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ABSTRACT

Motivated by psychological evidence that attention is a scarce cognitive resource, we model

investors' attention allocation in learning and study the effects of this on asset-price dynamics. We

show that limited investor attention leads to ``category-learning" behavior, i.e., investors tend to

process more market and sector-wide information than firm-specific information. This endogenous

structure of information, when combined with investor overconfidence, generates important features

observed in return comovement that are otherwise difficult to explain with standard rational

expectations models. Our model also demonstrates new cross-sectional implications for return

predictability.
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1 Introduction

Standard asset-pricing models are typically based on the assumption that markets distill

new information with lightning speed and that they provide the best possible estimate of

all asset values. In reality, this distillation and estimation requires investors’ close attention

to processing information and to incorporating this knowledge into their decisions. Several

recent studies suggest that investor attention may play an important role in determining asset

prices. Important news or information is not reflected by prices until investors pay attention

to it.1 Despite the growing empirical evidence, there has been little formal analysis on this

issue. In this paper, we study the effects of investor attention on asset price dynamics.

We emphasize that attention is a scarce cognitive resource (Kahneman, 1973). Attention

to one task necessarily requires a substitution of cognitive resources from other tasks. When

it comes to investment decisions, given the vast amount of information available and the

inevitability of limited attention, investors have to be selective in information processing.

We consider a discrete-time model with an infinite number of periods. There are multiple

risky assets and one risk-free asset in the economy. The risk-free asset offers a constant rate

of return. The dividend payoff of each risky asset is determined by a linear combination of

three unobservable random factors with independent Gaussian distributions: market, sector,

and firm-specific.

We study the learning process of a representative investor who has limited attention.

Facing unobservable fundamental factors in her portfolio, the investor processes information

to infer their values. We view this representative investor as one of many retail investors in the

stock market who face similar uncertainty in their portfolios. They access similar information

sources, such as newspapers, analyst reports and media coverage. These investors are also

subject to similar attention constraints and behavioral biases in information processing.

We model the investor’s learning process as follows. The investor first generates a vector of

1Huberman and Regev (2001) provide a vivid example: the publication of an article in the New York Times about
a new cancer curing drug from EntreMed attracted great public attention and generated a daily return of more than
300% in its stocks, even though the same story had already been published more than five months earlier in Nature
and other newspapers. Other studies, e.g., Hirshleifer, Hou, Teoh, and Zhang (2004), Hong, Walter, and Valkanov
(2003), Hou and Moskowitz (2003), and DellaVigna and Pollet (2003), provide evidence that stock prices do not fully
incorporate all information that appears in the public domain, such as the prices of other assets and certain variables
in firms’ financial statements.



signals through information processing. This process is affected by the investor’s attention

constraint and her attention allocation. We adopt the entropy concept from information

theory to measure information and impose the attention constraint as the maximum amount

of information that the investor can process each period. Given the multiple sources of

uncertainty, the investor optimally allocates her attention across them. As the investor

allocates more attention to a factor, she processes more information. After gathering the

signals, the investor then incorporates them into her beliefs through Bayesian updating.

To maximize her expected lifetime utility, the investor optimally makes her consumption

decisions based on her beliefs about fundamental factors. An exponential utility function

and Gaussian distributions for all variables allow a linear equilibrium, in which asset prices

are determined through the pricing kernel determined by the investor’s marginal utility of

consumption. In the equilibrium, the investor allocates attention across fundamental factors

to reduce the total uncertainty of her portfolio while asset prices fluctuate as the investor

updates her beliefs based on the processed information. In this way, the investor’s attention

allocation affects the asset-price dynamics.

Our model shows that limited attention leads to “category-learning” behavior: an attention-

constrained investor tends to allocate more attention to market- and sector-level factors than

to firm-specific factors. In severely constrained cases, the investor allocates all attention to

market- and sector-level information and ignores all the firm-specific data. For instance, dur-

ing the internet bubble period, firms that had changed to dot.com names without any funda-

mental changes in strategies earned significant abnormal returns around their name-change

announcements (Cooper, Dimitrov, and Rau, 2001). This example shows how inattentive

investors could be to firm-specific information.

The endogenous information structure derived from investors’ attention allocation is par-

ticularly useful in studying the interaction between investors’ attention and their biased

reactions to information. Several recent studies suggest that biased reactions to information

provide helpful insights in understanding many empirical anomalies that have been discov-

ered over the past two decades.2 Since biased reactions only occur when investors attend to

2See Hirshleifer (2001) and Barberis and Thaler (2003) for recent reviews of this literature. For example, in ex-
plaining overreaction and underreaction of stock prices in different situations, Daniel, Hirshleifer, and Subrahmanyam
(1998) analyze overconfidence and self-attribution bias in investors’ responses to information, while Barberis, Shleifer,
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certain pieces of information and/or ignore others, the attention allocation decisions studied

in our model determine the cross-sectional patterns of these biased reactions.

We give special consideration to one specific form of investor bias, overconfidence. Ex-

perimental studies have shown that the trait of overconfidence is particularly severe in those

faced with diffuse tasks that require difficult judgements but provide only noisy and delayed

feedback (see Einhorn, 1980). The fundamental valuation of financial securities is a good

example of this type of difficult tasks, one which becomes even more challenging when in-

vestors have limited attention. We model overconfidence as the investor’s exaggeration of

her information processing ability. As a result, the investor overestimates the precision of

her information, in a way consistent with other overconfidence models in the literature.3

Our model captures three features of asset return comovement observed by recent empir-

ical studies. First, return correlations between firms can be higher than their fundamental

correlations. This result is generated by the interaction of the investor’s category learning

behavior (her tendency to processing more market- and sector-level information) to her over-

reaction to the processed information. This result is supported by the empirical studies of

Shiller (1989) and Pindyck and Rotemberg (1993) on the comovement between U.K. and

U.S. stock markets and the comovement of individual U.S. stocks.

Second, our model shows that across different sectors, there is a negative relation between

the average return correlation of firms in a sector and their stock price informativeness. For

a sector with a higher information-processing efficiency, rather than treating the sector as a

category, the investor allocates relatively more attention to firm-specific information. Conse-

quently, these firms’ stock prices will be more informative about their future fundamentals,

and their returns will have relatively more firm-specific variation (or smaller correlations).

This result provides an explanation to the findings by Morck, Yeung, and Yu (2000) and

Durnev, Morck, Yeung, and Zarowin (2003) that stock returns are more informative about

changes in future earnings in industries or countries with less correlated stock returns.

Third, our model shows that as information technology advances over time, investors’

and Vishny (1998) consider investor representativeness and conservatism. Along another line, Hong and Stein (1999)
and Hirshleifer and Teoh (2004) analyze models in which some useful public information is either ignored or only
gradually recognized by investors.

3See, for example, Kyle and Wang (1997), Daniel, Hirshleifer, and Subrahmanyam (1998), Odean (1998), Bernardo
and Welch (2001), Gervais and Odean (2001), and Scheinkman and Xiong (2003).
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attention constraints become less binding and they can allocate relatively more attention

to firm-specific information, thereby reducing return correlations. This result explains the

finding of Campbell, Lettau, Malkiel, and Xu (2001), who document a decreasing trend in

the return correlation of U.S. stocks over the last thirty years.

It may appear that our model’s implications for return comovement can also be derived

from a rational expectations model of costly information acquisition. However, West (1988)

analyzes a rational expectations model and shows that improved information about future

cashflows actually decreases return volatility. The basic intuition is that more information

only allows a rational investor to resolve uncertainty earlier, but does not increase the level of

return variation. Thus, it is difficult for standard rational expectations models to explain the

empirical evidence on return comovement based on cross-sectional difference and time-trend

in information cost.

The investor’s attention allocation decisions also directly affect the cross-sectional pat-

terns of asset-return predictability. When the investor allocates more attention to individ-

ual firms in a sector and processes more firm-specific information, there will be more pro-

nounced overreaction-driven predictability in firm-specific returns. In the meantime, more

firm-specific information processed leaves an ignored public signal less valuable in predicting

firms’ future returns. Since the investor’s attention allocation to individual firms in a sector

is negatively related to the average return correlation in the sector, our model provides two

new testable implications: after controlling for the degree of investor overconfidence, firms in

a sector with a lower average return correlation tend to have more pronounced overreaction-

driven return predictability (e.g., long-run price reversals and short-term price momentum);

on the other hand, an ignored public signal (such as certain variables in firms’ financial

statements) will have less predictive power for these firms’ returns.

The paper is organized as follows. Section 2 reviews the related studies on attention.

We introduce the model and derive the equilibrium in Section 3. Section 4 discusses the

investor’s category learning behavior under attention constraints. In Section 5, we describe

the cross-sectional and time series implications of our model for asset return comovement.

Section 6 illustrates the implications of this on return predictability. Section 7 concludes.

The Appendix provides technical derivations and proofs.
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2 Related studies on attention

There is a large body of psychological research on human attention. These studies suggest

that people’s ability to simultaneously perform different tasks depends on whether they

involve only perceptual analysis or more central cognitive analysis requiring memory retrieval

and action planning. Although it is possible for people to simultaneously handle multiple

perceptual tasks, such as typing while listening to music, psychological evidence shows that

overlap in the central cognitive operations of different tasks does not occur successfully,

except in a few special cases.

Pashler and Johnston (1998) summarize various supporting evidence that there is a limit

to the central cognitive processing capacity of the human brain. The operation of human

brains is intuitively described by psychologists as similar to that of a single-processor com-

puters. Both deal with multiple tasks by working on one task at a time, alternating between

these tasks in order to respond to inputs in a timely fashion. The rate or efficiency of pro-

cessing for each task depends on the processing time the computer allocates to the task.

This is the basic concept that we adopt to model information processing by investors.

Recent theoretical work in economics and finance has begun to explore some of the con-

sequences of limited investor attention. Hirshleifer and Teoh (2003) analyze firms’ choices

between alternative methods for presenting information, and the effects of different pre-

sentations on market prices when investors have limited attention and processing power.

Hirshleifer, Lim, and Teoh (2003) address firms’ incentives to withhold information from

credulous and inattentive investors. Hirshleifer and Teoh (2004) provide a model of return

predictability based on inattentive investors’ negligence of current earnings, different earnings

components, or information in investment. Our model also addresses the effect of neglected

information on asset returns. In particular, we derive new cross-sectional implications linking

the strength of this effect to return correlation.

Sims (2003) adopts the concept of channel capacity from information theory to study

information processing constraints in a dynamic control problem without financial assets.

Peng (2005) studies an information capacity constraint in investors’ learning processes. Van

Nieuwerburgh and Veldkamp (2004) discuss portfolio under-diversification caused by in-
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vestors’ learning constraints. We use an information measure shared by these studies, and

focus on investors’ category learning behavior and its relationship to return comovement and

predictability.

Psychological studies, as reviewed by Yantis (1998), suggest that attention can be directed

by people’s deliberate strategies and intentions. Gabaix and Laibson (2003) analyze a model

of directed attention of economic agents who allocate thinking time to choose a consumption

good from several alternatives, and Gabaix et al. (2003) provide some further experimental

evidence. Our model also focuses on the effects of actively controlled investor attention.4

Investors’ limited attention or computational capacity also motivates several recent stud-

ies of heuristics that simplifies problem-solving, e.g., Barberis and Shleifer (2003), Mul-

lainathan (2002), and Hong and Stein (2003). In particular, Barberis and Shleifer analyze

the effects of investors’ style strategies, i.e., investors allocate investment based on exogenous

asset styles and simultaneously move in and out of a style depending on its recent perfor-

mance, on excessive comovement among assets of the same style. In our model, investors

with limited attention form asset categories based on their fundamentals, and the excessive

comovement is driven by investors’ inattention to firm-specific information. This framework

allows us to draw explicit links between the dynamics of information flow and the dynamics

of return comovement and predictability.

3 The model

We develop a model with a infinite number of periods, t = 1, 2, 3, ...,∞. There is a repre-

sentative investor who invests in a portfolio of risky financial assets. We allow the investor

to borrow and lend at a constant risk-free rate of r. We view the representative investor in

our model as one of many retail investors in the stock market who face similar uncertainty

in their portfolios and who access similar information sources such as newspapers, analyst

reports, and media coverage. These investors are also subject to similar behavioral biases

and attention constraints in their learning processes.

4Attention can sometimes be captured by an abrupt onset of stimulus and other salient events. Barber and Odean
(2003) examine the stock trading generated by investor attention that is driven by salient events.
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3.1 Investor preference and factor structure of asset fundamentals

The investor has an exponential utility function of consumption:

u(c) = −1

γ
e−γc (1)

where γ is her absolute risk-aversion coefficient. Each period, the investor chooses a con-

sumption level to maximize her expected lifetime utility:

max Et

[ ∞∑

s=t

δs−tu(cs)

]
. (2)

δ ∈ (0, 1) is the time preference parameter, and cs is the consumption choice in period s.

The investor holds a portfolio that spans m sectors, with n firms in each sector. We

view a sector as an industry or nation. Each firm pays a dividend every period. We denote

the dividend from the j-th firm of the i-th sector in period t by di,j,t, and summarize the

dividends of all assets by a vector

Dmn×1(t) = (d1,1,t, · · · , d1,n,t, · · · , di,j,t, · · · , dm,1,t, · · · , dm,n,t)
T (3)

where ‘T ’ is the transpose operator.

The dividends are linear combinations of random fundamental factors:

di,j,t = ht + fi,t + gi,j,t, i = 1, · · · ,m, j = 1, · · · , n (4)

where ht is a market factor, fi,t is the common factor for sector i, and gi,j,t is the firm-specific

factor for the j-th firm in the i-th sector. These factors are unobservable and independent

of each other. Their distributions are known to the investor. We assume that these factors

are identically and independently distributed across periods:

ht ∼ N(h̄, σ2
h), (5)

fi,t ∼ N(f̄ , σ2
f ), i = 1, · · · ,m (6)

gi,j,t ∼ N(ḡ, σ2
g), i = 1, · · · ,m, j = 1, · · · , n. (7)

In this specification, the market factor has a Gaussian distribution with a mean of h̄ and a

variance of σ2
h; all sector factors have the same Gaussian distribution with a mean of f̄ and
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a variance of σ2
f ; and all firm-specific factors have an identical Gaussian distribution with a

mean of ḡ and a variance of σ2
g . While we make these specific assumptions to simplify our

analysis, they are not critical to our main results.

3.2 The learning process

Although the fundamental factors are unobservable, the investor is able to analyze them one

period before their realization in dividends.5 A more precise forecast of future dividends

benefits the investor by allowing her to make more efficient intertemporal consumption de-

cisions.

We emphasize two important features in the investor’s learning process: limited attention

and overconfidence. The investor’s limited attention determines the maximum amount of

information she can process each period. We treat learning about each of the independent

fundamental factors as separate tasks, similar to the way that English and Mathematics are

studied separately in school. The investor allocates her attention across these tasks.

We use κ to represent the limit in attention. We denote the fraction of attention allocated

to the market factor ht by λh,t ∈ [0, 1], to a sector-wide factor fi by λf,i,t ∈ [0, 1], and to a

firm-specific factor gi,j by λg,i,j,t ∈ [0, 1]. We summarize the allocations in a vector:

Λt = (λh,t, λf,1,t, · · · , λf,m,t, λg,1,1,t, · · · , λg,i,j,t, · · · , λg,m,n,t)
T . (8)

The allocations should sum up to be less than or equal to one:

λh,t +
m∑

i=1

λf,i,t +
m∑

i=1

n∑

j=1

λg,i,j,t ≤ 1. (9)

The investor’s learning process involves first collecting firms’ information in the public

domain, such as news releases, media coverage, and analyst reports. Then she forms her

own views. To abstract from these complex activities involved in actual learning processes,

the investor in our model devotes her attention to processing information, extracts a noisy

signal about the underlying factor, and uses the signal to update her belief according to the

5If we were to allow the investor to analyze future fundamental factors several periods ahead, doing so would add
more learning tasks to the investor’s attention allocation, since the investor can choose to analyze factors of future
periods. However, this extension should not affect the relative allocation across factors in a stationary equilibrium.
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Bayes rule. We denote sh,t, sf,i,t and sg,i,j,t as the extracted signals for the market, sector,

and firm-specific factors, respectively:

sh,t = ht+1 + εh,t, εh,t ∼ N(0, η2
h,t), (10)

sf,i,t = fi,t+1 + εf,i,t, εf,i,t ∼ N(0, η2
f,i,t), i = 1, · · · ,m (11)

sg,i,j,t = gi,j,t+1 + εg,i,j,t, εg,i,j,t ∼ N(0, η2
g,i,j,t), i = 1, · · · ,m, j = 1, · · · , n (12)

where the signal noises εh,t, εf,i,t and εg,i,j,t are assumed to have Gaussian distributions

with zero means and variances of η2
h,t, η2

f,i,t and η2
g,i,j,t, respectively. The signal noises are

independent of each other, since they are generated through separate tasks. Their variances

depend on the investor’s attention allocations. We summarize all the signals in a vector St.

If the investor devotes more attention to one factor, the extracted signal will become

more precise. Following Sims (2003), we use the concept of entropy from information theory

to measure the amount of information about the underlying factor contained in a signal.

Appendix A provides an introduction to the entropy measure. Basically, the entropy of a

random variable measures its uncertainty. In the case of the market factor ht+1, which has

a Gaussian distribution N(0, σ2
h), its entropy, H, is determined by its variance σ2

h:

H(ht+1) =
1

2
log σ2

h + 0.5 log(2πe), (13)

where π is Archimedes’ constant and e is Euler’s constant. This expression is intuitive, since

for a Gaussian distribution, more uncertainty is associated with a larger variance parameter.

Given the signal, sh,t, the investor updates her belief about the underlying factor, ht+1,

according to the Bayes rule and forms a posterior belief:

ht+1|sh,t ∼ N(ĥt, ω̂
2
h,t), (14)

where ĥt is the conditional mean and ω̂2
h,t is the conditional variance.

Information theory defines the amount of information contained in sh,t about ht+1, I(ht+1; sh,t),

as the reduction in the entropy (uncertainty) of ht+1 due to the knowledge of sh,t:

I(ht+1; sh,t) ≡ H(ht+1)−H(ht+1|sh,t) =
1

2
log

(
σ2

h/ω̂
2
h,t

)
. (15)
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Since the signal sh,t is the output of the investor’s information processing, its information

content is determined by the investor’s attention input to generating the signal. We assume

a linear relation between these two variables:

I(ht+1; sh,t) =
1

2
θhκλh,t, (16)

where κλh,t is the amount of attention allocated to the market factor, and θh > 0 is an

information-efficiency parameter that measures the efficiency of the investor’s information

processing of the market factor. For a given value of θh, as the investor allocates more

attention to the factor, she processes more information about it.

We allow for the possibility that the investor is overconfident about her information-

processing ability. We assume that the investor perceives that the amount of information in

her signal sh,t is not exactly given by equation (16), but by

Î(ht+1; sh,t) =
1

2
φθhκλh,t, (17)

where she exaggerates the amount of information by an overconfidence parameter φ ≥ 1. If

φ > 1, the investor is overconfident about her information-processing ability. If φ is equal to

one, we obtain the unbiased case.

Equation (17) implies that the investor may underestimate the variance of her signal

noise as η̂2
h,t, instead of η2

h,t. By combining equations (15) and (17) and applying the Bayes

rule that

1/ω̂2
h,t = 1/σ2

h + 1/η̂2
h,t, (18)

we obtain that

η̂2
h,t = σ2

h/
(
eλh,tθhφκ − 1

)
. (19)

This perceived variance is smaller than the actual variance,

η2
h,t = σ2

h/
(
eλh,tθhκ − 1

)
, (20)

which we obtain by combining equations (16) and (17) and applying the Bayes rule. Thus,

although we model overconfidence as the overestimation of one’s information processing

ability, our approach is consistent with earlier studies in the finance literature.
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Given the extracted signal and its perceived informativeness, the investor updates her

belief of the market factor ht+1 based on the Bayes rule. The variance of her belief is

ω̂2
h,t = σ2

he
−λh,tθhφκ, (21)

and the mean of her belief is

ĥt = h̄ + (1− e−λh,tθhφκ)(sh,t − h̄). (22)

We note that (1− e−λh,tθhφκ), the responsiveness of ĥt to the signal, increases with φ. There-

fore, overconfidence leads to an overreaction to the signal.

The investor also overestimates the information content of her signals for the sector and

firm-specific factors. We let Î(fi,t+1; sf,i,t), the perceived information amount in the signal

about a sector factor fi,t+1, be

Î(fi,t+1; sf,i,t) =
1

2
φθiκλf,i,t, i = 1, · · · ,m, (23)

where κλf,i,t is the amount of attention the investor allocates to the factor, and θi > 0 is the

information-efficiency parameter of sector i.

A higher value of θi implies that the investor is able to process more information with

a given amount of attention. For example, a higher θi might correspond to greater analyst

coverage, a more transparent financial system and better disclosure, or less complicated

fundamentals in sector i. θi could be different from θh, the information-efficiency parameter

of the market factor, and is most likely smaller.

We let Î(gi,j,t+1; sg,i,j,t), the investor’s perceived information amount in the signal for a

firm-specific factor gi,j,t+1, be

Î(gi,j,t+1; sg,i,j,t) =
1

2
φθiκλg,i,j,t, i = 1, · · · ,m, j = 1, · · · , n, (24)

where κλg,i,j,t is the amount of attention allocated to the factor, and θi is the information-

efficiency parameter of sector i. To focus on the difference across various sectors, we let

firm-specific factors share the same information-efficiency parameter as their sectors. This

assumption is reasonable, since the efficiency of processing information about a firm is posi-

tively related to that of the firm’s sector.
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For the sector and firm-specific factors, we can derive the investor’s belief-updating pro-

cess by following a procedure similar to the one used for the market factor. We denote the

investor’s posterior belief of a sector factor by

fi,t+1|sf,i,t ∼ N(f̂i,t, ω̂
2
f,i,t), i = 1, 2, · · · , m, (25)

where the mean and variance are given by

f̂i,t = f̄ + (1− e−λf,i,tθiφκ)(sf,i,t − f̄), (26)

ω̂2
f,i,t = σ2

fe
−λf,i,tθiφκ. (27)

The investor’s posterior belief in a firm-specific factor is

gi,j,t+1|sg,i,j,t ∼ N(ĝi,j,t, ω̂
2
g,i,j,t), i = 1, · · · ,m, j = 1, · · · , n, (28)

where the mean and variance are given by

ĝi,j,t = ḡ + (1− e−λg,i,j,tθiφκ)(si,t − ḡ), (29)

ω̂2
g,i,j,t = σ2

ge
−λg,i,j,tθiφκ. (30)

3.3 The equilibrium

We analyze an equilibrium in which the representative investor holds the net supplies of risky

assets according to the market clearing condition. To make an efficient intertemporal con-

sumption decision, the investor allocates her limited attention to analyzing the fundamental

factors that affect her portfolio. Following Lucas (1978), we determine the equilibrium asset

prices as the shadow prices from the pricing kernel determined by the investor’s marginal

utility of consumption.

Since the asset fundamentals are independent across periods (no persistence) and the

investor has constant risk aversion, the investor’s cash holdings would be the only state

variable in her optimization problem. In period t, we rewrite her optimization problem in

equation (2) as a recursive Bellman equation:

Jt(Kt) = max
Λt

E{max
ct

u(ct) + δEt[Jt+1(Kt+1)|St]}, (31)
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where J is the investor’s value function, Kt is her cash holdings, and St is the vector of

signals processed by the investor in period t.

Equation (31) illustrates the investor’s two optimization decisions: first, she needs to

determine her attention allocation Λt in information processing, subject to the attention

constraint in equation (9); second, based on the processed information, she needs to de-

termine her current period consumption ct, which trades off her next-period wealth. The

investor’s next-period cash holding, Kt+1, is determined by her current cash holdings, her

consumption choice, and the dividends from her risky assets:

Kt+1 = (Kt − ct)(1 + r) +
m∑

i=1

n∑

j=1

di,j,t+1. (32)

We denote the stock price of firm j in sector i at period t by pi,j,t, and summarize the

prices by a vector:

Pmn×1(t) = (p1,1,t, · · · , p1,n,t, · · · , pi,j,t, · · · , pm,1,t, · · · , pm,n,t)
T . (33)

The asset prices are determined by the investor’s marginal utility of consumption:

Pt = Et

[
δ
u′(ct+1)

u′(ct)
(Pt+1 + Dt+1)

]
. (34)

We derive the investor’s optimization problem, solve the equilibrium price functions, and

verify the equilibrium conditions in Appendix B. The main results of this can be summarized

with the following theorem.

Theorem 1 The investor’s attention allocation problem is as follows:

Vt = min
Λt

V art




m∑

i=1

n∑

j=1

di,j,t+1

∣∣∣∣∣∣
St


 . (35)

The equilibrium asset prices are given by

Pt =
1

1 + r
[E(Dt+1|St) + Lt], (36)

where Lt is a deterministic vector.
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Theorem 1 states that the objective of the investor’s attention allocation is to minimize

the variance of her belief about the next-period dividend payments to her portfolio. Minimiz-

ing future uncertainty allows the investor to make more efficient intertemporal consumption

choices. The objective of the investor’s attention allocation is independent of the level of

asset fundamentals, because these fundamentals are independent over time. In addition,

Theorem 1 shows that asset prices are determined by the investor’s conditional expectation

of the next period’s dividends, and therefore fluctuate with the processed information.

Given the linear factor structure in equation (4) and the variances of the investor’s condi-

tional beliefs in equations (19), (27) and (30), we transform the investor’s attention allocation

problem in equation (35) into

Vt = min
Λt

m2n2σ2
he
−λh,tθhφκ +

m∑

i=1

n2σ2
fe
−λf,i,tθiφκ +

m∑

i=1

n∑

j=1

σ2
ge
−λg,i,j,tθiφκ (37)

subject to λh,t +
m∑

i=1

λf,i,t +
m∑

i=1

n∑

j=1

λg,i,j,t ≤ 1, (38)

λh,t ≥ 0, λf,i,t ≥ 0, λg,i,j,t ≥ 0, ∀ i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}. (39)

Inequality (38) imposes a constraint on the aggregate attention allocation, and inequalities

in (39) require that attention allocation to any factor cannot be negative. The following

theorem establishes the existence of a unique solution to this optimization problem. The

proof appears in Appendix C.1.

Theorem 2 There exists a unique solution to the investor’s attention allocation problem.

We solve the optimization problem using the Lagrange method:

L = m2n2σ2
he
−λh,tθhφκ +

m∑

i=1

n2σ2
fe
−λf,i,tθiφκ +

m∑

i=1

n∑

j=1

σ2
ge
−λg,i,j,tθiφκ (40)

−µκ,t


1− λh,t −

m∑

i=1

λf,i,t −
m∑

i=1

n∑

j=1

λg,i,j,t


− µh,tλh,t −

m∑

i=1

µf,i,tλf,i,t −
m∑

i=1

n∑

j=1

µg,i,j,tλg,i,j,t

where µκ,t is the Lagrange multiplier associated with the net allocation constraint in (38),

and µh,t, µf,i,t and µg,i,j,t are the Lagrange multipliers associated with the non-negativity

constraints in (39) on the allocation to the market, sector and firm-specific factors, respec-

tively.
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We obtain the following first-order conditions:




µκ,t = θhφκ(m2n2σ2
h)e

−λh,tθhφκ if λh,t > 0

µκ,t > θhφκ(m2n2σ2
h) if λh,t = 0

(41)





µκ,t = θiφκ(n2σ2
f )e

−λf,i,tθiφκ if λf,i,t > 0

µκ,t > θiφκ(n2σ2
f ) if λf,i,t = 0

∀ i ∈ {1, · · · , m} (42)





µκ,t = θiφκσ2
ge
−λg,i,j,tθiφκ if λg,i,j,t > 0

µκ,t > θiφκσ2
g if λg,i,j,t = 0

∀ i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}. (43)

The multiplier µκ,t represents the opportunity cost of allocating a unit of attention in

period t, i.e., more attention to one factor decreases the attention available for processing

information about other factors. The first-order conditions in equations (41)-(43) show that

a factor will receive a positive amount of attention allocation if and only if its marginal

benefit can justify the opportunity cost.

3.4 Comments on the model

One might argue that an attention-constrained investor can choose to “free ride” upon the

information revealed through prices, rather than processing the information on her own.

However, learning from prices is not exactly free. It still requires attention and knowledge.

This learning channel requires knowledge of the market structure, including the presence and

risk preference of other traders, their information quality, and the intensity of liquidity trades

(Grossman and Stiglitz, 1980). These requirements for using price-based information make

this method especially challenging for a retail investor, who typically lacks the knowledge

of other market participants’ trading motives and cannot observe others’ trades in a timely

fashion. In addition to these technical difficulties, overconfidence can cause an investor to

ignore potentially useful information embedded in prices and to rely only on her own analysis.

For simplicity, we restrict the investor in our model from learning through prices.

We also emphasize that in reality retail investors are often exposed to similar information

sources, such as media coverage and analysts reports. Thus, even when investors process

information independently, their beliefs are likely to be influenced by noise in the common
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information sources, causing the errors in their beliefs to be correlated. This correlation

prevents the cancellation of investors’ learning errors in aggregation.6 To simplify our expo-

sition, we analyze the learning process of a representative retail investor. Our main results

would be viable as long as different investors share common information sources.

We analyze an equilibrium in which the representative investor holds the net supply of

the risky assets. It is possible that in a more general model with heterogeneous investors,

an individual investor might choose to hold a subset of assets so that she can concentrate

her limited attention on a smaller number of uncertain factors. By doing so, she trades

off portfolio diversification for learning efficiency. In this paper, we use the representative-

investor equilibrium to focus on the effects of investors’ category-learning behavior, which

we believe is one of the key implications of limited investor attention, and is important for

financial markets. The interaction among attention-constrained investors is an interesting

issue in its own right. Due to the technical difficulty of incorporating this feature into our

current model, we will leave it for future research.

We do not explicitly analyze the reasons why professional investors fail to eliminate the

price effects generated by the attention constraints and behavioral biases of individual in-

vestors. Instead, we rely on results from earlier papers, e.g., Shleifer and Vishny (1997),

which conclude that deviations from efficient prices can be persistent in markets because ar-

bitrage is limited. Arbitrageurs face great risk when trading against unpredictable investor

sentiment. At least in the short run, these biased reactions can become even more extreme,

moving stock prices further away from their fundamental values and causing losses to arbi-

trage positions. Since there have been extensive theoretical studies on the limits of arbitrage7

and because the empirical studies mentioned earlier also confirm that investors’ inattention

to public information could affect stock prices, we opt to focus on the implications that arise

from studying the learning processes of attention-constrained, overconfident investors.

6Recent empirical studies, e.g., Barber, Odean and Zhu (2003) and Kumar and Lee (2003), confirm that the buy-
sell activities of retail investors are correlated. However, Kaniel, Saar, and Titman (2004) noted that the investor
sentiment across stocks have low correlations.

7Barberis and Thaler (2003) provide a review of these studies.
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4 Category learning behavior

Limited investor attention can lead to category learning behavior, i.e., the investor tends to

focus more on the market and sector information and less on firm-specific information. Here,

we compare the investor’s attention allocation for common factors and firm-specific factors.

Here we consider the case in which the information-efficiency parameters for all factors

are identical and stay constant over time. The investor’s attention allocation is therefore

also constant over time. In addition, since all the sector factors are symmetric, with the

same prior variances and the same information-efficiency parameters, they receive identical

attention allocations. All firm-specific factors also receive identical attention allocations.

The following proposition compares the allocations given to different factors. Appendix C.2

provides the proof.

Proposition 1 If m2σ2
h > σ2

f and n2σ2
f > σ2

g , then the investor allocates more atten-

tion to the market factor than to a sector factor, and more attention to a sector factor

than to a firm-specific factor. When the investor is severely attention-constrained, i.e.,

κ < m
φθ

log
(
n2σ2

f/σ
2
g

)
, she devotes attention only to the market and sector factors and pays

no attention to firm-specific factors.

Proposition 1 confirms that the investor tends to allocate more attention to common

factors, since it is more effective to concentrate on factors that generate more uncertainty in

the portfolio.8 The conditions that make it possible for this situation to occur, m2σ2
h > σ2

f

and n2σ2
f > σ2

g , are realistic. Since there are usually a large number of sectors in the economy

and a large number of firms in a sector (n À 1 and m À 1), these conditions would hold

easily when the uncertainty in the common factors and firm-specific factors have comparable

magnitudes. In the extreme case when the investor’s attention is severely constrained, he

would focus exclusively on common factors and ignore all firm-specific information. Essen-

tially, the investor treats all the stocks in a sector as a single category and only processes

information at the category level. He then makes all pricing and investment decisions based

purely on this information.
8Overconfidence also affects the investor’s attention allocation. However, since overconfidence makes the investor

overestimate both the opportunity cost and the marginal productivity of her attention, the net effect is secondary
relative to the effect of uncertainty across factors.
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The investor’s attention allocation in the severely constrained case dovetails with an

observation made by Barberis and Shleifer (2003), that investors often organize their in-

vestment decisions based on “style strategies”, i.e., they categorize securities into exogenous

style classes and shift investment in and out of these classes simultaneously. By analyzing

the composition of information processed by an attention-constrained investor, our model

allows a more general form of category behavior, i.e., the investor tends to focus more on

category-level information than on firm-specific information, and the degree of categorization

depends on her attention constraints. This generalization allows us to draw explicit links

between the dynamics of information flow and the dynamics of both return comovement and

predictability.

We base the categories in our model on asset fundamentals. Although categories are

sometimes created through non-fundamental factors, those that are based on fundamentals,

such as industries and countries, are certainly important in practice. Cooper, Dimitrov,

and Rau (2001) show that during the period 1998-1999, more than 100 companies tried to

associate themselves with the high-flying internet industry by changing their company names

to dot.com names. Stocks for these companies earned an average abnormal return of 74%, a

figure that includes those firms that only changed their names but did not adopt any specific

internet related investment or strategies. This example demonstrates that to a great extent,

internet stocks during the period were evaluated based solely on their investors’ beliefs of the

industry as a whole. It also demonstrates how inattentive investors can be to firm-specific

information.

5 Implications for return comovement

Information flow is widely regarded as an important source of asset return fluctuation, e.g.,

French and Roll (1986). Roll (1988) further links the comovement of asset returns to the

composition of market and firm-specific information. As more information flows into the

market, it seems intuitive that asset prices will become more informative about future fun-

damentals while asset returns will become more volatile. Furthermore, if there is more market

information relative to firm-specific information, asset returns should be more correlated.
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5.1 Information flow and return variability

We first clarify the relation between the amount of information incorporated into prices and

the corresponding return variability. Here, we take the amount of information as given and

examine its impact on return variance.

We consider the excess return of firm j in sector i:

qi,j,t = pi,j,t + di,j,t − (1 + r)pi,j,t−1. (44)

By substituting the linear price function in Theorem 1 and the factor structure in equation

(4) into qi,j,t, we can decompose its return variance into three components:

V ar(qi,j,t) = V ar
(

1

1 + r
ĥt + ht − ĥt−1

)
+ V ar

(
1

1 + r
f̂i,t + fi,t − f̂i,t−1

)

+V ar
(

1

1 + r
ĝi,j,t + gi,j,t − ĝi,j,t−1

)
. (45)

These components respectively correspond to the three fundamental factors: market, sector,

and firm-specific.

As an illustration, we consider the return variance component related to a sector factor

fi. Our discussion in this subsection applies equally to all the other factors. There are two

parts in the return fluctuation, V ar
(

1
1+r

f̂i,t + fi,t − f̂i,t−1

)
. The first part, 1

1+r
f̂i,t, represents

the fluctuation in price as the investor updates her belief (f̂i,t) in response to information on

fi,t+1, the value of the factor in the following period. The second part, fi,t− f̂i,t−1, represents

the resolution of the remaining uncertainty in the value of fi,t through the realization of the

current-period dividend. The assumption that fundamental factors are independent across

periods implies that these two parts are independent. Thus, we can further decompose the

return variance component generated by fi as

V ar
(

1

1 + r
f̂i,t + fi,t − f̂i,t−1

)
=

1

(1 + r)2
V ar(f̂i,t) + V ar(fi,t − f̂i,t−1). (46)

The amount of information about fi affects the two return variance components in equa-

tion (46) differently. The joint effect depends on the investor’s overconfidence, and is sum-

marized in Proposition 2 below. The proof appears in Appendix C.3.

When the investor responds to information correctly, as more information is processed,

more uncertainty is resolved and the investor’s belief updating increases the first part of
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return variance, 1
(1+r)2

V ar(f̂i,t). On the other hand, more information processed decreases

the remaining uncertainty, thus the other return variance part, V ar(fi,t − f̂i,t−1), becomes

smaller. When the discount rate is zero, more information changes the timing of uncertainty

resolution without affecting the return variance. When the discount rate is positive, more

information actually decreases the return variance due to the discount factor 1
(1+r)2

in the

first part of the return variance. This result is given in Part A of Proposition 2, and it

confirms the intuition of Campbell et al. (2001) that “improved information about future

cash flows increases the volatility of the stock-price level, but it reduces the volatility of the

stock return because news arrives earlier, at a time when the cash flows in question are more

heavily discounted.” Also, we note that this result is not unique to our model specification.

West (1988) provides similar results with a more general ARMA-type dividend process.

It seems possible to use a static model with two periods to discuss the relation between

information and return variation. For example, in the first period, investors incorporate

information to update their beliefs, and determine the equilibrium asset prices; in the sec-

ond period assets are liquidated. In such a static model, the return variation in the first

period reflects only uncertainty resolution through investors’ belief updating, while the re-

turn variation in the second period reflects only the resolution of the remaining fundamental

uncertainty through liquidation. Since both parts of uncertainty resolution are important

for understanding return variation, we analyze a dynamic model to avoid any potential con-

fusion. Such a dynamic setup also allows us to discuss the time-series properties of return

comovement.

Proposition 2 The relation between information and return variability depends on the level

of the investor’s overconfidence.

A. When the investor uses perfect Bayesian updating (φ = 1), the return variance gen-

erated by a fundamental factor is independent of the amount of the information about the

factor if the discount rate for future cashflows is zero, and decreases with the amount of

information if the discount rate is positive.

B. If the investor is sufficiently overconfident:

φ > 1 +
(1 + r)2 − 1

(1 + r)2 + 1
, (47)
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with the amount of information below a threshold, the return variance increases with the

amount of information and the overconfidence parameter φ.

Part B of Proposition 2 shows that when the investor is overconfident, more information

can lead to a higher return variability. Overconfidence causes the investor to overreact to

the self-processed noisy signal, thus amplifying the effect of signal noise on prices. The

exact magnitude of the noise amplification effect depends on two forces. On the one hand,

as a signal becomes more precise, the investors’ overreaction to the signal gets stronger,

thus further amplifying noise. On the other hand, a more precise signal contains less noise.

The tradeoff between these two forces determines that when the investor’s overconfidence

parameter is sufficiently high and the amount of information in the signal is below the

threshold level, the noise amplification effect can dominate the discount rate effect that

we mentioned earlier. Thus, in the presence of investor overconfidence, more information

can lead to a higher return variance. We combine this result with the investor’s attention

allocation to analyze return comovement.

In Appendix D, we numerically illustrate values of the threshold on the amount of in-

formation, based on various parameter sets. These threshold values are high for individual

investors’ learning processes. We also show that the restriction on the overconfidence pa-

rameter in (47) is modest for reasonable values of the discount rate. Therefore, we focus the

rest of our analysis on cases in which the conditions in Proposition 2B are satisfied.

5.2 “Excess” comovement

The return correlation between two firms depends on the fraction of their return variances

that is driven by common sources. Here, we compare the correlations in firms’ returns with

the correlations in their fundamentals.

We define ρ as the return correlation between two firms from different sectors:

ρ ≡ Corr(qi,j,t, qk,l,t), i 6= k. (48)

Since these two firms are from different sectors, according to equation (45) the shared part
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of their return variances can only be related to the market factor:

ρ =
V ar

(
1

1+r
ĥt + ht − ĥt−1

)
√

V ar(qi,j,t)V ar(qk,l,t)
. (49)

We define ρi as the return correlation between any two firms in sector i:

ρi ≡ Corr(qi,j,t, qi,k,t), j 6= k. (50)

According to equation (45), ρi depends on the return variances caused by the market factor

and the sector factor:

ρi =
V ar

(
1

1+r
ĥt + ht − ĥt−1

)
+ V ar

(
f̂i,t

1+r
+ fi,t − f̂i,t−1

)

√
V ar(qi,j,t)V ar(qi,k,t)

. (51)

The following proposition compares the return correlations with the corresponding fun-

damental correlations. The proof appears in Appendix C.4.

Proposition 3 Under the conditions in Proposition 2B, and that m2σ2
h > σ2

f , n2σ2
f > σ2

g ,

the return correlation between any two firms is higher than their fundamental correlation.

Proposition 3 shows that limited attention and investor overconfidence can amplify the

return correlation between any two firms, either in the same sector or from different sectors,

so that the return correlation is higher than their fundamental correlation. This result is

a consequence of the investor’s category learning behavior. His tendency to process more

market than sector information and to process more sector than firm-specific information,

together with his overreaction to this processed information, creates more return variation

in common factors and therefore generates excessive comovement.

The result of excess comovement at the market level is supported by empirical evidence of

Shiller (1989) and Pindyck and Rotemberg (1993). Shiller finds that the comovement of real

stock prices between the U.K. and the U.S. appear too large to be accounted for in terms of

the comovement of real dividends between the two countries. Pindyck and Rotemberg show

a similar result for the comovement of individual stocks in U.S. markets. The result of excess

comovement at the sector level also complements the analysis of Barberis and Shleifer (2003)
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and Barberis, Shleifer, and Wurgler (2005), who focus on excess comovement generated by

investors’ style strategies among assets with no fundamental correlation.9

5.3 Comovement and price informativeness

The degree to which the investor treats firms in a sector as a single category depends on the

information-efficiency parameter of the sector. We compare cross-sectoral differences in the

information-efficiency parameters with a focus on return correlation and price informative-

ness.

We capture a firm’s stock price informativeness through its inverse relationship to re-

maining uncertainty, which is to be resolved through the realization of dividends:

V ar(ht − ĥt−1) + V ar(fi,t − f̂i,t−1) + V ar(gi,j,t − ĝi,j,t−1). (52)

The firm’s stock price informativeness depends on the amount of information about the firm

that the investor processes. For a given overconfidence parameter, Lemma 3 in Appendix

C.3 shows that as the investor processes more information, the stock price becomes more

informative and the remaining uncertainty is lower.

The following proposition compares the return correlation and price informativeness in

two sectors with different information-efficiency parameters. The proof is in Appendix C.5.

Proposition 4 Assume that m2σ2
h > σ2

f and n2σ2
f > σ2

g . Consider two sectors, 1 and

2, with different information-efficiency parameters, θ1 > θ2. In sector 1, the investor not

only processes more sector and firm-specific information, but also processes relatively more

firm-specific information, treating firms in this sector less as a single category and more

as individual firms. If the conditions in Proposition 2B are satisfied and all factors receive

positive attention allocation, stock prices in sector 1 are more informative and the return

correlation between firms in sector 1 is lower.

Proposition 4 illustrates a negative cross-sectoral relation between return comovement

and stock price informativeness. Sector 1 has a higher information-efficiency parameter,

e.g., either a better disclosure system or a less complicated industry structure. As a result,

9See also Boyer (2004) for a study of excessive comovement among stocks with similar book-to-market ratios.
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it is effective for the investor to allocate more attention to all factors in sector 1, leading to

more informative prices in the sector. In this scenario, she would also allocate relatively more

attention to firm-specific factors in sector 1. This allows her to consider firms within this

higher efficiency sector individually rather than as members of a sector category, resulting

in lower average return correlation.

We can quantify price informativeness empirically by the power of stock returns in predict-

ing future changes in firms’ earnings or other fundamental variables.10 We can also measure

the return correlation between firms in a sector by the average R2 statistic of regressing

individual stock returns in the sector onto the market return and the sector’s aggregate

return.

Proposition 4 is consistent with several recent empirical studies that examine the relation

between comovement and stock price informativeness. According to Morck, Yeung, and Yu

(2000), return synchronicity, as measured by the average R2 statistic, is high in those emerg-

ing countries having less developed legal and investor protection systems that discourage

information processing. Durnev et al. (2003) show that in industries with less synchronous

returns, stock prices are more informative. Wurgler (2000) finds that the efficiency of capital

allocation across countries is negatively correlated with the synchronicity in stock returns

of domestically traded firms, and Durnev, Morck, and Yeung (2004) show that U.S. firms

with higher firm-specific return variability make more value-enhancing investments. Overall,

these studies find broad evidence that a sector’s stock price informativeness is negatively

related to the return correlation of firms in the sector.

Proposition 4 also suggests that the degree to which the investor treats firms in a sector

as a single category is determined by her attention allocation to the sector factor relative to

firm-specific factors, and that this degree is inversely related to the average return correlation

of firms in the sector. Although it is difficult to directly measure the investor’s attention

allocations, we can use the average return correlation as an indirect measure. This is a useful

gauge for analyzing cross-sectional implications of investors’ attention.

10Durnev, et al. (2003) provide a detailed discussion of the empirical measures.
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5.4 Time trend in return correlation

Over the last 50 years, enormous developments in information technology have made it easier

for investors to collect and process information about the overall economy and to gain specific

knowledge about industries and firms. We capture these technological advances by allowing

an increasing time trend in the information-efficiency parameter. We assume that all factors

share the same information-efficiency parameter θ, which increases over time. The following

proposition describes the result. The proof appears in Appendix C.6.

Proposition 5 Suppose that m2σ2
h > σ2

f , n2σ2
f > σ2

g , and that the conditions of Proposition

2B are satisfied. As θ increases over time, the investor allocates relatively more attention

to firm-specific factors. Consequently, the firm-specific return volatility rises relative to the

sector-level volatility, and the return correlation between any two firms decreases.

Proposition 5 indicates that as information technology improves over time, the investor’s

attention constraints become less binding, giving her the capacity to process more informa-

tion for all factors. There is a larger increase in the amount of information she processes

for firm-specific factors, and therefore a larger increase in assets’ return variances related

to firm-specific information. As a result, firm-specific volatility rises and return correlation

decreases.

This implication is supported by Campbell, Lettau, Malkiel, and Xu (2001), who find a

decreasing trend in the return correlation of U.S. stocks over the last 30 years: the average

correlation among individual stocks has fallen from 0.28 in the early 1960s to 0.08 in 1997,

and the average R2 statistics for individual stocks from a market model has declined in

tandem. They identify increased firm-specific volatility as the main cause of the decreasing

correlation in U.S. stock returns.

We note that the variation in information acquisition cost alone is not sufficient to ex-

plain either the cross-sectional or the time-serial properties of return comovement that our

model generates. As shown earlier, more information in a rational expectations model with a

positive discount rate reduces, rather than increases, return volatility. Without exploring in-

vestor behavior such as overconfidence and limited attention, standard rational expectations

models cannot reconcile these aforementioned empirical observations.
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6 Cross-section of return predictability

Over the past two decades, researchers have discovered that they can use past stock prices and

other publicly available variables to predict stock returns.11 These findings have challenged

standard asset pricing models and motivated studies on the effects of investor biases.

We focus on two types of information related biases: investors’ overreaction to their

information, and their ignorance of useful public information. Investors’ attention allocation

could play important roles for both types of biases: biased reactions to information only occur

when investors attend to information; the predictive power of a piece of ignored information

depends on how much the investor already knows. Thus, the investor’s attention allocation

in our model provides cross-sectional implications for both types of return predictability.

6.1 Predictability by overreactions to information

Overconfidence causes the investor to overreact to her information, causing asset prices to

deviate from their fundamental levels. Since the overreactions will eventually be corrected

and asset prices will mean-revert to the fundamental levels in the long run, asset returns

become predictable. Such predictability is displayed through a negative autocovariance in

returns.12

Proposition 6 summarizes our results on overreaction driven predictability. We provide

the proof in Appendix C.7.

Proposition 6 If the investor is overconfident (φ > 1), the first-order autocovariance of any

firm’s stock return is negative. Under the condition of Proposition 2B, the autocovariance

in the firm-specific returns decreases with the amount of firm-specific information processed.

If the investor only attends to information on common factors, the negative autocovariance

is present in the common return components, but not in the firm-specific returns.

Proposition 6 shows that when the investor treats the sector more as a category in

itself and processes less firm-specific information, there is less overreaction-driven return
11For example, the literature has identified the so-called “short-term momentum effect”, “long-term reversal effect”,

“post earnings announcement drift effect” and “accrual effect”, among others. See Hirshleifer (2001) and Barberis
and Thaler (2003) for reviews of these studies.

12Lo and MacKinlay (1988) and Poterba and Summers (1988) find that U.S. stock returns over one year or longer
horizons have a negative autocovariance.
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predictability at the firm level. In extreme cases where the investor treats all firms in the

sector identically as a category and pays no attention to firm-specific information, negative

autocovariances are present only in the common return components, such as market- and

sector-related returns. Even though stock prices in these cases could be inefficient, in that

they do not reflect firm-specific fundamentals, there is no overreaction-driven predictability

in the sector’s firm-specific returns.

Empirically, it is difficult to directly measure the degree to which the investor treats firms

in a sector as a category. However, our analysis in Section 5.3 shows that such a degree is

negatively related to the average return correlation of firms in the sector. Thus, our model

provides a new testable implication for overreaction-driven return predictability and return

comovement: we expect that after controlling for the degree of investor overconfidence, a

sector with a lower average return correlation to exhibit more pronounced firm-level return

predictability driven by investors’ overreaction, such as long-run reversals in asset prices.

Although our model only incorporates return predictability generated by investor over-

confidence, we expect the cross-sectional patterns driven by investors’ attention allocation

to be applicable to other information-related biases. For example, Daniel, Hirshleifer, and

Subrahmanyam (1998) show that self-attribution bias can lead to price momentum. Self-

attribution bias causes investors to attribute success to themselves but failure to external

forces. Thus, investors become more overconfident about their information-processing ability

after good performance, and react even more strongly to their information, creating price

momentum. Given investors’ attention allocation and the resulting information structure, an

extension of our model incorporating self-attribution bias could generate a negative relation

between momentum in firm-specific returns and average return correlation in a sector.

6.2 Predictive power of ignored information

Limited attention also causes the investor to ignore certain useful information in the public

domain. As a result, it is possible that this information can be used to predict future asset

returns. Here, we expand our model to discuss the cross-sectoral pattern in the return

predictive power of ignored information.
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We consider a specific public signal, νi,j,t, that is ignored by the investor at time t:

νi,j,t = gi,j,t+1 + εν,i,j,t (53)

where gi,j,t+1 is a firm’s fundamental factor and εν,i,j,t ∼ N(0, σ2
ν) is an independent signal

noise. This signal could be the cashflow component of the firm’s earnings, which is often

ignored by investors and thus has the ability to predict future stock returns (see, for example,

Sloan, 1996 and Hirshleifer et al., 2003).

The information value of an ignored signal depends on how much information the investor

has already processed from other sources, which in turn is determined by the attention she

allocates to the firm. Take the EntreMed example (Huberman and Regev, 2001): while

investors may have missed the article in Nature about the company’s new cancer curing

drug, they could have obtained this same information if they had paid enough attention

to the company information available through other channels. The following proposition

explicitly describes such a relationship. We provide the proof in Appendix C.8.

Proposition 7 The return predictive power of an ignored signal about a firm decreases with

the amount of firm-specific information processed by the investor.

Proposition 7 confirms that an investor’s allocation of more attention to a firm and

processing of more information decreases the remaining uncertainty, which makes the ignored

signal less important. Although it can be difficult to measure the investor’s attention to an

individual firm, our analysis in Section 5.3 shows that the investor’s attention to individual

firms in a sector is negatively related to the average return correlation of firms in the sector.

Thus, our model provides another testable implication: in a sector with a higher average

return correlation, a variable that captures ignored firm information should have a higher

predictive power for firm-specific returns, after we control for the precision of the variable

and the degree of investor overconfidence.

7 Conclusion

In this paper, we provide a theoretical model for studying investors’ attention allocation in

learning about asset fundamentals. Our model shows that limited attention generates an
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endogenous structure of information that reflects the investor’s category learning behavior,

i.e., the investor tends to focus more on market- and sector-level information than on firm-

specific information. When we combine this endogenous information structure with investor

overconfidence, we generate several implications for asset return comovement. We show that

return correlation between firms is higher than their fundamental correlation; stock prices

in a sector with a lower average return correlation tend to be more informative; return

correlations decrease over time with the development of information technology. These

results are supported by recent empirical findings, which would otherwise be difficult to

explain using standard rational expectations models.

In addition, our model demonstrates new implications for the cross-sectional patterns of

return predictability: after controlling for the degree of investor overconfidence, firms in a

sector with a lower average return correlation tend to have more pronounced overreaction-

driven return predictability, such as long-run price reversals and short-term price momentum;

on the other hand, ignored information in public domain, such as certain variables in firms’

financial statements, is less effective in predicting the future returns of these firms.

29



Appendix A The entropy measure of information

This appendix provides a brief introduction to the entropy concept. According to information

theory, the uncertainty of a random variable ỹ with a continuous probability density function

f(y) can be measured by its entropy (Cover and Thomas, 1991, Chapter 2):

H(ỹ) ≡ −E log[f(ỹ)] = −
∫

(log f(y)) f(y)dy. (A1)

Entropy provides a lower bound for the average number of bits needed to transmit the

random variable.

The entropy of a random variable that follows a Gaussian distribution, N(ȳ, σ2), depends

only on its variance:

H(ỹ) =
1

2
log σ2 + 0.5 log(2πe). (A2)

This expression is intuitive, since, for a normally distributed random variable, more uncer-

tainty is associated with a larger variance.

Information theory defines the conditional entropy of ỹ, given another random variable

s, as the expected value of the conditional distributions’ entropies, averaged over the condi-

tioning random variable s. Let f(ỹ, s) be the joint probability density function of ỹ and s,

f(y|s) be the conditional distribution of ỹ conditional on s, and g(s) be the marginal density

function of s. The conditional entropy of ỹ given s is:

H(ỹ|s) ≡
∫

H(ỹ|s)g(s)ds = −
∫ ∫

(log f(y|s))f(y, s)dyds. (A3)

The amount of information that s contains about ỹ is the amount of uncertainty reduction

in ỹ due to the knowledge of s:

I(ỹ; s) ≡ H(ỹ)−H(ỹ|s) =
∫ ∫

f(y, s) log
f(y, s)

f(y)g(s)
dyds. (A4)

A property of this information measure is that it is invariant to any linear transformations

of ỹ and s:

Lemma 1 If we transform random variables ỹ and s by any non-zero constants a and b,

respectively, the amount of information contained in bs about aỹ is identical to the amount

of information contained in s about ỹ: I(aỹ; bs) = I(ỹ; s).
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PROOF: Define ỹ′ = aỹ and s′ = bs. The joint density function of ỹ′ and s′ is

fỹ′s′(y
′, s′) =

1

ab
f(y′/a, s′/b). (A5)

The marginal density functions of ỹ′ and s′ are

fỹ′(y
′) =

1

a
f(y′/a), fs′(s

′) =
1

b
g(s′/b). (A6)

Then the amount of information of bs to aỹ is given by

I(aỹ; bs) = I(ỹ′; s′) =
∫ ∫

fỹ′s′(y
′, s′) log

fỹ′s′(y
′, s′)

fỹ′(y′)gỹ′(s′)
dy′ds′

=
∫ ∫ 1

ab
f(y′/a, s′/b) log

f(y′/a, s′/b)
f(y′/a)g(s′/b)

dy′ds′

=
∫ ∫

f(y, s) log
f(y, s)

f(y)g(s)
dyds = I(ỹ; s). (A7)

Q.E.D.

This property establishes entropy reduction as a measure of information that is inde-

pendent of the scale of the underlying variables. Other measures of information have been

used in the related literature. For example, Verrecchia (1982) uses the precision (the inverse

of variance) of noisy signals with Gaussian distributions to measure information. However,

signal precision is not invariant to the scale of the underlying variable to be inferred.

Appendix B The investor’s optimization problem and equilibrium
prices

We solve the investor’s optimization problem in equation (31) using backward induction. We

first derive the investor’s consumption decision given her information about the next-period

asset fundamentals, and the objective function of the investor’s attention allocation. We

then solve the equilibrium asset prices from the pricing kernel determined by the investor’s

marginal utility of consumption.

Given the investor’s belief about asset fundamentals, her optimization problem is a stan-

dard one, as in Merton (1971). Since the investor has an exponential utility and a Gaussian

wealth distribution, her value function takes the following form:

Jt(Kt) = −1

γ
e−atKt−bt , (B1)
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where at and bt are deterministic coefficients. Given the investor’s signals St in period t, she

determines her consumption by solving the following optimization problem (inside the curly

bracket of equation 31):

Jt(Kt, St) ≡ max
ct

u(ct) + δEt[Jt+1(Kt+1)|St]

= max
ct

−1

γ
e−γct − δ

γ
Et





e
−at+1

[
(Kt−ct)(1+r)+

m∑
i=1

n∑
j=1

di,j,t+1

]
−bt+1

∣∣∣∣∣∣∣∣
St





(B2)

where the last equation is derived by substituting in Jt+1(Kt+1) from equation (B1) and Kt+1

from equation (32). The first-order condition is

u′(ct) = δ(1 + r)Et[J
′
t+1(Kt+1)|St], (B3)

or equivalently,

e−γct =
δ(1 + r)at+1

γ
e
−(1+r)at+1(Kt−ct)−bt+1−at+1Et

(
m∑

i=1

n∑
j=1

di,j,t+1|St

)
+

a2
t+1
2

V art

(
m∑

i=1

n∑
j=1

di,j,t+1|St

)

.(B4)

From this equation, we can derive that

ct =
1

γ + (1 + r)at+1



(1 + r)at+1Kt + bt+1 + at+1Et




m∑

i=1

n∑

j=1

di,j,t+1|St




−a2
t+1

2
V art




m∑

i=1

n∑

j=1

di,j,t+1|St


− ln[δ(1 + r)at+1/γ]



 . (B5)

By substituting ct back to equation (B2), we obtain

Jt(Kt, St)

= −γ + (1 + r)at+1

γ(1 + r)at+1

exp



−

γ

γ + (1 + r)at+1


(1 + r)at+1Kt + at+1Et




m∑

i=1

n∑

j=1

di,j,t+1|St




−a2
t+1

2
V art




m∑

i=1

n∑

j=1

di,j,t+1|St


 + bt+1 − ln[δ(1 + r)at+1/γ]






 . (B6)

From equation (31), the investor’s attention allocation is determined by solving the fol-

lowing optimization problem:

Jt(Kt) = max
Λt

E[Jt(Kt, St)]. (B7)
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The expectation on the right-hand-side of equation (B7) is based on the investor’s prior

belief at t. Since the investor determines the attention allocation before she processes any

information about the next-period dividends, and because of the i.i.d assumption of div-

idends across periods, she chooses her attention allocation to maximize the unconditional

expectation of Jt(Kt, St).

After substituting Jt(Kt, St) from equation (B6) into equation (B7) and deriving the

expectation, the objective of the investor’s attention allocation is to

min
Λt

V art




m∑

i=1

n∑

j=1

di,j,t+1|St


 . (B8)

This term is the only one affected by the investor’s attention allocation on the right-hand-side

of equation (B7). Intuitively, the objective is to minimize the total uncertainty about the

next-period dividend payments in the investor’s portfolio. In achieving such an objective,

the investor is able to make an efficient intertemporal consumption decision.

The exact values of the coefficients at and bt are not critical for our discussion. They are

determined by a recursive Bellman equation. By substituting equations (B1) and (B6) into

the two sides of equation (B7), respectively, and by matching the corresponding terms, we

obtain two backward-induction equations that determine at and bt:

at =
γ(1 + r)at+1

γ + (1 + r)at+1

, (B9)

e−bt =
γ + (1 + r)at+1

(1 + r)at+1

E



exp



−

γ

γ + (1 + r)at+1


at+1Et




m∑

i=1

n∑

j=1

di,j,t+1|St


 + bt+1

−a2
t+1

2
V art




m∑

i=1

n∑

j=1

di,j,t+1|St


− ln[δ(1 + r)at+1/γ]










 . (B10)

Following Lucas (1978), the investor’s marginal utility of consumption determines the

asset prices:

Pt = Et

[
δ
u′(ct+1)

u′(ct)
(Pt+1 + Dt+1)|St

]
. (B11)

Since the dividends are independent across periods, we conjecture the following linear price

function:

Pt =
1

1 + r
[Et(Dt+1|St) + Lt] (B12)
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where Lt is a deterministic vector. Lt can be determined through backward induction by

substituting equation (B12) into equation (B11):

Pt = δeγctEt

{
e−γct+1

[
1

1 + r
[Et+1(Dt+2|St+1) + Lt+1] + Dt+1

]
|St

}

= δeγct{Et[e
−γct+1 ](D̄ + Lt+1)/(1 + r) + Et[e

−γct+1Dt+1|St]}
= [(D̄ + Lt+1)/(1 + r) + Et(Dt+1)− Covt(γct+1, Dt+1)]Et

[
δ
u′(ct+1)

u′(ct)

]
. (B13)

The last equation uses Lemma 2, given below. The envelope condition implies that

J ′t(Kt) = u′(ct). (B14)

Combining this condition with the first-order condition in equation (B3), we obtain

Et

[
δ
u′(ct+1)

u′(ct)

]
=

1

1 + r
. (B15)

By substituting this expression into equation (B13), we obtain a recursive equation that

determines the deterministic vector Lt:

Lt =
1

1 + r
(D̄ + Lt+1)− Covt(γct+1, Dt+1). (B16)

Thus, the conjectured price function in equation (B12) holds in equilibrium.

Lemma 2 Let x and y be two normally distributed random variables. Then,

E[yex] = [E(y) + Cov(x, y)]E(ex). (B17)

PROOF: Denote x ∼ N(x̄, σ2
x) and y ∼ N(ȳ, σ2

y), and their correlation as ρ. Then,

E[yex] =
∫ ∞

−∞

∫ ∞

−∞
dxdy

yex

2πσxσy

√
1− ρ2

e
− 1

2(1−ρ2)

[
(x−x̄

σx
)
2−2ρ(x−x̄

σx
)
(

y−ȳ
σy

)
+

(
y−ȳ
σy

)2
]

=
∫ ∞

−∞
dx

ex− 1
2(

x−x̄
σx

)
2

2πσx

∫ ∞

−∞
dy

y

σy

√
1− ρ2

e
− 1

2(1−ρ2)

(
y−ȳ
σy

−ρ x−x̄
σx

)2

=
∫ ∞

−∞
dx

ex− 1
2(

x−x̄
σx

)
2

2πσx

[ȳ +
ρσy

σx

(x− x̄)] = (ȳ + ρσxσy)e
x̄+σ2

x/2. (B18)

Q.E.D.
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Appendix C Other proofs

C.1 Proof to Theorem 2

Since the objective function to be minimized is continuous and the feasible set of variables

is compact, there must exist at least one minima for the optimization problem, as directly

implied by the Weierstrass Theorem. On the other hand, since the objective function is

strictly convex, the minima must also be unique.

C.2 Proof to Proposition 1

Since all sector factors are symmetric with an identical prior variance and information-

efficiency parameter, and since these parameters stay constant over time, they receive iden-

tical constant attention allocations: λf,1 = · · · = λf,m, which we denote by λf . By construc-

tion, λf ≤ 1/m. All firm-specific factors also receive an identical attention allocation, which

we denote by λg. In addition, we denote the investor’s attention allocation to the market

factor as λh.

We first show that if n2σ2
f > σ2

g , then λf ≥ λg. We prove this statement by contradiction.

We suppose that 0 ≤ λf < λg. Due to the stationary setting, we can rewrite the first-order

conditions in equations (42) and (43) as





µκ = θφκ(n2σ2
f )e

−λf θφκ if λf > 0

µκ > θφκ(n2σ2
f ) if λf = 0

(C1)





µκ = θφκσ2
ge
−λgθφκ if λg > 0

µκ > θφκσ2
g if λg = 0

(C2)

λg must be positive. Then the first-order conditions imply that

µκ ≥ θφκ(n2σ2
f )e

−λf θφκ (C3)

µκ = θφκσ2
ge
−λgφκ (C4)

Thus, n2σ2
fe
−λf θφκ ≤ σ2

ge
−λgθφκ. On the other hand, since n2σ2

f > σ2
g and λf < λg by

assumptions, n2σ2
fe
−λf θφκ > σ2

ge
−λgθφκ. This result is a contradiction. Therefore, λf ≥ λg.

By following the logic as above, we can also show that if m2σ2
h > σ2

f , then λh ≥ λf .
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If κ < m
φθ

log
(
n2σ2

f/σ
2
g

)
, we can further show that λg must be zero. First we note that

the assumption implies that

(n2σ2
f )e

−θφκ/m > σ2
g . (C5)

Starting from the first order conditions in equation (C1), we obtain the following:

µκ ≥ θφκ(n2σ2
f )e

−λf θφκ ≥ θφκ(n2σ2
f )e

−θφκ/m > θφκσ2
g , (C6)

where we derive the second inequality above from the fact that λf ≤ 1/m, and the third

inequality from (C5). The first-order condition in equation (C2) then implies that λg = 0.

C.3 Proof to Proposition 2

Define

υp(x, φ) ≡ (1− e−φx)2 1

1− e−x
, (C7)

υd(x, φ) ≡ e−2φx + (1− e−φx)2 e−x

1− e−x
. (C8)

Lemma 3 derives the two parts of return variance in equation (46), V ar(f̂i,t) and V ar(fi,t −
f̂i,t−1), based on these two functions.

Lemma 3 V ar(f̂i,t) is determined by the amount of information processed by the investor,

λf,i,tθiκ, about the value of the factor in the next period, fi,t+1,:

V ar(f̂i,t) = υp(λf,i,tθiκ, φ)σ2
f . (C9)

V ar(fi,t − f̂i,t−1) is determined by λf,i,t−1θiκ, the amount of information processed in the

previous period about fi,t, which affects the remaining uncertainty in fi,t:

V ar(fi,t − f̂i,t−1) = υd(λf,i,t−1θiκ, φ)σ2
f . (C10)

υd(x, φ) is a monotonically decreasing function of x for any x ≥ 0 and φ ≥ 1.

PROOF: According to equation (26),

V ar(f̂i,t) = (1− e−λf,i,tθiφκ)2V ar(sf,i,t)
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= (1− e−λf,i,tθiφκ)2[V ar(fi,t+1) + V ar(εf,i,t)]

= (1− e−λf,i,tθiφκ)2 σ2
f

1− e−λf,i,tθiκ

= υp(λf,i,tθiκ, φ)σ2
f , (C11)

where the second equation above is obtained through equation (11), and the third equation

is derived through equation (20). Similarly,

V ar(fi,t − f̂i,t−1) = V ar{fi,t − [f̄ + (1− e−λf,i,t−1θiφκ)(sf,i,t−1 − f̄)]}
= V ar{fi,t − [f̄ + (1− e−λf,i,t−1θiφκ)(fi,t + εf,i,t−1 − f̄)]}
= V ar[e−λf,i,t−1θiφκ(fi,t − f̄)] + V ar[(1− e−λf,i,t−1θiφκ)εf,i,t−1]

=

[
e−2λf,i,t−1θiφκ + (1− e−λf,i,t−1θiφκ)2 e−λf,i,t−1θiκ

1− e−λf,i,t−1θiκ

]
σ2

f

= υd(λf,i,t−1θiκ, φ)σ2
f . (C12)

For any x > 0,

∂υd(x, φ)

∂x
= − 1

(1− e−x)2

{
2φe−φx(1− e−x)[e−φx − e−(φ+1)x]

+[1− (φ + 1)e−φx + φe−(φ+1)x][e−x − e−(φ+1)x]
}

< 0. (C13)

Thus, υd(x, φ) always decreases with x. Q.E.D.

We consider a stationary equilibrium in which the amount of information processed in

each period about a factor fi is identical: λf,i,tθiκ = λf,i,t−1θiκ = x. Define

υ(x, φ) =
1

(1 + r)2
υp(x, φ) + υd(x, φ). (C14)

The total return variance generated by a factor can be represented by

V ar
(

1

1 + r
f̂i,t + fi,t − f̂i,t−1

)
= υ(x, φ)σ2

f . (C15)

In the remaining part of the proof, we focus on the relation between the amount of

information about a sector factor, fi, and the associated return variance. The same result

applies to all other factors.

We first prove part A of Proposition 2. When the investor uses perfect Bayesian updating

(φ = 1), we can directly verify that υp(x, 1) + υd(x, 1) = 1. υp(x, 1) is the fraction of
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uncertainty that is resolved early through information processing, and it increases with x.

υd(x, 1) is the remaining unresolved fraction, and it decreases with x. Thus, if the investor

processes more information, much uncertainty is resolved earlier, leaving less to be resolved

later through dividends.

The total return variance generated by the factor

V ar
(

1

1 + r
f̂i,t + fi,t − f̂i,t−1

)
=

[
1

(1 + r)2
υp(x, 1) + υd(x, 1)

]
σ2

f (C16)

is determined by a weighted sum of the earlier resolution of uncertainty through information

processing and the later resolution through the realization of dividends. We note that a

discount factor, 1
(1+r)2

, has been multiplied to the earlier resolution of uncertainty υp(x, 1),

reflecting that early resolution of future uncertainty creates less return variation. Once we

substitute out υd(x, 1) by 1− υp(x, 1), we obtain

V ar
(

1

1 + r
f̂i,t + fi,t − f̂i,t−1

)
=

[
1− r(2 + r)

(1 + r)2
υp(x, 1)

]
σ2

f . (C17)

This expression equals to σ2
f if r = 0, and decreases with the amount of information, x, if

r > 0. This result is summarized in Part A of Proposition 2.

We prove part B of Proposition 2 as follows. By the definition of υ in equation (C14),

υ(x, φ) =
1

(1 + r)2

(1− e−φx)2

1− e−x
+ e−2φx + (1− e−φx)2 e−x

1− e−x
. (C18)

We analyze the properties of υ(x, φ) around x = 0. Direct differentiation provides

∂υ(x, φ)

∂x

∣∣∣∣∣
x=0

=
φ

(1 + r)2
[(φ− 2)(1 + r)2 + φ], (C19)

∂2υ(x, φ)

∂x2

∣∣∣∣∣
x=0

= − φ2

(1 + r)2
[2(φ− 2)(1 + r)2 + (1 + r)2 + 2φ− 1]. (C20)

In the derivation of these derivatives, we used the L’Hopital’s rule.

If φ > 1 + (1+r)2−1
(1+r)2+1

, we can verify that

∂υ(x, φ)

∂x

∣∣∣∣∣
x=0

> 0, and
∂2υ(x, φ)

∂x2

∣∣∣∣∣
x=0

< 0. (C21)
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Since υ is a smooth function, there must exist a critical level, x̄ > 0, such that υ(x) is strictly

increasing and concave for ∀x ∈ [0, x̄). We determine x̄ as the root to the equation

∂υ(x, φ)/∂x = 0. (C22)

An analytical solution to this equation is not available. We numerically demonstrate the

values of x̄ in Appendix Appendix D for a wide range of model parameters.

Direct differentiation also provides that

∂υ(x, φ)

∂φ
=

2x

(1 + r)2(1− e−x)

[
e−φx − e−2φx + (1 + r)2

(
e−(1+φ)x − e−2φx

)]
> 0. (C23)

Thus, υ increases with φ for any x ≥ 0.

C.4 Proof to Proposition 3

We denote xh = λhθhκ as the amount of market-level information processed by the investor,

xf,i = λf,iθiκ as the amount of information processed for sector i, and xg,i,j = λg,i,jθiκ as the

amount of information processed about firm j in sector i.

From equation (49), the return correlation between two firms from different sectors is

ρ =
V ar

(
1

1+r
ĥt + ht − ĥt−1

)

V ar
(

1
1+r

ĥt + ht − ĥt−1

)
+ V ar

(
f̂i,t

1+r
+ fi,t − f̂i,t−1

)
+ V ar

(
ĝi,j,t

1+r
+ gi,j,t − ĝi,j,t−1

)

=
υ(xh, φ)σ2

h

υ(xh, φ)σ2
h + υ(xf,i, φ)σ2

f + υ(xg,i,j, φ)σ2
g

, (C24)

where the function υ is defined in equation (C14). From the factor structure in equation (4),

the fundamental correlation between them is

ρD =
σ2

h

σ2
h + σ2

f + σ2
g

. (C25)

By rearranging the terms in equation (C24), we obtain

ρ

1− ρ
=

υ(xh, φ)σ2
h

υ(xf,i, φ)σ2
f + υ(xg,i,j, φ)σ2

g

(C26)

According to Proposition 1, since m2σ2
h > σ2

f and n2σ2
f > σ2

g , we have that xh > xf,i > xg,i,j.

Furthermore, under the conditions of Proposition 2B, υ(x, φ) is an increasing function of x.
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Therefore, υ(xh, φ) > υ(xf,i, φ) and υ(xh, φ) > υ(xg,i,j, φ). Thus,

ρ

1− ρ
>

σ2
h

σ2
f + σ2

g

=
ρD

1− ρD
, (C27)

and ρ > ρD.

Following equation (51), the return correlation between any two firms in sector i is

ρi =
υ(xh, φ)σ2

h + υ(xf,i, φ)σ2
f

υ(xh, φ)σ2
h + υ(xf,i, φ)σ2

f + υ(xg,i,j, φ)σ2
g

. (C28)

The fundamental correlation in the dividends of these two firms is

ρD
i =

σ2
h + σ2

f

σ2
h + σ2

f + σ2
g

. (C29)

Following a procedure similar to the one above, we can prove that ρi > ρD
i .

C.5 Proof to Proposition 4

We denote xf,1 = λf,1θ1κ as the amount of information processed by the investor about the

sector factor of sector 1, and xf,1 = λf,1θ1κ as the amount of information processed about

the sector factor of sector 2. The first-order condition in equation (42) for the investor’s

attention allocation to sector factors implies that if all factors receive positive attention

allocation, then

ln µκ = ln(θ1) + ln(φκn2σ2
f )− φxf,1, (C30)

ln µκ = ln(θ2) + ln(φκn2σ2
f )− φxf,2. (C31)

By taking the difference between the two equations above, we obtain that

xf,1 − xf,2 =
1

φ
(ln θ1 − ln θ2) > 0. (C32)

We denote this difference by dx.

Since all the firm-specific factors in each sector have the same prior variance, they share

the same amount of attention allocation. We denote xg,1,j = λg,1,jθ1κ as the amount of

information processed by the investor about a firm-specific factor in sector 1, and xg,2,j =

λg,2,jθ2κ as the amount of information processed by the investor about a firm-specific factor
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in sector 2. The first-order condition in equation (43) for the investor’s attention allocation

to firm-specific factors implies that if all factors receive positive attention allocation, then

ln µκ = ln(θ1) + ln(φκσ2
g)− φxg,1,j, (C33)

ln µκ = ln(θ2) + ln(φκσ2
g)− φxg,2,j. (C34)

By taking the difference between the two equations above, we show that

xg,1,j − xg,2,j =
1

φ
(ln θ1 − ln θ2) = xf,1 − xf,2 = dx > 0. (C35)

We note that relative to sector 2, the amount of information that the investor processes for

the sector factor and any firm-specific factor in sector 1 increases by the same amount, dx.

Since the amount of firm-specific information is smaller (xf,2 > xg,2,j from Proposition 1),

its increase is relatively larger.

To prove that return correlation of firms in sector 1 is lower (ρ1 < ρ2), we need only

establish that

ρ1

1− ρ1

<
ρ2

1− ρ2

, (C36)

which, according to equation (C28), is equivalent to

υ(xh, φ)σ2
h + υ(xf,1, φ)σ2

f

υ(xg,1,j, φ)σ2
g

<
υ(xh, φ)σ2

h + υ(xf,2, φ)σ2
f

υ(xg,2,j, φ)σ2
g

. (C37)

By rearranging the terms, we can rewrite the inequality above as

υ(xh, φ)σ2
h + υ(xf,1, φ)σ2

f

υ(xh, φ)σ2
h + υ(xf,2, φ)σ2

f

− 1 <
υ(xg,1,j, φ)σ2

g

υ(xg,2,j, φ)σ2
g

− 1, (C38)

which is further equivalent to

υ(xf,2 + dx, φ)− υ(xf,2, φ)

υ(xh, φ)σ2
h/σ

2
f + υ(xf,2, φ)

<
υ(xg,2,j + dx, φ)− υ(xg,2,j, φ)

υ(xg,2,j, φ)
. (C39)

Since m2σ2
h > σ2

f and n2σ2
f > σ2

g , Proposition 1 implies that xg,2,j < xf,2. Under the

conditions of Proposition 2B, υ is an increasing and concave function of x for x ∈ [0, x̄).

Thus, we have

υ(xg,2,j, φ) < υ(xf,2, φ), (C40)

υ(xg,2,j + dx, φ)− υ(xg,2,j, φ) > υ(xf,2 + dx, φ)− υ(xf,2, φ) > 0. (C41)
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These two inequalities directly imply that inequality (C39) holds true. Thus, the return

correlation of firms in sector 1 is lower. A key reason for this result is that in the more

efficient sector, the investor not only processes more information for both sector- and firm-

specific factors, but she also processes relatively more firm-specific information.

Next, we establish that stock prices in sector 1 are more informative. Using Lemma 3 in

C.3, we can rewrite the inverse measures of stock price informativeness of firms in sectors 1

and 2, defined in equation (52), as

υd(xh, φ)σ2
h + υd(xf,1, φ)σ2

f + υd(xg,1,j, φ)σ2
g (C42)

and

υd(xh, φ)σ2
h + υd(xf,2, φ)σ2

f + υd(xg,2,j, φ)σ2
g , (C43)

respectively. Lemma 3 shows that υd(x, φ) is a decreasing function of x. Since xf,1 > xf,2 and

xg,1,j > xg,2,j as in equation (C35), υd(xf,1, φ) < υd(xf,2, φ) and υd(xg,1,j, φ) < υd(xg,2,j, φ).

Thus, the term in (C42) is smaller than that in (C43) and the stock prices of firms in sector

1 are more informative than those in sector 2.

C.6 Proof to Proposition 5

In period t, we denote the attention allocation to the market factor by λh,t, and the amount

of information processed by xh,t = λh,tθtκ. Due to the symmetry assumption, all the sector

factors receive an identical attention allocation, which we denote by λf,t; likewise, all firm-

specific factors receive an identical attention allocation, denoted by λg,t. We specify xf,t =

λf,tθtκ as the amount of information processed for a sector factor and xg,t = λg,tθtκ as

the amount of information processed for a firm-specific factor. Furthermore, this symmetry

implies that the return correlation between any two firms from different sectors is identical.

We denote the return correlation as ρt.

To capture an increasing trend in θ, we consider the case that θt rises on even dates and

stays constant on odd dates. Thus, · · · = θ2t−1 < θ2t = θ2t+1 < θ2t+2 = · · ·. On odd dates the

investor’s attention allocations stay the same from the previous date, thus simplifying our

exposition. To prove the proposition, we need to show that the return correlation between
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any two firms from different sectors decreases over time:

ρ2t+1 < ρ2t−1. (C44)

The first-order condition in equation (41) for the investor’s attention allocation to the

market factor implies that if all factors receive positive attention allocation, then

ln µκ,2t+1 = ln(θ2t+1) + ln(φκσ2
h)− φxh,2t+1, (C45)

ln µκ,2t−1 = ln(θ2t−1) + ln(φκσ2
h)− φxh,2t−1. (C46)

By taking the difference of these two equations, we obtain that

xh,2t+1 − xh,2t−1 =
1

φ
[ln(θ2t+1)− ln(θ2t−1)− (ln µκ,2t+1 − ln µκ,2t−1)]. (C47)

We denote the difference by dx.

Following a similar procedure, by using the first-order conditions in equations (42) and

(43), we verify that if all factors receive positive attention allocation, then

xf,2t+1 − xf,2t−1 = xg,2t+1 − xg,2t−1 = xh,2t+1 − xh,2t−1 = dx. (C48)

This result suggests that the changes in the amount of information processed for all factors

are identical. Since all the attention allocations each period should sum up to one:

λh,2t+1 + mλf,2+1 + mnλg,2t+1 = 1, (C49)

λh,2t−1 + mλf,2t−1 + mnλg,2t−1 = 1. (C50)

These equations further imply that

xh,2t+1 + mxf,2+1 + mnxg,2t+1 = κθ2t+1, (C51)

xh,2t−1 + mxf,2t−1 + mnxg,2t−1 = κθ2t−1. (C52)

By taking the difference of these two equations above and substituting in dx from equation

(C48), we can solve for dx:

dx =
κ

1 + m + mn
(θ2t+1 − θ2t−1) > 0. (C53)
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Thus, the changes in the amount of information processed for all factors over time are positive

and identical. Since the amount of information processed for firm-specific factors is smaller

than that of common factors, its percentage increase is larger.

To verify inequality (C44), we need only establish that

ρ2t+1

1− ρ2t+1

<
ρ2t−1

1− ρ2t−1

, (C54)

which, according to equation (C26), is equivalent to

υ(xh,2t+1, φ)σ2
h

υ(xf,2t+1, φ)σ2
f + υ(xg,2t+1, φ)σ2

g

<
υ(xh,2t−1, φ)σ2

h

υ(xf,2t−1, φ)σ2
f + υ(xg,2t−1, φ)σ2

g

. (C55)

By rearranging terms, we can rewrite the inequality above as

υ(xh,2t+1, φ)σ2
h

υ(xh,2t−1, φ)σ2
h

− 1 <
υ(xf,2t+1, φ)σ2

f + υ(xg,2t+1, φ)σ2
g

υ(xf,2t−1, φ)σ2
f + υ(xg,2t−1, φ)σ2

g

− 1, (C56)

which is equivalent to

υ(xh,2t−1 + dx, φ)− υ(xh,2t−1, φ)

υ(xh,2t−1, φ)

<
[υ(xf,2t−1 + dx, φ)− υ(xf,2t−1, φ)]σ2

f/σ
2
g + υ(xg,2t−1 + dx, φ)− υ(xg,2t−1, φ)

υ(xf,2t−1, φ)σ2
f/σ

2
g + υ(xg,2t−1, φ)

.(C57)

Since m2σ2
h > σ2

f and n2σ2
f > σ2

g , Proposition 1 implies that xh,2t−1 > xf,2t−1 > xg,2t−1.

Furthermore, under the conditions of Proposition 2B, υ is an increasing and concave function

of x for x ∈ [0, x̄). Thus, we have

υ(xh,2t−1, φ) > υ(xf,2t−1, φ) > υ(xg,2t−1, φ) (C58)

0 < υ(xh,2t−1 + dx, φ)− υ(xh,2t−1, φ) < υ(xf,2t−1 + dx, φ)− υ(xf,2t−1, φ), (C59)

0 < υ(xf,2t−1 + dx, φ)− υ(xf,2t−1, φ) < υ(xg,2t−1 + dx, φ)− υ(xg,2t−1, φ). (C60)

Inequalities (C59) and (C60) suggest that over time, return variances related to the investor’s

information processing for all factors are increased, but the magnitudes of these increases

are different. In particular, the increase in the component related to firm-specific factors is

largest, followed by the increase related to sector factors. The increase related to the market

factor is smallest. This order determines the decrease in return correlation over time.

44



Inequality (C60) implies that the right-hand side of inequality (C57) is larger than

[υ(xf,2t−1 + dx, φ)− υ(xf,2t−1, φ)]σ2
f/σ

2
g + υ(xf,2t−1 + dx, φ)− υ(xf,2t−1, φ)

υ(xf,2t−1, φ)σ2
f/σ

2
g + υ(xg,2t−1, φ)

= [υ(xf,2t−1 + dx, φ)− υ(xf,2t−1, φ)]
σ2

f/σ
2
g + 1

υ(xf,2t−1, φ)σ2
f/σ

2
g + υ(xg,2t−1, φ)

>
υ(xf,2t−1 + dx, φ)− υ(xf,2t−1, φ)

υ(xf,2t−1, φ)
(C61)

where the last inequality is derived from inequality (C58) that υ(xf,2t−1, φ) > υ(xg,2t−1, φ).

Further applying inequalities (C59) and (C58) for the numerator and denominator of (C61),

respectively, we can verify that the right-hand-side term in (C61) is larger than the left-hand

side of inequality (C57). Thus, inequality (C57) holds, as well as inequality (C44).

Using a similar method, we can also prove that the return correlation between any two

firms in the same sector also decreases over time as the parameter θ increases.

C.7 Proof to Proposition 6

By substituting the linear price function in Theorem 1 and the factor structure in equation

(4) into an asset’s excess return in equation (44), we can divide the first-order autocovariance

of the asset’s return into three components corresponding to the three fundamental factors

involved:

Cov(qi,j,t, qi,j,t+1) = Cov

(
ĥt

1 + r
+ ht − ĥt−1,

ĥt+1

1 + r
+ ht+1 − ĥt

)

+Cov

(
f̂i,t

1 + r
+ fi,t − f̂i,t−1,

f̂i,t+1

1 + r
+ fi,t+1 − f̂i,t

)

+Cov

(
ĝi,j,t

1 + r
+ gi,j,t − ĝi,j,t−1,

ĝi,j,t+1

1 + r
+ gi,j,t+1 − ĝi,j,t

)
(C62)

Here, we analyze the component related to the firm-specific factor as an illustration. We can

derive the other two components using the same method.

From the independence assumption of the fundamental factors across periods and the

associated Bayesian learning processes, gi,j,t−ĝi,j,t−1 is independent of ĝi,j,t+1 and gi,j,t+1−ĝi,j,t,

and ĝi,j,t is independent of ĝi,j,t+1. Thus, we obtain

Cov

(
ĝi,j,t

1 + r
+ gi,j,t − ĝi,j,t−1,

ĝi,j,t+1

1 + r
+ gi,j,t+1 − ĝi,j,t

)
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= Cov

(
ĝi,j,t

1 + r
, gi,j,t+1 − ĝi,j,t

)

=
1

1 + r
Cov (ĝi,j,t, gi,j,t+1 − ĝi,j,t)

=
1

2(1 + r)
[V ar(ĝi,j,t + gi,j,t+1 − ĝi,j,t)− V ar(ĝi,j,t)− V ar(gi,j,t+1 − ĝi,j,t)] (C63)

=
1

2(1 + r)
{V ar(gi,j,t+1)− [V ar(ĝi,j,t) + V ar(gi,j,t − ĝi,j,t−1)]} . (C64)

In deriving equation (C63), we use the following formula:

Cov(x, y) =
1

2
[V ar(x + y)− V ar(x)− V ar(y)]. (C65)

We note that V ar(gi,j,t+1) = σ2
g . Based on Appendix C.3, V ar(ĝi,j,t)+V ar(gi,j,t− ĝi,j,t−1)

is the return variance related to the firm-specific factor when the discount rate is zero. If

we rewrite υ defined in equation (C14) as a function v(x, φ, r) where x is the amount of

information processed about a factor, φ is the investor’s overconfidence parameter, and r is

the discount rate, we have

V ar(ĝi,j,t) + V ar(gi,j,t + ĝi,j,t−1) = σ2
g υ(xg,i,j, φ, 0), (C66)

where xg,i,j is the amount of information that the investor processes about the firm-specific

factor. Thus,

Cov

(
ĝi,j,t

1 + r
+ gi,j,t − ĝi,j,t−1,

ĝi,j,t+1

1 + r
+ gi,j,t+1 − ĝi,j,t

)
=

σ2
g

2(1 + r)
[1− υ(xg,i,j, φ, 0)]. (C67)

The source of the autocovariance is the investor’s overreaction to her information. Using

equation (C18), we have

υ(x, φ, 0) = 1 +
2(1− e−φx)

1− e−x
(ex − e−φx) ≥ 1, (C68)

and that the equality holds only when x = 0. Thus, if the investor does not attend to any

information related to the factor, there is no overreaction and therefore no autocovariance

in the return related to the factor, either. According to equation (43), this situation occurs

when θi ≤ µκ/(φκσ2
g).

Furthermore, under the conditions of Proposition 2B, υ(x, φ, r) increases with x. Thus,

equation (C67) implies that in this region, the negative autocovariance caused by the in-

vestor’s overreaction decreases with the amount of firm-specific information processed.
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C.8 Proof to Proposition 7

The information value of the ignored signal, νi,j,t, depends on its ability to resolve the

remaining uncertainty in prices. Thus, we can measure it by its correlation with gi,j,t+1−ĝi,j,t,

the remaining uncertainty in the firm’s fundamental factor. We denote x = λg,i,j,tθiκ as the

amount of firm-specific information processed by the investor. By substituting in ĝi,j,t from

equation (29), we obtain

gi,j,t+1 − ĝi,j,t = e−φx(gi,j,t+1 − ḡ)− (1− e−φx)εg,i,j,t, (C69)

where εg,i,j,t is the noise in the information processed by the investor in equation (12), and it

is independent of εν,i,j,t, the noise in the ignored signal. Then, we can compute the correlation

between νi,j,t in equation (53) and gi,j,t+1 − ĝi,j,t as

Corr =
e−φxσ2

g√
[e−2φxσ2

g + (1− e−φx)2η2
g ](σ

2
g + σ2

ν)
(C70)

where η2
g = σ2

g/(e
x − 1) is the variance of εg,i,j,t. We rearrange the correlation as

Corr =
σg√

[1 + (eφx−1)2

ex−1
](σ2

g + σ2
ν)

. (C71)

Direct differentiation shows that (eφx−1)2

ex−1
is a strictly increasing function of x. Thus, Corr

decreases with the amount of firm-specific information processed by the investor.

Appendix D Numerical illustration of relation between return
variance and information

In Section 5.1, we discuss the relation between return variance and the amount of information

processed by the investor about a certain fundamental factor. Proposition 2B shows that

when the investor is sufficiently overconfident, the return variance increases with the amount

of processed information when it is below a threshold. In this appendix, we illustrate this

relation and the threshold using several numerical examples.

According to equation (C15), the return variance related to a factor is determined by the

factor’s fundamental variance multiplied by a function υ(x, φ), which captures the return
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variance amplification caused by the investor’s overreaction to her information. x = λf,i,tθiκ

is the amount of information processed about the factor and φ is the investor’s overconfidence

parameter.
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1
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Figure 1: The relation between return variance amplification, υ(x, φ), and the amount of processed
information, x. The figure uses the following parameters: φ = 2 and r = 5%.

Figure 1 demonstrates a typical shape of the υ function based on φ = 2 and a discount

rate r = 5%. υ increases with the amount of information when it is below a threshold x̄,

which has a value of 0.521 in this example, and then becomes decreasing with the amount

of information when it passes above x̄. For the main part of our analysis, we restrict the

amount of information processed by the investor to be below the threshold level. Based on

equations (15) and (16), the economic interpretation of x̄ corresponds to a threshold level

in the logarithmic reduction in the variance of the investor’s belief about the underlying

fundamental factor:

x̄ = log(σ2
prior/σ

2
posterior). (D1)

A value of 0.521 represents a percentage reduction in the variance of investor belief by

∆σ2/σ2 ≡ σ2
posterior − σ2

prior

σ2
prior

= e−x̄ − 1 = −40.6%, (D2)

which is a substantial amount to be achieved by individual investors’ learning processes.
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Table 1 provides the values of the threshold (x̄) and the corresponding percentage re-

duction in the variance of investor belief (∆σ2/σ2) by varying the values of the investor’s

overconfidence parameter (φ) and the discount rate (r). Panel A shares a discount rate r = 0,

and Panel B shares a discount rate r = 5%. For the investor’s overconfidence parameter, we

choose a wide range of values from 1.2 to 2.4. Doing so implies that the investor exaggerates

her information processing ability by these multiples. Across all these values, the threshold

(x̄) stays between 0.449 and 0.857, and the corresponding reduction in belief variance is

between 36% and 58%. All these values are high for individual investors’ learning processes.

Also, we note that the lower bound for the investor’s overconfidence parameter φ in

Proposition 2B, inequality (47), is rather modest. For example, when the discount rate

r = 5%, the lower bound of φ corresponds to a value of 1.049.

Table 1: The threshold in amount of information

This table provides the values of the threshold (x̄) in the amount of information and the

corresponding percentage reduction in the variance of investor belief (∆σ2/σ2) for different

values of the investor’s overconfidence parameter (φ) and the discount rate (r).

Panel A: r = 0 Panel B: r = 5%

φ x̄ ∆σ2/σ2 φ x̄ ∆σ2/σ2

1.2 0.857 -57.6% 1.2 0.646 -47.6%
1.4 0.751 -52.8% 1.4 0.657 -48.2%
1.6 0.669 -48.8% 1.6 0.613 -45.8%
1.8 0.603 -45.3% 1.8 0.565 -43.2%
2.0 0.549 -42.2% 2.0 0.521 -40.6%
2.2 0.504 -39.6% 2.2 0.483 -38.3%
2.4 0.466 -37.2% 2.4 0.449 - 36.2%
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