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ABSTRACT

Private information about prospective borrowers produced by a bank can affect  rival lenders due

to a "winner’s curse" effect. Strategic interaction between banks with respect to the intensity of

costly information production results in endogenous credit cycles, periodic "credit crunches."

Empirical tests are constructed based on parameterizing public information about relative bank

performance that is at the root of banks’ beliefs about rival banks’ behavior. Consistent with the

theory, we find that the relative performance of rival banks has predictive power for subsequent

lending in the credit card market, where we can identify the main competitors. At the

macroeconomic level, we show that the relative bank performance of commercial and industrial

loans is an autonomous source of macroeconomic fluctuations. We also find that the relative bank

performance is a priced risk factor for both banks and nonfinancial firms. The factor-coefficients for

non-financial firms are decreasing with size.
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1 Introduction

In this paper we show that periodic credit crunches, swings between high and low credit alloca-

tions, are an inherent part of banking due to the way banks compete for borrowers. The amount

of information that banks produce about potential borrowers, and the amount of credit banks

are willing to extend, varies through time due to strategic interaction between competing banks.

Credit cycles can occur without any change in the macroeconomic environment. We investigate this

amplification mechanism and provide empirical evidence that bank credit cycles are an important

autonomous part of business cycle dynamics. Extensive empirical tests of the model are presented,

based on parameterizing the public information that is the basis for banks’ beliefs about rivals’

strategies. These information measures concern rival banks’ relative performance, encapsulated in

a Performance Difference Index (PDI). The empirical behavior of U.S. bank credit card lending,

commercial and industrial lending, and bank profitability, are consistent with the model. Bank

credit cycles are a systematic risk. We find that, consistent with this, the PDI is a priced factor

in an asset pricing model of bank stock returns. Most importantly, the PDI is a priced factor for

non-financial firms as well, and increasingly so as firm size declines.

Changes in bank credit allocation, sometimes called "credit crunches," appear to be an impor-

tant part of macroeconomic dynamics. Bank lending is procyclical.1 Rather than change the price

of loans, the interest rate, banks sometimes ration credit.2 A dramatic example in the U.S. is

the period shortly after the Basel Accord was agreed in 1988, during which time the share of U.S.

total bank assets composed of commercial and industrial loans fell from about 22.5 percent in 1989

to less than 16 percent in 1994. At the same time, the share of assets invested in government

securities increased from just over 15 percent to almost 25 percent.3 More generally, it has been

noted that banks vary their lending standards or credit standards.

Bank “lending standards” or “credit standards” are the criteria by which banks determine and

rank loan applicants’ risks of loss due to default, and according to which a bank then makes its

lending decisions. While not observable, there is a variety of evidence showing that while lend-

ing rates are sticky, banks do, in fact, change their lending standards.4 The most direct evidence

1See Lown, Morgan and Rohatgi (2000), Jordan, Peek, and Rosengren (2002), and Lown and Morgan (2002).
2Bank loan rates are sticky. Berger and Udell (1992) regress loan rate premiums against open market rates

and control variables and find evidence of “stickiness.” (Also, see Berger and Udell (1992) for references to the

prior literature.) With respect to credit card rates, in particular, Ausubel (1991) has also argued that they are

“exceptionally sticky relative to the cost of funds” (p. 50).
3See Keeton (1994) and Furfine (2001). This episode is the focus of the empirical literature on credit crunches.

See Bernanke and Lown (1991), Hall (1993), Berger and Udell (1994), Haubrich and Wachtel (1993), Hancock and

Wilcox (1994), Brinkman and Horvitz (1995), Peek and Rosengren (1995), and Beatty and Gron (2001). Gorton and

Winton (2002) provide a brief survey of the credit crunch literature.
4 In the absence of detailed information about banks’ internal workings, it is not exactly clear what is meant

by the term "lending standards." It can refer to all the elements that go into making a credit decision, including

credit scoring models, the lending culture, the number of loan officers and their seniortiy and experience, the banks’

heirarchy of decision-making, and so on.
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comes from the Federal Reserve System’s Senior Loan Officer Opinion Survey on Bank Lending

Practices.5 Banks are asked whether their "credit standards" for approving loans (excluding merger

and acquisition-related loans) have “tightened considerably, tightened somewhat, remained basi-

cally unchanged, eased somewhat, or eased considerably.” Lown and Morgan (2001) examine this

survey evidence and note that, except for 1982, every recession was preceded by a sharp spike in the

percentage of banks reporting a tightening of lending standards. Other evidence that bank lending

standards change is econometric. Asea and Blomberg (1998) examined a large panel data set of

bank loan terms over the period 1977 to 1993 and “demonstrate that banks change their lending

standards - from tightness-to laxity-systematically over the cycle” (p. 89), and they conclude that

cycles in bank lending standards are important in explaining aggregate economic activity.

In a macroeconomic context changes in the Fed Lending Standards Index (the percentage of

respondents reporting tightening) Granger-causes changes in output, loans, and the federal funds

rate, but the macroeconomic variables are not successful in explaining variation in the lending

standards index. The Lending Standards Index is exogenous with respect to the other variables

in the Vector Autoregression system. See Lown and Morgan (2001, 2002) and Lown, Morgan

and Rohatgi (2000).6 The analysis in this paper is aimed at explaining the forces that cause

lending standards to change and, in particular, to explaining how this can happen independently

of macroeconomic variables.

When competing with each other to lend, banks produce information about potential borrowers

in an environment where they do not know how much information is being produced by rival bank

lenders.7 We study a model of bank competition in which banks collude to set high loan rates

(hence loan rates are sticky), and they implicitly agree not to (over-) invest in costly information

production about prospective borrowers.8 A bank can strategically produce more information than

its rivals and then select the better borrowers, leaving unknowing rivals with adversely selected loan

5The survey is conducted quarterly and covers major banks from all parts of the U.S., accounting for between 60

and 70 percent of commercial and industrial loans in the U.S. The Federal Reserve System’s “Senior Loan Officer

Opinion Survey on Bank Lending Practices” was initiated in 1964, but results were only made public starting in 1967.

Between 1984:1 and 1990:1 the question concerning lending standards was dropped. See Schreft and Owens (1991).

Current survey results are available at <http://www.federalreserve.gov/boarddocs/SnLoanSurvey/>.
6They also find that changes in bank lending standards matter much more for the volume of bank loans and

aggregate output than do commercial loan rates, consistent with the finding that loan rates do not move as much as

would be dictated by market rates.
7Broecker (1990) observed that the information asymmetry also affects the banks themselves and means that

banks compete with each other in a special way. In Broecker’s (1990) model, banks use noisy, independent, credit

worthiness tests to assess the riskiness of potential borrowers. Because the tests are imperfect, banks may mistakenly

grant credit to high-risk borrowers who they would otherwise reject. As the number of banks increases, the likelihood

that an applicant will pass the test of at least one bank rises. Banks face an inherent winner’s curse problem in this

setting. In Broecker’s model banks do not behave strategically in a dynamic way.
8Strategic interaction between banks seems natural because banking is highly concentrated. Entry into banking

is restricted by governments. In developed economies the share of the largest five banks in total bank deposits ranges

from a high of 81.7% in Holland to a low of 26.3% in the United States. See the Group of Ten (2001). In less

developed economies, bank concentration is typically much higher (see Beck, Demirguc-Kunt, and Levine (2003)).
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portfolios. Unlike standard models of imperfect competition, following Green and Porter (1984),

there are no price wars among banks since banks do not change their loan rates. However, as in

Green and Porter (1984), intertemporal incentives to maintain the collusive arrangement requires

periods of "punishment." Here these correspond to credit crunches. In a credit crunch all banks

increase their costly information production intensity, that is, they raise their "lending standards,"

and stop making loans to some borrowers who previously received loans. These swings in credit

availability are caused by banks’ changing beliefs, based on public information about rivals, about

the viability of the collusive arrangement.

Empirically testing models of repeated strategic interaction of firms has focused on price wars.

See Reiss andWolak (2003) and Bresnahan (1989) for surveys of the literature. However, our model

predicts there are "information production wars." Since information production is unobservable,

we can not follow the usual empirical strategy. We propose a new method for testing the model,

which we believe to be of independent interest. Our approach tests a general implication of any

equilibrium of the model with imperfect competition by identifying the relevant public information

and its relation with "information production wars"—credit crunches. In theory, to detect deviations

by rivals, banks must look at two sources of public information: the number of loans made in a

period by each rival and the default performance of each rivals’ loan portfolio. We argue that

the relative performance of other banks is the public information relevant for each bank’s decisions

about the choice of the level of information production. More importantly, the use of relative

bank performance empirically distinguishes our theory from a general learning story, which would

predict past bank performance matters for bank credit decisions.

Broadly, the empirical analysis is in three parts. First, we examine a narrow category of loans,

U.S. credit card lending, where there are a small number of banks that appear to dominate the

market. Since it is not clear which banks are rivals, we first analyze this lending market by

examining banks pairwise. If the PDI increases, banks should reduce their lending and increase

their information production resulting in fewer loan losses in the next quarter. We also examine

bank profitability, using stock returns. Second, we analyze macroeconomic time series, including

the Lending Standard Survey Index. We form an aggregate bank Performance Difference Index

(PDI) based on the absolute value of the differences on all commercial and industrial loans of

the largest 200 banks. If beliefs are, in fact, based on this information, then we should be able

to explain (in the sense of Granger causality) the time series of Fed’s Lending Standard Survey

responses (the percentage of banks reporting "tightening" their standards) in Lown and Morgan

(2001). Thirdly, if credit crunches are endogenous, and a systematic risk, then they should be a

priced factor in an asset pricing model of stock returns. Therefore, our final test is to ask whether

the parameterization of banks’ relevant histories is a priced risk factor in a four factor Fama-French

asset pricing setting. We look at banks and nonfinancial firms by size, as credit crunches have

larger effects on smaller firms. We find all the evidence to be consistent with the theory.

Other relevant work includes Rajan (1994). He argues that fluctuations in credit availability by
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banks are driven by bank managers’ concerns for their reputations (due to bank managers having

short horizons), and that consequently bank managers are influenced by the credit policies of other

banks. Managers’ reputations suffer if they fail to expand credit while other banks are doing so,

implying that expansions lead to significant increases in losses on loans subsequently.9 We test

Rajan’s idea in the empirical section. Two related theoretical models are provided by Dell’Ariccia

and Marquez (2004) and Ruckes (2003). These papers show a link between lending standards

and information asymmetry among banks, driven by exogenous changes in the macroeconomy.

As distinct from these models, the fluctuation of banks’ lending behavior in our paper is purely

driven by the strategic interactions between banks instead of an exogenously changing economic

environment.

We proceed in Section 2 to describe the stage game for bank lending competition, and we study

the existence of stage Nash equilibrium and the model’s implications for lending standards. The

stage game is a prelude to considering the infinitely repeated game, the subject of Section 3. In

Section 4, we carry out empirical tests. Section 5 concludes the paper.

2 The Lending Market Stage Game

In this section we set forth the model and analyze the lending market stage game.

Suppose (without loss of generality) that there are two banks in the market competing to lend,

as follows. There are N potential borrowers in the credit market. Each of the potential borrowers

is one of two types, good or bad. Good types’ projects succeed with probability pg, and bad types’

projects succeed with probability pb, where pg > pb ≥ 0. Potential borrowers, sometimes also

referred to below as “applicants,” do not know their own type. At the beginning of the period

potential borrowers apply simultaneously to each bank for a loan. There is no application fee. The

probability of an applicant being a bad type is λ, which is common knowledge.10 Each applicant

can accept at most one loan offer, and if a loan is granted, the borrower invests in a one period

project which will yield a return of X < ∞ if the project succeeds and returns 0 otherwise. A

borrower whose project succeeds will use the return X to repay the loan, i.e., a borrower’s realized

cash flow is verifiable.

Banks are risk-neutral. They can raise funds at some interest rate, assumed to be zero. After

receiving the loan applications, a bank can use a costly technology to produce information about

the applicant’s type. The credit worthiness testing results in determining the type of an applicant,

but there is a per applicant cost of c > 0. Banks can test any proportion of their applicants. Let

9However, as pointed out by Weinberg (1995), the data on the growth rate of total loans and loan charge-offs in

the United States from 1950 to 1992 do not show the pattern of increases in the amount of lending being followed by

increases in loan losses.
10We will hold λ fixed throughout the analysis, but this is to clarify the mechanism that is our focus. It is natural

to think of λ as being time-varying, representing other business cycle shocks outside the model, and we could easily

incorporate this. But it would obscure the cyclical effects that are purely due to bank competition.
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ni denote the number of applicants that are tested by bank i. We say that the more applicants

that a bank tests, i.e., using the costly information production technology, the higher are its credit

or lending standards.11 If a bank switches from not using the credit worthiness test to using it, we

say that the bank has raised its lending or credit standards. We assume that neither bank observes

the other bank’s credit standards, i.e., each bank is unaware of how many applicants the other bank

tests. Results of the tests are the private information of the testing bank.

Since the bank borrowing rate is zero, when a bank charges F (to be repaid at the end of

the period) for one unit of loan, the bank’s expected return from lending to an applicant will be

λpbF + (1− λ)pgF − 1 in the case of no credit worthiness testing.

• Assumption 1: pgX > 1, pbX < 1, and λpbX + (1− λ)pgX > 1.

Assumption 1 means that there exists some interest rate, X, that allows a bank to earn positive

profits from lending to a good type project ex ante, but there does not exist an interest rate at

which a bank can make positive profits from lending to a bad type project ex ante. (Given the

loan size being normalized to 1, the face value of the loan F uniquely determines the interest rate,

and later on we refer to F as the “loan interest rate.”) It is also possible for banks to profit from

lending to both types of applicants without discriminating between the types.

Each bank first chooses some (could be zero, could be all) applicants to test, then, depending

on the test results, decides whether to make a loan offer for each applicant, and if yes, at what

interest rate. We formally define the stage strategy of each bank in Appendix 1.

We assume that banks do not observe each other’s interest rates or the identities of applicants

offered loans. At the end of the period only final loan portfolio sizes and outcomes are publicly

observable. Banks cannot communicate with each other.

Figure 1 shows the timing of moves in the one period game.

2.1 Stage Nash Equilibrium

We now turn to study Nash equilibrium, and the conditions for the existence of Nash equilibrium,

in the lending market stage game. We provide a condition under which the only Nash equilibrium

that exists is one in which neither bank conducts credit worthiness testing and both banks earn

zero profits.

First we will study the Nash equilibrium in which no bank conducts credit worthiness testing.

We have the following results.

Proposition 1 If and only if c ≥ λ(1−λ)(pg−pb)
λpb+(1−λ)pg

, there exists a symmetric Nash equilibrium in which

no bank conducts credit worthiness testing and both banks earn zero profits.

11 Imagine that banks always produce some minimal amount of information about loan applicants. We ignore

this base amount of information, however, and focus only on the situation where banks choose to produce more

information than this base level. So, we interpret the credit worthiness test as the additional information produced,

beyond the normal information production.

5



 

Firms apply to 

both banks for 

loans. 

Nature decides the 

types of the firms. 

Banks choose to test or not, and then make 

loan and interest rate offers, contingent on 

test results, if the test was used. 

Applicants that receive 

loan offers choose to 

accept or not. 

Successful 

borrowers invest in 

their projects. 

Borrowers with 

successful projects 

repay loans. 

Next period starts. 

Figure 1: The Timing of the Stage Game

The proof is in Appendix 2.

Proposition 1 says that if the cost of testing each loan applicant is sufficiently high, i.e., c ≥
λ(1−λ)(pg−pb)
λpb+(1−λ)pg

, then the there exists a Nash equilibrium in which no bank conducts credit worthiness

testing and neither bank earns positive profits.

• Assumption 2: c ≥ λ(1−λ)(pg−pb)
λpb+(1−λ)pg

.

Assumption 2 guarantees the existence of the stage symmetric Nash equilibrium. At the same

time, this assumption implies that the optimal payoffs for the banks are reached when no credit

worthiness testing are conducted (as we will show in a moment).

Now consider the case where both banks test at least some applicants.

Proposition 2 There is no symmetric Nash equilibrium in which both banks test at least some of

the applicants.

The proof is in Appendix 2.12 Intuitively, after the banks test some of the applicants, they will

compete with each other for the good type applicants, which will drive the post-test profit to zero.

However, since there is a test cost, ex-ante the banks’ profits will be negative.

Our conclusion with regard to the stage game in the lending market is that, without mixed

strategies, the only Nash equilibrium that exists is the equilibrium in which neither bank conducts

credit worthiness testing, and both banks earn zero profits.

It is straightforward to characterize the optimal payoffs that the two banks receive in the stage

game. If a bank does not conduct credit worthiness testing on an individual applicant and charges

12Banks could play more general mixed strategies. For example, banks could mix between testing n1 applicants

and testing n2 applicants. We do not delve into these strategies.
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F , then the expected payoff from a loan to that individual applicant is:

π = λpbF + (1− λ)pgF − 1,

which is maximized at F = X. If a bank conducts credit worthiness testing on an individual

applicant and charges F , then the expected payoff from a loan to that individual applicant is:

π′ = (1− λ)(pgF − 1)− c,

which also is maximized at, say, F = X. It is easy to check that π′ < π with F = X under

Assumption 2.

3 Repeated Competition

In the stage game, we have already shown that banks earn zero profits without testing, and the

optimal payoffs for banks are reached when there is no costly credit worthiness test being used.

Setting a (collusive) loan interest rate of F = X would be the most profitable case for both banks.

In repeated competition banks will try to collude to charge F = X without conducting credit

worthiness testing. When the banks collude by offering a profitable interest rate to the applicants

without testing, there is an incentive for each bank to undercut the interest rate in order to get more

applicants. In order to generate intertemporal incentives to support the collusion on a high interest

rate, banks need to punish each other to prevent deviation in undercutting interest rates, which

can be monitored by looking at the loan portfolio size of each bank. However, a high interest rate

generates incentives for banks to conduct credit worthiness testing and get higher quality applicants

while manipulating the loan portfolio size. To see this, let us look at the following example.

By undercutting the interest rate offered to an applicant without credit worthiness testing, the

expected payoff from this loan to the bank is:

π = λpbF + (1− λ)pgF − 1.

Alternatively, the bank can test the applicant, undercut the interest rate if it is a good type, and

undercut the interest rate to another untested applicant if the tested one turns out to be a bad

type (this way the bank always gets one applicant for sure); the expected payoff to the bank is:

π′ = λ[λpbF + (1− λ)pgF − 1] + (1− λ)(pgF − 1)− c.

We can show:

π′ − π = λ(1− λ)(pg − pb)F − c,

which is increasing with F . Therefore, when F is high enough, banks will have incentive to produce

information while manipulating the loan portfolio size through interest rates.

Formally, we consider sequential equilibria in which banks’ strategies will depend on public

information. In general, banks can base their strategies on all available information, both public
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and private. However, if one bank’s strategy only depends on public information, the other bank

can not do better by making its strategy dependent on both public information and its private

information. The class of sequential equilibria (see Kreps and Wilson (1982)) that depends only

on public information is called “Perfect Public Equilibria” (PPE). See Fudenberg, Levine, and

Maskin (1994). The available public information at the end of each period is the number of loans

that each bank made (Dit) and the number of those loans that defaulted (χit).

We formalize the game in Appendix 1, and we restrict attention to symmetric PPE (SPPE)

(defined below). Aside from seeing how the repeated game works, the main point is the demon-

stration that because banks have two actions that they can use to compete (i.e., changing lending

rates and increasing information production), banks’ beliefs must be based on the history of banks’

portfolio sizes as well as banks’ loan default performances.

3.1 Symmetric Perfect Public Equilibrium

We now examine symmetric PPE (SPPE) in which asymmetric play is allowed after the first period

stage game is played symmetrically.13 We focus on demonstrating that the banks’ continuation

play depends on the history of the number of loans made by each bank and on the number of loan

defaults in each bank’s portfolio. These results then motivate the empirical analysis.

Any perfect public equilibrium payoff for bank i can, as discussed in Appendix 1, be factored into

a first-period stage payoff πi (depending on the stage strategies of both banks) and a continuation

payoff function ui (depending on the public history). Let si be the stage strategy for bank i, an

SPPE is defined as follows:

Definition: A Symmetric Perfect Public Equilibrium (SPPE) is a Perfect Public Equilib-

rium that can be decomposed into the first period stage strategies and continuation value functions

(s1, s2, u1, u2) such that:

s1 = s2 and u1(D1,D2, χ1, χ2) = u2(D2,D1, χ2, χ1).

According to the definition, the stage game strategies are the same, but the continuation strate-

gies can differ. In particular, note that the continuation value functions for Bank 1 and Bank 2 are

symmetric in that if we exchange the loan portfolio sizes and loan performances, the continuation

values will also be exchanged. In such an SPPE, the expected payoff for the two banks are the

same, but asymmetric play is allowed after the first period, for asymmetric realizations of loan

portfolio size and loan performance.

At a profitable interest rate, if a bank makes more loans than its rival, then the continuation

value of Bank 1 should be lower, to eliminate the incentive of the banks to deviate by undercutting

interest rates to get more loans. However, when there is credit worthiness testing, it may not

13We can prove that there does not exist any symmetric PPE in a strict sense (i.e., both banks behave the same

way in the stage game and in the continuation game) other than the one in which the stage Nash equilibrium is

played every period. The proof is available on request.
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be true that making more loans is always better. A bank can deviate by testing, “raising credit

standards,” resulting in the other bank lending to the bad type applicants rejected by the first

bank. This is the strategic use of the winner’s curse by one bank against its rival. Due to that

possibility, we will show that loan performance (number of defaults in each bank portfolio) will also

affect the continuation value.

Proposition 3 In any SPPE, in which neither bank tests any applicant and both banks make loan

offers to all applicants at the same interest rate Fα, if c < λ(1−λ)(pg−pb)Fα, then the continuation

value functions cannot only depend on the number of loans made by each bank.

The proof is in Appendix 2. The proof involves finding a deviating strategy such that the

expected continuation payoffs are the same for both banks while there is a stage gain by conducting

credit worthiness testing. The proposition says that banks’ loan performances (i.e., number of

defaults) matters in an SPPE with banks charging the same interest rate (high enough) to all the

applicants and conducting no credit worthiness testing. With the possibility of credit worthiness

testing, variation in loan portfolio sizes is not enough to detect deviation through credit worthiness

testing. The case with both banks offering loans to only a subset of the applicants without using

the test is covered in the following corollary.

Corollary 1 In any SPPE, in which neither bank tests any applicant and in which each bank

makes loan offers to a subset 2 ≤ Nα < N of applicants at the same interest rate Fα, if c <

λ(1 − λ)(pg − pb)Fα, then the continuation value functions cannot only depend on the number of

loans made by each bank.

The proof is in Appendix 2. The case with Nα = 1 is covered by the next corollary.

Corollary 2 In any SPPE, in which neither bank tests any applicant and in which each bank makes

loan offers to a subset Nα ≤ N of applicants at different interest rates, denoted by a vector Fα, if

c < 2N−1
2N λ(1− λ)(pg − pb)min{Fα}, then the continuation value functions cannot only depend on

the number of loans made by each bank.

The proof is in Appendix 2.

The conclusion is that when the banks want to avoid costly credit worthiness testing on the

equilibrium path, then it is not possible for the two banks to collude on a high loan interest rate in

a SPPE without looking at each other’s loan performances. The possibility of deviating by using

credit worthiness testing while manipulating the loan size, and the resulting winner’s curse effect,

makes both banks’ strategies sensitive to each others’ past loan performances, even though there

is an i.i.d. distribution of borrower types over time.

As we have shown, banks’ strategies depend on the public histories of banks’ loan portfolio

performance and size. However, the theory does not provide details on how the public histories are

linked to bank beliefs and strategies. To help understand this issue for later empirical tests, let us
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consider a simple example with N = 2 applicants. Suppose Bank 1 deviates from the equilibrium

strategy s (test no applicants, and offer some high interest rate Fα to both of them) to s′ as follows:

test one applicant; if he is good, offer a loan at rate F−α , and reject the other applicant; if the

applicant is bad, reject it, and offer a loan to the other applicant at loan rate F−α . In this way, the

expected loan portfolio size is not changed, but loan performance will be improved; there is less

likely to be a default. Given the loan distribution (D1 = 1, D2 = 1), from Bank 2’s point of view,

without deviation by Bank 1, the probability of Bank 2 having a loan default is:

q = λ(1− pb) + (1− λ)(1− pg).

With Bank 1 deviating to s′, Bank 2’s default probability becomes:

q′ = λ(1− pb) + (1− λ)[λ(1− pb) + (1− λ)(1− pg)].

The likelihood of default is higher:

∆q = q′ − q = λ(1− λ)(pg − pb) > 0.

To detect a deviation, however, banks should compare their results. That is, they should check

their loan performance difference. Given the loan distribution (D1 = 1,D2 = 1), without deviation

by Bank 1, the probability of Bank 2 having a worse performance than Bank 1 is:

qr = λ(1− pb)[λpb + (1− λ)pg] + (1− λ)(1− pg)[λpb + (1− λ)pg] < q.

With Bank 1 deviating to s′, this probability becomes:

q′r = λ(1− pb)[λpb + (1− λ)pg] + (1− λ)[λ(1− pb) + (1− λ)(1− pg)]pg.

We have:

∆qr = q
′
r − qr = λ(1− λ)(pg − pb) = ∆q.

Therefore, compared with punishing each other after a bad performance, doing that after a relatively

bad performance incurs a smaller probability of a mistaken punishment (qr < q), while it generates

the same incentive to not to deviate (∆qr = ∆q). The measure of the "performance difference"

excludes the case where both banks perform poorly, and excluding this case is empirically important

because it can result from aggregate shocks, which we do not model.

In Appendix 3, we construct a detailed example, using a Green-Porter (1984) type trigger

strategy, in which banks change their lending standards based on the history of their performance

differences.

Before we start our empirical section, let us briefly discuss the link between information pro-

duction and credit crunches. When each bank tests a subset of the applicant pool, the winner’s

curse effect may lead the banks to reject all those non-tested applicants. To see this, assume the

banks randomly pick n < N applicants for testing, and offers loans to those that pass the test. To

10



simplify the argument, assume that the interest rates offered to non-tested applicants are higher

than the one offered to applicants that passed the test. For the non-tested applicants, it is possible

that there does not exist a profitable interest rate due to the winner’s curse. If a bank offers loans

to non-tested applicants, then given an offer is accepted by an applicant, the probability of this

non-tested applicant being a bad type is:

θ
.
= Pr(bad type|not tested) =

n
N λ+ (1−

n
N )

1
2λ

n
N
λ+ (1− n

N
)12

.

When n is close to N , θ can be very close to 1. When banks conduct credit worthiness testing,

lending standards (loosely defined) can affect lending in two ways. First, those applicants that were

tested can be rejected if banks find them to be bad types; second, those applicants that were not

tested can be rejected if the proportion of applicants that are tested is large. The second "rejected"

category might contain some good type applicants. Therefore, some non-tested applicants can not

get loans if both banks test a large portion of all applicants. This is a "credit crunch" in which

applicants not tested by either bank are denied loans, even if they are in fact good types.

The above discussions lead to our empirical tests in the next section: banks’ relative performance

are important for the credit cycles, which have significant impact on the economy.

4 Empirical Tests

The model proposes that banks form beliefs based on public information. The empirical strategy

we adopt is to focus on one robust prediction that the theory puts forward, namely, that unlike a

perfectly competitive lending market, in the imperfectly competitive lending market that we have

described, public histories about rival banks should affect the decisions of any given bank. We

construct measures of the relative performance histories of banks, variables that are at the root

of beliefs and their formation. In particular, changes in beliefs about rival behavior should be a

function of bank public performance differences.

In the U.S. the most important public information available about bank performance is the in-

formation collected by bank regulatory authorities (the Federal Reserve, Federal Deposit Insurance

Corporation, and the Office of the Comptroller of Currency) in the quarterly Call Reports. While

publicly-traded banks also file with the Securities and Exchange Commission, the Call Reports

provide the detail on specific loan category amounts outstanding, charge-offs, and losses. We

construct Performance Difference Indices based on the Call Reports that U.S. banks file quarterly

with. These reports are filed by banks within 30 days after the last business day of the quarter,

and become public roughly 25 to 30 days later.14 For that reason, when we analyze the predictive

14Today banks submit their Call Reports electronically to Electronic Data Systems Corporation. It is then sent to

the Federal Reserve Board and to the Federal Deposit Insurance Corporation, which subsequently release the data.

This has of course changed over time. Nowadays, the information is available 25-30 days after it is filed on the web.

Earlier private information providers would obtain computer tapes of the information from the National Technical
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power of certain variables to be constructed based on the Call Reports, we use the one period lag

when the contemporaneous variable is needed. Because the reports appear at a quarterly frequency,

we analyze data at that frequency.

To parameterize the relative bank performance for our empirical studies, we use the absolute

value of performance differences. Taking the absolute value is motivated by the theory. Even

if a bank is doing relatively better than its rivals, it knows that if rivals believe that it has devi-

ated then they will increase their information production, causing the better performing bank to

also raise its information production. Banks, whether relatively better performing or relatively

worse performing, punish simultaneously, resulting in the credit crunch. If banks’ beliefs about

rivals’ actions change based on our parameterization of the public history, then when this measure

increases, i.e., when there is a greater dispersion of relative performance, then banks reduce their

lending and increase its quality, resulting in fewer loans, lower loss ratios, and reduced profitability

in the future. We construct indices of the absolute value of the difference in loan loss ratios and

test whether the histories of such variables have predictive power for future lending decisions, loan

losses, and bank stock returns.

Another challenge for testing concerns identifying rival banks. We must identify banks that

are, in fact, rivals in a lending market. It is not clear whether banks compete with each other in

all lending activities or only in some specialized lending areas. It is also not clear whether bank

competition is a function of geography or possibly bank size. These are empirical issues.

While the model suggests that there are two "regimes," normal times and punishment times,

this is an artifact of simplifying the model. There could be a range of punishments, making the

notion of a "regime" less discontinuous. This too is an empirical issue.

4.1 The Credit Card Loan Market

We first examine a specific, but important category of loans, credit card loans.15 In the U.S. credit

card lending market potential rival banks are identifiable because credit card lending is highly

concentrated and this concentration has been persistent. The Federal Reserve has collected data

on credit card lending and related charge-offs since the first quarter of 1991 in the Call Reports.

The data we use is at the bank holding company level, as aggregated by the Federal Reserve Bank

of Chicago. Thus, we are thinking of banks competing at the holding company level rather than at

the individual bank level. For each bank holding company, we collect quarterly data from 1991.I

through 2000.IV for “Credit Cards and Related Plans,” as well as some other variables discussed

Information Service of the Department of Commerce. The information was then provided in published formats. We

thank Mary West of the Federal Reserve Board for information on the timing of the reports.
15Despite the public availability of credit scores on individual consumers, banks retain important private information

about credit card borrowers. Gross and Souleles (2002) show the additional explanatory power of private internal

bank information in predicting consumer defaults on credit card accounts, using a sample where they were able to

procure the private information.
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Figure 2: Herfindahl Index

below.16

The high concentration is shown by the Herfindahl Index for banks that are active in the credit

card loan market pictured in Figure 2.17 Figure 3 shows the proportion of credit card loans for

the top 10, 30, and 50 bank holding companies. We can see from Figures 2 and 3 that over time

the credit card loan market has become increasingly concentrated, and the market shares of the

top bank holding companies have become increasingly larger.

4.1.1 Data Description

The basic idea of the first set of tests is to regress an individual bank’s credit card loans outstanding,

normalized by total loans or total assets, or the bank’s (normalized) credit card loss rate, on lagged

variables that we hypothesize predict the bank’s decision to make more credit card loans or to reduce

losses on credit card loans (by making fewer loans or more high quality loans). Macroeconomic

variables that characterize the state of the business cycle are one set of predictors. Lagged measures

of the bank’s own performance in the credit card market are another set of predictors. The key

variables are measures of rival banks’ relative histories that we hypothesize are the basis for each

bank’s beliefs about whether rivals have deviated. Our hypothesis is that these measures of bank

histories will be significantly negative, even conditional on all the other variables.

In addition to collecting the quarterly bank holding company data from 1991.I to 2000.IV for

“Credit Cards and Related Plans(CLS),” we also use “Charge-offs on Loans to Individuals for

Household, Family, and Other Personal Expenditure — Credit Cards and Related Plans (CCO),”

16The data are not reported more frequently than quarterly.
17A Herfindahl Index is constructed as

∑
i
( firm i credit card loan size

total credit card loan size
× 100)2.
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Figure 3: Shares of Top Bank Holding Companies in Credit Card Loan Market

“Recoveries on Loans to Individuals for Household, Family, and Other Personal Expenditures —

Credit Cards and Related Plans (CRV ),” and “Total Loans and Leases, Net (TLS).” We construct

the following variables:

Credit Card Loan Loss Rate (CLL) =
CCO −CRV

CLS

Credit Card Loans to Total Loans Ratio (CRL) =
CLS

TLS
.

Each variable is constructed for each bank holding company for each quarter.18

With respect to macroeconomic data we use quarterly macroeconomic data from the Federal

Reserve Bank of St.Louis for the period 1991.I to 2000.IV : “Civilian Unemployment Rate, Percent,

Seasonally Adjusted (UMP ),” “Real Disposable Personal Income, Billions of Chained 1996 Dollars,

Seasonally Adjusted Annual Rate (DPI),” “Federal Funds Rate, Averages of Daily Figures, Percent

(FFR).”19

4.1.2 Pairwise Tests of Rival Banks

We first look at banks pairwise. We do this for two reasons. First, it is not known which banks are

rivals, and maybe not all banks are rivals. Second, we have only 40 quarterly observations for each

bank, so examining several banks jointly quickly uses up the degrees of freedom. We focus on the

18We also collect data for “Total Assets (ASSET ),” and costruct the variable: Credit Card Loans to Total Assets

Ratio (CRA) = CLS
ASSET

. The main regression results using CRA are similar to those using CRL. Thus we ommit

the results for the sake of space.
19We collected the monthly data for the Unemployment Rate (UMP ), Disposable Income (DPI), Federal Funds

Rate (FFR), and calculated the three-month averages to get the quarterly data. Also, DPI is normalized by GDP.
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largest six bank holding companies, which constantly remain within the top 20 in credit card loan

portfolio size during the period 1991.I to 2000.IV . These six banks are: Citicorp, New York, NY

(CITI); Bank One Corp., Chicago, IL (BONE); MBNA Corp., Wilmington, DE (MBNA); Bank of

America, Charlotte, NC (BOAM); Chase Manhattan Corp., New York, NY (CHAS); and Wachovia

Corp.,Winston-Salem, NC (WACH).

In general, we run the following regression for each bank holding company i:

yit = αijxt + βijwit + γijzijt + εit, for j 
= i (1)

where

yit = CLLit or CRLit, (2)

xt = (C,T, S1, S2, S3,DPIt, FFRt, UMPt),

wit = (CLLit−1, CLLit−2, CLLit−3, CLLit−4),

zijt = (|∆CLLijt−1| , |∆CLLijt−2| , |∆CLLijt−3| , |∆CLLijt−4|),

and αij , βij, and γij are the coefficients for x, w, and z, respectively. C is the constant term, T

is the time trend, S1 is the seasonal dummy for first quarter, S2 is the seasonal dummy for second

quarter, and S3 is the seasonal dummy for third quarter. We do not include lags of DPIt, FFRt,

or UMPt because the main results are not affected by adding them. Since some bank holding

companies might have systematically higher (or lower) loan loss rates than another bank holding

companies, we first take out the mean from each CLLi, and then take the difference to get ∆CLLji.

In this way, |∆CLLji| reflects the relative performance of the two banks.

|∆CLLji| is the key variable. It is a particular parametrization of the relevant public infor-

mation: the performance difference. This variable is lagged to be consistent with the fact the

Call Report information is publicly available with a lag. For the current quarter, the most recent

public information would be about last quarter. Conditional on the state of the macroeconomy

and bank holding company i’s own past performance, we ask whether bank holding company i’s

lending decisions depend on the observed absolute value of the differences between it’s own past

performance and that of its rival, bank holding company j. For each measure of the relative dif-

ference in loan performance, we test whether γ = 0, using a Wald test (chi-squared distribution).

The results are shown in Table 1.20

In Table 1, we report the average value of the coefficients of zij, and the p-value (in parenthesis)

of the Wald test (χ2(4)). Significant negative coefficients are marked by ‘∗,’ and significant positive

coefficients are marked by ‘#.’ Most coefficients are negative, which matches the theoretical

prediction. When the difference between the loan performance history is large, it leads to (an

increase in lending standards and, consequently) a subsequent decrease in (lower quality) loans

20The result in entry (i, j) in the table comes from the regression of bank i’s loan loss ratio (or asset allocation) as

the dependent variable.
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CLL CITI BONE MBNA BOAM CHAS WACH

CITI __
-0.1896

(0.104)*

-0.3115

(0.068)*

0.1160

(0.726)

-0.0597

(0.983)

-0.2686

(0.001)**

BONE
-0.3339

(0.001)***
__

-0.4543

(0.000)***

-0.3385

(0.239)

-0.4876

(0.066)*

-0.2546

(0.199)

MBNA
-0.0025

(0.910)

-0.0114

(0.800)
__

0.0089

(0.676)

0.0790

(0.087)#

-0.0724

(0.375)

BOAM
-0.1310

(0.929)

-0.1666

(0.381)

-0.3834

(0.000)***
__

0.4371

(0.000)###

-0.4024

(0.451)

CHAS
-0.1328

(0.777)

-0.0170

(0.869)

0.0603

(0.481)

0.0784

(0.221)
__

-0.1906

(0.590)

WACH
-0.1278

(0.000)***

-0.0809

(0.312)

-0.2117

(0.006)***

0.0236

(0.947)

-0.0198

(0.018)**
__

CRL CITI BONE MBNA BOAM CHAS WACH

CITI __
-0.4807

(0.004)***

0.1403

(0.671)

-0.2671

(0.093)*

1.2131

(0.087)#

-0.5353

(0.000)***

BONE
-1.2008

(0.000)***
__

-2.4739

(0.000)***

-1.6719

(0.0609)*

-1.4095

(0.518)

-1.9717

(0.029)**

MBNA
0.2569

(0.839)

0.8216

(0.049)##
__

-0.6914

(0.3577)

-0.5540

(0.413)

1.1749

(0.000)###

BOAM
-0.2932

(0.000)***

-0.2859

(0.027)**

-0.2608

(0.254)
__

0.2274

(0.013)##

-0.2283

(0.550)

CHAS
-0.2586

(0.903)

-0.1209

(0.227)

-0.1075

(0.981)

-0.1433

(0.6790)
__

-0.4296

(-0.077)*

WACH
-0.3865

(0.010)***

-0.8394

(0.000)***

-0.6496

(0.006)***

0.0345

(0.8199)

0.7314

(0.091)#
__

Table 1: Results for Pairwise Regressions
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and a consequent reduction in loan losses. Many negative coefficients are significant (indicated by

*** for the 1% level, by ** for the 5% level, and by * for the 10% level, and similarly for positive

coefficients). Also, we can observe a systematic pattern of competition between Citicorp, Bank

One, and Wachovia; the credit card loan loss and credit card loan size (relative to total loans or

total assets) for these banks significantly depend on the relative performance of each other.

The above results have a problem that we do not know how many significant chi-squared

statistics would be expected to be significant in a small sample. We address this issue using a

bootstrap (see Horowitz (2001) for a survey). We bootstrap to test if the results in Table 1 can

verify our conjecture that the measures of bank holding companies’ loan performance affect each

other’s loan decisions. The Null hypothesis is that a bank holding company’s loan decision only

depends on the aggregate economic variables and its own past loan performance, i.e.:

H0 : yit = αixt + βiwit + uit.

The alternative hypothesis comes from the pairwise regression for each bank holding company

i and bank holding company j 
= i:

H1 : yit = αijxit + βijwit + γijzijt + εit, with γij < 0.

In order to test the Null hypothesis, we use the bootstrap to obtain an approximation to the

distribution of a Significance Index, SI, defined below, and then find the p-value of SI∗ (the

Significance Index from the pairwise regressions using the original data). For each round of the

bootstrap, the Significance Index is constructed as follows. For each of the 30 pairwise regressions,

when the average coefficient of zijt is negative, if the chi—squared-statistic is significant at the 99%

confidence level, add a value of 4 to SI, if it is significant at the 95% confidence level , add a value

of 3 to SI, if it is only significant at the 90% confidence level, add a value of 2 to SI, and add

a value of 1 otherwise; when the average coefficient of zijt is negative, if the chi—squared-statistic

is significant at the 99% confidence level, add a value of −4 to SI, if it is significant at the 95%

confidence level , add a value of −3 to SI, if it is only significant at the 90% confidence level, add

a value of −2 to SI, and add a value of −1 otherwise.21 The index SI takes care of both the

significance and the sign of the coefficients of zijt. If the p-value of SI∗ is small enough, we can

reject the Null hypothesis.

The bootstrap algorithm is as follows:

Step 1: Run the OLS regression yit = αixt+ βiwit + uit, for the three cases where yit = CLLit

or CRLit, and use the estimated coefficients, α̂OLS and β̂OLS , to generate the residuals u∗it.

Step 2: By hypothesis, the residuals u∗it are i.i.d. so we can sample from u∗CLLit to generate

new CLL∗it using CLL
∗
it = α̂CLLixt + β̂CLLiwit + u

∗
CLLit. This creates new w∗it and z

∗
ijt, which are

necessary since zijt and some of the wit variables are lags of CLLi and CLLj.

21Admittedly there is some arbitrariness in how the Significance Index is constructed. However, we tried con-

structing the Signficance Index in a number of ways, and found that the results are robust.
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p-value

SICLL 0.0197

SICRL 0.0005

Table 2: Bootstrap Results

Step 3: Use u∗it , for yit = CRLit, to generate new CRL∗it using CRL
∗
it = α̂CRLixt+ β̂CRLiw

∗
it+

u∗CRLit.

Step 4: Use y∗it, x
∗
it, w

∗
it, and z

∗
jit to run the pairwise regression y∗it = αx

∗
it + βw

∗
it + γz

∗
jit + ε

∗
it,

and calculate the Significant Index SI.

Step 5: Repeat Step 2 to Step 4 10, 000 times, and obtain the distribution of SI.

Step 6: Calculate the p-value of SI∗, i.e. Pr(SI ≥ SI∗).

The results are reported in Table 2. The sample Significance Indices are: SI∗CLL = 34 and

SI∗CRL = 36. The p-values are presented in Table 2.

We conclude that the Null hypothesis is rejected.

4.1.3 Threshold Effects

A literal interpretation of the model would mean that there are two "regimes," rather than a

possible large number of levels of intensity of information production. Perhaps there is a threshold

effect, in that only if the absolute performance differences reach a certain critical level does (mutual)

punishment occur. We investigate this by specifying a different measure of the absolute difference

as shown in the model below. For each bank i, define y1it = CLLit, and y
2
it = CRLit, and write

the model specification as follows:

ykit = αkijxit + β
k
ijwit + γ

k
ijzijt + ε

k
ijt, ε

k
ijt ∼ N(0, σ

k
ij) for j 
= i,

and zijt = max{0, |CLLit −CLLjt| − THij}.

The new zijt measures the value of performance difference, measured by |CLLit − CLLjt|, in

excess of certain threshold, THij , which does not change over time or across k, and which is to be

estimated. For each pair of banks, (i, j), we estimate the parameters using maximum likelihood:

{α̂kij , β̂
k
ij, γ̂

k
ij, T̂Hij, σ̂

k
ij} = max

αkij ,β
k
ij ,γ

k
ij ,THij ,σ

k
ij

∑

k

∑

t

[− lnσkij −
(ykit − α

k
ijxit + β

k
ijwit + γ

k
ijzijt)

2

2(σkij)
2

].

We proceed as above by for each pair of banks (omitted here) and then bootstrapping. The

final p-value results are shown in Table 3.

The threshold effects are significant with the newly constructed beliefs variables, zijt, though

the results are not uniformly different than those using the absolute difference variables directly.
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p-value

SICLL 0.0096

SICRL 0.0018

Table 3: Bootstrap Results for Threshold Effects

p-value

SICLL 0.0138

SICRL 0.0024

Table 4: Boostrap Results in the Presence of Learning Effects

4.1.4 Learning as an Alternative Hypothesis

Could the above results be explained by some sort of learning? That is, an alternative explanation

is that banks learn about underlying the economic conditions from other banks’ loan performance.

Perhaps this learning effect is also captured by the |∆CLLji| variable that we constructed. It

would seem that learning should not be based on absolute differences in bank performance, but on

the level of other banks’ performances as well as the bank’s own performance history. To examine

this possibility we add lags of CLLj in the regression of Bank i. Therefore, in the regression

equation (1), we replace wit with wijt:

wijt = (CLLit−1, CLLit−2, CLLit−3, CLLit−4, CLLjt−1, CLLjt−2, CLLjt−3, CLLjt−4).

The tables showing the estimated coefficient on the absolute performance difference coefficients

are omitted for the sake of space. The main results are similar to Table 1. The same pattern

of competition between Citicorp, Bank One, and Wachovia appears, as in Table 1. The results

involving other banks are mixed.

For the bootstrap the regression is: y∗it = αx
∗
it + βw

∗
ijt + γz

∗
jit + ε

∗
it, , i.e., with the lags of LLj

included in the regression in credit card loan part. The null hypothesis is still:

H0 : yit = αixt + βiwit + uit.

with yit, xt and wit defined in 2.

The sample Significant Indices are: SI∗CLL = 36 and SI∗CRL = 28. The p-values are presented

in Table 4.

The information contained in the absolute difference variables remain significant, in the presence

of the most general specification of learning.

4.1.5 An Aggregate Performance Difference Index

Based on the success of the pairwise tests, we move next to analyzing the histories of all relevant

rival credit card lenders jointly. We construct an aggregate Performance Difference Index (PDI):
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yit = CLLit yit = CRLit

CITI
−0.7895

(0.2927)

−2.1500

(0.0073)***

BONE
−1.5211

(0.1038)*

−6.1892

(0.0003)***

MBNA
0.0631

(0.6693)

1.3084

(0.3235)

BOAM
−0.5212

(0.0354)**

−0.5189

(0.0050)***

CHAS
−0.3860

(0.0873)*

−0.0521

(0.3381)

WACH
−0.4333

(0.0003)***

−1.4574

(0.0330)**

Table 5: Results for the Performance Difference Index

PDIt =

∑
i>j |CLLit −CLLjt|

15
.

This Performance Difference Index measures the average difference of the competing banks’ loan

performances.22 (The denominator comes from having six banks, leading to fifteen different pairs

in total.) For each bank i, we run the following regression:

yit = αixt + βiwit + γizit + uit,

where yit, xt and wit defined in 2, and zit = (PDIt−1, PDIt−2, PDIt−3, PDIt−4). The results are

reported in Table 5.

Table 5 presents the average value of the coefficients of zij and the p-value (in parentheses) of

the Wald test (χ2(4)). Table 5 shows that, aside from MBNA, all the banks have negative and

significant coefficients for PDI, confirming the conjecture from the theory. When there is a large

performance difference across all the rival banks, banks raise their lending standards to punish each

other, and consequently future loan losses go down. The standard deviation of PDI is 0.00444,

the average coefficients on PDI for CLL and CRL are −0.598 and −1.510, and the mean of CLL

and CRL are 0.0246 and 0.242. When PDI changes by one standard deviation, CLL decreases

by 0.00266 (10% of the mean), and CRL decreases by 0.00671 (3% of the mean). Therefore, the

effects of PDI are also economically important.

22Again, we first take out the mean from each CLLi, and then take the difference.
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4.1.6 Rajan’s Reputation Hypothesis

Rajan (1994) argues that reputation considerations of bank managers cause banks to simultaneously

raise their lending standards when there is an aggregate shock to the economy causing the loan

performance of all banks to deteriorate. Banks tend to neglect their own loan performance history

in order to herd or pool with other banks. Rajan’s empirical work focuses on seven New England

banks over the period 1986-1991. His main finding is that a bank’s loan charge-offs-to-assets ratio

is significantly related not only to its own loan loss provisions-to-total assets ratio, but also to

the average charge-offs-to-assets ratio for other banks (instrumented for by the previous quarter’s

charge-offs-to-assets ratio).

In the context here the question is whether our measure of banks’ beliefs about rivals’ credit

standards, the performance difference index, remains significant in the presence of an average or

aggregate credit card loss measure.23 We construct:

Aggregate Credit Card Loan Loss Rate(AGLL) =

∑
i(CCOi −CRVi)∑

i CLSi
,

and we examine the coefficient on AGLLt−1 in our regressions:

yit = αixt + βiwit + γizt + uit,

where with yit, xt and wit defined in 2, and zt = AGLLt−1.

The coefficients on AGLLt−1 and the associated p-values of t-statistics are reported in Table

6.24

Rajan’s (1994) hypothesis is that an aggregate bad shock leads banks to raise their standards,

so we would expect the coefficients on AGLLt−1 to be significantly negative. However, as the

table shows, conditional on other macroeconomic variables, the coefficients of the aggregate loan

loss rate are all positive, with a few exceptions. If we remove the other macroeconomic variables

from the regression, i.e. xt = (C, T, S1, S2, S3), the results are basically the same.

4.1.7 Bank Stock Returns and Performance Differences

In a credit crunch banks make fewer loans and spend more on information production, so their

profitability declines. In this section, we test that implication of the model. Specifically, we ask

whether the Performance Difference Index has predictive power for the stock returns of each top

bank holding company in credit card loans. We collect the stock return from CRSP from 1991.I

to 2000.IV. During this period, Citicorp, Bank of America, and Chase Manhattan are involved

in mergers.25 We carry out the tests for all six bank holding companies and for the three bank

23There are several interpretations of Rajan’s result. For example, the charge-offs of other banks may be informative

about the state of the economy, so their significance in the regression is not necessarily evidence in favor of Rajan’s

theory.
24Adding more lags of AGLL basically gives the same results.
25The dates of the M&A activity are: Citigroup,1998.10; Bank of America, 1998.10; and Chase Manhattan in

1996.4.
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yit = CLLit yit = CRLit

CITI
0.6620

(0.0167)

1.6366

(0.0108)

BONE
1.3343

(0.0049)

4.3686

(0.0020)

MBNA
0.0726

(0.3395)

−1.9956

(0.0028)**

BOAM
0.4734

(0.3306)

0.3611

(0.3016)

CHAS
0.0597

(0.7445)

−0.5579

(0.3238)

WACH
0.3151

(0.1974)

1.7023

(0.0126)

Table 6: Test of the Reputation Hypothesis

holding companies (Bank One, MBNA, and Wachovia) without merger activity. According to our

theory, after observing large performance differences between banks, banks will raise their lending

standards (which is costly), and cut lending. Consequently, their profit margins will be lower.

Therefore, we expect to see negative loadings on the lags of the PDI. Note that this is not an asset

pricing model, but a test concerning bank profits, as measured by stock returns. The regression

equations are:

rit = αi + βi1PDIt−1 + βi2PDIt−2 + βi3PDIt−3 + βi4PDIt−4 + εit, i = 1, 2, ..., 6 (or i = 2, 3, 6).

We use Seemingly Unrelated Regression to estimate the system of equations, with the restriction

that the βis be the same across banks (we allow for different intercepts).26

Table 7 shows the Seemingly Unrelated Regression results about the predictive power (on stock

returns) of the PDI for the two cases: six and three bank holding companies. From Table 7, we see

that the PDI from the previous year significantly predicts the stock return for the current period.

For the case with six banks, the Wald test of the hypothesis that β1 = β2 = β3 = β4 = 0 gives

χ2 = 20.6229, with p-value 0.0004. For the case with three banks, the Wald test of the hypothesis

that β1 = β2 = β3 = β4 = 0 gives: χ2 = 10.2850, with p-value 0.0359. Therefore, the PDI

that we constructed does have predictive power for the stock return. Even though we are only

looking at credit cards, keep in mind that these six banks dominate this market, so their profits

are significantly affected by this sector.27

26 In the regressions, we take out the mean and the seasonal effects from the Performance Difference Index (PDI).
27Since the dividend yield is well known to be a predictor of future stock returns (see, e.g., Cochrane (1999)), we

also include dividend yields in the regressions (using the dividends of each bank from CRSP). The results on the

predictive power of PDI are unchanged with the inclusion of the dividend yield. These results are omitted for the

sake of space.
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Six Banks β1 β2 β3 β4

coeff.

(t− stat)

3.4311

(0.9155)

-2.4101

(-0.6376)

-5.9428

(-1.5715)

-13.665

(-3.6136)***

α1 α2 α3 α4 α5 α6

coeff.

(t− stat)

0.1138

(3.5323)

0.0247

(1.0237)

0.0944

(3.6143)

0.0450

(2.1519)

0.0842

(2.7509)

0.0296

(2.2020)

Three Banks β1 β2 β3 β4

coeff.

(t− stat)

1.9495

(0.4902)

-0.4509

(-0.1124)

-7.7452

(-1.9304)*

-11.990

(-2.9885)***

α2 α3 α6

coeff.

(t− stat)

0.0248

(1.0519)

0.0944

(3.7058)

0.0297

(2.1434)

Table 7: Results for Stock Return Prediction Using Seemingly Unrelated Regressions

4.2 VAR Analysis of the Fed’s Lending Standards Index

In this section we extend the empirical analysis in two important ways. First, we go beyond credit

card lending at six banks to examine commercial and industrial loan market at an aggregate level.

Second, we probe the implications of the theory for macroeconomic dynamics.

If banks increase their information production, that is, they raise their lending standards, then

some borrowers are cut off from credit — a credit crunch that should have macroeconomic implica-

tions. In this section, we use Vector Autoregressions (VARs) to analyze the aggregate implications

of banks’ loan performance differences. In contrast to the single equations estimated above, a VAR

system of equations lets us control for the feedback between current and past levels of performance

differences, the lending standard survey results, and macroeconomic variables. Given estimates of

these interactions, we can identify the impact that unpredictable shocks in performance difference

public histories have on other variables in the system. We first ask whether the performance

difference histories predict, in the sense of Granger causality, the index of lending standards based

on the Federal Reserve System’s Senior Loan Officer Opinion Survey on Bank Lending Practices.

We follow Lown and Morgan (2001, 2002) in analyzing the time series of survey responses, the

percentage of banks reporting tightening in the survey. As above, we use quarterly bank loan data

from the Chicago Federal Reserve Bank’s Commercial Bank and Bank Holding Company Database,

which is from the Call Reports. For the period from 1976.1 to 2002.2, we collected Total Loans,

Net of Unearned Income (TL); Loan Loss Allowances (LA). For each bank (holding company) we

constructed the Loan Loss Allowance Ratio (LAR):

LAR =
LA

TL
.

We construct the Performance Difference Index to measure the dispersion of performance across
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STAND LAGS PDI LAGS FFR LAGS LOGLOAN LAGS

STAND
0.1981

(0.0020)***

498.82

(0.0077)***

−1.2523

(0.0010)**

30.464

(0.1673)

PDI
−4.1E-6

(0.7414)

0.1309

(0.0411)**

−0.0001

(0.3452)

0.0076

(0.7480)

FFR
−0.0066

(0.0127)**

−101.60

(0.0006)***

0.0414

(0.0000)***

7.6086

(0.0032)**

LOGLOAN
−9.3E-6

(0.0172)**

0.3515

(0.0267)**

0.0012

(0.0000)***

0.2051

(0.0000)**

Table 8: Results for VAR Analysis

the U.S. banking industry as a whole. To do this, we use the top 200 commercial banks ranked by

total loans, and for each period, we construct the Performance Difference Index as follows:28

PDI =

∑
i>j |LARi − LARj|

19, 900
.

Besides the data on the Lending Standards and the Performance Difference Index, we also collected

data on Total Loans and Leases at Commercial Banks and Federal Funds Rate.29

As before, we conjecture that this PDI captures the relevant history that is at the basis of

banks’ beliefs about whether other banks are deviating to using the credit worthiness tests.30

4.2.1 VAR Results

The VAR includes four lags of the four endogenous variables: bank lending standards (STAND)

(i.e., the percentage of survey respondents reporting tightening), the Performance Difference Index

(PDI), the federal funds rates (FFR), and the log of commercial bank loans (LOGLOAN). Bank

lending standards are a loan supply side factor and the federal funds rate affects loan demand;

commercial bank loans are the equilibrium outcomes. The PDI is hypothesized to capture banks’

beliefs, which affect all the other variables. The exogenous variables are a constant, a time trend,

and seasonal dummies for the first three quarters of a year. We run the VAR for the period of

1990.II—2001.IV , which is the longest continuous of period where both STAND and PDI have

data.

Table 8 presents the average value of the coefficients and p-values (in parenthesis) of the Wald

test (χ2(4)) of the VAR with four lags of the lending standards, the PDI, log commercial bank loans,

and federal funds rate. Table 8 shows that the PDI Granger-causes all the other three endogenous

28Some banks report the loan loss or loan allowance semi-annually instead of quarterly, so we drop these zero values

in the calculation below. Therefore, the denominator is not necessarily 19,900.
29We first collected monthly data, then took the three-month average to obtain quarterly data.
30We also constructed a PDI using loan charge-off ratios. The empirical results are similar and are omitted to save

space.
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Figure 4: Impulse Responses in the Macroeconomy

variables, but not vice versa. An increase in PDI immediately causes a rise in STAND, which

triggers a "recession," and thus leads to a future decrease in the FFR, and a future decrease of

in LOGLOAN (even though the average value of coefficients of PDI for equation LOGLOAN is

positive, the only significant one is negative). We observe this pattern in the graph of impulse

responses in Figure 4.31

31The ordering of the variables in a VAR matters for the impulse response functions since the Cholesky decompo-

sitions of the variance-covariance matrix are different with different orderings (see Hamilton (1994) for more details).

Placing PDI as the second variable in the VAR is a relatively conservative way (in comparison with placing it as the

first one) of displaying the effects of PDI .
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4.3 Asset Pricing and Credit Crunches

Strategic competition between banks results in periodic credit crunches, a systematic risk. Con-

sequently, if the stock market is efficient, then the stock returns of both banks and non-financial

firms, which, at least partially, rely on banks for external financing, should reflect the competition

between banks. In this section we turn to a different empirical approach, namely, we look for the

hypothesized systematic effects in an asset pricing context. If strategic behavior between banks

causes credit cycles, then it causes variation in the profitability of non-financial firms, which are

affected by credit crunches. At the same time, credit crunches are not profitable for banks. The

credit cycle is a systematic risk, and therefore should be a priced factor in stock returns, to the

extent that this factor is not already spanned by other factors. We conjecture that the constructed

PDI should be a priced risk factor for both banks and non-financial firms. That is, in the context

of an asset pricing model of stock returns, there should be an additional factor, namely, the Per-

formance Difference Index. Moreover, since relatively smaller firms are more dependent on bank

loans (see, e.g., Hancock and Wilcox (1998)), we expect that the coefficients on PDI are larger for

smaller firms.

We adopt the widely-used Fama-French three factor empirical asset pricing model, augmented

with a momentum factor (as has become common practice).32 The models says that the sensitivity

of a firm’s expected stock return depends on four factors: the excess return on a broad based market

portfolio, rm − rf ; the difference between the return on a portfolio of small stocks and the return

on a portfolio of large stocks (small minus large), SMB; the difference between the return on a

portfolio of high book-to-market stocks and the return on a portfolio of low book-to-market stocks

(high minus low), HML; the momentum factor, MOM , is the difference between the return on a

portfolio of past winners and the return on a portfolio of past losers. To this we add last quarter’s

PDI; the model is estimated using quarterly data, as PDI can only be calculated quarterly.33

We hypothesize that bank stock returns will be sensitive to PDI and that PDI is not spanned

by the other factors. Further, non-financial firms’ stock returns will also be sensitive, increasingly

so for smaller firms. The monthly firm returns are collected from CRSP (then transformed into

quarterly data). We separate out commercial banks and non-financial firms based on their SIC

codes, and then divide the non-financial firms into ten deciles based on the capitalizations. The

data cover the period 1976.I to 2001.IV.

Table 9 reports the coefficients and t-statistics of the four factor regression with rm−rf , SMB,

HML, MOM and PDI as the risk factors. The results in Table 9 show that the Performance

Difference Index (PDI) is a significant risk factor for both banks and all non-financial firms with

32See Fama and French (1993, 1996). Carhart (1997) introduced an additional factor, the momentum factor. We

collect the quarterly Fama-French three factors and monthly momentum factor (then transformed into quarterly

data) from French website (the construction method can also be found there). The risk free rates are three-month

T-Bill rates from FRED II (we use the rate of the first month in each quarter) at Federal Reserve Bank at St. Louis.
33We use the lag of PDI since there is a lag in the Call Reports becoming publicly available, as we discussed earlier.

We take out the mean from PDI, which does not affect the estimation of β.
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α rm − rf SMB HML MOM PDI R2

Commercial Banks

β

(t-stat)

-3.482

(-11.07)***

0.961

(23.72)***

0.088

(1.69)*

-0.092

(-1.81)*

0.011

(0.25)

360.7

(4.63)***
0.924

Non-Financial Firms

Dec1

(small)

-13.32

(-11.25)***

0.506

(3.32)***

1.547

(7.88)***

0.137

(0.71)

0.126

(0.72)

876.0

(2.99)***
0.587

Dec2
-8.18

(-8.68)***

0.716

(5.90)***

1.650

(10.55)***

0.108

(0.71)

0.117

(0.85)

836.6

(3.59)***
0.752

Dec3
-6.159

(-7.45)***

0.870

(8.18)***

1.729

(12.61)***

0.177

(1.32)

0.160

(1.32)

835.4

(4.09)***
0.825

Dec4
-4.933

(-7.29)***

0.856

(9.83)***

1.599

(14.25)***

0.026

(0.23)

0.103

(1.04)

753.1

(4.50)***
0.870

Dec5
-4.00

(-7.13)***

0.924

(12.80)***

1.536

(16.52)***

0.016

(0.17)

0.081

(0.99)

698.85

(5.04)***
0.909

Dec6
-3.093

(-7.35)***

0.993

(18.32)***

1.373

(19.66)***

-0.109

(-1.59)

-0.061

(-0.99)

540.4

(5.19)***
0.947

Dec7
-2.110

(-5.17)***

1.007

(19.18)***

1.205

(17.81)***

-0.152

(-2.30)**

-0.093

(-1.55)

421.0

(4.17)***
0.946

Dec8
-1.864

(-4.45)***

1.039

(19.27)***

0.919

(13.22)***

-0.164

(-2.41)**

-0.092

(-1.50)

438.7

(4.23)***
0.935

Dec9
-1.945

(-4.44)***

0.974

(17.28)***

0.598

(8.23)***

-0.150

(-2.12)**

-0.071

(-1.10)

450.3

(4.15)***
0.906

Dec10

(large)

-2.239

(-6.04)***

0.889

(18.64)***

-0.059

(-0.96)

-0.264

(-4.39)***

-0.051

(-0.94)

383.7

(4.19)***
0.893

Table 9: Results for Risk-Factor Analysis
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different sizes. Note that the coefficients on PDI for smaller firms are larger, thus confirming our

conjectures. The standard deviation of PDI is 0.00133. Therefore, when PDI changes by one

standard deviation, the excess return for banks and large non-financial firms changes by about

50 basis points, while the excess return for small non-financial firms changes by about 100 basis

points. We conclude that the competition and collusion among banks is an important risk factor

for stock returns. The size effect further demonstrates that the Performance Difference Index we

constructed is not capturing some sort of learning effect about macroeconomic condition, which

would be spanned by the other risk factors, or at least would have been priced approximately

equally for both large firms and small firms (as rm − rf is).

5 Conclusion

An important message of Green and Porter (1984) is that collusion can be very subtle. The

subsequent empirical work focused on price wars as possible dramatic examples of such imperfect

competition. We studied banking, an industry in which there have not been price wars. Banking

is an industry with limited entry; it is a highly concentrated industry, and it is an industry that

is informationally opaque and hence regulated. The information opaqueness affects competition

for borrowers in that rivals can produce information with different precision. This causes the

imperfect competition in banking to take a different form from other industries. In particular, we

showed that the intertemporal incentive constraints implementing the collusive arrangement (of

high interest rates and low cost information production) required periodic credit crunches.

Our empirical approach to testing proceeds at the level of the public information that is the

basis for banks’ beliefs, changes in which cause credit cycles. Empirically we showed that a

simple parameterization of relative bank performance differences has predictive power for rival

banks in the credit card market. Moreover, introducing the performance difference histories into

a vector autoregression-type macroeconomic model confirms that this is an autonomous source of

macroeconomic fluctuations. Since changes in bank beliefs based on public information cause credit

cycles, this should be an important independent risk factor for bank stock returns. We showed

that this is indeed the case.
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Appendix 1: The Formal Game

Formalization of the Stage Strategy

Bank i randomly chooses ni applicants to test. For those applicants that bank i does not test,

it will decide to approve applications to Nαi ≤ N − ni of the applicants, and offer the approved

applicants a loan at interest rate Fαi. The bank rejects the rest of the non-tested applicants. For

those applicants that are tested by bank i, the bank will observe a number of good type applicants,

Ngi ≤ ni, and will then decide to approve applications to Nβi ≤ Ngi of the applicants that passed

the test, and offer the approved applicants a loan at interest rate Fβi. Bank i can also decide to

approve applications toNγi ≤ ni−Ngi of the applicants that failed the test, and offer these approved

applicants a loan at interest rate Fγi. The bank rejects the remaining applicants. In general, Fαi,

Fβi and Fγi could vary among the corresponding category of applicants, i.e., different applicants

in the same category could possibly get offers of loans at different interest rates. Therefore,

we interpret Fαi, Fβi and Fγi as vectors of interest rates charged to those approved non-tested

applicants.

The stage strategy of a bank is:

si = {ni,Nα(ni,Ngi),Nβ(ni,Ngi),Nγi(ni,Ngi), Fαi(ni,Ngi), Fβi(ni, Ngi), Fγi(ni,Ngi)}, (3)

where:

ni : the number of applicants that bank i tests;

Ngi : the number of good applicants found by bank i with the test;

Nαi : the number of applicants that bank i offers loans to without test;

Nβi : the number of applicants that pass the test and get a loan from bank i;

Nγi : the number of applicants that fail the test and get a loan from bank i;

Fαi : the interest rate on the loan that bank i offers to the applicants without a test;

Fβi : the interest rate on the loan that bank i offers to the applicants that pass the test;

Fγi : the interest rate on the loan that bank i offers to the applicants that fail the test.

Formalization of the Repeated Game

Assume that the two banks play the lending market stage game period after period, each with

the objective of maximizing its expected discounted stream of profits. Upon entering a period of

play, a bank observes only the history of:

(i) its own use of the credit worthiness test and the results;

(ii) its own interest rate on the loan offered to applicants;

(iii) its own choice of applicants that it lent to;
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(iv) its own and its competitor’s loan portfolio size (number of loans made);

(v) its own and its competitor’s number of successful loans.

For bank i, a full path play is an infinite sequence of stage strategies as in (3). The infinite

sequence {sit}∞t=0, i = 1, 2, together with nature’s realization of the number of good type applicants

and the applicants’ rational choice of bank, implies a realized sequence of loans from bank i, as well

as a quality of the borrowers who received loans from bank i. That is:

Kit = (Dαit,Dβit, Dγit, χαit, χβit, χγit),

where D denotes the number of applicants that accepted the offer, and χ denotes the number of

successful borrowers; α, β, and γ denote the corresponding category, as defined earlier (α ≡untested,

approved, applicants; β ≡tested, good types, approved; γ ≡tested, bad types, approved). Define:

Dit = Dαit +Dβit +Dγit

χit = χαit + χβit + χγit.

Let the public information at the start of period t + 1, be κt = (κ1t, κ2t), where κit = {Dit, χit},

i=1,2 (for each bank). So, the information set includes the realization of the number of loans made

by bank i and the number of borrowers that repaid their loans in period t.

At the beginning of period T bank i has an information set: hT−1i = {ait,Kit, κt}
T−1
t=0 ∈ H

T−1
i ,

where ait = {nit,Nαit,Nβit, Nγit, Fαit, Fβit, Fγit} is the action of bank i (by convention h−1i = ∅).

A (pure) strategy for bank i associates a schedule σiT (h
T−1
i ) with each T = 0, 1, ... and σiT :

HT−1
i → S, where S is the stage strategy space with element sit, defined earlier. Denote the

public information as hT−1 = {κt}
T−1
t=0 ∈ HT−1, and a (pure) strategy for bank i associates a

schedule σiT (h
T−1) with each T = 0, 1, ... and σiT : H

T−1 → S.

Given λ, pg, and pb (i.e., nature’s uncertainty), a strategy profile (σ1, σ2), with σi = {σit(.)}∞t=0,

i = 1, 2, recursively determines a stochastic process of credit standards ({nit}∞t=0, i = 1, 2), interest

rates ({Fit}∞t=0, i = 1, 2), bank portfolio sizes and loan outcomes ({κit}∞t=0, i = 1, 2). The expected

pathwise payoff for bank i is:

vi(σ1, σ2) = E
∞∑

i=0

δtπi(s1t, s2t),

where

πi(s1t, s2t) = (χαitFit −Dαit) + (χβitFβit −Dβit) + (χγitFit −Dγit)− nitc.

A Perfect Public Equilibrium (PPE) is a profile of public strategies that, starting at any date

t and given any public history ht−1i , forms a Nash equilibrium from that point on (see Fudenberg,

Levine, and Maskin (1994)). As noted earlier, a bank cannot do better by playing a non-public

strategy, if the other bank is using a public strategy (i.e., one based on public information). Private
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information about past actions, use of the credit worthiness tests or loan interest rates, do not affect

behavior because such information is not public. We will show that a PPE induces a PPE in every

continuation game.34 We now turn to characterizing the PPEs.

Let ht = κt be the history of realized public information, namely the number of loans made

(loan portfolio size) and the number of defaults (loan performance) for each bank at the end of

each period t. Let V ≡ {v(σ) | σ is an PPE} be the set of PPE payoffs. Note that, by the

existence of the stage game Nash equilibrium, V is not empty. To characterize the set of PPE

payoffs we will follow Abreu, Pearce, and Stacchetti (APS) (1986, 1990). The basic idea of APS

is that each stage of the repeated lending game can be represented as a static game with payoffs

equal to the stage game payoffs augmented by continuation payoffs, i.e., the present value of the

future payoffs. The continuation payoffs depend on the current play of the stage game. Because

the loan portfolio sizes and the number of defaults are publicly observed at the end of the period,

the continuation strategy profile is induced by this public information (i.e., a PPE). Therefore, this

profile is common knowledge, and is itself a PPE. The value of the continuation profile is therefore

always in V .

APS define the notion of “self-generation” to “factor” a PPE into the first period payoff and

the continuation payoff, depending on the first period outcome. The key to finding the subgame

perfect sequential equilibrium is the construction of self-generating sets. Intuitively, for a game

withN players, a setW contained inRN is “self-generating” if each value inW can be supported by

continuation values which themselves have values inW . The concept of self-generation is formalized

by the construction of an operator or map T (V ). Suppose that V is the set of all possible payoffs

tomorrow. Let T denote the set of payoffs today using pure strategies and consistent with Nash

play in the game for some u in V . Define the operator T (V ) which yields the set of PPE values,

V ∗, as the largest invariant, or “self-generating” set. Denote N as the set of non-negative integers,

and for any V containing (0, 0) (the stage Nash payoffs), which is the expected payoff from stage

Nash equilibrium, the operator is defined as follows:

T (V ) ≡ {(v1, v2) : ∃(s1, s2) ∈ S × S and (u1, u2) with (u1, u2) : N
4 → co(V )

such that : vi = E[πi(s1, s2) + δui(κt)] for i = 1, 2

and : vi ≥ E[πi(s
′
i, s−i) + δui(κ

′
t)] for any s

′
i ∈ S and i = 1, 2.

This operator factors the supergame into two components: current-period strategies (s1, s2) ∈

S × S and the continuation value (u1, u2) drawn from the convex hull of the set V .35

Lemma 1 The operator T maps compact sets to compact sets.

34A PPE together with any beliefs consistent with Bayes’ rule constitutes a Perfect Bayesian Equilibrium (PBE),

but a PBE need not be a PPE. See Fudenberg, Levine, and Maskin (1994) for an example.
35By using the convex hull of V , we are allowing public randomization. Implicitly, we assume that in each period,

there is a lottery that determines which Nash equilibrium will be played next period, as a function of the actions

chosen by the banks this period. The randomization (i.e., the lottery) is public, so this is like having a “sunspot”
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Proof. This follows because the constraints entail weak inequalities, the feasible set is compact,

and the utility and constraint functions are real-valued, continuous and bounded.

This property of T is crucial for applying the methodology of Abreu, Pearce, and Stacchetti

(1986, 1990). In particular, let V0 be compact and contain all feasible, individually rational payoffs

(for example, V0 = [0,
1
δN [λpbX + (1− λ)pgX − 1]]× [0,

1
δN [λpbX + (1− λ)pgX − 1]]), and define

Vn+1 = T (Vn), n ≥ 0. Then the definition of T implies that T (Vn) ⊆ Vn. Using this and the

fact that Vn is nonempty for each n (since repeating stage Nash payoff is always in every Vn),

V ∗ = limn→∞ Vn is a nonempty, compact set. Following the arguments in Abreu, Pearce, and

Stacchetti (1990), V ∗ is the largest invariant set of T , and thus is equal to the set of public perfect

equilibrium values of this game.

determine the continuation values. This convexifies the set of equilibrium continuation values. This is a standard

assumption. E.g., see Cronshaw and Luenberger (1994).
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Appendix 2: Proofs

Proof of Proposition 1

We first prove the following lemma.

Lemma 2 If it exists, in any symmetric stage Nash equilibrium in which neither bank conducts

credit worthiness testing, each bank offers loans to all the loan applicants at the same interest rate.

Proof. It is easy to check that if bank i is playing si = (ni = 0,Nαi < N,Fαi), then bank −i

can strictly increase its profits by playing s′−i = (n−i = 0,N ′
α−i = N,F ′α−i), where the strategy

s′−i is to offer F ′α−i = Fαi to Nαi applicants (although these Nαi applicants might not be the same

applicants that bank i is offering loans to), and offer X to the rest of them.

Let F ∗ be the interest rate corresponding to zero profits in the loan market when there is no

testing. Then:

Eπi =
N

2
[λpbF

∗ + (1− λ)pgF
∗ − 1] = 0,

and F ∗ =
1

λpb + (1− λ)pg
< X (by Assumption 1).

Assume bank i is playing si = (ni = 0, Nαi = N,Fαi), with Fαi = (F1, F2, ..., FN ). Suppose

Fj ≥ F ∗ for j = 1, 2, ...,N and assume there exist j and k, such that Fj 
= Fk, and, without loss

of generality, Fk > F ∗. Bank −i can strictly increase its profitability by playing s′−i = (n−i =

0, Nα−i = N,F
′
α−i), where F

′
α−i = (F1, ..., Fk−1, F

−
k , Fk+1, ..., FN) and F

−
k is smaller than Fk by an

infinitely small amount. Therefore, interest rates are bid down until each bank offers F ∗ to all the

applicants.

Proof. (Proposition 1) From Lemmas 2, we see that in a symmetric equilibrium with no

bank testing applicants, both banks offer loans to all the applicants at F ∗ = 1
λpb+(1−λ)pg

< X (by

Assumption 1).

With c <
(1−λ)λ(pg−pb)
λpb+(1−λ)pg

, a bank will have an incentive to conduct credit worthiness testing on at

least one loan applicant and to offer loans to those applicants that pass the test, offering an interest

rate F ∗−, which is lower than F ∗ by an infinitely small amount. To see this consider a bank that

deviates by conducting credit worthiness testing on one applicant. The expected profit from this

deviation is:

Eπdi = (1− λ)(pgF
∗ − 1)− c.

We have:

Eπdi > 0 iff c < (1− λ)(pgF
∗ − 1) =

(1− λ)λ(pg − pb)

λpb + (1− λ)pg
.

We can see that if c ≥ (1−λ)λ(pg−pb)
λpb+(1−λ)pg

, then F ∗ will be a Nash equilibrium interest rate on the

loan, and no bank will conduct credit worthiness testing.

Proof of Proposition 2

We first prove the following three lemmas.
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Lemma 3 In any symmetric stage Nash equilibrium in which both banks test all the applicants,

each bank offers loans to all the applicants that pass the test at the same interest rate.

The proof is similar to Lemma 2 and is omitted.

Lemma 4 If it exists, in any symmetric stage Nash equilibrium in which both banks test n < N

applicants, each bank offers loans to all applicants that pass the test (good types) at F ∗∗ = 1
pg
.

The proof is similar to Lemma 2 and is omitted.

Lemma 5 If it exits, in any symmetric stage Nash equilibrium in which both banks test n < N

applicants, each bank either offers loans to all non-tested applicants at the same interest rate or

offers loans to none of them.

Proof. If there exists a feasible F ≤ X such that the banks can make a strictly positive profit

by lending to non-tested applicants at F , following a similar argument as in the proof of Lemma

2, we conclude that each bank offers loans to all non-tested applicants at the same interest rate.

If there does not exist a feasible F such that the banks can make a non-negative profit by

lending to non-tested applicants at F , we conclude that each bank offers loans to none of those

non-tested applicants.36

Proof. (Proposition 2) The proof is by contradiction. If in equilibrium both banks conducting

credit worthiness testing on all the applicants, from Lemmas 3, both banks offer loans to all the

applicants that pass the test, i.e., Nβ = Ng, where Ng denotes the number of applicants passing

the test. Banks will make no loans to bad types found by testing, i.e., Nγ = 0. Both banks use

the credit worthiness test at a cost c per applicant. Assume the loan interest rate they charge to

approved applicants is Fβ(N,Ng), depending on Ng. Each bank must earn non-negative expected

profits Eπ ≥ 0, i.e., the participation constraints. For each realization of Ng, each bank expects

to make loans to 1
2Ng applicants. Let pk denote the probability of finding k good type applicants.

Then:

Eπi = E
N∑

k=0

1

2
kpk[pgFβ(N,k)− 1]−Nc ≥ 0.

Assume now, if bank i cuts Fβ by an infinitely small amount, i.e. F dβ (Ng) = F
−
β (Ng), then it will

loan to Ng applicants for any realization of Ng. We have:

36Here we neglect a non-generic case in which there exists an F such that the banks can earn zero profit by offering

loans to a non-tested applicant, and there does NOT exist an F such that the banks can earn strictly positive profit

by offering loans to a non-tested applicant. In this case, each bank can possibly offer to a subset of the non-tested

applicants. However, including this case will not affect the results in Proposition 2.
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Eπdi = E
N∑

k=0

kpk[pgF
−
β (N, k)− 1]−Nc > Eπi.

For the case in which both banks conducting credit worthiness testing on a subset of the

applicants, if the banks offer loans all non-tested applicants, we have Fβ = F
∗∗ and Fα = F (n),

which are the interest rate that results in zero expected profit from offering loans to tested good

type applicants and non-tested applicants when banks test n applicants. It is easy to check that

F (n) > F ∗∗. The argument for Fα = F (n) is similar to the argument for Fβ = F
∗∗. However,

at Fα = F (n) and Fβ = F ∗∗, banks will earn negative expected profit due to the test cost. If

the banks offer loans to none of the non-tested applicants, the banks will only offer loans to those

applicants that passed the test at F ∗∗. The argument is similar.

Proof of Proposition 3

Proof. (Proposition 3) The proof is by contradiction. Assume that there exists a SPPE

with s = (n = 0, Nα = N , Fα) played on the equilibrium path, where Fα is a constant larger

than F ∗ = 1
λpb+(1−λ)pg

, and the continuation value function does not depend on (χ1, χ2), i.e., the

number of defaulted loans in each bank’s loan portfolio.

To eliminate the incentive for a bank to deviate to strategy s′(D) = (n = 0, Nα = D, F−α ), for

some 0 ≤ D ≤ N , we must have:

E[π1(s
′(D), s) + δu1(D,N −D)] = E[π1(s

′(D′), s) + δu1(D
′,N −D′)], for any D 
= D′.

37

Moreover, due to symmetry, it is easy to see that:

δE[u1(D,N −D)]− δE[u1(D + 1,N −D − 1)] = [λpb + (1− λ)pg]Fα − 1, for any D. (4)

Let us first take a look at an example with two loan applicants and consider a deviation to

strategy s′′ in which a bank tests one applicant. If the tested applicant is a bad type the bank

rejects it and, without testing the other applicant, undercuts the interest rate to F−α for the loans

to the other applicant. If the tested applicant is of good type then the bank offers a loan to the

applicant at F−α and raises the interest rate to F+α for the loan to (or rejects) another untested

applicant. In this way the expected loan portfolio size for both banks will remain the same while

the distribution of the loan portfolio size changes a little. It is easy to check that the improvement

in the stage profit for the deviating bank is:

∆E[π] = −c+ λ(1− λ)(pg − pb)Fα,

and and ∆E[π] > 0 iff c < λ(1− λ)(pg − pb)Fα.
38

37The expected payoff with no deviation is a linear combination of the expected payoffs with deviations in the form

of s′(D), D = 0, 1, ..., N . Therefore, the expected payoff for each deviation with s′(D) must be the same.
38Recall Assumption 2: c ≥

(1−λ)λ(pg−pb)

λpb+(1−λ)pg
. Therefore, the parameter space is not empty as long as Fα > F ∗ =

1
λpb+(1−λ)pg

.
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In our example with two loan applicants, if one bank deviates in the way we described above,

then the loan allocation is (1, 1) with probability 1, while without a deviation, the loan allocation

is (2, 0) with probability 1
4 , (1, 1) with probability 1, and (0, 2) with probability 1

4 . We know by

(4):

Eu1(0, 2)−Eu1(1, 1) = Eu1(1, 1)−Eu1(2, 0),

which implies:
1

4
Eu1(0, 2) +

1

2
Eu1(1, 1) +

1

4
Eu1(2, 0) = Eu1(1, 1).

Thus with the deviation s′′, the expected continuation payoff remains unchanged.

For more general case with more than two loan applicants, suppose that one bank deviate in

the way above. Let pk,N−k denote the probability of (k,N − k) for the two banks’ loan portfolio

sizes when no bank deviates, and p′k,N−k as the probability of (k,N − k) for the two banks’ loan

portfolio size with the deviation. By symmetry, it is easy to check that:

∑

k

pk,N−kE[ui(k,N − k)] =
∑

k

p′k,N−kE[ui(k,N − k)], for bank i = 1, 2.

There is a stage profit improvement, while the expected continuation value remains the same,

a contradiction.

Proof of Corollary 1

Proof. (Corollary 1) The proof is similar to that of Proposition 3. First consider the case

N − 2 ≥ Nα. Assume that there exists a SPPE with s = (n = 0, Nα < N , Fα) played on

the equilibrium path, where Fα is a constant larger than F ∗ = 1
λpb+(1−λ)pg

, and the continuation

value function does not depend on (χ1, χ2), i.e., the number of defaulted loans in each bank’s loan

portfolio.

Denote s′(D) = (n = 0, Nα = D, F−α ) as a feasible deviation strategy, for some 0 ≤ D ≤ Nα.

LetN(D)/N(D) be the maximum/minimum possible number of applicants that accept loans offered

by bank 2 when bank 1 deviates to s′(D), and let pk(D) be the probability of bank 2 getting k

applicants given bank 1 getting D applicants. We must have:

E[π1(s
′(D), s) + δ

N(D)∑

k=N(D)

pk(D)u1(D,k)]

= E[π1(s
′(D′), s) + δ

N(D′)∑

k=N(D′)

pk(D
′)u1(D

′, k)] for any D 
= D′,

which implies:

δE

N(D)∑

k=N(D)

pk(D)u1(D,k)− δ

N(D−1)∑

k=N(D−1)

pk(D − 1)u1(D − 1, k)] (5)

= [λpb + (1− λ)pg]Fα − 1 for any D.
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Consider the following deviation in which one bank tests one applicant. If the tested applicant

is good, then it offers loan to this tested applicant at F−α , offers loan to a randomly picked non-

tested applicant at F+α , and offers loans to other randomly picked Nα − 2 applicants at Fα. If

the tested applicant is bad, it rejects the applicant, and offers loan to other randomly picked Nα

applicants at Fα. We denote the above deviating strategy as s′′. We can check that given (5), s′′

gives the same expected continuation payoff as s.

The improvement in the stage profit for the deviating bank can be written as:

∆E[π] = −c+ λ(1− λ)(pg − pb)Fα,

and the result comes out immediately.

The proof for the case Nα = N − 1 is similar, thus omitted.

Proof of Corollary 2

Proof. (Corollary 2) For the case with N = Nα, consider the deviation in which one bank tests

one applicant and offers loan to that applicant at min{Fα}− > F ∗ with probability 2N−1
2N when it is

good and rejects the applicant when it is bad. We can check this keep the distribution (D1,D2)

the same, and thus the continuation payoff is the same with the deviation. The stage gain is

c− 2N−1
2N λ(1− λ)(pg − pb)min{Fα}.

For the case with N < Nα, consider the deviation in which one bank tests one applicant and

offers loan to that applicant at min{Fα} when it is good, when it is bad, rejects the applicant and

picks another un-tested applicant to keep the total number of applicants it approves the same. We

denote the above deviating strategy as s′. Denote π(s, s) as π(N,Nα), and it is easy to understand

what π(N − 1,Nα − 1) means; we also denote π(N − 1, Nα − 1,Nα) as the expected payoff of one

bank offering loans to Nα − 1 applicants out of N − 1, while the other banks offers to Nα of them.

It is easy to check that with the deviation to s′, the deviating bank’s expected payoff is:

π′ = (1− λ){(
1

N

1

2
+
Nα − 1

N
)(pgmin{Fα} − 1) +

Nα
N
π(N − 1,Nα − 1)

+
N −Nα
N

[(pgmin{Fα} − 1) + π(N − 1, Nα − 1,Nα)]}+ λπ(N,Nα)− c.

We can also write π(N,Nα) as follows:

π(N,Nα) = (
1

N

1

2
+
Nα − 1

N
)[(1− λ)pgmin{Fα}+ λpbmin{Fα} − 1] +

Nα
N
π(N − 1,Nα − 1)

+(1−
Nα
N
){[(1− λ)pgmin{Fα}+ λpbmin{Fα} − 1] + π(N − 1, Nα − 1,Nα)}.

We have:

π′ − π(N,Nα) = (1− λ){(
1

N

1

2
+
Nα − 1

N
)λ(pg − pb)min{Fα}] + (1−

Nα
N
)λ(pg − pb)min{Fα}} − c

=
2N − 1

2N
λ(1− λ)(pg − pb)min{Fα} − c > 0

iff c <
2N − 1

2N
λ(1− λ)(pg − pb)min{Fα}.
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Appendix 3: An Example of a PPE with Trigger Strategies

In this example, for simplification, banks start with asymmetric strategies to reach a symmetric

loan distribution. Assume that each period there are two loan applicants (N = 2). Banks want

to keep the loan interest rate at F = X. The loan portfolio size distribution for the two banks

is determined as follows. When there is no credit worthiness testing, Bank 1 offers loans to both

applicants at interest rate X, while Bank 2 offers a loan to only one applicant at interest rate X−,

and rejects the other applicant. Each bank will get exactly one loan in equilibrium. They punish

any other loan distribution by playing stage Nash equilibrium forever.

Formally, the period one strategy for Bank 1 is s1 = (n = 0, Nα1 = 2, Fα1 = X); Bank 2’s

strategy is s2 = (n = 0, Nα2 = 1, Fα2 = X
−). For a discount rate, δ, close enough to 1, Bank 1 does

not have an incentive to deviate by conducting credit worthiness testing, since if Bank 1 rejects one

bad-type applicant, while Bank 2 offers loans to the other one, there will be a positive possibility

that the loan distribution will be different from (1, 1).39 However, with the above strategy Bank

2 might have an incentive to carry out testing while keeping the loan distribution equal to (1, 1)

with probability 1. With δ close enough to 1, the only possible deviation, without changing the

loan portfolio distribution, is as follows. Bank 2 deviates to high credit standards by testing one

of the applicants. After carrying out the test, if the tested applicant is of bad type, then Bank 2

offer a loan to the non-tested applicant at X− while rejecting the other one; if the tested applicant

is of good type, Bank 2 offers a loan to it at X− while rejecting the other one. Formally Bank 2’s

deviation strategy can be written as s′2 = (n = 1, Nα2(Ng), Nβ2(Ng), Fα2 = Fβ2 = X
−), where:

Nα2(Ng) = 1, if Ng = 0

Nβ2(Ng) = 1, if Ng = 1.

We claim that if X is big enough, then Bank 2 will be strictly better off by deviating for some

level of test cost c. When Bank 2 does not deviate, the expected stage payoff is:

Eπ2 = λ(pbX − 1) + (1− λ)(pgX − 1).

When Bank 2 deviates as described above, the expected stage payoff is:

Eπ′2 = (1− λ)(pgX − 1) + λ[(1− λ)(pgX − 1) + λ(pbX − 1)]− c.

We have:
39 It can be verified that other forms of deviation are also not incentive compatible for Bank 1.
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Eπ′2 −Eπ2 = λ(1− λ)(pg − pb)X − c

> 0

iff c < λ(1− λ)(pg − pb)X

Compare this condition with that of Assumption 2: c ≥ (1−λ)λ(pg−pb)
λpb+(1−λ)pg

. As long as X > F ∗ =
1

λpb+(1−λ)pg
, the parameter space is not empty.

However, with a trigger punishment, we can eliminate the incentive of Bank 2 to deviate through

credit worthiness testing. The idea is for both banks to test all applicants for T periods whenever

Bank 1’s borrower defaults while Bank 2’s borrower does not. When both banks test, if there is

no bad-type applicant, Bank 1 offers loans to both applicants at X, and Bank 2 offers a loan to

one applicant at X−. If there is one good-type applicant, only Bank 1 offers a loan to the good

type applicant at X, while Bank 2 rejects all the applicants. Finally, if there are two bad-type

applicants, both banks reject all the applicants.

Now, we are ready to describe a trigger strategy that will support the PPE. At period t = 0,

Bank 1’s strategy is s1 = (n = 0, Nα1 = 2, Fα1 = X), and Bank 2’s strategy is s2 = (n = 0,

Nα2 = 1, Fα2 = X
−). At t > 0, they will continue to play (s1, s1) unless one of the following two

cases occurred at t− 1:

(1) If they observe (D1t−1,D2t−1) 
= (1, 1), then they play (sd, sd) for the rest of the periods,

where sd = (n = 0, Nα = 2,Fα = F
∗).

(2) Else, if they observe χ1t−1 = 0 and χ2t−1 = 1, then they play (sr1, s
r
1) at period t, where

sr1 = (n = 2, Nβ1(Ngt), Nγ1(Ngt) = 0, Fβ1 = Fγ1 = X), sr2 = (n = 2, Nβ2(Ngt),Nγ2(Ngt) = 0,

Fβ2 = Fγ2 = X
−) and

Nβ1(Ngt) = 2 if Ngt = 2

= 1 if Ngt = 1

= 0 if Ngt = 0

Nβ2(Ngt) = 1 if Ngt = 2

= 0 if Ngt = 1

= 0 if Ngt = 0.

They will continue to play (sr1, s
r
2) unless one of the following two cases occurs at τ > t:

(2.1) If banks do not observe (1, 1), (1, 0), or (0, 0),40 then they will play (sd, sd) for the rest of

40 In fact, (D1,D2) depends on Ngτ−1, which is not public information, we have, on the equilibrium path,

(D1(Ngτ−1),D2(Ngτ−1))

= (1, 1) if Ngτ−1 = 2

= (1, 0) if Ngτ−1 = 1

= (0, 0) if Ngτ−1 = 0.
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the time, where sd = (n = 0, Nα = 2,Fα = F
∗).

(2.2) Else, if τ ≥ t+T , i.e. T periods have elapsed, then the banks go back to normal by playing

(s1, s2) as defined above.

Formally, the trigger strategy is defined as follows. Define period t to be normal if (a) t = 0;

or (b), t − 1 was normal, Dt−1 = (1, 1) and χ1t−1 = 1; or (c), t − T − 1 was normal, Dt−1 =

(D1(Ngt−1),D2(Ngt−1)), and t−1 was reversionary (as we will define in a moment). Define period

t to be reversionary if (a) t−1 was normal, Dt−1 = (1, 1) and χ1t−1 = 0; or (b), t−1 is reversionary,

and t < T or else t − T is normal, and Dt−1 = (D1(Ngt−1),D2(Ngt−1)). Define period t to be

devastating otherwise. Let st be the strategy for banks, and the trigger strategy is given by:

st =





(s1, s2) if t is normal

(sr1, s
r
2) if t is reversionary

(sd, sd) if t is devastating.

Each bank faces a stationary Markov dynamic programming problem. Its optimal strategy is

to play (s1, s2) in normal periods, play (sr1, s
r
2) in reversionary periods, and play (sd, sd) in deviating

periods. The play (sd, sd) is a threatening play, which will never occur on the equilibrium path,

while both (s1, s2) and (s
r
1, s

r
2) will occur.

If t is a normal period, and banks play (s1, s2), then the probability of switching to a reversionary

period at time t+ 1 is:

q = λ(1− pb)[λpb + (1− λ)pg] + (1− λ)(1− pg)[λpb + (1− λ)pg].

With bank 2 deviating to s′2, We have:

q = (1− λ) (1− pg) + λ(1− pb).

However, if one Bank 2 plays s′2 = (n = 1, Nα2(Ng), Nβ2(Ng), Fα2 = Fβ2 = X
−) where:

Nα2(Ng) = 1, if Ng = 0

Nβ2(Ng) = 1, if Ng = 1,

this probability becomes:

q′ = λ(1− pb)[λpb + (1− λ)pg] + (1− λ)[λ(1− pb) + (1− λ)(1− pg)]pg.

We can see that:

∆q = q′ − q = λ(1− λ)(pg − pb).

In words, the above condition says that when Bank 2 deviates to s′2, the probability of switching

to a reversionary period increases. By hypothesis Bank 2 is deviating. Now, having defined the

trigger strategies, we check the incentive constraint for Bank 2. In the normal period, Bank 2’s

In PPE, however, banks’ strategies can not depend on non-public information.
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expected stage payoff from playing s2 = (n = 0, Nα2 = 1, Fα2 = X
−) given s1 = (n = 0, Nα1 = 2,

Fα1 = X) is:

Eπn2 = λ(pbX − 1) + (1− λ)(pgX − 1).

In the reversionary period, Bank 2’s expected stage payoff from playing sr2 = (n = 2, Nβ2(Ngt),

Nγ2 = 0, Fβ2 = Fγ2 = X
−) given sr1 = (n = 2, Nβ1(Ngt), Nγ1 = 0, Fβ1 = Fγ1 = X) is:

Eπr2 = (1− λ)
2(pgX − 1)− 2c.

We can see:

Eπn2 −Eπ
r
2 = λ (pbX − 1) + λ(1− λ)(pgX − 1) + 2c

> 0

iff c > −
1

2
[λ (pbX − 1) + λ(1− λ)(pgX − 1)]

It is easy to check this condition is implied by Assumptions 1 and 2.41

Let Wn
2 (s) denote the expected payoff in a normal period when Bank 2 plays s2. Given the

other bank is playing the trigger strategy, Bank 2’s expected discounted present value from playing

s2 is:

Wn
i (s2) = Eπn2 + δ(1− q)W

n
i (s2)

+δq[
T∑

t=1

δt−1Eπr2 + δ
TWn

i (s2)].

We have:

Wn
i (s2) =

Eπn2 + δq
1−δT

1−δ Eπ
r
2

1− δ(1− q)− δT+1q

=
Eπn2 + q

δ−δT+1

1−δ Eπr2

1− δ + (δ − δT+1)q

=
Eπn2 −Eπ

r
2

1− δ + (δ − δT+1)q
+
Eπr2
1− δ

.

41By Assumption 2, c ≥
(1−λ)λ(pg−pb)

λpb+(1−λ)pg
, we have

(1− λ)λ(pg − pb)

λpb + (1− λ)pg
− {−

1

2
[λ(pbX − 1) + λ(1− λ)(pgX − 1)]}

=
λ

λpb + (1− λ)pg
{2(1− λ)(pg − pb) + {[λpb + (1− λ)pg]X − λ}pb

−(1− λ)pg + (1− λ)(pgX − 1)[λpb + (1− λ)pg ]}

≥
λ

λpb + (1− λ)pg
{(1− λ)(pg − pb) + (1− λ)(pgX − 1)[λpb + (1− λ)pg]}

> 0,

where we use Assumption 1:

[λpb + (1− λ)pg]X > 1.
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In the normal period, Bank 2 can deviate from the equilibrium strategy by playing s′2 as defined

earlier. The short-run payoff to Bank 2 is:

Eπ′2 = (1− λ)(pgX − 1) + λ[(1− λ)(pgX − 1) + λ(pbX − 1)]− c

and we have the expected one-shot deviation discounted present value of Bank i:

Wn
i (s

′
2) = Eπ′2 + δ(1− q

′)Wn
i (s2)

+δq′[
T∑

t=1

δt−1Eπr2 + δ
TWn

i (s2)]

In order to make the trigger strategy the best response to each other in normal periods, we

need:

Wn
i (s2) > W

n
i (s

′
2).

It is easily verified that there is no incentive for either bank to deviate in a reversionary period

as long as δ is close enough to 1 and T is large enough.
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