
Ct+1
Ct

��

Rjt+1

#
= 1: (3)

Here Et is the conditional expectation operator, conditional on time t information. The mar-

ginal rate of substitution in consumption, Mt+1 � � (Ct+1=Ct)
�
, is the stochastic discount

factor, or pricing kernel in this model. By the law of iterated expectations, equation (3) also

implies a corresponding unconditional Euler equation taking the form (1), which we focus

on from here on.

We focus our attention on the unconditional Euler equation errors for cross-sections

of asset returns that include a broad stock market index return (measured as the CRSP

value-weighted price index return and denoted Rst ), a short term Treasury bill rate (mea-

sured as the three-month Treasury bill rate and denoted Rft ), and six size and book-market

sorted portfolio returns available from Kenneth French�s Dartmouth web site. These returns

are value-weighted portfolio returns of common stock sorted into two size (market equity)

quantiles and three book value-market value quantiles. We use equity returns on size and

book-to-market sorted portfolios because Fama and French (1992) show that these two char-

acteristics provide a �simple and powerful characterization�of the cross-section of average

stock returns, and absorb the roles of leverage, earnings-to-price ratio and many other factors

governing cross-sectional variation in average stock returns. These returns are denoted as

a vector RFF
t � (R1t ; :::R6t )

0. We analyze the pricing errors for the eight assets Rst ; R
f
t ;R

FF
t

as a group, as well as for the set of two assets comprised of only Rst and R
f
t . The latter is
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of interest because the standard model�s inability to explain properties of these two returns

has been central to the development of a consensus that the model is �awed. In addition,

almost all asset pricing models seek to match the empirical properties of these two returns,

whereas fewer generate implications for larger cross-sections of securities.

There are two ways to present the pricing errors implied by the standard consumption-

based model. One is to focus on the Euler equations of raw returns:

E

"
�

�
Ct+1
Ct

��

Rjt+1

#
� 1 = 0 j = s; f; 1; :::; 6: (4)

Another is to focus on the Euler equation errors for excess returns:

E

"�
Ct+1
Ct

��
 �
Rjt+1 �Rft+1

�#
= 0 j = s; 1; :::; 6: (5)

For both Euler equations above, we refer to the di¤erence between an estimate of the left-

hand-side and zero as the unconditional Euler equation error, or alternatively the pricing

error, for the jth asset return. If the standard model is true then these errors should be zero

for any traded asset, given some values of the parameters � and 
.

Regardless of whether the Euler equations are stated in terms of excess or raw returns,

we choose the parameters � and 
 to minimize a weighted sum of squared pricing errors, an

application of Generalized Method of Moments (GMM, Hansen (1982)):

min
�;


gT (
; �) � w0
T (
; �)WwT (
; �) ; (6)

whereW is the identity matrix and wT (
; �) is the vector of average pricing errors for each

asset, with jth element wjT (
; �) given either by

wjT (
) = wjT (
) =
1

T

TX
t=1

�
Ct+1
Ct

��
 �
Rjt+1 �Rft+1

�
; j = s; 1; :::; 6:

in the case of excess returns, or

wjT (
; �) =
1

T

TX
t=1

�

�
Ct+1
Ct

��

Rjt+1 � 1; j = s; f; 1; :::; 6

in the case of raw returns. Let b� and b
 denote the argmin gT (
; �).
We use the identity weighting matrix because these it preserves the structure of the

original test assets, which are based on economically interesting characteristics and deliver

a wide spread in cross-sectional average returns. Use of alternate matrixes that re-weight

the Euler equations amount to minimizing the pricing errors for re-weighted portfolios of

the original test assets and destroy this structure. It should be noted, however, that other
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weighting matrixes such as the optimal weighting matrix of Hansen (1982) and the second

moment matrix of Hansen and Jagannathan (1997) produce similar results although they

are not reported in what follows.

The estimation uses quarterly, per capita data on nondurables and services expenditures

measured in 1996 dollars as a measure of consumption Ct, in addition to the return data

mentioned above.3 Returns are de�ated by the implicit price de�ator corresponding to the

measure of consumption Ct. The data span the period from the fourth quarter of 1951 to

the fourth quarter of 2002. A detailed description of the data is provided in the Appendix.

Figure 1 displays the square root of the average squared Euler equation errors (RMSE)

for the excess returns in (5) over a range of values of 
. The solid line plots the case where

the single excess return Rst+1 � Rft+1 is priced; the dotted line plots the case for the seven

returns returns Rst+1�R
f
t+1 and R

FF
t �Rft+1. To give a sense of how large pricing errors are

relative to the returns being priced, we plot RMSE/RMSR, where RMSR is the square root

of the cross-sectional average of the squared mean returns of the assets under consideration.

Two aspects of Figure 1 warrant emphasis. First, notice that in the case of the single

excess return on the aggregate stock market, Rst+1�R
f
t+1 (solid line), the RMSE is itself just

the pricing error (5), where this error is computed as the sample mean of the expression in

square brackets in (5), scaled by the value of � that minimizes an equally weighted average

of Euler equation errors for Rst and R
f
t . The solid line shows that the pricing error (5) for the

excess return on the aggregate stock market cannot be driven to zero, or indeed even to a

small number, for any value of 
. The lowest pricing error is 5.2% per annum, which occurs

at 
 = 117. The �gure displays this error as a fraction of the average excess stock market

return, and is shown to be almost 60 percent of the average annual CRSP excess return. At

other values of 
 this error rises precipitously and reaches several times the average annual

stock market return when 
 is outside the ranges displayed in Figure 1. Thus, there is no

value of 
 that sets the pricing error (5) to zero.4

Second, the dashed line in Figure 1 shows that the root mean-squared pricing errors

for the seven asset case Rst+1 � Rft+1;R
FF
t � Rft+1 is also large. As a fraction of the square

root of the average squared excess returns being priced, the minimum RMSE is about 60%,

about the same as that for the single excess return Rst+1�R
f
t+1; and this occurs at 
 = 118:

At other values of 
 the RMSE rises precipitously, just as it does for the single asset case.

Therefore, the degree of mispricing in the standard model is about the same regardless of

whether we consider the single excess return on the market or a larger cross-section of excess

3We exclude shoes and clothing expenditure from this series since they are partly durable and should not

be included in a measure of the service �ow of consumption.
4Note that (5) is a nonlinear function of 
: Thus, there is not necessarily a solution.
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stock market returns.5

Next we report the Euler equation errors in (4) for raw returns. Table 1 shows that when

� and 
 are chosen to minimize (6) for Rst+1 and R
f
t+1 alone, the RMSE is 2.7% per annum, a

magnitude that is 48% of the square root of the average squared returns on these two assets.

Since there are just two moments in this case, this again means that there are no values of

� and 
 that set the two pricing errors to zero. When � and 
 are chosen to minimize (6)

for the eight asset returns Rst+1; R
f
t+1;R

FF
t , the RMSE is 3.05% per annum, a magnitude

that is 33% of the square root of the average squared returns on the eight assets. Notice

that the estimates b� and b
 (which are left unrestricted) are close to 1.4 and 90, respectively,
regardless of which set of test assets are used. The �nal two columns of Table 1 report the

results of statistical tests of the model, discussed below.

Why are the pricing errors so large? The lower panel of Table 1 provides a partial answer:

a signi�cant part of the unconditional Euler equation errors generated by the standard model

are associated with recessions, periods in which per capita aggregate consumption growth

is steeply negative. For example, if we remove the data points associated with the smallest

six observations on consumption growth, the RMSE is 0.73% per annum or 13% of the root

mean squared returns for Rst+1 and R
f
t+1; and 1.94% per annum or 21 percent of the root

mean squared returns on the eight asset returns Rst+1; R
f
t+1;R

FF
t . Table 2 identi�es these

six observations as they are located throughout the sample. Each occur in the depths of

recessions in the 1950s, 1970s, early 1960s, 1980s and 1990s, as identi�ed by the National

Bureau of Economic Research. In these periods, aggregate per capita consumption growth

is steeply negative but the aggregate stock return and Treasury-bill rate is, more often than

not, steeply positive. This result echoes the �ndings in Ferson and Merrick (1987) who report

less evidence against the standard consumption-based model in non-recession periods. Since

the product of the marginal rate of substitution and the gross asset return must be unity

on average, such negative comovement (positive comovement between Mt+1 and returns)

contributes to large pricing errors.6 One can also reduce the pricing errors by using annual

5In computing the pricing errors above, we use the standard timing convention that end-of-period returns

dated in quarter t should be paired with consumption growth measured from t� 1 to t. If, instead, returns
at t are paired with consumption growth from t to t + 1; a value for 
 can be found that sets the pricing

error to zero for the single excess return Rs � Rf . By contrast, the choice of timing convention has very
little a¤ect on the RMSE for the set of seven excess returns Rs�Rf ;RFF

t �Rf . We use the former timing
convention as it is standard empirical practice in estimation of Euler equations. We stress, however, that

the timing convention itself is not important for the comparisons with theoretical models that follow, since

those models always produce zero pricing errors regardless of which timing convention is used.
6Eliminating the recession periods, however, results in preference parameter estimates that are even more

extreme than they are in the full sample; for example 
c > 300: Therefore, if one�s criterion for success is

reasonable preference parameter estimates, then the standard model does worse when the recession periods
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returns and year-over-year consumption growth.7 This procedure averages out the worst

quarters for consumption growth instead of removing them. Either procedure eliminates a

substantial proportion of the cyclical variation in consumption. For example, on a quarterly

basis the largest declines in consumption are about six times as large at an annual rate as

those on a year-over-year basis. This explains why Kocherlakota (1996), who focuses on

annual data, is able to locate parameter values for � and 
 that exactly satisfy the Euler

equations (4) for a stock return and Treasury-bill rate.

Of course, these quarterly recession episodes are not outliers to be ignored, but signi�cant

economic events to be explained. Indeed, we argue that such Euler equation errors�driven

by periods of important economic change�are among the most damning pieces of evidence

against the standard model. An important question is why the standard model performs so

poorly in recessions relative to other times.

Although not reported above, we note that the pricing error of the Euler equation asso-

ciated with the CRSP stock market return is always positive, implying a positive �alpha�

in the expected return-beta representation of the model.8 This says that unconditional risk

premia are too high to be explained by the stock market�s covariance with the marginal

rate of substitution of aggregate consumption, a familiar result from the equity premium

literature. The high alphas generated by the standard consumption-based model constitute

one of the most remarked-upon failures in the history of asset pricing theory.

2.1 Sampling Error and Tests for Joint Normality

We can use GMM distribution theory to ask whether the estimated pricing errors wT (
; �)

are jointly di¤erent from zero, that is larger than what would be implied by sampling error

alone. When there are more moments than parameters to be estimated, such an assessment

can be interpreted as a test of overidentifying restrictions. The last two columns of Table

1 report p�values from chi-squared tests of the model�s overidentifying restrictions for es-

timation of the eight Euler equations in (4). Although the results presented so far have

used the identity weighting matrix, the last column in Table 1 presents the p�values from

are removed than when they are included. If 
 is restricted to be less than 100 in the sample without

recessions, the pricing errors move up considerably. For example, in the two asset case the RMSE moves up

to 1.94% from 0.73%.
7Jagannathan and Wang (2004) study the ability of a linearized version of the standard model to explain

a large cross-section of asset returns using forth quarter over fourth quarter consumption growth and annual

asset returns. They �nd more support for the model when year-over-year growth rates are restricted to the

fourth quarter.
8The alpha in the expected return-beta representation is equal to the pricing error, scaled by 1=E [Mt];

see Cochrane (2005) for an exposition.
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the same statistical test using an estimate of the optimal GMM weighting matrix (Hansen

(1982)). The results from either weighting matrix are the same: we may strongly reject the

hypothesis that the Euler equation errors are jointly statistically indistinguishable from zero;

the p�values for this test are less than 0.0001.
For the two-asset case, the model is just-identi�ed, so the overidentifying tests above are

not applicable. But note that the expectation in (5) is estimated using the sample means of

et+1 = �

�
Ct+1
Ct

��
 �
Rst+1 �Rft+1

�
;

which are excess returns discounted by the pricing kernel �
�
Ct+1
Ct

��

: Fixing � and 
, it is

possible to compute the sampling variation in the sample mean of et+1, given as �2 = �2e=T;

where �e is the sample standard deviation of et+1 and T is the sample size.9 Not surprisingly,

the sampling error of the mean of et+1 is quite large when evaluated at the optimal values

of � = 1:4 and 
 = 117: a con�dence interval formed by plus and minus two standard errors

is (�0:55%; 11%) as a percent per annum. This large range, which includes zero, arises
partly for the same reason that it is di¢ cult to estimate the equity premium accurately:

excess returns are highly volatile. But it is also because the data force a very high value

for 
 in an attempt to �t the equity premium. Such a high value of 
 generates extreme

volatility in the pricing kernel, making discounted returns even harder to estimate precisely

than nondiscounted returns. Unless one views 
 = 117 as plausible, however, such wide

standard error bands for mean discounted returns merely provide further evidence of the

model�s empirical limitations, which even at 
 = 117 leaves a pricing error that is more than

half of the average annual stock return. If instead we restrict the value of risk aversion to

lie in the range 0 � 
 � 89, the pricing errors are always statistically di¤erent from zero

at the �ve percent level of signi�cance. In short, when 
 is as high as 117, the sample

mean of et+1 is statistically insigni�cant not because the pricing errors are small�indeed they

are economically large�but rather because discounted returns are so extremely noisy when


 = 117.

For the case of raw returns and only two assets Rst+1 and R
f
t+1; we ask� given sampling

error� how likely is it that we would observe the pricing errors we observe under the null

hypothesis that the standard model is true and the Euler equations are exactly satis�ed in

population?10 Models that postulate joint lognormality for consumption and asset returns

are null models of this form, since in this case values for � and 
 always exist for which
9We also calculated standard errors for the mean of et+1 using a nonparameteric correction for serial

correlation. Since et+1 is close to serially uncorrelated, this correction has little a¤ect on the error bands.
10For the case of raw returns and only two assets Rst+1 and R

f
t+1; we have an exactly identi�ed GMM

system, so sampling error could in principle be assessed by conducting a block bootstrap simulation of the

raw data. This approach is inappropriate for the application here, however, because such a procedure would
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the population Euler equations of any two asset returns are exactly satis�ed. Consequently,

only sampling error in the estimated Euler equations could cause non-zero pricing errors for

two asset returns. To address the question just raised, we suppose the data were generated

by the standard CRRA representative agent model, with returns and consumption jointly

lognormally distributed, and ask how likely is it that we would �nd results like those reported

in Table 1, in a sample of the size we have.

Consider a simple model where � lnCt+1 � i:i:d:N(�; �2), and preferences are of the

CRRA form with (for example) � = 0:99 and 
 = 2. Since the log di¤erence in consumption

is i.i.d. and normally distributed, the return to a risky asset that pays consumption, Ct, as

its dividend is also normally distributed, as is risk-free rate. The equilibrium returns have an

analytical solution in this case, and can be solved from the (exactly satis�ed) Euler equations.

Using this model, we simulate 1000 arti�cial samples of consumption data equal to the size

our quarterly data set (204), with � and � set to match their respective sample estimates.

Using the analytical solutions for returns we use the simulated data for consumption growth

to obtain corresponding simulated data for returns. Finally, we use these simulated data to

solve for the values of � and 
 that minimize the empirical Euler equation errors for the risky

and risk-free asset return and store the absolute value of those errors. The 95% centered

con�dence for these errors, in percent annum, is found to be (9.5 10�11, 7.0 10�9) for the

risky return and (1.3 10�10, 6.5 10�9) for the risk-free return. These �ndings suggest that it

is extremely unlikely that we would �nd results like those reported in Table 1, in a sample

of the size we have, if this simple version of the standard CRRA representative agent model,

where consumption and returns are jointly lognormally distributed, were true.

Given these results, it is natural to assess whether joint lognormality is a plausible de-

scription of our consumption and return data, once we take into account sampling error. We

do so by performing formal statistical tests of the data based on multivariate skewness and

kurtosis for the vector Yt �
h
log (Ct+1=Ct) ; log

�
Rst+1

�
; log

�
Rft

�i0
: We also perform joint

normality tests for the larger set of variables

Xt �
h
log (Ct+1=Ct) ; log

�
Rst+1

�
; log

�
Rft

�
; log

�
R1t
�
; :::; log

�
R6t
�i
:

Normality tests for the larger cross-section will help inform the results in the next section in

which models that assume joint lognormality are studied.11

e¤ectively treat the low consumption growth periods in our sample as outliers, in the sense that a nontrivial

fraction of the simulated samples would exclude those observations. But as we have argued above, these

episodes of low or negative consumption growth� the hallmark of recessions� are not outliers to be ignored,

but signi�cant economic events to be explained.
11Multivariate skewness and kurtosis statistics are computed following Mardia (1970). Let xt be a p-

dimensional random variable with mean � and variance-covariance matrix V of sample size T . Multivariate
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Statistical tests based on multivariate skewness and kurtosis provide strong evidence

against joint normality. ForYt multivariate skewness is estimated to be 1.54 and multivariate

excess kurtosis is 4.64, with p�values for the null hypothesis that these statistics are equal to
those of a multivariate normal distribution less than 0.0001. Similarly for Xt, multivariate

skewness is 4.65 and multivariate kurtosis is 35.93, and the statistical rejections of normality

are even stronger. The same conclusion arises from examining quantile-quantile plots (QQ

plots) for the vector time-series Yt and Xt, given in Figure 3. This �gure plots the sample

quantiles for the data against those that would arise under the null of joint lognormality,

along with pointwise standard errors bands.12 The QQ plots show substantial departures

from normality: a large number of quantiles lie far outside the standard error bands for joint

normality.

3 Euler Equation Errors: The Theories

How capable are asset pricing theories of explaining the large pricing errors of the standard

model? In this section, we address this question by considering a number of distinct asset

pricing models. We begin with a simple model of limited participation/incomplete markets

model in which the true pricing kernel based on assetholder consumption is jointly lognor-

mally distributed with aggregate consumption and returns. Although the empirical results

reported above suggest that any model that implies aggregate consumption and returns

are jointly lognormally distributed will be unable to match the data, studying a lognormal

model is instructive for considering how the use of a mismeasured pricing kernel (for exam-

ple because per capita aggregate consumption is used in place of stockholder consumption)

might distort parameters compared to pricing errors. Next we evaluate the Euler equa-

tion errors generated by leading asset pricing models in which the log pricing kernel and

returns are not generally lognormally distributed. As mentioned, these include the external

skewness S and (excess) kurtosis K and asymptotic distributions are given by

S =

 
1

T 2

TX
t=1

TX
s=1

g3ts

!1=2
TS2

6
� �2p(p+1)(p+2)=6

K =
1

T

TX
t=1

g2tt � p (p+ 2)
p
TKp

8p (p+ 2)
� N (0; 1) ;

where gts = (xt � �̂)0V̂�1(xs � �̂) and �̂ and V̂ are sample estimates of � and V. S and K are zero if x is

jointly normally distributed. If x is univariate S and K are equivalent to the standard univariate de�nitions

of skewness and kurtosis.
12Pointwise standard error bands are computed by simulating from the multivariate normal distribution

with length equal to the size of our data set.
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habit-formation models of Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi

(2004), the long-run risk model of Bansal and Yaron (2004), and the limited participation

model of Guvenen (2003). Finally, we present a number of additional results for simple lim-

ited participation/incomplete markets models in which assetholder consumption, aggregate

consumption and asset returns are not jointly lognormally distributed.

3.1 A Limited Participation/IncompleteMarkets ModelWith Joint

Lognormality

We investigate the a¤ect on parameter estimates and pricing errors of estimating (1) on

aggregate consumption data when the return data were generated from a model with limited

stock market participation or incomplete markets. For this purpose, a model of limited

stock market participation is isomorphic to that of incomplete markets since what matters

is the common implication that the consumption of the marginal assetholder may behave

di¤erently from per capita aggregate consumption.13 Thus, one can interpret the example in

this section as an illustration of the in�uence of measurement error on empirically observed

pricing errors. In this case, stockholder consumption corresponds to correctly measured

consumption for which the model holds exactly, and aggregate consumption is an error-

ridden empirical measure of true consumption.

As a benchmark case in this section, we assume aggregate consumption, stockholder or

individual consumption, and asset returns are jointly lognormally distributed. Later we

consider asset pricing models in which the joint distribution is permitted to deviate from

lognormality. For the rest of the paper, we use lowercase letters to denote log variables, e.g.,

�ct+1 � log (Ct+1=Ct) :
Denote the marginal rate of substitution (MRS) of an individual asset-holder as

M i
t+1 � �

�
Cit+1
Cit

��

; (7)

where Cit is the consumption of assetholder i, � is the subjective time discount factor of

this assetholder, and 
 is the coe¢ cient of relative risk aversion. If agents have unrestricted

access to �nancial markets, thenM i
t+1 correctly prices any traded asset return, implying that

E
�
M i
t+1R

j
t+1

�
= 1; j = 1; :::; N (8)

for N asset returns.
13With limited stock market participation, the set of Euler equations of stockholder consumption imply that

a representative stockholder�s marginal rate of substitution is a valid stochastic discount factor. Similarly,

with incomplete consumption insurance the set of Euler equations of household consumption imply that any

household�s marginal rate of substitution is a valid stochastic discount factor.
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We can interpret the MRS, M i
t+1; either as that of a representative stockholder in a

limited participation setting (Cit is then the consumption of a representative assetholder), or

as that of an individual assetholder in an incomplete markets setting (Cit is the consumption

of any marginal assetholder, e.g., Constantinides and Du¢ e (1996)). It functions as the

stochastic discount factor in this model. The risk-free rate is de�ned as a one-period riskless

bond, Rft+1 = 1=Et
�
M i
t+1

�
:

Now denote the misspeci�ed �MRS,� for some parameters �c and 
c, that would be

computed if an econometrician erroneously used per capita aggregate consumption, Ct in

place of Cit

M c
t+1 � �c

�
Ct+1
Ct

��
c
: (9)

For any asset return indexed by j, the pricing error associated with the true MRS, M i
t+1, is

by construction zero, but the pricing error associated with the erroneous MRS, M c
t+1, is not

necessarily zero and is denoted PEj, where (dropping the time subscripts for brevity)

PEj = E
�
M cRj

�
� 1: (10)

Throughout this paper, when we refer to pricing errors, we mean the pricing error generated

for any asset by erroneously using the �pricing kernel�M c in place of the true pricing kernel,

since only the former are potentially nonzero if the model is true.

Under joint lognormality of Ct+1=Ct and returns, the pricing error may be written

PEj = E
�
Rj
�
E [M c] exp

�
Cov

�
mc; rj

�	
� 1 (11)

Use the fact that the pricing error is identically zero under M i to write

E
�
Rj
�
E
�
M i
�
exp

�
Cov

�
mi; rj

�	
= 1;

implying under joint lognormality,

PEj =
E [M c]

E [M i]
exp

�
Cov

�
mc; rj

�
� Cov

�
mi; rj

�	
� 1 (12)

=
E [M c]

E [M i]
exp

�
�
cCov

�
�c; rj

�
+ 
Cov

�
�ci; rj

�	
� 1: (13)

How are the parameters and pricing errors distorted by using M c
t+1 to price assets in

place of the true pricing kernel M i
t+1? For N > 2 asset returns, it is not possible to give a

intuitively appealing analytical expression for this distortion, although values can be obtained

numerically. It is, however, possible to illustrate analytically the distortion in 
c to a very

close approximation, by focusing on log pricing errors and assuming that the risk-free rate
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is constant. In this case we can choose �c so that E [M i] = E [M c] ; which insures that the

pricing error for the risk-free rate is zero.14 While this is an approximation, it turns out to

be very well satis�ed in the data, since the Treasury-bill rate is extremely stable.15 As a

result, �ndings based on the full numerical solution are almost identical to those based on

this approximation when the returns being priced are calibrated to match the means and

volatilities of those in the data. We maintain this approximation purely for expositional

purposes; the reader should be aware that exact results are very close.16

With this approximation in hand, the pricing error of the jth asset is now

PEj = exp
�
�
cCov

�
�c; rj

�
+ 
Cov

�
�ci; rj

�	
� 1:

With �c set as just described and 
c is chosen to minimize the sum of squared log pricing

errors, pej � log (1 + PEj), as in GMM estimation using the identity weighting matrix, the

resulting value of 
c is given by

b
c = 


 P
j �cj�ijP
j �

2
cj

!
; (14)

where �cj �Cov(�c; rj) ; �ij �Cov(�ci; rj) ; and �
P

j� indicates summation over all j =

s; f; 1; :::; N asset returns being priced. In the two-asset case, when only Rf and Rs are

priced, this collapses to b
c = 


�
�is
�cs

�
: (15)

Notice that, in the two asset case, this value of 
c, along with the value of �c discussed above,

insures that the log pricing errors forRst+1 and constantR
f are identically zero.17 This follows

because, under lognormality, the log model is linear and the problem collapses to solving two

linear equations in two unknowns. Therefore an erroneous pricing kernel based on aggregate

consumption can always be found that unconditionally prices any two assets just as well

14Note that this does not imply that the risk-free rate puzzle is trivial, since �c is unrestricted and in

particular can be chosen to be greater than unity if required to set the pricing error to zero.
15If M i

t is the true pricing kernel, then E
�
M i
t

�
= E

h
1=Rft

i
: Since we assume E

�
M i
t

�
= E [M c

t ], our

assumption implies E [M c
t ] = E

h
1=Rft

i
, which prices the risk-free rate exactly if Rft is constant. It follows

that the approximation error in pricing the risk-free rate is E
h
1=Rft

i
� 1=E

h
Rft

i
, which is -0.01 percent per

annum. Therefore, the approximation implies we pick � so that E
�
M i
t

�
= E [M c

t ], with the resulting pricing

error in the risk-free rate of -0.01%.
16The calculations below are similar in spirit to those in Vissing-Jorgensen (1999), who shows how limited

stock market participation biases estimates of relative risk aversion based on aggregate consumption. Vissing-

Jorgensen�s calculations presume heterogenous households rather than a representative-stockholder, as below.
17When there are only two asset returns, simple analytical expressions for the values of �c and 
c that

insure the pricing errors are identically zero can be obtained without assuming that the risk-free rate is
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as the true pricing kernel based on assetholder consumption. The estimates of 
c and �c
that result from �tting (9) to data will not correspond to any marginal investor�s true risk-

aversion or time discount factor. But a representative agent pricing kernel based on per capita

aggregate consumption can nevertheless be found that has the same unconditional asset-

pricing implications as the true pricing kernel based on individual assetholder consumption.

Equation (14) shows that 
c will be higher the higher is assetholder risk aversion, but

that this relation depends on the statistical properties of aggregate consumption growth,

individual consumption growth, and returns. Again, a more intuitively appealing expression

can be obtained by focusing on the two-asset case. Consider an orthogonal decomposition of

aggregate consumption growth into a part that is correlated with asset-holder consumption

and a part, "it, orthogonal to asset-holder consumption:

�ct = ��cit + "it; (16)

where � =
Cov(�ct;�cit)
Var(�cit)

� �ci�c
�i

: Here �ci denotes the correlation between �ct and �c
i
t. Using

this decomposition, (15) can be re-written as

b
c = 


� +
�"is
�is

; (17)

where �"is �Cov
�
"it; R

s
t+1

�
. Now consider assets that are uncorrelated with "it, the component

of aggregate consumption that is orthogonal to stockholder consumption. Any risky asset

that is on the log mean-variance e¢ cient frontier will be included in this category. In this

case �"is = 0 and therefore b
c = 


�
= 


�i
�ci�c

: (18)

The formula tells us that limited participation and/or incomplete consumption insurance

can in principal account for implausibly high estimated values of 
c and �c obtained when �t-

ting data to (9), but to do so, assetholder consumption must be more volatile than aggregate

constant. For a single risky asset return Rst+1and the risk-free return R
f
t+1, these values are given by

b
c = 


�
�is � �if
�cs � �cf

�
;

b�c = � exp

�

c�c �


2c�
2
c

2
� 
�i +


2�2i
2

+ 
c�cs � 
�is
�
;

where �if �Cov
�
�ci; rf

�
; �cf �Cov

�
�c; rf

�
; �c is the mean growth rate of aggregate consumption, and �i

is the mean growth rate of the consumption of asset-holder i: Notice that, in equilibrium, b
c and b�c will take
the same value regardless of the identity of the assetholder. This follows because any two households must

in equilibrium agree on asset prices, so that the Euler equation holds for each individual household. Thus,


c = 
i

�
�is � �if
�cs � �cf

�
= 
k

�
�ks � �kf
�cs � �cf

�
for any two asset-holders i and k:
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consumption and/or very weakly correlated correlated with it. Notice, however, that even

if assetholder consumption behaves very di¤erently from per capita aggregate consumption,

this is not enough to explain the large unconditional Euler equation errors that arise from

�tting (9) to data in the two-asset case. In that case, the only consequence of using aggregate

per capita consumption in this setting is a bias in the estimated parameters b
c and b�c; there
is no consequence for the Euler equation errors, which remain zero.

How do the pricing errors under lognormality compare with those estimated in the data

when there are more asset returns? Figure 2 provides an answer for both the two- and

eight-asset cases using actual historical return data. The �data� line plots RMSE/RMSR

over a range of values for 
c, that arise from choosing �c to minimize the sum of squared

pricing errors in (10), which do not impose lognormality. The top panel plots for the two-

asset case (these lines reproduce those in Figure 1), the bottom panel for the eight-asset

case. The line labeled �lognormality�plots the RMSE/RMSR that arise from choosing �c
to minimize the sum of squared pricing errors in (11), which impose lognormality. One

way to interpret the �lognormal� line is to note that we can always �nd a pricing kernel

M i
t+1 = expflog (�) � 
�cit+1g, for some �, 
, and normally distributed �cit+1, which along

with (16) and a statistical model for log returns, such as

rjt = �j�cit + �jt ;

generates a set of asset returns with the same means, variances and covariances with �ct
as those in the historical data, and prices those asset exactly.18 The dashed line labeled

�lognormality� then gives the pricing errors that would arise from �tting M c
t+1 to data

generated from this model.

Figure 2 shows that a lognormal model cannot explain the pricing errors in the data,

especially when 
c is large. When only two assets are priced (top panel), values for �c
and 
c can be found for which the pricing errors of the CRSP stock market return and the

Treasury-bill rate are exactly zero, whereas this is not true in the data when no distributional

assumptions are imposed. Similarly, the bottom panel shows that the lognormal model

cannot match the magnitude of the Euler equation errors for the eight-asset case, increasingly

so as 
c rises.

We note that the results above hold for any pricing kernelM i
t+1 that is jointly lognormally

distributed with returns and aggregate consumption growth. It is not necessary that the

pricing kernel take the form given in (7). Referring to (12) it is evident that the resulting

solutions for �c and 
c would be a function of the means, variances and covariances of �ct,

returns and mi
t, whatever form the latter may take. As long as the true kernel M i

t+1 is

18This is done by choosing �j to match the mean excess return for each asset, choosing var
�
�j
�
to match

the volatility of each return, and choosing cov
�
�; "i

�
to match the cov

�
rj ;�c

�
from the data.
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jointly lognormally distributed with aggregate consumption and returns, then values for the

discount factor relative risk aversion can be always be found such that the standard model

generates identical (zero) unconditional asset pricing implications for two asset returns, and

for which the root mean-squared pricing errors are much smaller than in the data (especially

for large values of 
c) for larger cross-sections of asset returns. These results suggest that

models that are approximately lognormal will also have di¢ culty explaining the large pricing

errors of the standard model.

3.2 Leading Asset Pricing Models

We now turn our attention to investigating how well leading asset pricing models explain

the pricing errors of the standard model by examining the properties of model-generated

data. All of the models generate predictions endogenously for a stock market return and a

risk-free rate, and none imply that the pricing kernel is unconditionally jointly lognormally

distributed with aggregate consumption growth and returns.19 In addition, the Menzly,

Santos, and Veronesi (2004) (MSV) model is multi-asset extension of the Campbell and

Cochrane (1999) (CC) habit model; thus we can extend our analysis of nonlinear habit-

based models to study multiple risky asset returns by applying the MSV framework. It is

also straightforward to study the multi-asset properties of the long-run risk model of Bansal

and Yaron (2004) (BY), since the cash-�ows in BY are exogenously modeled. By contrast,

the limited participation model of Guvenen (2003) (GUV) generates implications for only

two asset returns, a single risky (stock market) return, and a risk-free return. Since cash-

�ows are endogenously determined by the properties of a general equilibrium setting in that

model, the extension to multiple-assets is not trivial and would have to be developed. Thus,

we focus only on the implications of the Guvenen model for Rs and Rf below.

3.2.1 Misspeci�ed Preferences

We begin with the representative-agent models and consider three prominent representative

agent models: the external habit-persistence models of Campbell and Cochrane (1999) and

Menzly, Santos, and Veronesi (2004), and the long-run risk model of Bansal and Yaron

(2004). All three of these models display a striking ability to match a range of asset pricing

phenomena, including a high equity premium, low and stable risk-free rate, long-horizon

predictability of excess stock returns, and countercyclical variation in the Sharpe ratio. In

what follows, we describe only the main features of each model, and refer the reader to the

19Joint lognormality of consumption growth, the risky asset return, and the risk-free return can be statis-

tically rejected in simulated data from the models discussed in this section.
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original article and the Appendix for details. Except where noted, our simulations use the

baseline parameter values of each paper.

The utility function in the CC and MSV models take the form

U = E

( 1X
t=0

�t
(Ct �Xt)

1�
 � 1
1� 


)
; 
 > 0 (19)

where Ct is individual consumption and Xt is habit level, which they assume to be a function

of aggregate consumption, and � is the subjective discount factor. In equilibrium, identical

agents choose the same level of consumption, so Ct is equal to aggregate consumption. The

key innovation in each of these models concerns the speci�cation of the habit process Xt,

which in both cases evolves according to heteroskedastic autoregressive processes. (The

Appendix provides a detailed description of the models in this section.) The stochastic

discount factors in both models take the form

Mt+1 = �

�
Ct+1 �Xt+1

Ct �Xt

��

but di¤er in their speci�cation ofXt (see the Appendix). We denote asMCC

t+1 the speci�cation

of the stochastic discount factor corresponding to the Campbell-Cochrane model ofXt, and as

MMSV
t+1 the speci�cation of the stochastic discount factor corresponding to the MSV model of

Xt. Both CC and MSV assume that the log di¤erence in consumption, �ct � log (Ct=Ct�1),
follows an i.i.d. process:

�ct = �+ �vt;

where vt is a normally distributed, i.i.d. shock. Both models derive equilibrium returns for a

risk-free asset and a risky equity claim (stock market claim) that pays aggregate consumption

as its dividend. As above, the returns to these assets are denotedRft+1, andR
s
t+1, respectively.

Campbell and Cochrane set 
 = 2 and � = 0:89 at an annual rate. Menzly, Santos and

Veronesi choose 
 = 1 and � = 0:96: Notice that the curvature parameter 
, is no longer

equal to relative risk-aversion.

The MSV model is a multi-asset extension of the CC model that generates implications

for multiple risky securities, each distinguished by a distinct dividend process with dynamics

characterized by �uctuations in the share it represents in aggregate consumption:

sjt =
Dj
t

Ct
for j = 1; :::; N;

where n represents the total number of risky �nancial assets indexed by j, each paying a

dividend Dj. Cross-sectional variation in unconditional mean returns across risky securities

is governed by cross-sectional variation in the covariance between shares sjt and aggregate

consumption growth �ct. In analogy to the empirical exercise, we create a model-generated
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cross-section of asset returns comprised of six risky securities plus the aggregate wealth

portfolio (stock market) return and the risk-free rate, for a total of 8 asset returns. The

Appendix gives a detailed description of the stochastic process for the shares.

Bansal and Yaron (2004) consider a representative agent who maximizes utility given

by recursive preferences of Epstein and Zin (1989, 1991) and Weil (1989). The stochastic

discount factor under Epstein-Zin-Weil utility used in BY takes the form

MBY
t+1 =

 
�

�
Ct+1
Ct

�� 1
 

!�
R��1w;t+1; (20)

where Rw;t+1 is the simple gross return on the aggregate wealth portfolio, which pays a

dividend equal to aggregate consumption, Ct, � � (1� 
) = (1� 1= ) ;  is the intertemporal
elasticity of substitution in consumption (IES), 
 is the coe¢ cient of relative risk aversion,

and � is the subjective discount factor. Bansal and Yaron assume that both aggregate

consumption growth and aggregate dividend growth have a small predictable component

that is highly persistent. They also incorporate stochastic volatility into the exogenous

processes for consumption and dividends to capture evidence of time-varying risk premia.

Taken together, the dynamics of consumption growth and stock market dividend growth,

�dt, take the form

�ct+1 = �+ xt + �t�t+1 (21)

�dt+1 = �d + �xt + �d�tut+1; (22)

xt+1 = �xt + �c�tet+1

�2t+1 = �2 + �1
�
�2t � �2

�
+ �wwt+1;

where �2t+1 represents the time-varying stochastic volatility, �
2 is its unconditional mean, and

�; �d, �, �d; �, �c, �1 and �w are parameters, calibrated as in BY. Here, the stock market

asset is the dividend claim, given by (22), rather than a claim to aggregate consumption,

given by (21). We denote the return to this dividend claim Rst+1, since it corresponds the

model�s stock market return. BY calibrate the model so that xt is very persistent, with a

small unconditional variance. Thus, xt captures long-run risk, since a small but persistent

component in the aggregate endowment can lead to large �uctuations in the present dis-

counted value of future dividends. Their favored speci�cation sets � = 0:998, 
 = 10 and

 = 1:5.

As for the MSV model, we can analyze the multi-asset implications of the BY model by

considering risky securities, indexed by j; that are distinguished by their cash-�ow processes:

�djt+1 = �jd + �jxt + �jd�tut+1: (23)
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By considering a grid of values for �j, we create risky securities with di¤erent risk-premia,

since this parameter governs the correlation of equilibrium returns with the stochastic dis-

count factor. By altering �jd, we control the variance in the risky security returns, and �
j
d

controls the mean price-dividend ratio across risky assets.

For both the MSV and BY models, we choose parameters of the cash-�ow processes

to create a cross-section of asset returns that include a risk-free rate, an aggregate equity

return, and six additional risky securities, or eight securities in total. For each model, we

exactly replicate the original calibration of the risk-free return and aggregate equity return,

themselves chosen to match the properties of these assets in U.S. data. For the six additional

risky securities, we choose parameters of the cash-�ow processes that allow us to come as close

as possible to matching the spread spread in risk-premia found in the six size/book-market

sorted portfolio returns in the data. For the BY model, we are able to generate a cross-

section of returns that come very close to matching the historical spread. For example, the

largest spread in average annualized returns is given by the di¤erence between the portfolio

in the smallest size and highest book-market category and the portfolio in the largest size

and lowest book-market category, equal to about seven percent. Thus, we create six arti�cial

returns for which the largest spread is 6.7 percent per annum. Constructing such returns for

the MSV framework is more complicated, since the solutions for the multi-asset model hold

only as an approximation (see the Appendix for the approximate relation). Unfortunately,

we �nd that the approximation error in this model can be substantial under parameter values

required to make the maximal spread as large as seven percent.20 As a result, we restrict

the parameter values to ranges that limit approximation error to reasonably small degrees.

This still leaves us with a maximal spread of 4.5 percent per annum in the returns of the six

arti�cial securities created.

To study the implications of these representative-agent models, we simulate a large time-

series (e.g., 20,000 periods) from each model and compute the pricing errors that would arise

in equilibrium if M c
t+1 = �c

�
Ct+1
Ct

��
c
were �tted to data generated by these models. As

in the historical data, the parameters 
c and �c are chosen by GMM to minimize the Euler

equation errors E[M c
t+1R

j
t+1]� 1; j = 1; :::; N . We denote the parameters that minimize the

GMM criterion as b�c and b
c. As in the historical data, we focus on the case of N = 2 asset

returns (Rst+1 and R
f
t+1), and the case of N = 8 asset returns, (Rst+1; R

f
t+1; R

1
t+1; :::; R

6
t+1).

The results are presented in Table 3. First consider the CC and MSV habit models.

For each model, we �nd the pricing errors that arise from �tting M c
t+1 to model-generated

data are numerically zero, just as they are when the true habit pricing kernel is used. This

20Menzly, Santos, and Veronesi (2004) state that the approximation error is small for the parameters they

employ, but it is not small for our parameters, which were chosen to mimic returns of the Fama-French

portfolios.
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result does not depend on the number of assets being priced; it is the same for the two-asset

case and eight-asset case. Values of �c and 
c can in each case be found that allow the

standard consumption-based model to unconditionally price assets just as well as the true

pricing kernel, as measured by the root mean-squared pricing error. In the CC model, the

values of �c and 
c that set these pricing errors for R
s
t+1 and R

f
t+1 to zero are 1.28 and 57.48,

respectively. In the MSV model, the corresponding values are 1.71 and 30.64, respectively.

Thus, the habit models can explain what many would consider the implausible estimates of

time preference and risk aversion obtained when freely �tting aggregate data to (1). (Recall

that the true preference parameters are 
 = 2 and � = 0:89 in CC and 
 = 1 and � = 0:96 in

MSV.) But, it is in those parameters that all of the distortion from erroneously using M c
t+1

to price assets arises. No distortion appears in the Euler equation errors themselves.

The conclusions for the Bansal-Yaron long-run risk model, also displayed in Table 3, are

the same. Here we follow BY and simulate the model at monthly frequency, aggregate to

annual frequency, and report the model�s implications for pricing errors and parameter values.

The monthly consumption data are time-aggregated to arrive at annual consumption, and

monthly returns are continuously compounded to annual returns.21 We �nd that �c is close

to the true value, but 
c is estimated to be about �ve times as high as true risk aversion. As

for the habit models, this framework explains why an econometrician obtains high estimates

of risk aversion when �tting data to the standard consumption-based model. But, also like

the habit models, if an econometrician �t M c
t+1 to data generated by M

BY
t+1 , the resulting

Euler equation errors would be e¤ectively zero, in contrast to what is found using historical

data.22 In the two-asset case the RMSE is zero to numerical accuracy, and it is 0.01% per

annum in the eight-asset case.

3.2.2 Misspeci�ed Consumption

We now consider the limited participation model of Guvenen (2003) (GUV). Like the rep-

resentative agent models considered above, this model has remarkable success in explaining

many of the empirical puzzles associated the standard representative agent consumption-

based model. It can account for a high equity premium and low and stable risk-free rate,

predictable stock market returns, and countercyclical Sharpe ratio. Here we suppose (1)

21The resulting Euler equation errors are unchanged if they are computed for quarterly time-aggregate

consumption and quarterly returns rather than annual time-aggregated consumption and annual returns.
22For models based on recursive preferences, Kocherlakota (1990) shows that there is an observational

equivalence to the standard model with power utility preferences, if the aggregate endowment growth is i.i.d.

However, the endowment growth process in the BY model is not i.i.d., but instead serially correlated with

stochastic volatility. Moreover, the annual consumption data are time-aggregated, which further distorts the

time-series properties from those of the monthly endowment process.
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is �tted to data generated by this non-representative agent model in which asset prices

are determined not by per capita aggregate consumption but rather by the consumption of

stockholders.

The Guvenen model has two types of consumers, stockholders and nonstockholders. The

latter are exogenously prevented from participating in the stock market. The discount factor

in this model is denoted

MGUV
t+1 � �

�
Cit+1
Cit

��

;

where Cit is stockholder consumption, which by assumption is not the same as aggregate

per capita consumption, � is the subjective discount factor of the stockholder, and 
 is

the stockholder�s relative risk aversion. In other respects, the model is a standard one-

sector real business cycle model with adjustment costs in capital. Both stockholders and

nonstockholders receive labor income with wages determined competitively by the marginal

product of labor, and �rms choose output by maximizing the present discounted value of

expected future pro�ts. Both agents have access to a riskless bond.

We follow the same procedure discussed above to quantify pricing errors in this model. We

simulate a large time series of arti�cial data (20,000 observations) for the equilibrium values

of the variables in this model, and use these data to quantify the magnitude of unconditional

pricing errors that an econometrician would �nd from �tting (1) to data generated byMGUV
t+1 .

In Guvenen�s baseline model, stockholders have risk aversion 
 = 2 and subjective dis-

count factor � = 0:99. Table 4, panel A shows that stockholder consumption growth is about

two and a half times as volatile as aggregate consumption growth in the baseline model, and

perfectly correlated with it. The model also implies that stockholder consumption is over

four times as volatile as nonstockholder consumption growth, but the two are almost per-

fectly correlated , with correlation 0.99. This is not surprising since both types of consumers

participate in the same labor market and bond markets; the agents di¤er only in their ability

to hold equities, and in their risk-aversion (nonstockholders have higher risk-aversion). As a

consequence, stockholder�s marginal rate of substitution,MGUV
t+1 , is highly correlated with an

aggregate consumption pricing kernelM c
t+1 � �c(Ct+1=Ct)

�
c , for a variety of values of �c and


c. Panel B of Table 4 shows this correlation for two such cases, �rst with �c = � = 0:99 and


c = 
 = 2, and second with �c and 
c set to the values that minimize the equally-weighted

sum of squared pricing errors for the stock return and riskless bond. These latter values areb�c = 0:99 and b
c = 4:49; thus, unlike the representative-agent models discussed above, this
model does not explain the high estimated values of � and 
 obtained when �tting data to

the standard consumption-based model. In both cases, the correlation between MGUV
t+1 and

M c
t+1 is extremely high, 0.99.

Panel C of Table 4 shows the pricing errors in Guvenen�s model that would arise if
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aggregate consumption were erroneously used in the pricing kernel in place of stockholder

consumption. For comparison, the table also reports the pricing errors using the true kernel

MGUV
t+1 based on stockholder consumption, which are quite small (0.02% on an annual basis)

but not exactly zero due to the rarely-binding borrowing constraints that apply to both

stockholders and nonstockholders. To compute the pricing errors this model produces when

M c
t+1 is employed to explain asset returns, we �rst set the parameters �c and 
c equal to

the stockholder�s discount factor, �, and risk aversion, 
, in the baseline parameterization.

When �c = � = 0:99 and 
c = 
 = 2, the pricing errors using aggregate consumption are

larger than that using stockholder consumption, equal to about 0.4% at an annual rate for

the stock return and -0.34% for the risk-free rate, but still small in magnitude compared

to the data. By contrast, when �c and 
c are chosen to minimize the sum of squared

pricing errors for these two asset returns, as in empirical practice, the pricing errors are,

to numerical accuracy, zero for the stock return and risk-free return. By simply increasing


 by a factor of 2.5, to 4.5 from 2, the Guvenen model delivers a power utility pricing

kernel using aggregate consumption that explains the historical mean return on the stock

market and risk-free (Treasury bill) return just as well as the true pricing kernel based on

stockholder consumption. Thus, the model does not explain the equity premium puzzle of

Mehra and Prescott (1985), which is the puzzle that a high value of 
 (greater than 10

according to Mehra and Prescott) is required to explain the equity premium when the power

utility model is calibrated to aggregate consumption data. These results echo the empirical

�ndings in Brav, Constantinides, and Geczy (2002), which suggest that limited stock market

participation plays a minimal role in explaining the historical equity premium.

3.2.3 Misspeci�ed Preferences and Misspeci�ed Consumption

One possible reaction to the results above, is that we should take the representative agent

nature of the CC, MSV and BY models less literally and assume that they apply only to a

representative stockholder, rather than to a representative household of all consumers. Would

the results for these models be better reconciled with the data if we accounted for limited

participation? Not necessarily. As an illustration, we consider a limited-participation version

of the MSVmodel and show that the conclusions are unchanged from the representative agent

setup.

Since the MSV model is a representative agent model, we modify it in order to study

the role of limited participation. Assume that asset prices are determined by the framework

above, where a valid stochastic discount factor is a function of any stockholder�s consumption

Cit and stockholder�s habit X
i
t . The process for stockholder consumption is the same as in
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MSV, described above, but now with i subscripts:

�cit = �i + �iv
i
t;

where vit is a normally distributed i.i.d. shock. Aggregate consumption is assumed to follow

a separate process given by

�ct = �c + �cv
c
t ;

with vct a normally distributed i.i.d. shock. We analyze the results over a range of cases for

the correlation between vit and v
c
t , and their relative volatilities �i=�c.

Asset prices are determined by the stochastic discount factor of individual assetholders,

denoted

MMSV i
t+1 � �

�
Cit+1 �X i

t+1

Cit �X i
t

��

;

where X i
t+1 is the habit modeled as in MSV, not a function of C

i
t . We then compute two

types of pricing errors. First, we assume that the data are generated byMMSV i
t+1 and compute

the pricing errors that arise from using

M ch
t+1 � �c

�
Ct+1 �Xt+1

Ct+1 �Xt+1

��
c
to price assets, where Xt is now computed from the MSV habit speci�cation using aggregate

consumption. Second, we assume the data are generated byMMSV i
t+1 and compute the pricing

errors that arise from using

M c
t+1 � �c (Ct+1=Ct)

�
c

to price assets. This latter case is what we refer to as misspeci�ed preferences and misspec-

i�ed consumption; an econometrician who tried to �t M c
t+1 to asset return data would be

employing both the wrong preferences and the wrong consumption measure. In both cases,

�c and 
c are chosen to minimize an equally-weighted sum of squared pricing errors of the

assets under consideration, as with the historical data.

The results are presented in Table 5 for the exercise using M ch
t+1 and Table 6 for the

exercise using M c
t+1. We report the pricing errors for a range of parameter speci�cations.

The standard deviation of asset-holder consumption growth is allowed to range from one

times to �ve times as volatile as that of aggregate consumption growth, the correlation

from -1.0 to 1.0. The pricing errors (as measured by RMSE/RMSR) are reported in the

bottom subpanels. The top panel reports these errors for the two-asset case where only Rst+1
and, Rft+1 are priced; the bottom panel reports for the eight-asset case with six additional

risky securities. For each parameter con�guration, we also report the values b�c and b
c that
minimize the quadratic form gT (
c; �c), as above.
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Several aspects of Tables 5 and 6 are of interest. First, consider the two-asset case. Table

5 shows that the pricing errors that arise from usingM ch
t+1 to price assets are always zero, even

if assetholder consumption growth has very di¤erent properties from aggregate consumption

growth. For example, Table 5 shows that aggregate consumption growth can be perfectly

negatively correlated with assetholder consumption growth and �ve times as volatile, yet the

pricing errors that arise from using Ct in place of Cit are still zero. Notice, however, that

the parameters �c and 
c can deviate substantially from the true preference parameters of

stockholders. This is similar to the lognormal example, in which the use of mismeasured

consumption distorts preference parameters, but does not explain the large pricing errors

generated by the standard consumption-based model.

Second, Table 6 shows that the same result holds if one uses M c
t+1 in place of the true

pricing kernel M i
t+1. Here the model used to explain asset returns is based both the wrong

consumption measure and the wrong preferences. Nevertheless, values of �c and 
c exist such

thatM c
t+1explains the Euler equations just as well asM

i
t+1. The values for �c and 
c are more

distorted from their true values than is the case in Table 5 where we have merely substituted

the wrong consumption measure into the class of habit preferences, but the pricing errors

are still zero.23 These �ndings reinforce the conclusion that changing the pricing kernel does

not necessarily change the pricing implications.

Third, results for the multi-asset case are qualitatively the same as those for two-asset

case. For example, Table 6, bottom panel shows that the root mean-squared pricing error

that arises from erroneously using M c
t+1 to price assets is a tiny fraction of the square-root

of the average squared returns of the assets under consideration. The highest is 4% per

annum. These numbers should be contrasted with the 33% �gure obtained for a cross-

section of 8 asset returns in U.S. data (Table 1). Moreover, the numbers in Table 6 actually

overstate the true pricing errors. This is because there are two sources of error that result

in nonzero pricing errors even using the true pricing kernel MMSV i
t+1 . The �rst is the discrete-

time approximation to the continuous-time model of MSV. We eliminate much of this error

by shrinking the time-interval over which we simulate the model and reporting annualized

values in the table. The second source of error is the approximation in (26). Taken together,

these errors mean that the true kernel generates pricing errors that are often of the same

order of magnitude as those reported in Table 6.

The results reveal a striking implication of leading asset pricing models: the unconditional

23Variation in �i=�c has little a¤ect on the estimated value of the risk-aversion parameter 
c. This happens

because we adjust the parameter � in the MSV habit speci�cation (see the Appendix) at the same time as we

adjust �i=�c so that the mean excess return Rs�Rf remains roughly what it is in MSV. Since the volatility
of aggregate consumption is kept the same and � is adjusted to keep the returns of the same magnitude, 
c
doesn�t change much.
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pricing errors of the standard consumption-based model can be virtually identical to those

using the true pricing kernel, even when (i) the true kernel has preferences di¤erent from the

CRRA form of the standard model, (ii) the consumption of marginal assetholders behaves

di¤erently from per capita aggregate consumption, and (iii) the number of assets exceeds

the number of free parameters to be estimated. This implies that the explanation for the

high average pricing errors produced by the standard model has to be something more than

limited participation and/or nonstandard preferences per se, since in many models parameter

values can be found that allow the standard model to price cross-sections of assets almost

as well as the true pricing kernel that generated the data.

3.2.4 Time Aggregated Consumption

What if the decision interval of households may be shorter than the data sampling interval,

leading to time-aggregated consumption observations? We have repeated the same exercise

for all the models above using time-aggregated consumption data, assuming that agents�de-

cision intervals are shorter than the data sampling interval, for a variety of decision intervals.

For example, we assume that agents make decisions quarterly but that the data sampling

interval is annual. As above, we also allow for the possibility that aggregate consumption is

a misspeci�ed measure of assetholder consumption. For all models the essential results for

the Euler equation errors remain small: values of �c and 
c can always be found such that

the unconditional pricing errors associated with using M c
t+1 to price assets are very small

relative to the data, even when using time-averaged data. As an example, Table 7 shows

results for the MSV model with limited participation. (To conserve space, we report only

the results for this model, since the conclusion is unchanged for the other models, although

note that the results above for the BY model are already based on time-aggregate data.)24

Most values of RMSE/RMSR are close to zero. The largest occurs for the eight asset case

and is equal to 0.07, which occurs only if we assume stockholder consumption growth is

negatively correlated with aggregate consumption growth. This is far smaller than the value

of 0.33 found in the data. Since time-averaging changes both the serial dependence of the

consumption data and its unconditional correlation with returns, this suggests that the exact

time-series properties of consumption growth are not crucial for explaining the large pricing

errors of the standard model.
24Again, because of numerical error, these �gures actually overstate the true relative pricing errors, since

the RMSE for the true MSV stochastic discount factor is of the same order of magnitude as that for the

CRRA model.
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3.2.5 Finite Sample Pricing Errors

The results above are based on long samples of model-generated data, providing estimates

of the population Euler equation errors. The estimates using historical data are based on

a �nite sample of 204 observations. In Table 8 we show that our main conclusions are

robust to using samples equal in size to that of our historical dataset. The table reports the

maximum RMSE/RMSR over 1,000 samples of size 204 that arises from �ttingM c
t+1 to data

generated from the relevant model. We do not report small-sample results for the eight-

asset MSV model. The small sample behavior of the MSV model is problematic because

the model is solved in continuous time and moreover holds only as an approximation for

multiple risky securities. As a result, we �nd that small amounts of approximation error are

compounded by discretization error in small samples and it is not possible to reduce these

errors to reasonable levels unless the number of decisions within the period is almost in�nite.

Nevertheless, we are able to report the results for the two-asset case, since the solutions for

the aggregate consumption claim and risk-free rate are not approximate. Table 8 shows that

for the three representative agent models, CC, MSV, and BY, the maximum Euler equation

errors are numerically zero, in both the two-asset and eight-asset cases. The Guvenen model

produces a slightly higher maximum RMSE/RMSR in �nite samples, equal to about 0.87%

at an annual rate, but this is still well below the value of almost 50% found in historical data

(Table 1). In short, the large empirical Euler equation errors of the standard model are not

explained by small sample biases.

To summarize, the results above suggest that if the data on asset returns and consumption

were generated by any of the leading models considered above, we would �nd zero Euler

equation errors and the consequence of using the wrong pricing kernel would simply be

incorrect estimates of � and 
. We now move on to consider an alternative way to explain

the large historical pricing errors in frictionless models, by further studying the potential

roles of limited participation/incomplete markets. We saw above that when all variables

are jointly lognormally distributed, the standard model does not in general generate the

magnitude of pricing errors found in the data. Thus the next section considers models in

which these variables are allowed to depart from joint lognormality.

3.3 Perturbations fromNormality: Limited Participation/Incomplete

Markets

How do the unconditional pricing implications of models with limited participation/incomplete

markets change when variables are not jointly lognormal? We approach this question by al-

lowing for �rst-order Hermite expansions around the multivariate normal distribution. Since
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many economic models are close to, if not exactly lognormal, this is advantageous because

the leading term in the expansion is Gaussian, while higher-order terms accommodate devia-

tions from normality. One caveat is that the distributions we consider cannot accommodate

conditional heteroskedasticity or other forms of conditional temporal dependence. Allowing

for such dependence along with arbitrary non-normalities would require the calibration of

an infeasible number of Hermite parameters about which we have no information. We begin

this section by considering the Euler equation errors associated with a stock market return

and a risk-free rate and later move on to consider a larger cross-section of asset returns.

Let yt = (�ct;�c
i
t;�dt)

0 � (y1;t; y2;t; y3;t)
0, �ct is aggregate consumption growth, �cit

is individual asset-holder consumption growth, and �dt is dividend growth of an aggregate

stock market claim. We will consider asset pricing models in which these variables are i.i.d.,

but not necessarily jointly lognormally distributed.

Let the joint density of yt be denoted h (y). A Hermite expansion is a polynomial in

y times the standard Gaussian density. Gallant and Tauchen (1989) show that such an

expansion can be put in tractable form by specifying the density as

h (y) =
a (y)2 f (y)R R R

a (u)2 f (u) du1du2du3
:

Here, f (y) is the multivariate Gaussian density with variance-covariance matrix 
 and mean

� = (�1; �2; �3)
0, and a (y) is the sum of polynomial basis functions of the variables in y;

it is squared to insure positivity and divided by the integral over R3 to insure the density
integrates to unity.

In our calibrated examples, we set a (y)2 = (a0 + a1y1;t + a2y2;t + a3y3;t)
2, a �rst-order

expansion but one that can nonetheless accommodate quite signi�cant departures from nor-

mality. We investigate a large number of possible joint distributions by varying the para-

meters a0,...,a3: When a0 = 1 and a1 = a2 = a3 = 0, h (y) collapses to the Gaussian joint

distribution, f (y). It is important to keep the degree of the Hermite expansion manageable

since, lacking a su¢ ciently long times series on asset-holder consumption, we cannot estimate

the parameters of f (y) and a (y).

For the equity claim, in equilibrium we must have

Et

�
M i
t+1

�
Pt+1
Dt+1

+ 1

�
Dt+1

Dt

�
=
Pt
Dt

; (24)

where M i
t+1 � �

�
Cit+1=C

i
t

��

is the true pricing kernel based on individual assetholder con-

sumption, Dt denotes dividends paid at time t, and Pt is the end-of-period stock price

at time t: For the risk-free rate, an analogous equation holds using the de�nition Rft+1 ��
Et
�
M i
t+1

���1
, but notice that since all variables are i.i.d., conditional expectations are just
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the same as unconditional expectations and h (y) can be used to compute (24) and the equi-

librium risk-free rate. Also, the equilibrium price-dividend ratio is a constant, P=D, that

satis�es
P=D

P=D + 1
=

Z Z
�i exp

�
�
iy2

�
exp (y3)h (y2; y3) dy2dy3:

Given a distribution h (y) and the equilibrium value for P=D, it is straightforward to compute

the pricing errors associated with erroneously using M c
t+1 � �c (Ct+1=Ct)

�
c to price assets.

We assume the asset return data are generated byM i
t+1 and solve numerically for the values

of �c and 
c that minimize an equally-weighted sum of squared pricing errors that arise from

using M c
t+1 to price assets.

For our numerical computations, parameters of the leading normal density f (y) are

calibrated to match data on aggregate consumption growth and dividend growth for the

CRSP value-weighted stock market index, on an annual basis. We take the the mean of

�c to be 2% annually and the mean of �d to be 4% annually from annual post-war data

used in Lettau and Ludvigson (2005). From the same annual data, the standard deviation

of aggregate consumption growth is �c = 1:14% and the standard deviation of dividend

growth is �d = 12:2%. The covariance between �c and �d, denoted �cd, is notoriously

hard to measure accurately and appears to depend on the horizon, sampling frequency, and

sample size. It is estimated to be negative, equal to -0.000177 in the annual post-war data

used by Lettau and Ludvigson (2005), but others have estimated a weak positive correlation

(e.g., Campbell (2003)). We therefore consider both small negative values for this covariance

(equal to the point estimate from Lettau and Ludvigson (2005)), and small positive values

of the same order of magnitude, e.g., 0.000177. Finally, the parameters for asset-holder

consumption and assetholder preferences are somewhat arbitrary since there is insu¢ cient

data available to measure these empirically. We therefore consider a range for 
; �, �i=�c,

�i=�c; �ci; and �id, where �id is the correlation between asset-holder consumption growth and

dividend growth. Because our calibration corresponds to an annual frequency, the Euler

equation errors are comparable to the annualized errors from U.S. data reported in Table 1.

We begin with an example of a joint distribution that can roughly replicate the large Euler

equation errors that arise from �tting the data to (1). We stress that this is only one example,

but within the class of distributions we investigate here, it seems to be representative of

what is required. Clearly distributions outside this class could provide other examples. The

marginal distributions for �c, �ci, and �d for this example are presented in Figure 4. The

parameters in the leading normal are set as follows: �i=�c = 4, �i=�c = 1:5, �ci = 0:1, and

�id = 0:9. Assetholder risk aversion is set to a moderate value of 
 = 5 and the time discount

factor is set to � = 0:99. The Hermite parameters ao; :::; a3, are set to obtain the density

shapes displayed in Figure 4.
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For this particular joint distribution model, the RMSE that arises from erroneously using

M c
t+1 � �c (Ct+1=Ct)

�
c to price the two assets is 2.81%, close to the value in the historical

data for the CRSP stock return and 3-month Treasury bill rate (Table 1). The average

stock return in this example is about 11%, and the average risk-free rate 4% annually. The

latter is a bit higher than in the historical data, but the pricing errors as a fraction of the

average returns are reasonably close to the data. The corresponding standard deviation of

�d is a somewhat higher and its mean somewhat lower than the corresponding �gures for

the CRSP-VW return.

What features distinguish this example? First, notice from Figure 4 that assetholder con-

sumption growth and the risky return are highly correlated with one another, but neither is

highly correlated with aggregate consumption growth. Second, both assetholder consump-

tion growth and dividend growth are much more volatile than aggregate consumption growth,

with the former six times as volatile as that of aggregate consumption growth. Third, the

density of aggregate consumption is almost identical to the leading normal. By contrast,

stockholder consumption and dividend growth have distributions that di¤er signi�cantly

from normality, with both displaying bimodal densities. Assetholder consumption and divi-

dend growth have about equal mass points at steeply negative and positive growth rates not

present in the density of aggregate consumption. With probability 0.25, assetholder con-

sumption can decline by 5%, while such a steep decline receives no weight in the density of

aggregate consumption growth. Similarly, with probability 0.2, assetholder consumption can

by 10% while dividend growth on the risky asset can grow 25%, again zero-probability events

for aggregate consumption growth. It follows that simulations from such a distribution would

deliver periods in which the joint behavior ofM c
t+1 and returns would be quite di¤erent from

the joint behavior of M i
t+1 and returns. Notice that assetholder consumption growth and

returns are quite non-normal in this example, similar to �ndings in Brav, Constantinides,

and Geczy (2002) that suggest higher-order moments of assetholder consumption growth

have an important role in the pricing kernel.

Within the class of models we consider, how common is this example? To address this

question, we evaluated pricing errors obtained from a wide grid (over 20,000 parameter

combinations) for the Hermite parameters a0 through a3. Since it is infeasible to report the

output from tens of thousands of distributional assumptions, we report a limited number of

results. Two restrictions place limitations on the number of valid parameter combinations

that can be considered. First, 
 must be positive semi-de�nite.25 Second, the price-dividend

ratio must be �nite. Thus, risk-aversion cannot be too low if dividend growth is too high.

25Since the data suggest a weak correlation between aggregate consumption growth and dividend growth,

this requires that the correlation between �ct and �cit be relatively small.
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The table reports results for which 
 is set to 5, � is set to 0.99, �i=�c = 1, 2, 4, �i=�c = 0:85,

1:5, �ci = 0:1, �id = 0:9.

Table 9 shows a range of cases in which the joint distribution deviates considerably

from normality and yet the pricing errors associated with erroneously using M c
t+1 to price

assets in place of M i
t+1 are, to numerical accuracy, zero. For example, the kurtosis of the

marginal distribution of �ct is often greater than 11, and the skewness greater than 4. The

values of 
c and �c that drive the pricing errors to zero vary, but are typically not close

to the true preference parameters for asset-holder i. The parameter 
c is much larger than

the true 
 when asset-holder consumption growth is much more volatile than aggregate

consumption growth or when it is not highly correlated with it, as suggested by (18). Also,

when Cov(�c;�d) = �cd is parameterize to be negative, 
c takes on negative values. This

is similar to the normal case (15), where the expression in (15) collapses to 
c = 
�id=�cd in

this model, so that 
c is negative when �cd is negative.

Figure 5 provides a graphical description of two of the perturbed densities that created

the output in Table 9. Notice that the shapes can di¤er considerably from Gaussian and yet

values for 
c and �c can still be found for which M
c
t+1 prices assets just as well as the true

kernel based on assetholder consumption. The densities in the left-hand column are bimodal

for �ci and �d, while aggregate consumption is close to normal. This is similar to the

example above (Figure 4), which does deliver large pricing errors, but unlike that case the

negative mass points are much smaller relative to the positive mass points. Also, in Figure

4 assetholder consumption growth has a higher mean than aggregate consumption growth,

whereas in Figure 5 it has about the same mean. By contrast, the densities in the right-

hand column of Figure 5 are close to normal for �ci and �d; while the density of aggregate

consumption has skewness of about 4 and kurtosis around 11, strongly non-normal.

To evaluate the pricing errors for a larger cross-section of returns, we consider simple

models of N assets, indexed by j, whose dividend processes take the form

�dj = �j�cit + "jt ; j = 1; :::N;

where "jt is an i.i.d. shock uncorrelated with �c
i
t. In analogy to the two-asset case above,

the vector of variables yt =
�
�ct;�c

i
t;�d

1
t ; :::;�d

N
t

�0
is assumed to be i.i.d. The �leverage�

parameter �j controls the covariance of each asset return with the stochastic discount factor,

and "jt controls the variance of individual risky returns. Assets on the log mean-variance

e¢ cient frontier (i.e., those that are perfectly correlated with mi) have shocks "jt with zero

variance. By varying �j across assets, we create a spread in the covariance of returns with

stockholder consumption growth, and therefore a spread in risk premia.

We calibrate the leading normal for N = 8 arti�cial assets, including a risk-free return,

with �j = "jt = 0, and a mean-variance e¢ cient return that is perfectly correlated with the
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log stochastic discount factor, �j = 1 and "jt = 0: The six other asset returns are generated

by a grid of values of �j and Var
�
"jt
�
. Equilibrium returns Rjt+1 are computed as described in

the previous subsection for the two-asset case. As above, we assume the data are generated

by M i
t+1 � �

�
Cit+1=C

i
t

��

and search numerically for values for �c and 
c that minimize the

Euler equation errors associated with using M c
t+1 � �c (Ct+1=Ct)

�
c to price assets. The

pricing errors are summarized by reporting the root mean-squared pricing error as a fraction

of the root mean squared returns of the assets under consideration (RMSE/RMSR).

Table 10 presents both the maximum and average values of RMSE/RMSR obtained over

a large grid search of distributional parameter values, including the special case of joint

lognormality. The average pricing errors are often very small, indeed close to zero, even for

signi�cant perturbations from joint lognormality. We �nd a small number of cases in which

the RMSE/RMSR is as large as 10 percent. Nevertheless, the 10 percent magnitude is still

signi�cantly smaller than in the data, and these cases are relatively rare, occurring in less

than 0.2% of the parameter permutations. Most non-normal models we considered imply

that the wrong pricing kernel based on aggregate consumption delivers tiny pricing errors

even when the joint distribution of �ct, �cit, and returns are signi�cantly non-normal. This

suggests that the explanation for the large pricing errors of the standard representative agent

model must be more than limited participation per se. The joint distribution of assetholder,

aggregate consumption and returns has to be of a particular form, and it is that form that

must be the central part of the story.

4 Conclusion

We view the evidence presented above as a convenient diagnostic for what remains missing

in modern-day asset pricing theories designed to remedy shortcomings of the standard rep-

resentative agent, consumption-based asset pricing model. In this paper we emphasize one

shortcoming of the standard model that provides a margin upon which it fails overwhelm-

ingly: its inability to explain the average returns on cross-sections of risky assets. This failure

is quantitatively large and present even when the range of parameters for risk aversion and

time preference is left unrestricted and chosen to maximize the model�s chance of success.

We argue that these empirical facts constitute a puzzle that is at least as damning as other,

more well known, puzzles commonly emphasized when studying calibrated models.

Are prominent modi�cations to the standard model capable of explaining its mispricing?

If so, then an econometrician who �t the standard model to data generated from leading asset

pricing models should �nd large unconditional asset pricing errors, as in the historical data.

Alas, we �nd that new pricing kernels do not necessarily generate new pricing implications.
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Instead, we �nd that parameter values can often be found that imply the standard model

has virtually the same explanatory power in tests of unconditional asset pricing restrictions

as those models currently at the forefront of theoretical asset pricing. This is true both

for explaining the behavior of one risky and one risk-free asset, and for explaining larger

cross-sections of risky returns. Moreover, some leading models imply that the standard

consumption-based model is equally capable of explaining asset returns even when it is

based both on the wrong consumption measure (aggregate consumption instead of individual

assetholder consumption) and on the wrong model of underlying preferences (CRRA instead

of habit or recursive preferences). The asset pricing models we explore can, in many cases,

explain why an econometrician obtains implausibly high estimates of � and 
 when �tting

the standard consumption-based model to historical data. But they cannot explain why

the standard model fails so resoundingly to satisfy the most basic unconditional moment

restrictions implied by theory. A complete explanation of aggregate stock market behavior

should account for these empirical regularities.

Inability to account for these empirical regularities cannot be uncovered by studying

calibrated models or by procedures that rely solely on a model�s �rst-order conditions for

estimation and testing. That is because the �rst-order conditions of any model are not a

complete description of the joint distribution of asset returns and aggregate quantities. But

an econometrician who observes this joint distribution in the data can assess whether its key

properties are matched by the simulated data of theoretical models.

Intuitively, how is it that asset pricing models capable of explaining a host consumption-

based asset pricing puzzles are incapable of explaining the large unconditional Euler equation

errors of the standard model? In thinking about this, it is helpful to consider the equity

premium puzzle as an example. We know that the equity premium puzzle can be �solved�

by taking the standard consumption-based model and applying su¢ ciently high risk-aversion

(Mehra and Prescott (1985)).26 The di¢ culty with this resolution of the puzzle is that, in

order to show that high risk-aversion delivers the right equity premium as an equilibrium

outcome, the resulting equilibrium returns must be derived from theoretical Euler equations

that are exactly satis�ed. To the extent that these Euler equations are not satis�ed in

historical data, such a resolution would seem to rest on a fundamental misspeci�cation of

the joint behavior of asset returns and aggregate quantities.

What types of changes might bring asset pricing models more in line with the data along

these lines? We considered examples of limited participation/incomplete markets models in

which non-normalities are important, a �nding also hinted at by the work of Brav, Constanti-

nides, and Geczy (2002). But we also found that it is insu¢ cient for assetholder consumption

26For the sake of argument, ignore the risk-free rate puzzle and other problems this resolution would leave.
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to merely behave di¤erently from aggregate consumption. This suggests that careful atten-

tion to the joint properties of the pricing kernel, aggregate consumption, and returns is

crucial for explaining the mispricing of the standard paradigm in frictionless models. Alter-

natively, classes of economic models with endogenously distorted beliefs, as surveyed in the

work of Hansen and Sargent (2000) or illustrated in the learning model of Cogley and Sargent

(2004), may present interesting possibilities for explaining these phenomena. In such models,

beliefs are distorted away from what a model of rational expectations would impose, so asset

return volatility can be driven by �uctuations in beliefs not necessarily highly correlated

with consumption. Other candidates include any modi�cations to the standard model that

would make unconditional Euler equations more di¢ cult to satisfy, especially in recessions.

Possibilities include binding restrictions on the ability to trade and smooth consumption,

such as borrowing constraints, short-sales constraints, and transactions costs (e.g., Luttmer

(1996); He and Modest (1995); Heaton and Lucas (1996, 1997); Ludvigson (1999)). An im-

portant area for future research will be to determine whether such modi�cations are capable

of delivering the empirical facts, once introduced into plausibly calibrated economic models

with empirically credible frictions.
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5 Appendix

1. Data Description

This appendix describes the data. The sources and description of each data series we use

are listed below.

CONSUMPTION

Consumption is measured as expenditures on nondurables and services, excluding shoes and

clothing. The quarterly data are seasonally adjusted at annual rates, in billions of chain-

weighted 1996 dollars. The components are chain-weighted together, and this series is scaled

up so that the sample mean matches the sample mean of total personal consumption expen-

ditures. Our source is the U.S. Department of Commerce, Bureau of Economic Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Consumption, is in per capita terms. Our source is the Bureau of

Economic Analysis.

PRICE DEFLATOR

Real asset returns are de�ated by the implicit chain-type price de�ator (1996=100) given for

the consumption measure described above. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

ASSET RETURNS

� Three-Month Treasury Bill Rate: secondary market, averages of business days, discount
basis%; Source: H.15 Release �Federal Reserve Board of Governors.

� Six size/book-market returns: Six portfolios, monthly returns from July 1926-December
2003. The portfolios, which are constructed at the end of each June, are the inter-

sections of 2 portfolios formed on size (market equity, ME) and 3 portfolios formed

on the ratio of book equity to market equity (BE/ME). The size breakpoint for

year t is the median NYSE market equity at the end of June of year t. BE/ME

for June of year t is the book equity for the last �scal year end in t-1 divided by

ME for December of t-1. The BE/ME breakpoints are the 30th and 70th NYSE

percentiles. Source: Kenneth French�s homepage, http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.

� The stock market return is the Center for Research and Security Prices (CRSP) value-
weighted stock market return. Our source is the Center for Research in Security Prices.



2. Detailed Description of Models

The utility function in the CC and MSV models take the form

U = E

( 1X
t=0

�t
(Cit �X i

t)
1�
 � 1

1� 


)
; 
 > 0 (25)

where Cit is individual consumption and Xt is habit level which they assume to be a function

of aggregate consumption, and � is the subjective discount factor. In equilibrium, identical

agents choose the same level of consumption, so Cit is equal to aggregate consumption, Ct.

CC de�ne the surplus consumption ratio

St �
Ct �Xt

Ct
< 1;

and model its log process as evolving according to a heteroskedastic �rst-order autoregressive

process (where as before lowercase letters denote log variables):

st+1 = (1� �) s+ �st + � (st) (ct+1 � ct � g) ;

where �, g, and s are parameters. � (st) is the so-called sensitivity function that CC choose

to satisfy three conditions: (1) the risk-free rate is constant, (2) habit is predetermined at

steady state, and (3) habit moves nonnegatively with consumption everywhere. We refer the

reader to the CC paper for the speci�c functional form of � (st) : The stochastic discount

factor in the CC model is given by

MCC
t+1 = �

�
Ct+1
Ct

St+1
St

��

:

In all of the models considered here, the return on a risk-free asset whose value is known

with certainty at time t is given by

Rft+1 � (Et [Mt+1])
�1 ;

where Mt+1 is the pricing kernel of whichever model we are considering.

MSV model the behavior of Yt; the inverse surplus consumption ratio:

Yt =
1

1� (Xt=Ct)
> 1:

Following Campbell and Cochrane (1999), MSV assume that Yt follows a mean-reverting

process, perfectly negatively correlated with innovations in consumption growth:

�Yt = k
�
Y � Y

�
� � (Yt � �) (�ct � Et�1�ct) ;



where Y is the long-run mean of Y and k, �; and � are parameters, calibrated as in MSV.

Here �ct � log (Ct+1=Ct), which they assume it follows an i.i.d. process

�ct = �+ �vt;

where vt is a normally distributed i.i.d. shock. The stochastic discount factor in the MSV

model is

MMSV
t+1 = �

�
Ct+1
Ct

Yt
Yt+1

��

:

Since the MSV model is a representative agent model, we modify it in order to study

the role of limited participation. Assume that asset prices are determined by the framework

above, where a valid stochastic discount factor is a function of any stockholder�s consumption

Cit and stockholder�s habit X
i
t . The process for stockholder consumption is the same as in

MSV, described above, but now with i subscripts:

�cit = �i + �iv
i
t;

where vit is a normally distributed i.i.d. shock. Aggregate consumption is assumed to follow

a separate process given by

�ct = �c + �cv
c
t ;

with vct a normally distributed i.i.d. shock. We analyze the results over a range of cases for

the correlation between vit and v
c
t , and their relative volatilities �i=�c.

For the representative stockholder, we model the �rst di¤erence of Y i
t as in MSV:

�Y i
t = k

�
Y
i � Y i

�
� �

�
Y i
t � �

� �
�cit � Et�1�c

i
t

�
;

and compute equilibrium asset returns based on the stochastic discount factor MMSV i
t+1 =

�
�
Cit+1=C

i
t

��
 �
Y i
t =Y

i
t+1

��

: As before, this is straightforward to do using the analytical

solutions provided in MSV.

Next, we compute two types of unconditional pricing errors. First, we compute the

pricing errors generated from erroneously using aggregate consumption in the pricing kernel

in place of assetholder consumption. That is, we compute the pricing errors that arise from

using M ch
t+1 � �c (Ct+1=Ct)

�
c
�
Y c
t =Y

c
t+1

��
c in place of MMSV i
t+1 to price assets, where �c and


c are chosen freely to �t the data, and where Y
c
t follows the process

�Y c
t = k

�
Y
c � Y c

�
� � (Y c

t � �) (�ct � Et�1�ct) :

With the exception of �, all parameters are set as in MSV. The parameter � is set to keep

the mean return on the aggregate wealth portfolio the same as in MSV. Thus, if �i=�c = 2,

the value of � in MSV is divided by two.



To model multiple risky securities, MSV model the share of aggregate consumption that

each asset produces,

sjt =
Dj
t

Ct
for j = 1; :::; n;

where n represents the total number of risky �nancial assets paying a dividend D. MSV

assume that these shares are bounded, mean-reverting and evolve according to

�sjt = �j
�
sj � sjt

�
+ sjt� (si) �t;

where � (sj) is an N�dimensional row vector of volatilities and �t is an N�dimensional
column vector of standard normal random variables, and �j and sj are parameters. (N �
n + 1 because MSV allow for other sources of income, e.g., labor income, that support

consumption.) Cross-sectional variation in unconditional mean returns across risky securities

in this model is governed by cross-sectional variation in the covariance between shares and

aggregate consumption growth: Cov
�
�sjt
sjt
; �ct
ct

�
, for j = 1; :::; n. This in turn is determined

by cross-sectional variation in �j, sj and � (sj) : We create n arti�cial risky securities using

an evenly spaced grid of values for these parameters. The values of �j lie on a grid between

0 and 1, and the values of sj 2 [0; 1) lie on a grid such that the sum over all j is unity.

The parametric process for � (sj) follows the speci�cation in MSV in which the volatilities

depend on a N -dimensional vector of parameters vj as well as the individual share processes

� (sj) = v
j �

nX
k=0

skt v
k:

We choose the parameters �j, sj, and vj, to generate a spread in average returns across

assets. In analogy to the empirical exercise (Panel B of Table 1), we do this for n = 6 risky

securities plus the aggregate wealth portfolio return and the risk-free for a total of 8 asset

returns.

Closed-form solutions are not available for the individual risky securities, but MSV show

that equilibrium price-dividend ratios on the risky assets are given by the approximate

relation
P jt

Dj
t

� aj0 + aj1St + aj2
sj

sjt
+ aj3

sj

sit
St; (26)

where St � 1=Y i
t and where Y

i
t again denotes the inverse surplus ratio of an individual

assetholder indexed by i, which should not be confused with the indexation by j, which

denotes a security. The parameters aj0, a
j
1; a

j
2; and a

j
3 are all de�ned in terms of the other

parameters above. Using these solutions for individual price-dividend ratios, we create a

cross-section of equilibrium risky securities using

Rit+1 =

 
P jt+1=D

j
t+1 + 1

P jt =D
j
t

!
exp

�
�djt+1

�
: (27)



Bansal and Yaron (2004) consider a representative agent who maximizes utility given by

recursive preferences of Epstein and Zin (1989, 1991) and Weil (1989). The utility function

to be maximized takes the form

U = E

( 1X
t=0

�t
n
(1� �)C

1�

�

t + �
�
EtU

1�

t+1

� 1
�

o �
1�


)
; (28)

where � � (1� 
) = (1� 1= ) ;  is the intertemporal elasticity of substitution in consump-
tion (IES), 
 is the coe¢ cient of relative risk aversion, and � is the subjective discount factor.

The stochastic discount factor under Epstein-Zin-Weil utility used in BY takes the form

MBY
t+1 =

 
�

�
Ct+1
Ct

�� 1
 

!�
R��1w;t+1; (29)

where Rw;t+1 is the simple gross return on the aggregate wealth portfolio, which pays a

dividend equal to aggregate consumption, Ct.
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Table 1: Pricing Errors with CRRA Preferences

Assets ̂δ γ̂ RMSE (in %) RMSE/RMSR p (W = I) p (W = S−1)

Rs, Rf 1.41 89.78 2.71 0.48 N/A N/A

Rs, Rf , 6 FF 1.39 87.18 3.05 0.33 0.00 0.00

Excluding Periods with low Consumption Growth

Rs, Rf 2.55 326.11 0.73 0.13 N/A N/A

Rs, Rf , 6 FF 2.58 356.07 1.94 0.21 0.00 0.00

Notes: This table reports the minimized annualized postwar data pricing error for CRRA preferences. The pref-
erence parameters ̂δc and γ̂c are chosen to minimize the mean square pricing error for different sets of returns:
minδc,γc

[

g(δc, γc)
′Wg(δc, γc)

]

where g(δc, γc) = E[δc(Ct/Ct−1)
−γcRt − 1]. Rs is the CRSP-VW stock returns, Rf is

the 3-month T-bill rate and Ct is real per-capita consumption of nondurables and services excluding shoes and clothing.
The table also reports results when the periods with the lowest six consumption growth rates are eliminated. The table
reports estimated ̂δ, γ̂ and the minimized value of RMSR/RMSRR where RMSE is the square root of the average squared
pricing error and RMSR is the square root of the averaged squared returns of the assets under consideration for W = I.
The last two colums report χ2 p-values for tests for the null hypothesis that pricing errors are jointly zero for W = I and
W = S−1 where S is the spectral density matrix at frequency zero. The data span the period 1951Q4 to 2002Q4.



Table 2: Low Consumption Growth Periods

Quarter NBER Recession Dates Ct/Ct−1 − 1 Rst Rft

1980Q02 80Q1-80Q3 -1.28 16.08 3.59

1990Q04 90Q3-91Q1 -0.87 8.75 2.16

1974Q01 73Q4-75Q1 -0.85 -1.26 2.37

1958Q01 57Q3-58Q2 -0.84 7.03 0.65

1960Q03 60Q2-61Q1 -0.64 -4.93 0.67

1953Q04 53Q1-54Q2 -0.60 7.87 0.47

Notes: This table reports consumption growth, the return of the CRSP-VW stock returns Rs and the 3-month T-bill
rate Rf (all in in percent per quarter) in the six quarters of our sample with the lowest consumption growth rates. The
consumption measure is real per-capita expenditures on nondurables and services excluding shoes and clothing. The data
span the period 1951Q4 to 2002Q4.



Table 3: Pricing Errors

Model ̂δc γ̂c RMSE/RMSR (Rs, Rf ) RMSE/RMSR (8 assets)

CC Habit 1.28 57.48 0.00 N/A

MSV Habit 1.71 30.64 0.00 0.00

BY LR Risk 0.93 48.97 0.00 0.00

Notes: This table reports the annualized pricing errors for stock returns Rs and the riskfree rate Rf from simulated data
from Campbell and Cochrane’s habit model (CC Habit), Menzly, Santos and Veronesi’s habit model (MSV Habit) and

Bansal and Yaron’s long run risk model (BY LR Risk) for CRRA preferences. The preference parameters ̂δc and γ̂c are
chosen to minimize the mean square pricing error minδc,γc

[

g(δc, γc)
′g(δc, γc)

]

where g(δc, γc) = E[δc(Ct/Ct−1)
−γcRt−1].

RMSR is the square root of the averaged squared returns of the assets under consideration. RMSE is the square root of
the average squared pricing error. Pricing errors are computed from simulations with 10,000 observations.



Table 4: Properties of Guvenen’s Model

Panel A: Consumption Growth

Ct/Ct−1 − 1 Cit/C
i
t−1 − 1 Cnt /C

n
t−1 − 1 Rst Rft

Mean 0.01 0.02 0.00 1.31 0.64

Std. Dev. 2.04 4.53 0.83 7.30 1.69

Correlation 1.00 1.00 0.99 1.00 0.17

1.00 1.00 0.98 0.99 0.17

0.99 0.98 1.00 0.99 0.16

1.00 0.99 0.99 1.00 0.19

0.17 0.17 0.16 0.19 1.00

Panel B: Stochastic Discount Factors

M i
t (0.99, 2.00) M c

t (0.99, 2.00) M c
t (0.99, 4.49)

Mean 0.99 0.99 0.99

Std. Dev. 0.09 0.04 0.09

Correlation 1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

Panel C: Pricing Errors

Consumption (δ, γ) E[Mt(δ, γ) R
s
t − 1] E[Mt(δ, γ) R

f
t − 1]

SH (0.99, 2.00) 0.02% 0.02%

AC (0.99, 2.00) 0.39% -0.34%

AC (0.99, 4.49) 0.00% 0.01%

Notes: This table reports properties of Guvenen’s model. Panel A reports the properties of consumption growth rates
of aggregate consumption Ct/Ct−1, stockholders consumption Cit/C

i
t−1, nonstockholders consumption Cnt /C

n
t−1, stock

returns Rst and the riskfree rate Rft in Guvenen’s model. Panel B reports properties of stochastic discount factors. The
first row reports properties of the SDF for stockholders consumption. The remaining rows report SDF properties for
total consumption and different preference parameters. The stochastic discount factors are of the CRRA form Mt =
δ(Ct/Ct−1)

−γ . The first parameter in parenthesis is δ, the second one is γ. Panel C reports the annual pricing error
Guvenen’s model. The preference parameters δ and γ are chosen to minimize the equally weighted sum of pricing errors
for the stock returns Rs and the riskfree rate Rf . The first row labelled “SH� reports the pricing errors for stockholders
consumption. The remaining rows labelled “AC� report pricing errors for aggregate consumption and different preference
parameters. All statistics are quarterly.



Table 5: Limited Participation Habit Model Estimated with Aggregate Consumption Habit SDF

σi/σc ρ(Cit/C
i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

2 Assets: Rs, Rf

̂δc

1 0.84 0.66 0.25 0.39 0.84 0.96

2 0.85 0.65 0.22 0.46 0.83 0.96

5 0.84 0.66 0.23 0.46 0.82 0.96

γ̂c

1 -1.69 -2.91 -4.89 5.11 2.35 0.84

2 -1.59 -3.09 -5.46 5.08 2.34 1.14

5 -1.75 -2.99 -5.96 4.88 2.26 1.11

RMSE/RMSR

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00

8 Assets

̂δc

1 0.84 0.65 0.27 0.42 0.84 0.96

2 0.84 0.65 0.27 0.40 0.83 0.96

5 0.85 0.63 0.23 0.36 0.81 0.96

γ̂c

1 -1.71 -2.93 -5.21 5.08 2.28 1.02

2 -1.73 -2.96 -5.17 5.24 2.37 1.03

5 -1.76 -3.07 -5.46 5.39 2.51 1.18

RMSE/RMSR

1 0.04 0.03 0.03 0.03 0.03 0.02

2 0.05 0.03 0.04 0.03 0.02 0.02

5 0.05 0.04 0.04 0.03 0.02 0.02

Notes: This table reports preference parameters and pricing errors in Menzly, Santos and Veronesi’s (2004) habit model.
Consumption growth of stockholders is assumed to follow a random walk with a mean of 2% and standard deviation of
1%. All parameters are as in Menzly, Santos and Veronesi except α, which is set obtain the same average stock return as
in Menzly-Santos-Veronesi. The preference parameters ̂δc and γ̂c are chosen to minimize the mean square pricing error
minδc,γc

[

g(δc, γc)
′Wg(δc, γc)

]

where g(δc, γc) = E[Mch
t Rt − 1],Mch

t = δc(
Ct
Ct−1

Yt−1
Yt

)−γc . Ct is aggregate consumption,

Yt is the inverse of the consumption surplus ratio computed from aggregate consumption, Rs is the return of equity, Rf

is the riskfree rate, and W = I. In the top panel, R = [Rs, Rf ]′, in the bottom panel R includes the return of the market
Rs, the riskfree rate Rf and the returns of six individual assets. RMSR is the square root of the averaged squared returns
of the assets under consideration. RMSE is the square root of the average squared pricing error. The weighting matrix
W is the identity matrix.



Table 6: Limited Participation Habit Model Estimated with Aggregate Consumption CRRA SDF

σi/σc ρ(Cit/C
i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

2 Assets: Rs, Rf

̂δc

1 0.51 0.24 0.03 5.27 2.69 1.61

2 0.52 0.24 0.03 5.20 2.75 1.83

5 0.48 0.23 0.03 4.94 2.81 1.79

γ̂c

1 -30.71 -60.15 -128.80 127.03 58.59 27.93

2 -29.22 -61.24 -132.02 117.99 61.69 33.28

5 -33.48 -64.30 -131.01 117.94 64.43 32.56

RMSE/RMSR

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00

8 Assets

̂δc

1 0.50 0.24 0.04 5.44 2.76 1.74

2 0.50 0.23 0.04 5.60 2.80 1.74

5 0.48 0.21 0.03 5.74 2.94 1.85

γ̂c

1 -30.83 -61.99 -123.23 124.24 61.51 31.21

2 -31.69 -62.76 -124.21 126.92 62.34 31.22

5 -33.73 -67.43 -134.53 133.41 65.50 34.11

RMSE/RMSR

1 0.03 0.03 0.03 0.03 0.04 0.03

2 0.04 0.03 0.03 0.03 0.03 0.03

5 0.03 0.03 0.04 0.03 0.03 0.04

Notes: This table reports preference parameters and pricing errors in Menzly, Santos and Veronesi’s (2004) habit model.
Consumption growth of stockholders is assumed to follow a random walk with a mean of 2% and standard deviation of
1%. All parameters are as in Menzly, Santos and Veronesi except α, which is set obtain the same average stock return as
in Menzly-Santos-Veronesi. The preference parameters ̂δc and γ̂c are chosen to minimize the mean square pricing error
minδc,γc

[

g(δc, γc)
′Wg(δc, γc)

]

where g(δc, γc) = E[Mc
tRt − 1],Mc

t = δc(
Ct
Ct−1

)−γc . Ct is aggregate consumption, Rs is

the return of equity, Rf is the riskfree rate, and W = I. R includes the return of the market Rs, the riskfree rate Rf

and the returns of six individual assets. RMSR is the square root of the averaged squared returns of the assets under
consideration. RMSE is the square root of the average squared pricing error. The weighting matrix W is the identity
matrix.



Table 7: Limited Participation Habit Model Estimated with Aggregate Consumption CRRA SDF:
Time Aggregated Data

σi/σc ρ(Cit/C
i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

2 Assets: Rs, Rf

̂δc

1 0.53 0.22 0.07 4.30 2.48 1.56

2 0.55 0.29 0.06 6.05 2.64 1.77

5 0.49 0.27 0.06 5.45 2.75 1.77

γ̂c

1 -28.74 -64.81 -104.82 104.40 53.96 26.56

2 -26.32 -53.79 -110.70 129.91 59.36 31.78

5 -32.16 -58.47 -108.09 129.49 63.45 32.38

RMSE/RMSR

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00

8 Assets

̂δc

1 0.49 0.24 0.04 5.51 2.78 1.75

2 0.49 0.23 0.04 5.57 2.86 1.76

5 0.48 0.21 0.03 5.63 2.96 1.83

γ̂c

1 -32.13 -61.76 -122.15 126.00 61.95 31.39

2 -32.02 -62.97 -125.44 127.60 63.43 31.83

5 -33.53 -66.57 -135.09 131.36 65.84 33.66

RMSE/RMSR

1 0.03 0.03 0.06 0.03 0.04 0.04

2 0.04 0.03 0.06 0.04 0.03 0.04

5 0.04 0.03 0.07 0.03 0.04 0.04

Notes: This table reports preference parameters and pricing errors in Menzly, Santos and Veronesi’s (2004) habit model.
Consumption growth of stockholders is assumed to follow a random walk with a mean of 2% and standard deviation of
1%. All parameters are as in Menzly, Santos and Veronesi except α, which is set obtain the same average stock return as
in Menzly-Santos-Veronesi. The preference parameters ̂δc and γ̂c are chosen to minimize the mean square pricing error
minδc,γc

[

g(δc, γc)
′Wg(δc, γc)

]

where g(δc, γc) = E[Mc
tRt − 1],Mc

t = δc(
Ct
Ct−1

)−γc . R includes the return of the market

Rs, the riskfree rate Rf and the returns of six individual assets. RMSR is the square root of the averaged squared returns
of the assets under consideration. RMSE is the square root of the average squared pricing error. The weighting matrixW
is the identity matrix. Ct is aggregate consumption, Rs is the return of equity, Rf is the riskfree rate, and W = I. The
model is simulated on a weekly frequency. The pricing errors are computed using the growth rate of annual consumption
and compounded annual returns.



Table 8: Small Sample Pricing Errors

Model max. RMSE/RMSR (2 Assets) max. RMSE/RMSR (8 Assets)

CC Habit 0.01 N/A

MSV Habit 0.00 N/A

BY LR Risk 0.00 0.01

Guvenen Lim. Part. 0.87 N/A

Notes: This table reports the annualized pricing errors for stock returns Rs and the riskfree rate Rf from simulated
data from Campbell and Cochrane’s habit model (CC Habit), Menzly, Santos and Veronesi’s habit model (MSV Habit),
Bansal and Yaron’s long run risk model (BY LR Risk) and Guvenen’s limited participation model. The preference

parameters ̂δc and γ̂c are chosen to minimize the mean square pricing errorminδc,γc
[

g(δc, γc)
′Wg(δc, γc)

]

where g(δc, γc) =

E[δc(Ct/Ct−1)
−γcRt − 1]. R = [Rs, Rf ]′ and W = I. “max. RMSE/RMSR� report the maximum absolute value of

RMSE/RMSR from 5,000 simulations with 204 observations.



γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 36.211 2.5613 4.95E-10 4.90E-10 4.0917 11.195 -0.0042337 3 0.036111 3.0009
5 0.99 0.1 0.9 1 1.5 36.217 2.3988 2.12E-10 2.10E-10 4.0899 11.181 -0.004228 3 0.036063 3.0009
5 0.99 0.1 0.9 2 0.85 71.495 6.0675 1.14E-09 1.12E-09 4.0952 11.207 0.0078509 3 0.04699 3.0015
5 0.99 0.1 0.9 2 1.5 71.53 5.6869 1.50E-09 1.49E-09 4.0934 11.193 0.0078403 3 0.046927 3.0015
5 0.99 0.1 0.9 4 0.85 129.08 14.235 9.75E-08 9.67E-08 4.1018 11.229 0.032021 3.0007 0.068751 3.0032
5 0.99 0.1 0.9 4 1.5 129.22 13.395 -9.01E-08 -8.50E-08 4.1 11.215 0.031977 3.0007 0.068658 3.0031

γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 -64.06 0.1052 -1.41E-14 -1.40E-14 4.1037 11.313 -0.0041596 3 -0.66437 3.2899
5 0.99 0.1 0.9 1 1.5 -64.05 0.0987 -1.27E-08 -1.27E-08 4.1034 11.303 -0.0041543 3 -0.66356 3.2891
5 0.99 0.1 0.9 2 0.85 -118.7 0.0121 -6.34E-14 -6.22E-14 4.1071 11.324 0.0077134 3 -0.65304 3.2802
5 0.99 0.1 0.9 2 1.5 -118.6 0.0113 -8.05E-11 -8.07E-11 4.1067 11.314 0.0077036 3 -0.65225 3.2795
5 0.99 0.1 0.9 4 0.85 -210.4 0.0002 -6.58E-13 -6.60E-13 4.1134 11.346 0.031459 3.0007 -0.63043 3.2614
5 0.99 0.1 0.9 4 1.5 -210.2 0.0001 -2.31E-13 -2.31E-13 4.1131 11.336 0.03142 3.0007 -0.62966 3.2607

γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 35.488 1.7114 -7.93E-09 -8.00E-09 0.2175 3.0307 0.49692 2.4804 0.46153 2.2946
5 0.99 0.1 0.9 1 1.5 35.488 1.6032 -7.94E-09 -7.99E-09 0.2175 3.0307 0.49691 2.4804 0.46153 2.2946
5 0.99 0.1 0.9 2 0.85 70.978 2.7445 9.82E-09 9.64E-09 0.2175 3.0307 0.49692 2.4804 0.46154 2.2946
5 0.99 0.1 0.9 2 1.5 70.978 2.571 9.82E-09 9.64E-09 0.2175 3.0307 0.49691 2.4804 0.46153 2.2946
5 0.99 0.1 0.9 4 0.85 141.96 4.3612 2.26E-07 2.25E-07 0.2175 3.0307 0.49692 2.4804 0.46154 2.2946
5 0.99 0.1 0.9 4 1.5 141.96 4.0855 2.26E-07 2.25E-07 0.2175 3.0307 0.49692 2.4804 0.46153 2.2946

Table 9: Lim. Partic./Inc. Markets Pricing Errors for Stock Return and Risk-Free Rate: Hermite Densities

Cov(∆c,∆d)=0.00017

Cov(∆c,∆d)=0.00017

Cov(∆c,∆d)=-0.00017



γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 -35.46 0.4115 -4.87E-08 -4.88E-08 -0.218 3.0308 0.49691 2.4804 0.46152 2.2946
5 0.99 0.1 0.9 1 1.5 -35.46 0.3855 -4.88E-08 -4.88E-08 -0.218 3.0308 0.4969 2.4804 0.46151 2.2946
5 0.99 0.1 0.9 2 0.85 -70.92 0.1587 4.66E-15 4.66E-15 -0.218 3.0308 0.49691 2.4804 0.46152 2.2946
5 0.99 0.1 0.9 2 1.5 -70.92 0.1487 4.22E-15 5.33E-15 -0.218 3.0308 0.4969 2.4804 0.46151 2.2946
5 0.99 0.1 0.9 4 0.85 -141.8 0.0146 1.21E-13 1.22E-13 -0.218 3.0308 0.49692 2.4805 0.46153 2.2946
5 0.99 0.1 0.9 4 1.5 -141.8 0.0137 1.15E-13 1.18E-13 -0.218 3.0308 0.49691 2.4804 0.46152 2.2946

γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 34.614 1.6892 -3.03E-10 -2.94E-10 0.2389 3.0373 0.54147 2.5713 0.50496 2.39
5 0.99 0.1 0.9 1 1.5 34.619 1.5825 -3.03E-10 -2.96E-10 0.2425 3.0385 0.55543 2.6008 0.51853 2.4204
5 0.99 0.1 0.9 2 0.85 69.241 2.6948 1.24E-11 1.20E-11 0.2377 3.0369 0.53729 2.5614 0.50128 2.3818
5 0.99 0.1 0.9 2 1.5 69.249 2.5247 1.26E-11 1.24E-11 0.2413 3.0381 0.55113 2.5905 0.51472 2.4118
5 0.99 0.1 0.9 4 0.85 138.64 4.3376 -2.37E-09 -1.87E-09 0.2353 3.0361 0.52911 2.542 0.49409 2.3659
5 0.99 0.1 0.9 4 1.5 138.64 4.0636 -2.40E-09 -1.89E-09 0.2389 3.0373 0.54269 2.5705 0.50727 2.3952

γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 -36.69 0.3989 -2.05E-11 -2.08E-11 -0.218 3.0311 0.54207 2.5712 0.506 2.3923
5 0.99 0.1 0.9 1 1.5 -36.68 0.3737 -1.81E-11 -1.83E-11 -0.221 3.0321 0.55607 2.6007 0.51961 2.4228
5 0.99 0.1 0.9 2 0.85 -73.97 0.1449 -3.45E-10 -3.50E-10 -0.215 3.0303 0.53788 2.5613 0.50231 2.3841
5 0.99 0.1 0.9 2 1.5 -73.95 0.1358 -3.37E-10 -3.42E-10 -0.218 3.0313 0.55174 2.5905 0.51578 2.4142
5 0.99 0.1 0.9 4 0.85 -150.4 0.0104 0 1.33E-15 -0.209 3.0287 0.52967 2.5418 0.49508 2.3681
5 0.99 0.1 0.9 4 1.5 -150.4 0.0098 6.66E-16 4.44E-16 -0.212 3.0296 0.54328 2.5704 0.50829 2.3975

Cov(∆c,∆d)=-0.00017

Cov(∆c,∆d)=0.00017

Cov(∆c,∆d)=-0.00017

Notes: This table reports output on the pricing error associated with erroneously using aggregate consumption in place of asset-holder consumption, for a 
range of parameter values and joint distributions. γ i is the persumed value of asset-holder risk-aversion; δ i is the presumed value of the asset-holder's 
subjective discount rate; ρ(∆c,∆c i) denotes the correlation between aggregate consumption growth and asset-holder consumption growth in the leading 
normal; ρ(∆ci,∆d) denotes the correlation between asset-holder consumption growth and dividend growth in the leading normal; σ(∆c i)/σ(∆c) denotes the 
standard deviation of asset-holder consumption growth divided by the standard deviation of aggregate consumption growth in the leading normal; µ(∆c i)/µ(∆c) 
denotes the mean of asset-holder consumption growth divided by the mean of aggregate consumption growth in the leading normal; γ c and δc are the values 
of γ and δ that minimize the pricing errors using aggregate consumption; PrErrR(s) is the pricing error for the Euler equation associated with the stock return; 
PrErrR(f) is the pricing error of the Euler equation associated with the risk-free rate, and Sk[ ], Ku[ ] refer to the skewness and kurtosis of aggregate 
consumption (c), asset-holder consumption (i), and dividends (d). 



Distribution γ δ ρ(∆c,∆ci) σ(∆ci)/σ(∆c) µ(∆ci)/µ(∆c) Cov(∆c,∆d) γc δc Max RMSE Avg RMSE
J. Log N. 5 0.99 0.13 2 1.5 0.00017 78.24 2.77 0.02% 0.02%

Non-Normal 5 0.99 0.13 2 1.5 0.00017 6.83 1.09 10.10% 0.25%
J. Log N. 5 0.99 0.13 2 1.5 -0.00017 -78.24 0.12 0.02% 0.02%
Non-Normal 5 0.99 0.13 2 1.5 -0.00017 -82.8 0.209 0.58% 0.03%

Table 10: Lim. Partic./Inc. Markets Pricing Errors in a Larger Cross-Section: Hermite Densities 

Notes: This table reports the average pricing errors for models with 8 asset returns. The column labled "Distribution" denotes whether the joint 
distribution of ∆c, ∆ci and dividend growth for each of the 8 assets is modeled as lognormal or not. "J. Log N." reports results for the jointly 
lognormal case; "Non-Normal" reports the results for cases in which a perturbation from the lognormal was used to describe the joint 
distribution of aggregate consumption, asset-holder consumption, and the 8 asset returns. The numbers in the column labled "Max RMSE" give 
the square root of the average squared pricing error, as a fraction of the cross-sectional average mean return, that is the maximum  over all 
Non-Normal perturbations (over 100) considered. The numbers in the column labled "Avg RMSE" give the square root of the average squared 
pricing error, as a fraction of the cross-sectional average mean return, that is the average of over Non-Normal perturbations (over 100) 
considered. γi is the persumed value of asset-holder risk-aversion; δi is the presumed value of the asset-holder's subjective discount rate; 
ρ(∆c,∆ci) denotes the correlation between aggregate consumption growth and asset-holder consumption growth in the leading normal; 
ρ(∆ci,∆d) denotes the correlation between asset-holder consumption growth and dividend growth in the leading normal; σ(∆ci)/σ(∆c) denotes 
the standard deviation of asset-holder consumption growth relative to the standard deviation of aggregate consumption growth in the leading 
normal; µ(∆ci)/µ(∆c) denotes the mean of asset-holder consumption growth divided by the mean of aggregate consumption growth in the 
leading normal. γc and δc are the values of γ and δ that minimize the equally weighted sum of squared pricing errors when aggregate 
consumption is used in place of stockholder consumption, for the hermite distribution that delivers the maximum RMSE, as a percentage of the 
cross-sectional mean return.  For the jointly lognormal case, the average is the maximum since there is only one distribution to average over. 



Figure 1: Pricing Errors for CRRA Preferences: Excess Returns

Notes: The figure plots RMSE/RMSR as a function of γ for excess returns. The pricing errors

are PE = E
[

(Ct+1/Ct)
−γ(Rt+1 −Rf

t+1)
]

. The solid line shows RMSE/RMSR for R = Rs, the

dotted line shows RMSE/RMSR for R = (Rs, 6 FF).



Figure 2: Pricing Errors: With and Without Lognormality

Notes: This figure plots RMSE/RMSR with and without the assumption of joint log-

normality as a function of γc. δc is chosen to minimize the RMSE for each value

of γc. The top panel shows the case for R = (Rs, Rf ), in the bottom panel

R = (Rs, Rf , 6 FF). The pricing error for asset j without assuming lognormality is

PEj = δcE [exp {−γc∆c+ rj}]− 1. Under the assumption of joint lognormality, the pricing

error is PEj = δc exp {−γcE∆c+ γ2cσ
2
c/2 + Erj + σ2r/2− γcCov(∆c, rj)} − 1.



Figure 3: QQ Plots

Notes: This figure shows multivariate quantile-quantile (QQ) plots of log consumption growth

and asset returns. Each panel plots the sample quantiles (on the y-axis) against the quantiles

of a given distribution (on the x-axis) as well pointwise 5% and 95% bands. The top panel

shows the QQ plot for the joint distribution of ∆c, rs and rf , i.e. the quantiles of the squared

Mahalanobis distances against those of a χ2
3 distribution. The bottom panel shows the QQ

plot for the joint distribution of ∆c, rs, rf and 6 FF portfolios, i.e. the quantiles of the squared

Mahalanobis distances against those of a χ2
9 distribution. The squared Mahalanobis distanceMt

for a p-dimensional multivariate distribution xt with mean µx and variance-covariance matrix

V is defined as Mt = (xt − µx)′V −1(xs − µx). Under the null hypothesis that ∆c, rs and rf
are jointly normally distributed, Mt has a χ

2
p distribution.
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Figure 4

Notes: An example of distributions that produce large pricing errors when aggregate consumption
and returns are fitted to a power utility model.
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Notes: Plots of marginal densities for two Hermite parameter configurations that do not explain large
pricing errors of the standard model.




