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ABSTRACT

What is driving the remarkable increase over the last decade in the propensity of patents to cite

academic science? Does this trend indicate that stronger knowledge spillovers from academia have

helped power the surge in innovative activity in the U.S. in the 1990s? This paper seeks to shed light

on these questions by using a common empirical framework to assess the relative importance of

various alternative hypotheses in explaining the growth in patent citations to science. Our analysis

supports the notion that the nature of U.S. inventive activity has changed over the sample period,

with an increased emphasis on the use of the knowledge generated by university-based scientists in

later years. However, the concentration of patent-to-paper citation activity within what we call the

"bio nexus" suggests that much of the contribution of knowledge spillovers from academia may be

largely confined to bioscience-related inventions.

Lee Branstetter
Columbia Business School
815 Uris Hall
3022 Broadway
New York, NY 10027
and NBER
lgb2001@columbia.edu

Yoshiaki Ogura
Kyoto University Institute of Economic
Research
Center for Advanced Policy Studies
Yoshida Honmachi, Sakyo-ku, Kyoto-shi
606-8501 JAPAN
ogura@kier.kyoto-u.ac.jp



 3

 
I. Introduction 

Recent research points to an apparent surge in innovative activity in the United States 

over the past fifteen years.  This is suggested by, among other things, a sharp rise in patent 

applications and patent grants that has substantially outpaced increases in public and private R&D 

spending.  While a large fraction of U.S. patent grants are awarded to foreign inventors, the 

fraction obtained by domestic inventors has risen – and this fraction has risen particularly rapidly 

in fields where patenting has grown most sharply.  The recent patent surge could potentially be 

explained by an increase in the propensity of Americans to patent inventions, rather than an 

increase in the productivity of American research and development, but the recent research of 

Kortum and Lerner [1998, 2000, 2003] strongly supports the latter interpretation.  If this 

conclusion is correct, then it could help explain the widely observed increase in U.S. TFP growth 

in recent years.1 

But if American R&D productivity has increased, then that raises the question of what 

factors are driving the increase.2  This paper attempts to assess the importance of one possible 

contributing factor – increased knowledge spillovers from U.S.-based academic science.  In 

essence, this paper is an attempt to explain the phenomenon graphed out in Figure I.  This figure 

shows that citations made by patents granted in the United States to articles in the scientific 

literature increased very rapidly from the mid 1980s through the late 1990s.3  Over this period, 

the number of patents granted by the U.S. Patent and Trademark Office to U.S. residents more 

than doubled, real R&D expenditures in the United States rose by almost 40%, and global output 

of scientific articles increased by about 13%, but patent citations to science increased more than 

                                                 
1   See Gordon [2002]. 
2   The work of Kortum and Lerner [2000] has stressed the potential role of venture capital-linked firms in 
improving U.S. R&D output.   
3   This graph does not break down growth in citations by the nationality of the inventor, but data from the 
2002 National Science and Engineering Indicators shows that the majority of these citations are made by 
domestic patent applicants, and U.S.-based academic science is disproportionately likely to be cited.  The 
fraction of citations to science made to U.S. authors has increased over this period.  See also Narin et. al. 
[1997] and Hicks et. al. [2001]. 
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13 times.4  Many at the National Science Foundation and other U.S. science policy agencies find 

this graph extremely interesting, because it seems to suggest – at least in some broad sense – that 

academic science and industrial technology are “closer” than they used to be.  This could mean 

that publicly funded science is generating more spillovers to industrial innovation than in the 

past.5  This, in turn, may have contributed in important ways to the apparent surge of innovative 

activity in the United States in the 1990s.   

This positive interpretation of recent trends in the data is influenced by the theoretical 

contributions of Evenson and Kislev [1976] and the more recent analysis their work inspired, 

such as Adams [1990] and Kortum [1997].   In this general class of models, applied research is a 

search process that eventually exhausts the technological opportunities within a particular field.  

However, basic science can open up new “search distributions” for applied researchers, raising 

the productivity and the level of applied research effort – at least temporarily.  Viewed through 

this theoretical lens, the concurrence of rapid growth in U.S. private R&D expenditures, even 

more rapid growth in patenting, mounting evidence of an acceleration in TFP growth, and still 

more rapid growth in the intensity with which U.S. patents cite academic science would all seem 

to suggest a response to new technological opportunities created by academic research.  Not 

surprisingly, other advanced industrial nations are deliberately trying to foster closer connections 

between university-based scientific research and industrial R&D in conscious imitation of the 

“U.S. model.”   

However, increasingly strong knowledge spillovers from academic science to industrial 

R&D are only one of several factors that could be driving the changes illustrated in Figure I.  

Furthermore, even if such knowledge spillovers are growing in strength, this could be happening 

in a number of different ways, which have different implications for public policy.   

                                                 
4   These data come from the 2002 edition of the National Science and Engineering Indicators.  The data on 
scientific article output may understate the growth in articles, but even a substantial correction of the 
official statistics would leave the basic message of Figure 1 essentially unchanged. 
5   This interpretation has been stressed in recent editions of the National Science and Engineering 
Indicators and in the recent work of Narin et. al. [1997]. 
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In order to better understand these implications, we seek to accomplish two related goals 

in this paper.  First, we conduct a systematic analysis of the growth in U.S. patent citations to the 

scientific articles generated by a particular subset of American research universities across space, 

time, cited fields of academic science, and citing fields of technology.  We consider several 

possible sources of growth, including: 

(1) Changes in the nature of academic science, such that more recent science has 
become more relevant to inventors  

 
(2) Changes in the nature of industrial invention, such that inventors have become more 

likely to rely on academic research in their corporate R&D programs 
 
(3) Changes in the industrial composition of patent activity, such that there is more 

patenting in fields of technology that have historically been closely linked to science 
 
(4) Changes in citation activity that are driven by legal considerations, but have no 

connection to real “knowledge spillovers” from academic science to industrial 
innovation  

 
As we will show below, we find that patent citations to science are overwhelmingly concentrated 

in a nexus of academic disciplines and technological fields that we dub the “bio nexus”; much of 

the growth in patent citations to science can be explained by the growth of patenting in this nexus, 

in which a close connection between science and invention has existed for decades.  At first 

glance, it seems that changes in the industrial composition of patenting are the primary driving 

factor of increased patent citations to science. 

Having established this fact, we then examine patent citation activity within the bio nexus 

more carefully, in order to explore the possibility that the expansion of patenting in the bio nexus 

is itself partly driven by increasingly powerful knowledge spillovers from academic science.  We 

find suggestive evidence that this is the case.  We also provide an abbreviated examination of 

patent-to-paper citation activity outside the bio nexus and show that this activity is concentrated 

in a secondary “information technology” nexus.  In the concluding section, we outline some 

policy implications of our results and directions for future research.  The main message of this 

paper is that increased knowledge flows from academia may have contributed significantly to the 
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innovation surge reflected in the U.S. patent statistics, but most of that impact appears to be 

confined to a narrow locus of technologies and scientific fields.6    

II.  The Link Between Academic Science and Industrial Innovation 

Historical Perspective 

In the late 19th and 20th centuries, the search for commercial applications of the preceding 

decades’ scientific discoveries led to the early creation within American universities of new 

engineering disciplines, including chemical engineering, electrical engineering, and aeronautical 

engineering, as documented by Rosenberg and Nelson [1994].  However, progress at the 

scientific frontier was still dominated by European institutions through the 1930s. World War II 

and its aftermath prompted a substantial migration of European scientists to the U.S., where they 

received an unprecedented level of financial support from the federal government.  The large U.S. 

postwar investment in basic research was predicated on the notion that investment in basic 

science would eventually lead to useful technological invention for use in both industry and in 

national defense.  However, early attempts to assess the strength of this connection in the postwar 

era, including De Solla Price [1965], Lieberman [1978], and the Defense Department’s ambitious 

“Project Hindsight,” suggested that relationship between frontier academic science and industrial 

invention, while obviously important, was neither close nor direct.  

Lessons from the Recent Literature 

Drawing upon a wide range of data sources and methodological approaches, the recent 

economics literature suggests that the linkage between frontier science and industrial technology 

is stronger and more direct than in the past.7  Case studies, manager interviews, and surveys have 

been used to assess the magnitude of this impact, the channels through which it flows, and 

                                                 
6   Our reliance on patent statistics means that we will miss the impact of academic research on certain 
domains of invention – such as “open source” software – that do not utilize patents at all.   
7   For a comprehensive literature review that covers relevant research beyond the economics journals, see 
Agrawal [2001]. 
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changes in these factors over time.8  These studies suggest that firms perceive academic research 

to be an important input into their own research process, though this importance differs widely 

across firms and industries.9   A second stream of recent research has undertaken quantitative 

studies of knowledge spillovers from academic research.  Jaffe [1989] and Adams [1990] were 

early contributors to this literature.  More recently, Jaffe et al. [1993, 1996, 1998], Barnes et al. 

[1998], Mowery et al. [1998], and Kim et al. [2005] have used data on university patents and 

citations to these patents to quantify knowledge spillovers from academic science.  While 

patenting by universities has increased substantially in the United States over the last twenty 

years, there is evidence that as the number of university patents has grown, the marginal quality 

of those patents has declined.10     

A related stream of research has undertaken quantitative analysis of university-industry 

research collaboration.  Contributors include Zucker et. al. [1998] and Cockburn and Henderson 

[1998, 2000].  A number of papers in this literature have studied “start-up” activity related to 

academic science or academic scientists, such as Zucker et. al. [1998] and Audretsch and Stephan 

[1996].  Finally, several recent studies have examined university licensing of university generated 

inventions, such as Barnes et al. [1998], Mowery et. al. [1998], Thursby and Thursby [2002], 

Shane [2000, 2001], and Lach and Schankerman [2003].  While the counts of licensed inventions 

have grown over time, there is also evidence that, like patents, the marginal value of licenses has 

declined as their number has increased [Thursby and Thursby, 2002].  Furthermore, this stream of 

literature suggests that inventions generated by universities are typically quite “embryonic” – 

bringing such inventions to the market requires extensive additional investment by private firms. 

Using Patent Citations to Academic Science as Measures of Knowledge Spillovers 

                                                 
8   Important recent studies relying primarily on case study techniques and surveys include Mansfield 
[1995], Cohen et. al. [1994], Faulkner and Senker [1995], and Agrawal and Henderson [2002].   
9   While the channels by which firms absorb the results of academic research vary across industries, the 
Cohen et. al. [1994] study suggests that the formal scientific literature is, on average, an important channel. 
10   See Jaffe, Trajtenberg, and Henderson [1998] and Hicks et al. [2001]. 
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This paper will use patent citations to academic papers to measure knowledge spillovers 

between academic science and industrial R&D.11  As indicators of knowledge spillovers from 

academia to the private sector, these data have a number of advantages.  The academic promotion 

system creates strong incentives for academic scientists, regardless of discipline, to publish all 

research results of scientific merit.  As a consequence, the top-ranked research universities 

generate thousands of academic papers each year.  Similarly, inventors have an incentive to 

patent their useful inventions, and a legal obligation under U.S. patent law to make appropriate 

citations to the prior art – including academic science.   

The recent research discussed in previous paragraphs indicates that, in response to the 

Bayh-Dole Act and other public policy measures, universities have increased the extent to which 

they patent the research of university-affiliated scientists and the extent to which they license 

these patented technologies to private firms.  Nevertheless, it is clear to observers that only a tiny 

fraction of the typical research university’s commercially relevant research output is ever 

patented, and only a fraction of this set of patents is ever licensed.12  To illustrate this, Figure II 

shows the trends over the 1988-1997 period in several alternative indices of university research 

output and knowledge spillovers for one of the university systems in my data set, the University 

of California, which includes nine separately managed campuses and a number of affiliated 

laboratories.  The figure graphs university patents by issue year (patents), invention disclosures 

by year of disclosure filing (invention disclosures), new licenses of university technology by date 

of contract (licenses), the number of citations to previous university patents by issue year of the 

                                                 
11  In doing so, we are building on the work of Francis Narin and his collaborators, who have pioneered the 
use of these data in large-sample “bibliometric” analysis.  See Narin et al. [1997] and Hicks et al. [2001] 
for recent examples of this work. 
12   This result is also emphasized strongly in the interview-based evidence presented by Agrawal and 
Henderson [2002].  Thursby and Thursby [2004], in their study of 3,342 faculty members in science and 
engineering departments at Cornell, MIT, University of Pennsylvania, Purdue, Texas A&M, and the 
University of Wisconsin-Madison find that only 7.1% of their (person-year) observations show invention 
disclosures (the first step in the patenting process) by a faculty member.  The overwhelming majority of 
professors never patent.  Azoulay et al. [2004] show that this is true even in their study of 4,270 academic 
life scientists.  Fewer than 4% of their observations represent patenting by a faculty member, and most 
patenting faculty produce only a handful of patents over the course of a career. 
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citing patent (citations to UC patents), and the number of citations to UC-generated academic 

papers by issue year of the citing patent (citations to UC papers).  Clearly, citations to papers are 

far more numerous than any other indicator. This figure suggests that patent citations to academic 

papers may provide a much broader window through which to observe knowledge spillovers from 

academic science to inventive activity than any available alternative.13 

Citations to scientific articles can reflect learning on the part of industrial inventors 

through multiple channels.  For instance, a firm may learn about a useful scientific discovery 

through an informal consulting relationship with an academic scientist or through the hiring of 

graduate students trained by that scientist rather than through a systematic and regular reading of 

the professional scientific literature.  Even in these cases, the confluence of academic scientists’ 

interest in rapid publication of significant discoveries combined with firms’ legal obligation to 

cite relevant prior art means that citations to scientific articles will often show up in patent 

documents, providing a “paper trail” of knowledge diffusion, even when the particular means of 

knowledge diffusion was something other than the publication itself. 

It has long been recognized that patent citations are inserted into patent documents by 

both the patent applicants and patent examiners.  Exploiting a change in patent data in 2001 that 

identifies the origin of citations, Sampat [2005] has examined the distribution of examiner and 

applicant-generated citations across patent classes and types of applicants.  He finds that patent 

examiners collectively account for a surprisingly large fraction of total citations to previous 

patents (62%), calling into question the earlier interpretation of these citations as indicators of 

knowledge spillovers to the inventor.  On the other hand, he finds that examiners account for a 

low fraction, and applicants a high fraction (90%), of citations to non-patent prior art.   

III.  Examining Patent Citations to Science:  A Citations Function Approach 

Explaining the Growth in Patent Citations to Science:  Four Alternative Views 

                                                 
13   Other recent studies using data on patent citations to scientific papers include work by Fleming and 
Sorenson [2000, 2001] and Lim [2001].  None of these studies focuses on the large change in citations to 
academic science over the course of the 1990s, which is the focus here.  
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In the introduction, we noted that one of the goals of this paper is to identify the factors 

that best explain the growth in patent citations to science over time, and we listed four possible 

sources of variation that will receive particular scrutiny.  Each of these can be associated with a 

particular hypothesis of what is driving the increase in patent citations to science.  Before 

describing our data and empirical approach, we think it is useful to outline these hypotheses in 

greater detail. 

The first is the “increasing scientific fertility” hypothesis, which posits that more recent 

cohorts of scientific papers contain more discoveries that are directly applicable to industrial 

research and development, and that this trend holds across many fields of science.  A less positive 

view of the same phenomenon would be that academic scientists are doing less “fundamental 

science” and are deliberately pursuing more work with (potential) commercial applications, partly 

in response to financial incentives.  Under this hypothesis, knowledge spillovers from academia 

to industry are increasing primarily because of a qualitative change in the nature of the science 

being conducted at universities.14  If this is the primary driving factor, then a significant 

component of the growth in patent citations to science will be explained by an increasing 

propensity for more recent cohorts of scientific papers to be cited by patents.  

The second is the “changing methods of invention” hypothesis, which posits that 

industrial inventors have changed the way they create new technology.  The new approach to 

R&D draws more heavily on academic science than in the past, though it does not necessarily 

draw exclusively on the most recently published articles.  The point being stressed is that it is the 

inventors themselves who are generating the increased citations as they alter the direction and 

nature of their R&D programs to probe the new opportunities for industrial research created by 

                                                 
14   We note that here and elsewhere, we are being a bit loose in our use of the term “knowledge spillover.”  
The knowledge flows from academia to industry are only pure spillovers to the extent that industrial 
inventors receive them for free.  In fact, conversations with industry-based R&D managers suggest that 
investments on the part of the firm (of various kinds) are necessary in order to effectively learn from these 
knowledge flows – so that they are not pure spillovers.  See Cohen and Levinthal [1988], Zucker et. al. 
[1998], and Cockburn, Henderson, and Stern [1999]. 
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basic science.  Like the first hypothesis, this implies that knowledge spillovers from academic 

science are increasing over time, but the mechanism driving this increase is different.  This would 

be reflected in an increasing propensity for more recent cohorts of patents across a wide range of 

technical fields to cite science.   

The third is the “changing composition of invention” hypothesis, which posits that 

invention in certain areas of technology has been closely linked to science for some time, and, 

likewise, some fields of science have always been frequently cited by industrial patents.  Under 

this hypothesis, there has been disproportionate growth in patenting in frequently citing patent 

classes.  Similarly, growth in academic publications has been biased towards those fields of 

science which have historically been more closely linked to industrial R&D.  In other words, at 

the level of individual technology classes and scientific fields, there has been little change in the 

relationship between science and technology per se – rather there has been a change in the 

distribution of patents and papers that generates the observed increase in citations.   

The fourth hypothesis is the “attorney-driven” hypothesis, which posits that the change 

in patent citations is entirely driven by changes in citations practices.  For various strategic 

reasons connected to the desire to impress patent examiners, the fear of subsequent litigation, or 

both, patent lawyers have instructed their clients to increase the number of citations made to the 

scientific literature.  The increasing availability of data on the scientific prior art in electronic 

form has lowered the costs of such citations, further contributing to their growth.  This 

hypothesis, in its extreme version, suggests that little can be learned about the changing 

relationship between science and technology from patent citation data.    

These hypotheses are not mutually exclusive, but they have quite different implications 

for the appropriate interpretation of the growth in patent citations to papers.  In order to 

understand what Figure I really means, how it relates (or not) to the recent American innovation 

surge, and what the appropriate policy response is, it is necessary to sort out the relative 

importance of these hypotheses in explaining the trend illustrated in that graph. 
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Tracking Patent Citations to California-based Academic Science 

If we are to do this, then it is essential that we examine changes in patent citations to 

papers while controlling for growth and changes in the distribution across fields of the population 

of potentially cited papers, growth and changes in the distribution across fields of the population 

of potentially citing patents, and differences in the historical propensity for different categories of 

patents to cite science.  While it would be impractical to do this for the universe of academic 

publications and U.S. patents, it has been possible for us to obtain and link the requisite data for 

the campuses and affiliated research units of the University of California, Stanford University, the 

California Institute of Technology (Caltech), and the University of Southern California.  These 

are the principal sources of academic research in the state of California.  Our inference will be 

based on U.S. patent citations made to scientific articles generated by these institutions.  The 

location of the inventor of the citing patent can be anywhere within the territory of the United 

States.  Because the focus in this paper is on the impact of knowledge flows from academic 

science on U.S. invention, we restrict ourselves to the subset of U.S.-granted patents with U.S.-

based inventors.  However, we note that extending the sample to all patents granted by the U.S. 

PTO, regardless of location of the inventor, does not qualitatively alter any of our key empirical 

results. 

Related research strongly suggests that the patterns in the citation data used in this study 

closely mirror national trends.  Branstetter [2004] analyzes the complete set of nonpatent citations 

made by a random sample of 30,000 U.S. patents granted over the 1987-1997 period.  While he 

uses a completely different statistical approach to these data than the one employed here and 

cannot control for changes in the volume and distribution of potentially citing papers, he finds the 

growth rate of patent citations to science and their distribution across fields of science and 

technology in that random sample to be similar to that indicated in the current paper.  

Nevertheless, one must be sensitive to the potential difficulties involved in generalizing from our 
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results to the entire American research university system.  Wherever such difficulties arise, they 

are noted in the discussion of empirical results in sections IV, V, and VI. 

From the University Science Indicators database generated by the Institute for Scientific 

Information, we have obtained comprehensive data on the publication of scientific articles by our 

sample of California research universities, by institution, year, and scientific field, from 1981-

1997.  These data are matched to data on patent citations made to these publications over the 

1983-1999 (grant year) period, which were provided by CHI Research.  CHI Research, which has 

since been acquired by the consulting firm ipIQ, developed a comprehensive data base of “non-

patent references” made in U.S. patent documents.  The focus in this paper is on the subset of 

references made to articles appearing in peer-reviewed scientific journals.  In the CHI Research 

database, these references are put into a standardized format that can then be matched to data on 

papers published in the more than 4,000 journals covered by the Science Citation Index (SCI).   

To these data we match data on the universe of potentially citing U.S. utility patents granted over 

that same period, which is available from the NBER Patent Citation Database documented in Hall 

et. al. [2001].15    

Trends in scientific publications generated by California research universities for a subset 

of scientific disciplines are plotted in Figure III.  Particularly strong growth can be observed in 

biomedical research, “physics” (an aggregate which includes materials sciences fields connected 

to semiconductors), and “engineering and technology.”16  Trends in U.S. patenting across 

different categories of technologies are similarly plotted in Figure IV.  While patenting in all 

fields has increased over the sample period, particularly sharp increases can be seen in “drugs and 

medicine” and “computers and communications.”17 

A Citation Function Approach to the Data 

                                                 
15   Further details on data construction are provided in the Data Appendix. 
16   Comparison of these data with similar data for all major American research universities shows that 
California academic publication closely mirrors national trends. 
17   This graph does not break down patent trends by nationality of the inventor, but the fraction of patent 
grants awarded to domestic inventors has risen sharply in these two rapidly growing fields. 
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 The empirical framework we use for analyzing these data borrows from the work of Jaffe 

and Trajtenberg [1996, 2002].  In this framework, we model the probability that a particular 

patent, p, applied for in year t, will cite a particular article, a, published in year T.  This 

probability is determined by the combination of an exponential process by which knowledge 

diffuses and a second exponential process by which knowledge becomes superceded by 

subsequent research.   

 This probability is referred to in the work of Jaffe and Trajtenberg [1996, 2002] as the 

citation frequency.  It is a function of the attributes of the citing patent (P), the attributes of the 

cited article (a), and the time lag between them (t-T).  It can be rendered in notation as 

(1)   ))](exp(1)][(exp[),(),( 21 TtTtPaPap −−−−−= ββα      

 Attributes of the citing patent that we incorporate into our analysis include the application 

year, the technical field (based on the primary technology class assigned by the patent examiner), 

the type of entity owning the patent (based on the identity of the assignee), and the geographic 

location of the patent, based on the address of the inventor.  Attributes of the cited article that we 

consider include the publication year, the scientific field of the article, and the institution with 

which the authors were affiliated at the time of publication.   

 Given these data, one could sort all potentially citing patents and all potentially cited 

articles into cells corresponding to the attributes of articles and patents.  The expected value of 

the number of citations from a particular group of patents to a particular group of articles could be 

represented as 

(2) ))](exp(1)][)((exp[))((][ 21 TtTtnncE tcelTSLtcelTSLtcelTSL −−−−−= ββα    

where the dependent variable measures the number of citations made by patents in the appropriate 

categories of grant year (t), technology class (c), institutional type (e), and location of the citing 

patent’s inventor (l) to articles in the appropriate categories of publication year (T), scientific 

field (S), and particular campus (L).  The α ’s are multiplicative effects estimated relative to a 
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benchmark or “base” group of patents and articles.  In this model, unlike the linear case, the null 

hypothesis of no effect corresponds to parameter values of unity rather than zero.  Equation (2) 

can easily be rewritten as 

(3) ))](exp(1)][(exp[
)(*)(

][
21 TtTt

nn
cE

tcelTSL
tcelTSL

tcelTSL −−−−−= ββα     

This is what Jaffe and Trajtenberg [1996] refer to as a citations function.  If one adds an error 

term, then this equation can be estimated using nonlinear least squares.  The estimating equation 

is thus 

(4)   tcelTSLLSTlecttcelTSL TtTtp εββααααααα +−−−−−= ))](exp(1)][(exp[ 21    

where the dependent variable now measures the likelihood that a particular patent in the 

appropriate categories (grant year, technology class, institution type, and location) will cite an 

article in the appropriate categories (science field, source campus, and publication year).  

 Patents are placed into one of the following categories:  computers and communications, 

chemicals, drugs and medicine, electronics, mechanical inventions, and a catch-all “other” 

category.  These are the same categories for which patent growth is depicted in Figure III.  

Scientific articles are classified into the following fields:  biology, biomedical research, 

chemistry, clinical medicine, engineering and technology, physics, and “other science.”  Patent 

assignees are classified into the following institutional types:  public science institutions 

(predominantly universities, research hospitals, and government laboratories), firms, and other 

institutions.  The division of patents on the basis of location of the inventor and the assignment of 

patents and papers into groups based on grant and publication year, respectively, are discussed 

below. 

We estimate various versions of (4) using the nonlinear least squares estimation routine 

of the STATA software package.  When doing so, we weight the observations by the square root 

of the product of potentially cited articles and potentially citing patents corresponding to the cell, 

that is  
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(5) )(*)( TSLtcel nnw =           

This weighting scheme should take care of possible heteroskedasticity, since the observations 

correspond to “grouped data,” that is, each observation is an average (in the corresponding cell), 

computed by dividing the number of citations by (ntcel)*(nTSL). 

IV. Empirical Evidence from Citations Functions 

Localization in Time and Geographic Space 

Regression results from a version of (4) are given in Table I.  Using the parameter values 

from this regression, it is also possible to graph out the double exponential function implied by 

our parameter estimates, giving us a sense of how the “citedness” of a particular group of articles 

by a particular group of patents changes over time.  This is graphed out for our “base case” in 

Figure V.  The base case in this regression corresponds to patents assigned to firms, where the 

first inventor resides in the U.S. outside the state of California.  The base patent grant period is 

1983-1987, and the base publication period is 1981-1985.  The base science category is biology, 

the base patent category is chemistry, and the base institution is Stanford University.18  

The shape of the curve graphically demonstrates the first key result of this section – 

namely that citations to academic science are, to some extent, localized in time.  Citations to 

science appear almost immediately after article publication, and the citation function peaks at a 

lag of about eight years after article publication.  These lags are measured here with respect to the 

grant date of the patent.   An alternative specification measuring patents by application date finds 

a modal lag between publication and application of five to six years, implying fairly rapid 

spillovers of knowledge from science into industrial invention.  While the estimated lag structure 

                                                 
18   As commonly understood, biology is an aggregate that contains components closely associated with the 
bio nexus (molecular biology) and components that are arguably not closely connected (such as population 
ecology).  In this paper, however, we have classified the subdisciplines of biology closely connected to the 
bio nexus as “biomedical research.”  Subdisciplines that remain within the biology aggregate used in this 
paper include such fields as ecology and “aquatic sciences.”  They are not closely connected to the bio 
nexus and, defined this way, “biology” would seem to be a reasonable base category.  Note also that the 
institutional boundary of campuses like Stanford is drawn to include affiliated medical schools. 
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demonstrates that papers continue to receive some citations even at relatively long lags, the 

citation frequency declines steadily after the peak lag.   

These results also provide evidence of concentration in geographic space.  Citing patents 

are assigned to two categories based on the recorded addresses of the inventor:  California 

inventors and U.S. inventors outside California.  U.S. inventors outside California are the base 

category, so the coefficients imply that California-based inventors in a given technology class are 

nearly three times more likely to cite California academic science.  

The intranational localization of knowledge spillovers implied by the California effect 

seems large.  However, the current specification arguably does not control well for regional 

clustering of industrial R&D within the particular niches of the broad technology categories we 

have employed.  A finer disaggregation of patent classes would likely attenuate the measured 

degree of localization.  Furthermore, as can be seen in Figure VII, it is still the case that large 

numbers of citations are made by inventors far from California.  In fact, one sees a “bicoastal” 

concentration of citations, reflecting the clustering of U.S. innovative activity in the Northeast 

and the West Coast.19   

Localization of Knowledge Flows in Technology Space and the “Changing Composition of 
Invention” Hypothesis 
 

We find striking differences in the incidence of citation across fields of technology.  

Relative to the base category (chemicals), drug/medicine patents are 2.4 times more likely to cite 

science, whereas all other categories are substantially less likely to cite science.  The typical 

patent in the least likely-to-cite category, mechanical patents, is only about 1% as likely to cite 

science as the typical chemical patent.  The estimated gap between technology categories in 

citation propensity is quite substantial.  Note that these estimated propensities control for the 

                                                 
19   The recent work of Thompson and Fox-Keane (2005) suggests that earlier evidence of intranational 
geographic localization of knowledge spillovers may have exaggerated the real degree to which knowledge 
spillovers are regionally localized.  Our cautious interpretation of our own findings of a “California effect” 
is based partially on this recent work. 
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number of patents in these categories over time, so that these coefficients are properly interpreted 

as an estimate of the differential “per-patent” propensity to cite science.   

Continuing in this theme, we can also allow different categories of science to display 

different propensities to be cited by patented technologies.  Note that the citation function 

specification controls for the number of “citable papers” within these science categories over 

time, as well as the number of potentially citing patents across fields of technology, so the 

coefficients on science categories are akin to a “per-paper” measure of technological fertility.  

The coefficients in Table I suggest that a paper in the “biomedical research” field is about 41 

times more likely to be cited in a patent than a paper in the base category of biology.  Papers in 

“chemistry” and “clinical medicine” are about five times as likely to be cited as a biology paper, 

while papers in the other science categories are substantially less likely to be cited than biology 

papers.20  The gap between the most and the least intensely cited science categories is quite 

substantial. 

As one can see in Figure IV, “biomedical” patenting has risen sharply over our sample 

period, both in absolute terms and relative to patenting in other technology categories.  In fact, 

patenting in this area has risen more than four-fold.  Likewise, as Figure III indicates, there has 

been substantial growth in publishing in bioscience areas by California research institutions.  

Even controlling for this growth, biotech patents are much more likely to cite science throughout 

the sample period, and bioscience papers are much more likely than other categories to be cited.  

This suggests that the aggregate trends in patent citations to science are driven largely by 

“biotech” patents citing “bioscience” papers.  While there is growing citation activity outside this 

“bio nexus,” patent citations to science have, to date, been highly concentrated within it.   

                                                 
20   In results available upon request, we estimated an “academic production function” for the university 
systems studied in this section of the paper, in which the output measure was the count of publications 
generated in a scientific field by a particular campus in a particular year.  This was regressed on measures 
of “inputs” to the research process.  The results suggest that the higher “productivity” of the biomedical 
sciences is not driven purely by the increase in R&D funding in that field. 



 19

In another take on the “composition hypothesis,” we have also looked at patenting by 

different categories of assignees:  firms, public science institutions (universities, research 

institutes, and research hospitals), and a grab-bag category of “other institutions” in the non-profit 

sector.  Assignment of a patent to one of these categories is based on the typography of assignees 

developed in the NBER patent citation database.  Relative to the base category of firms, public 

science institutions are nearly four times as likely to cite academic science, and “other 

institutions” are almost twice as likely to cite academic science, according to Table I.  This is 

unsurprising, given the connection that is likely to exist between academic science and academic 

patenting.  Because these institutional categories accounted for a small fraction of total U.S. 

patenting, even by the end of our sample period, it is still the case that the vast majority of patent 

citations to California academic science are made by the patents of industrial firms, not 

universities.21 

Evidence on “Changes in Methods of Invention” 

Having incorporated fixed effects associated with the citing field of technology, the cited 

field of science, the cited institution, and characteristics of the citing inventor/assignee, we can 

also make some inference about average changes in citation patterns over time across fields.  

Perhaps the most interesting finding here is that the propensity to cite academic science is 

evidently growing over time.  This can be seen by examining the pattern of coefficients on the 

citing patent grant year cohort terms.  We group patents into categories corresponding to the years 

in which they were granted:  1983-87, 1988-90, 1991-93, 1994-96, and 1997-99.  For these 

cohorts, we estimate an average propensity to cite science relative to the base category.  These 

estimated propensities increase substantially from the “base category” of 1983-87, more than 

                                                 
21   This statement requires some qualification.  University patenting is highly concentrated in a small 
number of fields.  By the end of our sample period, university patenting accounted for roughly 15% of 
health care-related patenting.  That being said, the overall results in Table I are robust to the removal of 
patents granted to “public science institutions” (primarily universities and research hospitals) from the 
sample.  In fact, in some ways, they become even stronger.  See Table III and the discussion on page 23. 
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doubling by the end of the sample period.22  Note that we have explicitly controlled for the fact 

that academic publications in the heavily cited branches of science have become more numerous 

and that there has been an increase in patenting in fields that heavily cite academic science.  

These results are consistent with the view that there has been a change in the nature of invention 

such that inventors now draw more heavily on academic science.    

Evidence on Attorney-Driven Changes in Patent Citations to Scientific Papers 

These results could also be driven, at least in part, by an “attorney-driven” change in 

citation practice, and, in fact, interpretation of the measured increase in the per-patent propensity 

to cite academic papers is clouded by the issue of the so-called “spike patents.”23  In 1995, the 

effective period of monopoly granted to U.S. patent holders changed from 17 years after the grant 

date to 20 years from the filing date, in order to bring U.S. patent law more fully into compliance 

with the provisions of the TRIPs Agreement.  This change took effect for patents filed after June 

8, 1995.  Patents filed prior to this deadline benefited from a “grandfather” provision – they were 

granted a monopoly of either 17 years from date of grant or 20 years from date of application, 

whichever was longer.  Rejected patents re-filed after this deadline would also be subject to new 

evaluation criteria.   

Applications submitted to the U.S. PTO more than doubled in May and June of 1995, and 

these applications, referred to as the “spike patents,” carried an unusually large number of 

citations to science.  This surge in patenting seems to have been driven in part by a rush to file in 

order to benefit from the “grandfather” timing provision.  The increase in citations to science 

seems to have been driven in part by a desire to avoid having to refile rejected patents under the 

new rules.  Applicants thus erred on the side of caution by making far more than the usual 

number of citations to scientific material.  Patents applied for in this period were issued gradually 

                                                 
22   This pattern is quite robust to alternative aggregations of grant years into categories.  Regression results 
demonstrating this are available from the author upon request. 
23   This issue is also discussed in the 2002 issue of Science and Engineering Indicators and in Hicks et. al. 
[2001]. 
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over the next few years – dramatically increasing the average citations to science per patent in the 

overall data.  Once the last of these applications was processed, average science citations per 

patent actually fell, as is illustrated in Figure VI.  This kind of simple data tabulation might 

suggest that the connection between science and technology is weakening, after nearly a decade 

of rapid growth.  That conclusion would be unwarranted, but it is likely that some of the 

movement in the aggregate data in the mid-to-late 1990s was “attorney-driven.” 

Within the context of our empirical approach, one potential remedy for this problem is to 

remove the spike patents from my data set and re-run the citations function.  The results are 

shown in Table II, and it can be seen here (and in all subsequent tables, where the spike patents 

have been removed), that the basic qualitative features of the previous empirical results remain.  

In particular, the finding of an increase in per-patent propensity to cite scientific papers is robust 

to the removal of these patents. 

While the spike patents are the “attorney-driven” change that is easiest to identify in the 

data and to associate with a particular change in legislation, removal of the spike patents does not 

necessarily purge our data of changes in citations that reflect factors other than changes in 

knowledge spillovers.  Over the course of our sample period, on-line databases have emerged that 

have made it steadily easier for inventors and their attorneys to identify the relevant non-patent 

prior art, including related scientific papers.  One might be concerned that the measured increase 

in propensity to cite papers reflects declining search costs more than an increasing tendency to 

utilize academic science in commercial innovation.   

There are two responses to this concern.  First, the emergence of on-line databases has 

taken place across all scientific disciplines.  However, the actual incidence of patent citations to 

science has remained remarkably concentrated in precisely those disciplines where qualitative 

evidence and practitioner accounts suggest that the actual knowledge spillovers have been the 

strongest and grown the most over time.  Second, we provide some evidence in section V of a 

link between the propensity to cite science and inventive productivity at the firm level, measured 
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in various ways.  If citations are purely defensive, and if the increase in citations purely reflects 

the decline in the cost of a citation, there is no reason to expect that firms which increase their 

citations will improve their research productivity.  On the other hand, the interpretation that the 

increase in citations reflects an increase in spillovers would predict such an association. 

A final note on “attorney-driven” changes in patent citations to science relates to the 

interesting recent work by Murray [2002] and Murray and Stern [2005] on so-called “patent-

paper pairs.”  The authors suggest that some academic scientists are publishing their work in the 

academic literature while simultaneously applying for patent protection for essentially the same 

material.  To the extent that an increasingly large fraction of scientific output is destined to 

become patent-protected inventions, inventors may feel increasingly constrained to cite papers 

defensively, even if there are no direct knowledge spillovers.   

But it is unclear how important the patent-paper pair phenomenon has been over the 

course of our sample period.  First, open publication of a paper prior to the issue of the patent 

could undermine the ability of the author-inventor to secure intellectual property rights.24  This 

creates a strategic incentive for inventors to defer publication until their patent rights are securely 

granted, in which case subsequent inventors could simply cite the relevant patent.  Second, other 

studies show the fraction of publishing scientists who also patent is small, and that the patent 

counts of the patenting scientists are small relative to their publication counts (Thursby and 

Thursby, 2004; Azoulay et al., 2005).  While interesting objects of study, patent-paper pairs may 

not be numerous enough to affect our results. 

Evidence on Changes in Scientific Fertility 

                                                 
24   U.S. patent law allows for a window of time during which inventors can seek protection for an 
invention whose essence has already been disclosed in, among other things, an academic publication.  
Nevertheless, this sort of prior disclosure increases the risks associated with patenting, particularly if there 
are disagreements with the Patent and Trademark Office about particular claims or patent scope.  These 
concerns could be even more relevant for inventors seeking to obtain patent protection outside the United 
States – something that would be sought as a matter of course for potentially important inventions. It is 
worth pointing out that the patent-paper pair profiled in Murray [2002] was one in which the paper was 
published after the patent had been granted.   
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 Another explanation of the increase in patent citations to papers would suggest that 

“academic” research has become steadily more practical, that is, relevant to inventors.  In its 

simplest form, this change in the nature of academic science could show up as a tendency for 

more recent cohorts of academic papers to be more highly cited by patents than older cohorts of 

papers, when controlling for changes in the volume and distribution across fields of potentially 

cited papers and potentially citing patents.  Our data allow us to test for precisely that tendency, 

by estimating a set of coefficients that correspond to “cohort effects” for the potentially cited 

papers.  As we did with the patents, we group papers into categories corresponding to the year of 

publication:  1981-1984 (the base category), 1985-1988, 1989-1992, and 1993-1997.  Our data 

source on papers ends in 1997, but there are very few patents granted by 1999 that cite papers 

with publication dates after 1997, so little is lost due to this data restriction.  Recall that, because 

we control for the number of papers in a given cohort, the regression coefficient on the cohort 

effect measures average per-paper “citedness.” 

The exact pattern revealed by the regression coefficients on these cohort effects varies a 

bit depending on the data used.  In the full sample, measures of per-paper “citedness” increase, 

relative to the base period, in the late 1980s and early 1990s, peaking in the 1989-92 period.  

They then seem to decline somewhat in the most recent period, but estimated per-paper citedness 

remains higher than in the base period.  This finding would seem to provide reasonably strong 

evidence for the “changes in scientific fertility” hypothesis.  However, this finding is not robust to 

the exclusion of university patents from the sample.  The latter point is illustrated in Table III, 

which presents results based on a sample that excludes both spike patents and patents assigned to 

universities and to other “public science institutions,” a category including research hospitals that 

often have links to universities.  As can be seen, the apparent increase in per-paper citedness 

evaporates with this sample restriction.  Instead, we see an apparently steady decline in per-paper 

citedness.  If we narrowly define the scientific fertility hypothesis to mean an increase in the 
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average citedness of scientific papers over time, then there does not appear to be robust evidence 

for this in our data.  If anything, citedness may be trending downward.   

However, we need to emphasize that rejection of this narrow version of the hypothesis 

does not rule out the possibility that there has been a stream of scientific discoveries over time, at 

least in some academic disciplines, that inventors in industry have been able to build upon in their 

R&D activities.  We will argue that there is evidence this has happened within the bio nexus.  

Instead, our results on scientific fertility suggest that the growth in patent citations over time has 

not been driven primarily by a broad-based change in the nature of academic science, per se, over 

time, but by a change over time in the degree to which private inventors use this science and a 

shift in the composition of invention across technology classes. 

What Happens if We Exclude University and Research Hospital Patents?   

Given the plausibly strong connection between university-based science and university-

generated patents, it is obviously of interest to examine the robustness of our other empirical 

results to the exclusion of patents granted to “public science institutions” (a category which 

includes primarily universities and research hospitals) from the sample.  Table III shows that, 

with the exception of results pertaining to scientific fertility, all of our main findings are robust to 

this sample restriction.  In particular, the measured localization of spillovers within the bio nexus 

remains after dropping university patents.  In fact, it becomes even more pronounced, as does the 

measured increase over time in per-patent propensity to cite science.   

Summarizing the Lessons from the Full Sample 

Once we exclude spike patents, it seems that trends in the data are best explained by a 

combination of the “changing composition” story and the “changing methods of invention” 

story.25  At first glance, it would appear that the changing composition story is the more important 

                                                 
25   The evidence in Tables I-III comes from a version of the citation function in which we constrain the 
obsolescence parameter to be the same across categories of technology.  Following Jaffe and Trajtenberg 
[2002], we can allow this parameter to differ across patent technology categories.  Results from such a 
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of that two.  To see this, it is useful to examine Table IV, which presents results from a series of 

hypothesis tests.  The data strongly reject the imposition of the constraint that methods of 

invention have not changed – or, more precisely, that per-patent propensities to cite science have 

not changed broadly across fields of technology.  But the degradation in model fit generated by 

this constraint is fairly small.26  On the other hand, imposing the constraint that the relative 

propensity of different patent classes to cite science is the same causes the adjusted R-squared to 

fall by about 67%, and imposing this constraint and the constraint that the relative citedness of 

different categories of science is the same causes the adjusted R-squared to fall by about 85%, 

relative to the unrestricted model.  In other words, changes in the distribution of patenting across 

technologies and changes in the distribution of publications across fields would appear to explain 

much more of the total variance in patent citations to science than does average changes across 

fields in per-patent citation behavior over time.   

But it is likely that a significant part of the substantial expansion in biotech patenting has 

been driven by increasing knowledge spillovers from university-based science.  This is certainly 

the impression we have received from conversations with both scientists and corporate R&D 

managers in this field.  According to these practitioners, methods of invention have changed 

dramatically within the bio nexus, and these changes have contributed to the relative expansion of 

patenting in this field.  If this is the case, then the variance decomposition exercise presented in 

Table IV misses an important part of the story, because the bio nexus “field effect” is presumed to 

be time invariant.  The developments described by practitioners suggest a change in the 

                                                                                                                                                 
regression are omitted for reasons of space.  Allowing this parameter to vary does not change the 
qualitative patterns in the other results.   
26   The value of the Wald test parameter associated with this parameter restriction (see the second column, 
third row) easily exceeds the critical value of the Chi-Square distribution at the appropriate degrees of 
freedom.  But the degradation in model fit generated by this constraint is relatively small.  Relative to the 
unrestricted model, the adjusted R-squared of the restricted model declines by only about one percent.  This 
can be inferred by comparing values in the third column – the adjusted R-squareds associated with the 
restricted models – with the adjusted R-squared of the restricted model given on the next to last row. 
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composition of invention that is itself driven, in part, by field-specific changes in methods of 

invention. 

To explore this more complicated alternative hypothesis, we will look at changes in the 

patterns of patent citations to science within the bio nexus itself.  We will find three pieces of 

evidence consistent with the practitioners’ accounts.  First, we will find evidence of a substantial 

increase over time in the propensity of bio nexus patents to cite bio nexus papers, even 

accounting for the strong growth in potentially cited patents and potentially citing papers.  

Second, we will note that total patenting in the bio nexus has grown much more rapidly than NSF 

estimates of total R&D investment – public and private – suggesting an increase in the 

productivity of research in the nexus as a whole.  Finally, we will relate some preliminary 

findings from related research that suggests a positive association between patent citations to 

science and research productivity at the firm level.    

V.  Are Knowledge Spillovers from Science Driving Patent Growth in the Bio Nexus?   

We first address this question by presenting evidence from a citations function using only 

data from the bio nexus.27  The results are given in Table V.  This table maintains the same 

aggregation scheme across patent classes as Tables I-III, but uses only data from the bio nexus in 

estimating the citations function.  The “biomedical research” cluster of scientific fields is broken 

up into the “core fields” of biochemistry, biophysics, and molecular biology on the one hand and 

the remaining fields of biomedical research on the other.  This sample excludes spike patents, but 

includes patents assigned to universities, research institutes, and research hospitals.   

The qualitative results are similar to those estimated in the full sample.  In particular, one 

finds, even within the bio nexus, statistically significant evidence of an increase in the per-patent 

propensity to cite science over time.  In other words, even within this nexus, where citation 

                                                 
27   We have also investigated what patent citations to science look like when we exclude the bio nexus 
from consideration.  The data identify a secondary nexus clustered around the information technology 
disciplines.  The results of this investigation are discussed in section VI. 
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activity has always been strongest and where the number of patents has been growing rapidly, the 

connection between industrial research and academic science seems to have grown substantially 

over time.  The estimates on the grant year coefficients suggest that per-patent citation 

propensities had increased by more than 70% (relative to the base period) by 1997-99.  In this 

particular sample of the data, the measured increase in per-paper citedness – our measure of 

changes in scientific fertility – remains roughly what it was in the overall sample including public 

science patents.    That is, it suggests an increase, albeit non-monotonic, in scientific fertility over 

time.  While this result does not survive the exclusion of public science patents, the result of an 

increase in per-patent citation propensity does.28  Looking carefully within the bio nexus itself, 

one finds strong evidence of a change in the method of invention over our sample period.   

The finding of an increase over time in the per-patent intensity to cite science is 

supported by a number of studies of the pharmaceutical and biotech industries.  From its 

inception, the biotechnology industry has been closely linked to university-based science.29  But 

over the course of the 1980s and 1990s, established pharmaceutical companies have increasingly 

drawn on recent scientific developments in their efforts to improve the efficiency of their drug 

discovery programs.30  While the received literature has not yet tried to quantify the changes in 

this intensity of industrial borrowing from academic science over time, the basic trends in our 

data are reasonably consistent with the qualitative descriptions of changes over time in the 

existing literature.   

Have these spillovers from academic science actually raised inventive productivity in the 

bio nexus?  A casual examination of the aggregate evidence would suggest an affirmative answer.  

According to NSF data, total real R&D outlays from both public and private sources associated 

with the life sciences nearly doubled between 1985 and 1995.  However, U.S. patenting in the bio 

                                                 
28   Results from this robustness check are available from the authors upon request. 
29   See Kaplan and Murray [2003], Kenney [1986], Lichtenberg [forthcominga], and Gambardella [1995].   
30   See, among others, Cockburn, Henderson, and Stern [1999], who provide a useful qualitative 
description of these changes, then go on to document their implications for relative firm performance over 
time within the pharmaceutical industry. 
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nexus more than tripled over this period, which would seem to imply a considerable increase in 

R&D productivity for the nexus as a whole.31   

Related research by Aoki and Branstetter [2004] has begun to explore more carefully the 

statistical association between the intensity of patent citations to science and research productivity 

at the firm level, using a formal theoretical model of the interaction between academic science 

and industrial research to guide empirical analysis.  Results from this research suggest a positive, 

statistically significant correlation between increases in the intensity with which a particular firm 

cites science in its patents and measures of productivity and new product introductions. 

We repeat two pieces of this evidence here.  First, we can estimate a simple Cobb-

Douglas production function in which the “science citation intensity” of firm patenting enters as 

an argument.  The estimated equation is 

(6) ittilitlititititit lplcitinglrndlemplkapQ εδαββββββ ++++++++= −− 543210  

Where Q is output as measured by deflated sales of firm i in year t, lkap is the log of the deflated 

capital stock, as measured by firm accounts, lemp is the log of the number of workers, and lrnd is 

the level of real expenditure on R&D.32  The intensity of the firm’s use of academic science is 

measured by the log of the number of citations to academic science made by the cohort of patents 

applied for in year t, lciting; we also experiment with various lags of this measure.  This measure 

includes patent citations made to all scientific papers, not just those generated by California-

based research universities.  Since there is a clear relationship between the number of citations 

and the number of patents generated by the firm in a year, we include the log of the number of 

patent applications (or various lags thereof) lp, as an additional control.  We also allow for firm 

( iα ) and year ( tδ ) fixed effects.  Following a long tradition in the productivity literature, we 

                                                 
31   On the other hand, studies by others have suggested that the patent to real R&D ratio has fallen 
substantially for large U.S.-based pharmaceutical companies – an important component of the nexus – over 
much of our sample period.  See, among others, Henderson and Cockburn [1996].   
32   Alternative specifications estimated with an R&D stock produced results qualitatively similar to those 
reported in the paper.  Our results are also robust to the inclusion of multiple lagged patent terms.  
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interpret the coefficients on the R&D and science intensity terms as measuring the marginal 

contribution of these measures to total factor productivity – output, adjusted for changes in 

standard tangible inputs.33   

 Columns (1) through (4) of Table VI illustrate the results we get from various lags of our 

science citation intensity measure.  Given the inevitable lag between the generation of a patent 

and the implementation of patented technology into new products or processes on a sufficient 

scale to affect overall sales, it is important to demonstrate that the results are not purely 

contemporaneous.34  The sample of firm-level data on which specification (6) is estimated, 

described in detail in Aoki and Branstetter [2004], includes firms across a full range of 

manufacturing industries, not just those linked to the bio nexus. The statistically significant 

coefficients imply that a 100% increase in science citations generates a 2%-3% increase in 

productivity.  This would appear to be a modest effect, but the reader should recall that, in the 

aggregate economy, such citations have increased 13-fold over our sample period.  Given the 

various issues of measurement and causal inference, we would not want to overemphasize the 

power of this evidence, but it is clearly consistent with a positive relationship between 

productivity and science citations – and this relationship is not purely limited to firms in the bio 

nexus.35   

 The second piece of evidence for this relationship we take from Aoki and Branstetter 

[2004] uses a measure of inventive output that is only available for the “bio nexus”:  data on new 

product introductions.  The IMS LifeCycle Patent Focus Database connects FDA-approved drugs 

to the specific patents protecting the innovations incorporated into these drugs.  By matching 

                                                 
33   A more detailed description of these data sources is provided in the Appendix, included with this paper. 
34   While the coefficients of lagged values of the science intensity term are consistently positive and 
significant, this is not true for leading values of the science intensity term, providing an epsilon of 
reassurance on the issue of reverse causality.  These results, omitted for reasons of space, are available 
upon request. 
35   Implausibly low estimates for the output elasticity of capital – which likely reflect measurement error in 
firm-level capital stocks – are only one of the problems that arise in this setting, hence our caution.  See 
Griliches and Mairesse (1998). 
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information in this data base with our sample of patenting entities, we are able to identify the 

number of approved drugs that can be associated with the patents generated by a particular firm in 

a given year.  Do increases in the science citation intensity of a firms’ patents result in an increase 

in the number of approved drugs?36 

 The answer provided in column (6) of Table VI appears to be affirmative.  In this column 

we present results based on the following specification: 

(7) ittiitititit lplcitinglrndApprov εδαββββ ++++++= 3210  

where the right hand side variables have the same definition as in specification (6) and the 

dependent variable counts the number of approved new products that can be linked to the patents 

generated by firm i in year t.  Controlling for the size of the patent portfolio and the level of 

contemporaneous R&D investment, the coefficient on lciting measures the relationship between 

the “science citation intensity” of a patent cohort and its ability to yield successful products.  

Because the dependent variable is a count variable, we employ the fixed effects negative binomial 

estimator pioneered by Hausman, Hall, and Griliches [1984].  The estimated coefficient is 

roughly .7, implying that a 100% increase in science citations yields 70% more approved 

products.  As is the case with the other results in Table VI, issues of measurement and causal 

inference necessitate caution in interpreting these results.  Nevertheless, they are clearly 

consistent with a fairly strong positive link between science citations and the generation of 

inventions that can survive the formidable screening procedure erected by the U.S. FDA.  We 

recently learned of related research by Markiewicz [2004], who has independently found a 

positive connection between citations to academic science and various measures of economic 

performance of drug and biotechnology companies, underscoring the point made here. 

VI.   Evidence from the IT Nexus 

                                                 
36   Lichtenberg [forthcomingb, 2003a, 2003b] has established a statistical association between the 
introduction of new drugs and measures of longevity, mortality reduction, and economic growth.   
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 For every year of our sample period, roughly 70-90% of the total citations made by 

patents to scientific articles are made within the bio nexus.  For this reason, we have concentrated 

much of our analysis on the patent-to-paper citation activity within this nexus.  Before concluding 

the paper, however, we provide results of a citation function that deliberately excludes the bio 

nexus, in order to provide readers with a sense of how patent-to-paper citation activity is 

distributed across time and technological fields outside the bio nexus.37  The pattern of knowledge 

diffusion from science to invention may be quite different outside the bio nexus; partitioning the 

data in this way allows us to quantify those differences.38   

Evidence from the IT Nexus 

 Indeed, we find that the non-biotech subsample generates a significantly different pattern 

of results.  The aggregate patent classes used are computers and communications (IT), chemistry, 

general electronics, mechanical inventions, and a catch-all “other” category.  Science aggregates 

are engineering and technology, chemistry, physics, and a catch-all “other science” category.  The 

other categories remain as before.  Note that we are estimating roughly the same number of 

parameters for our non-biotech subsample as in the full sample, even though we have only a 

small fraction of the number of observations of patent-article citations.  The relative thinness of 

the data here means that our parameter estimates need to be regarded with an extra measure of 

caution, even when they are statistically significant according to the conventional thresholds.  

Results are given in Table VII. 

 Patent-article citation activity outside the bio nexus is clearly concentrated in a secondary 

“IT” nexus.  The IT patent classes cite science most frequently, displaying a propensity to cite 

                                                 
37   The discipline of chemistry is somewhat unique in that it includes subdisciplines that are closely 
connected to the bio nexus and other subdisciplines that are completely unrelated.  Given this dual nature, 
we include chemical patents and chemistry papers in both subsamples. 
38   A potential downside to this partition is that we lose “cross-nexus” citations, such as citations made by 
biotech patents to papers in mathematics and computer science.  It is true that we observe an increase in 
such cross-nexus citations over time, probably reflecting the increasing importance of such fields as 
“bioinformatics,” but the aggregate numbers of these cross-nexus citations remain small, even in the most 
recent periods. 
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that is nearly 18 times as high as the base category of chemistry.  General electronics patents are 

more than 7 times as likely to cite science, while mechanical patents are three times as likely.  

Articles in the physics fields are more than 44 times more likely to be cited than base category 

(chemistry) articles.  The physics aggregate includes fields that relate to semiconductors and 

advanced materials.  The engineering/technology aggregate (which includes computer science) is 

the next most highly cited, with a citedness per paper that is about 8 times greater than the base 

category.  The rest of the sciences are significantly less likely to be cited.  Incidentally, these 

results suggest that much of the citation activity involving chemical patents and chemistry papers 

comes from the bio nexus.  Once chemistry is separated from those technologies and disciplines, 

it ceases to stand out in terms of patent-article citation activity.   

 In a striking contrast with earlier results, geographic localization seems to be much higher 

in this subsample.  California-based inventors display a much higher likelihood of citing 

California science than the base (non-California U.S.) category of inventors.  This pattern of 

results could very well reflect the increasing geographic concentration of the U.S. information 

technology industry in California.  Another contrast with earlier results is a much higher 

propensity (relative to industrial firms) for patents generated by public science institutions to cite 

science.  Public science institutions are nearly 39 times as likely to cite science as are firm 

patents, controlling for patent category.  Patents held by “other institutions,” are less likely than 

firms to cite science in these fields, corresponding to the less significant role played by this 

category of assignee in non-biotech patenting.39  The pattern of campus coefficients also 

highlights the unique role played by Stanford University within the sample.  While, within the 

full sample and the bio nexus, a number of other institution’s “campus effects” were nearly as 

high, or even higher, than Stanford’s, in the non-bio subsample no other institution comes 

                                                 
39   However, dropping “public science institution” patents from the sample does not qualitatively change 
the nature of the other results. 
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remotely close to Stanford’s implied relative level of academic fertility.  As with the estimates of 

geographic localization, it seems these data reflect the “Silicon Valley” phenomenon. 

 The patterns suggested by the coefficients on patent grant year cohorts and paper 

publication year cohorts also differ from those in previous regressions.  Controlling for changes 

in the volume and distribution of publications and patents, all periods display a substantially 

greater per-patent propensity to cite science than the base period.  Rather than the steadier 

increase one saw in the full sample, the pattern here looks more like a step function, with a sharp 

increase in the late 1980s.  Although the increase relative to the base period is higher than in the 

bio nexus, one has to keep in mind that the absolute numbers of citations in this category remains 

much smaller than in the bio nexus.  The increase in per patent propensity to cite science, 

combined with a sharp increase in patenting in the IT-related classes, explains most of the 

aggregate increase in citations to science outside the bio nexus. 

 While much of the recent qualitative literature on university-industry interaction has 

focused on the extensive borrowing from science taking place in the bio nexus, this activity is less 

well documented outside that nexus.40  Nevertheless, the timing of the increase in per-patent 

propensity to cite science noted above is roughly coincident with two major changes in patenting 

– a substantial increase in patenting by semiconductor firms, especially the so-called “fabless” IC 

design firms, and a sharp increase in software patenting.  The semiconductor industry has always 

had strong links to science [Hicks et al., 2001, Lim, 2003], but, as Hall and Ziedonis [2001] have 

showed, firms in this industry began sharply increasing their patenting in the 1980s and 1990s.  

Furthermore, new entrants (the so-called “fabless” design firms) emerged that were often closely 

linked to university engineering departments.   

The increase in software patenting followed changes in U.S. patenting law and practice 

which expanded the ability of software inventors to patent, rather than copyright, their inventions 

                                                 
40   Arora and Gambardella [1994] present many examples of what might be called a more “scientific” 
approach to industrial research outside the bio nexus, and stress the centrality of information technology in 
driving this shift. 
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[Bessen and Hunt, 2003].  There was little patent “prior art” to cite, so patents in this area have 

tended to cite more nonpatent prior art, including the relevant academic work in computer science 

and related fields.  Software patents can be difficult to track, and the exacting timing of the 

measured increase depends on ones definition of a software patent.  Nevertheless, some observers 

suggest that there was a sharp increase in software patenting at the end of the 1980s.41   

The final result to note from our exploration of citation activity outside the bio nexus is 

that recent cohorts of papers are not more likely to be cited.  In fact, the per-paper citedness 

measures have sharply plummeted, even when one includes public science patents in the sample.  

One can also see that the estimated obsolescence coefficient is substantially higher than the 

overall sample, while the diffusion parameter is lower.  These results need to be viewed together.  

On average, the gap between paper publication and patent citation is much shorter than it is in the 

bio nexus, such that very recent science is much more likely to get cited.  Controlling for this 

short gap, however, there is no evidence that the most recent cohorts of papers generate more 

knowledge spillovers.  In fact, the estimated decline in per-paper citedness is so sharp that the 

substantial increase in publications in these disciplines fails to make a positive contribution to 

total citations.  In general, it seems that citations to science in these categories arrive more 

quickly, decay more rapidly, and peak at a lower level.   

 Framing these results in light of the alternative hypotheses stated in the introduction, it 

seems clear that the increase in citations outside the bio nexus has been driven almost entirely by 

composition effects – both in terms of fields of technology, fields of science, and institutions -- 

and “changing methods of invention.”  In that sense, results here are broadly consistent with those 

discussed earlier.  However, it must be stressed that citation activity in the secondary IT nexus 

identified in these data is substantially lower than that within the bio nexus – so much so that the 

IT nexus does not even show up in the full sample.  The explosion of IT patenting in recent years 

                                                 
41   See Bessen and Hunt [2003] who discuss the problems involved in measuring software patenting and 
provide alternative counts of software patents over time.  Some of these series increase quite sharply in the 
late 1980s. 
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has been even more dramatic than that of bio nexus patenting, but the relative paucity of citations 

to science among these patents suggests that knowledge spillovers from academia have almost 

certainly not played the primary role in generating this patent explosion. 

VII. Conclusions and Extensions 

What is driving the remarkable increase over the last decade in the propensity of patents 

to cite academic science?  Does this trend indicate that stronger knowledge spillovers from 

academia have helped drive the surge in innovative activity in the U.S. in the 1990s?  This paper 

has sought to shed light on these questions by using a common empirical framework to assess the 

relative importance of various alternative hypotheses in explaining the growth in patent citations 

to science.  Our analysis supports the notion that the nature of U.S. inventive activity has changed 

over the sample period, with an increased emphasis on the use of the knowledge generated by 

university-based scientists in later years.  That being said, knowledge flows from academia to 

industry, as they are measured in this paper, appear to have been overwhelmingly concentrated in 

the bio nexus throughout the sample period.  While scientific breakthroughs generated by 

academic researchers, particularly in the life sciences, have generated new “technological 

opportunities,” these new opportunities are evidently limited in scope.   

In our introduction, we laid out four alternative hypotheses that could possibly explain 

the sharp increase over time in the number of patent citations to science:  the “increasing 

scientific fertility hypothesis,” the “attorney-driven” hypothesis, the “changing method of 

invention hypothesis,” and the “changing composition of invention” hypothesis.   It is clear from 

Section IV that increased patenting in the bio nexus is, in a mechanical sense, the single most 

important driver of the growth in patent citations over time.  This would seem to lead one to the 

conclusion that changing composition of invention is the hypothesis validated by the data.   

But this begs the question of what has driven the expansion of patenting in the bio nexus.  

Conversations with practitioners suggest that part of the increase in bio nexus patenting has itself 

been generated by an increase in knowledge spillovers from academic science.  Three pieces of 
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evidence support this view.  First, within the bio nexus, there has been a pronounced increase 

over time in the propensity of patents to cite scientific articles, even controlling for the enormous 

increase in potentially citing patents and potentially cited articles.  Second, the aggregate statistics 

on R&D spending and patenting suggest a rise in inventive productivity for the nexus as a whole.  

Third, we cite evidence at the firm level suggesting a positive association between inventive 

productivity and patent citations to science – one that is particularly strong in the bio nexus.  This 

latter evidence is interesting in its own right, and is the subject of ongoing research. 
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Figure I  Patent Citations to Academic Science
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Source:  National Science and Engineering Indicators, 2002 

Source:  Authors’ calculations based on data from the University of California Technology 
Transfer Office annual report, AUTMN, the NBER Patent Citation Data Base, and CHI Research. 
 
 

Figure II      Citations to UC papers vs other indicators
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Figure III
Growth in California Academic Publishing, Excluding Clinical Medicine
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Figure IV   Patent Grants by Technology Category, 1981-1999
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Table I   Citation Function Results, Full Sample 
Variable Coefficient T-statistic for H0: Parameter=1

Computers and Communications 0.04 -126.82 
Drugs/medicine 2.39 75.67 
Electronics 0.05 -132.54 
Mechanical 0.01 -110.78 
Other 0.05 -100.33 
Biomedical research 40.87 8.37 
Chemistry 4.83 6.68 
Clinical Medicine 5.36 6.92 
Eng/Technology 0.25 -6.55 
Other Science 0.37 -5.76 
Physics 0.50 -4.32 
Caltech 1.20 20.61 
Berkeley 0.57 -67.43 
Davis 0.42 -93.97 
Irvine 0.44 -78.03 
Los Angeles 0.39 -106.46 
Riverside 0.26 -91.93 
Santa Barbara 0.28 -74.35 
Santa Cruz 0.26 -71.51 
San Diego 1.02 2.89 
Santa Francisco 0.85 -21.82 
USC 0.54 -61.09 
US-CA 2.67 105.69 
Other Institutions 1.75 38.09 
Public Science 3.68 99.18 
Grant year 88-90 1.04 1.13 
Grant year 91-93 1.03 0.96 
Grant year 94-96 1.36 8.55 
Grant year 97-99 2.10 15.56 
Paper pub year 85-88 1.29 21.7 
Paper pub year 89-92 1.39 17.4 
Paper pub year 93-97 1.10 4.08 

1β   (obsolescence) 0.12 62.66 
2β   (diffusion) 1.07E-08 8.33 

Adjusted R-squared 0.224 
Number of observations 556416 

Base categories:  Patent technology category=chemicals, scientific field=biology, academic 
institute=Stanford, patent assignee location=U.S./non-California, patent assignee type=firm, patent grant 
year=[1983, 1987], paper publication year=[1981, 1984]. 
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Figure V  Fitted Citation Frequency (Base Category)
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Source:  Authors’ calculations. 

 

Figure VI  Average Science Citations Per Patent
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Source:  Authors’ calculations based on NBER Patent Citation Database 

 

 

 

 

 

 

 

 

 

 
 

Figure VII  Citations to UC Berkeley Papers, US 
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Table II   Citation Function Results, Excluding “Spike Patents” 
Variable Coefficien T-statistic for H0: Parameter=1 

Computers and Communications 0.04 -126 
Drugs/medicine 2.24 70.87 
Electronics 0.06 -133.03 
Mechanical 0.01 -110.84 
Other 0.05 -100.01 
Biomedical research 40.44 7.82 
Chemistry 5.69 6.52 
Clinical Medicine 5.23 6.43 
Eng/Technology 0.29 -5.78 
Other Science 0.38 -5.26 
Physics 0.62 -2.88 
Caltech 1.16 16.03 
Berkeley 0.59 -59.86 
Davis 0.35 -98.53 
Irvine 0.47 -68.19 
Los Angeles 0.39 -98.7 
Riverside 0.28 -82 
Santa Barbara 0.29 -68.85 
Santa Cruz 0.22 -70.14 
San Diego 1.04 5.17 
San Francisco 0.85 -20.88 
USC 0.53 -57.49 
US-CA 2.68 98.85 
Other Institutions 1.76 31.67 
Public Science 4.30 87.8 
Grant year 88-90 1.04 1.43 
Grant year 91-93 1.07 2.15 
Grant year 94-96 1.43 9.59 
Grant year 97-99 1.98 14.38 
Paper pub year 85-88 1.30 20.51 
Paper pub year 89-92 1.37 15.55 
Paper pub year 93-97 1.17 5.77 

1β   (obsolescence) 0.12 61.21 
2β   (diffusion) 1.01E-08 7.81 

Adjusted R-squared 0.199 
Number of observations 556416 

Base categories:  Patent technology category=chemicals, scientific field=biology, academic 
institute=Stanford, patent assignee location=U.S./non-California, patent assignee type=firm, patent grant 
year=[1983, 1987], paper publication year=[1981, 1984].
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Table III  Citation Function Results, Excluding “Spike Patents” and University Patents 

V i bl
Coefficient T-statistic for H0: Parameter=1 

Computers and Communications 0.039 -52.65 
Drugs/medicine 4.331 36.21 
Electronics 0.072 -48.02 
Mechanical 0.025 -44.74 
Other 0.015 -47.16 
Biomedical research 87.037 2.23 
Chemistry 2.576 1.31 
Clinical Medicine 9.232 2.01 
Engineering and Technology 0.414 -1.38 
Other Science 0.531 -1.11 
Physics 0.709 -0.62 
Caltech 1.211 15.03 
Berkeley 0.394 -69.92 
Davis 0.191 -95.16 
Irvine 0.236 -73.62 
Los Angeles 0.328 -81.43 
Santa Barbara 0.159 -72.75 
Riverside 0.640 -24.43 
Santa Cruz 0.178 -54.48 
San Diego 0.528 -51.70 
San Francisco 0.505 -59.54 
USC 0.589 -36.50 
US-CA 2.721 55.94 
Other Institutions 2.278 62.61 
Grant year 88-90 1.210 5.28 
Grant year 91-93 1.018 0.47 
Grant year 94-96 1.232 4.59 
Grant year 97-99 2.158 11.34 
Paper pub year 85-88 0.717 -23.82 
Paper pub year 89-92 0.520 -32.13 
Paper pub year 93-97 0.407 -34.20 

1β   (obsolescence) 0.123 2.25 
2β   (diffusion) 5.26E-09 -52.65 

Adjusted R-squared 0.119 
Number of observations 370944 

Base categories:  Patent technology category=chemicals, scientific field=biology, academic institute=Stanford, patent assignee 
location=U.S./non-California, patent assignee type=firm, patent grant year=[1983, 1987], paper publication year=[1981, 1984] 
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Table  IV  Wald Tests of Restrictions 
 

Hypotheses: 
(1) H0: All coefficients of patent technology categories are the same. 
(2) H0: All coefficients of paper fields are the same. 
(3) H0: All coefficients of patent grant years are the same. 
(4) H0: All coefficients of paper publication years are the same. 

 
 Test results 

Hypothesis Chi-Sq. Adj. R2 (rest.) 
 (p-value)  

(1) 63273.3 0.083 
 (0.000)  

(2) 448.7 0.052 
 (0.000)  

(1) and (2) 63721.9 0.029 
 (0.000)  

(3) 2923.8 0.196 
 (0.000)  

(4) 29429.4 0.197 
 (0.000)  

Adj. R2 (unrest). 0.199 
# of obs. 556416 
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Table V  Bio Nexus Results 
Variable Coefficient T-statistic for H0: Parameter=1 

Drugs & Medical 2.326 30.16 
Chemistry 0.196 -56.39 
Clinical Medicine 0.184 -80.2 
Other Biotech 2.321 34.8 
Caltech 0.911 -4.69 
Berkeley 0.478 -37.35 
Davis 0.297 -51.5 
Irvine 0.367 -38.88 
Los Angeles 0.364 -47.29 
Riverside 0.221 -42.09 
Santa Barbara 0.260 -33.1 
Santa Cruz 0.243 -30.29 
San Diego 0.985 -0.82 
San Francisco 0.782 -14.3 
USC 0.498 -28.45 
US-CA 2.548 41.57 
Other Institutions 1.614 11.49 
Public Science 4.174 37.72 
Grant year 88-90 1.040 0.58 
Grant year 91-93 1.043 0.62 
Grant year 94-96 1.377 3.88 
Grant year 97-99 1.729 5.38 
Paper pub year 85-88 1.296 8.81 
Paper pub year 89-92 1.307 5.76 
Paper pub year 93-97 1.105 1.63 

1β   (obsolescence) 0.115 24.2 
2β   (diffusion) 3.28E-07 15.03 

Adjusted R-squared 0.189 
Number of observations 105984 

Base categories:  Patent technology category=chemicals, scientific field=biochemistry, biophysics, and molecular biology, academic 
institute=Stanford, patent assignee location=U.S./non-California, patent assignee type=firm, patent grant year=[1983, 1987], paper 
publication year=[1981, 1984] 
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Table VI The Link Between Science Citations and Inventive Productivity  
Variable (1) (2) (3) (4) (5) 
Outcome Measure Real 

Sales 
Real 
Sales 

Real 
Sales 

Real 
Sales 

New product 
introductions 

      
Science Citations .0302    .6961 
 (.0045)    (.0240) 
Science Citations t-1  .0264    
  (.0048)    
Science Citations t-2   .0238   
   (.0051)   
Science Citations t-3    .0276  
    (.0056) 

 
 

R&D .1657 
(.0085) 

.1730 
(.0089) 

.1846 
(.0095) 

.1977 
(.0101) 

.0865 
(.0183) 

      
Patenting -.0049 

(.0062) 
-.0002 
(.0065) 

.0043 
(.0068) 

.0058 
(.0072) 

.4080 
(.0328) 

      
Capital .0716 

(.0060) 
.0734 

(.0062) 
.0768 

(.0065) 
.0806 

(.0068) 
 

      
Labor .8387 

(.0127) 
.8257 

(.0134) 
.8049 

(.0142) 
.7872 

(.0151) 
 

      
Observations 14,495 13,799 13,086 12,352 2,483 
R-squared .9743 .9747 .9753 .9758  
Log Likelihood     -4788 
Standard errors are listed in parentheses.  Columns (1)-(4) provide results of regression specification (6) 
run on a firm-level panel data set of 1,279 publicly traded companies based in the United States, Western 
Europe, and Japan.  The science citation coefficient effectively provides the elasticity of TFP with respect 
to changes in the level of citations to academic science, controlling for the size of the cohort of patent 
applications.  The data set measures all citations made by the patents of these companies to all scientific 
papers appearing in the peer-reviewed journals indexed by the Science Citation Index, not just those 
generated by California-based research universities.  Patents are dated accorded to the year of application 
rather than the year of grant.  Column (5) provides the results of regression specification (7) run on a firm-
level panel data set of 273 publicly traded companies in the drug and biotechnology industries and related 
sectors.  The sample includes most major manufacturers based in Western Europe and Japan.   
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Table VII  Results from the “IT Nexus” 
Variable Coefficient T-statistic for H0: Parameter=1 

Computers & Communications 17.757 7.16 
Electronics 7.175 6.49 
Mechanical 4.568 5.75 
Other 0.205 -4.56 
Eng/Technology 9.467 2.5 
Other Science 0.527 -1.22 
Physics 45.498 2.75 
Caltech 0.140 -111.24 
Berkeley 0.087 -116.36 
Davis 0.457 -44.23 
Irvine 0.011 -88.11 
Los Angeles 0.044 -109.79 
Riverside 0.013 -71.51 
Santa Barbara 0.038 -111.09 
Santa Cruz 0.005 -67.68 
San Diego 0.024 -101.04 
San Francisco 0.002 -116.04 
USC 0.065 -94.57 
US-CA 21.964 8.08 
Other Institutions 0.436 -1.56 
Public Science 38.980 6.94 
Grant year 88-90 16.606 17.27 
Grant year 91-93 7.166 11.97 
Grant year 94-96 16.022 11.07 
Grant year 97-99 16.255 7.16 
Paper pub year 85-88 0.207 -153.46 
Paper pub year 89-92 0.079 -173.74 
Paper pub year 93-97 0.022 -320.19 

1β   (obsolescence) 0.544 88.66 
2β   (diffusion) 5.41E-11 2.36 

Adjusted R-squared 0.074 
Number of observations 264960 

 
Base categories:  Patent technology category=chemicals, scientific field=chemistry, academic institute=Stanford, patent 
assignee location=U.S./non-California, patent assignee type=firm, patent grant year=[1983, 1987], paper publication 
year=[1981, 1984] 
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Data Appendix  
 

This appendix provides additional details on the construction of the data sets used in the 

paper.   

Construction of the Data Set Used in Tables I-IV 
 

From the University Science Indicators database generated by the Institute for Scientific 

Information and purchased by the authors, we have obtained comprehensive data on the 

publication of scientific articles by our sample of California research universities, by institution, 

year (of publication), and scientific field, from 1981-1997.  The raw data are counts of 

publications, and they are assigned to a large number of narrowly defined scientific fields.   

These data are matched to data on patent citations made to these publications over the 

1983-1999 (grant year) period, which were provided by CHI Research.  CHI Research, which has 

since been acquired by the consulting firm ipIQ, developed a comprehensive data base of “non-

patent references” made in U.S. patent documents.  These references include citations to scientific 

journals, industrial standards, technical disclosures, engineering manuals, etc.   The focus on this 

paper is on the subset of references made to articles appearing in peer-reviewed scientific 

journals.  In the CHI Research database, references to scientific journals are put into a 

standardized format, and these data can then be matched to data on papers published in the more 

than 4,000 journals covered by the Science Citation Index (SCI).42  Through this matching 

process, we obtain data on patent citations to peer-reviewed scientific articles generated by 

California research universities. 

The raw data thus obtained consisted of a patent-paper match – an observation that linked 

a specific U.S. patent grant with a specific paper for which at least one of the authors was 

affiliated with a California-based research university at the time of publication.  The papers were 

                                                 
42   For a more detailed description of the database developed by CHI Research, see Narin et. al. [1997].  
Further details are also available from the authors upon request. 
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assigned to a set of scientific field categories developed by CHI Research based on the journal in 

which they appeared.  The citing patents were also assigned to a set of technology categories, also 

developed by CHI Research, based on the primary patent class assigned by the U.S. patent 

examiner.  For the purposes of our analysis, we only considered U.S. patent grants awarded to 

inventors with a U.S. address.  However, inclusion of the full set of U.S. patent grants, including 

those made to foreigners, did not qualitatively change our results.       

Finally, we obtained data on the universe of potentially citing U.S. utility patents granted 

over that same period, which is available from the NBER Patent Citation Database documented in 

Hall et. al. [2001].   These data use information on inventor address to identify “domestic” versus 

“foreign” patents.  These data also provide information on the nature of the patent owner, so that 

we can distinguish between patents owned by universities, public research institutes, government 

agencies, and private firms.  The geographic and institutional categories used in this data set are 

incorporated into our own analysis.   

Given the nature of our analysis, we aggregated our raw paper, patent, and patent-to-

paper citation data into cells, based on the scientific field, generating institution, and publication 

date of the cited paper, and the technological field, grant date, inventor location, and institutional 

category of the citing patent.  This required us to construct a concordance between the 

disaggregated fields used by the University Science Indicators database and the more aggregated 

fields used by the CHI Research data.  Papers with authors from more than one California 

institution are “credited” to each institution.  The large number of categories implies a large 

number of cells and, hence, a large number of observations.   

Construction of the Data Set Used in Table VI 

 The data set used in Table VI is at the firm-level.  The NBER Patent Citation Database 

was used to identify the patent assignee codes assigned by the U.S. Patent and Trademark Office 

to the most significant “patent-generating” industrial firms and not-for-profit organizations.  This 

set of mostly large enterprises was supplemented with a set of patent assignee codes assigned to 
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smaller firms in technology-intensive industries, including biotechnology, semiconductors, and 

information technology.  While the majority of these assignee codes were associated with U.S.-

based organizations, the codes associated with roughly 300 Japanese and 200 West European 

firms were also included.   

 Using these assignee codes, information was downloaded from the NBER Patent 

Citations Database on all patents granted to these firms and organizations from 1982-1999.  With 

the help of CHI Research, information on all of the citations made by these patents to scientific 

papers published in journals tracked by the Science Citation Index was obtained.  For more than 

70% of the papers cited, the institutional affiliation of the author at the time of publication can be 

identified, although these data are not incorporated in the empirical analysis shown in the paper.  

Instead, counts of the number of citations to science references that appear in each year’s cohort 

of patents were constructed, where patents are dated by the year of application rather than the 

year of grant.  By looking at the number of science citations while controlling for the size of the 

patent cohort, one can obtain a firm-specific, time-varying measure of the science citation 

intensity of the firm’s patented inventions. 

 The IMS LifeCycle Patent Focus Database maintains a record of approved drugs and the 

U.S. patents associated with them.  This database was employed to create a count of (eventually) 

approved drugs that can be associated with the cohort of a firm’s patent applications in a given 

year.  This provides a way of linking the science citation intensity of a patent cohort with the 

number of drugs that patent cohort eventually produces.  This measure of product innovations is 

only available for pharmaceutical and biotechnology firms, but it provides a direct connection 

between patents and products.   

 Most of the largest firms generating patent applications are publicly traded corporations, 

allowing for the linkage of patent data with data on R&D investment, labor and capital inputs, 

and sales.  This kind of linked data was obtained for nearly 1,300 firms.  Data on accounts for 

U.S. firms were taken from Compustat.  Data on Western European firms were taken from 
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Compustat Global, Datastream, and Osiris.  Data on Japanese firms were taken from the 

Development Bank of Japan Corporate Finance Database, with supplementary R&D data taken 

from firm-level R&D surveys published in the Japan Company Handbook series distributed by 

Toyou Keizai.  Corporate output was deflated by producer price indices associated with the firm’s 

primary industry.  This is obviously problematic in the case of highly diversified manufactures.  

Measures of the capital stock were deflated “book value” measures taken directly from firm 

accounts.  Measures of R&D stocks were obtained by applying the perpetual inventory method to 

our R&D expenditure series.  Regressions run with these R&D stock measures yielded results 

qualitatively similar to those using R&D flow measures.  However, these stocks are subject to 

considerable measurement error due to the absence of “pre-sample” data on R&D expenditure 

with which to calculate an initial stock. Obtaining better measures of capital and R&D stock is 

the focus of ongoing research efforts. 

 




