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ABSTRACT

We examine the individual, contextual, and institutional determinants of faculty patenting behavior

in a panel dataset spanning the careers of 3,884 academic life scientists. Using a combination of

discrete time hazard rate models and fixed effects logistic models, we find that patenting events are

preceded by a flurry of publications, even holding constant time-invariant scientific talent and the

latent patentability of a scientist's research. Moreover, the magnitude of the effect of this flurry is

influenced by context --- such as the presence of coauthors who patent and the patent stock of the

scientist's university. Whereas previous research emphasized that academic patenters are more

accomplished on average than their non-patenting counterparts, our findings suggest that patenting

behavior is also a function of scientific opportunities. This result has important implications for the

public policy debate surrounding academic patenting.
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1 Introduction

In the past few decades, universities and other public-sector research organizations have

become more proactive in their efforts to commercialize scientific discoveries (e.g., Jaffe and

Lerner, 2001; Jensen and Thursby, 2001; Thursby and Thursby, 2002). This change has

spawned a growing academic literature on university technology transfer, one stream of

which has assessed trends in university patenting and the spillover of university science into

the private sector (Jaffe, 1989; Mansfield, 1995; Henderson et al., 1998). Underlying the

well documented upswing in university patenting has been a sharp increase in the number

of individual academic scientists who are listed as inventors on patents. In this paper, we

examine the individual, contextual, and institutional determinants of academic patenting in

a panel dataset of 3,884 academic life scientists.

Past research on this topic has emphasized three related aspects of faculty patenting

behavior. First, academic patenters are disproportionately recruited from the ranks of elite

scientists and institutions (Zucker et al., 1998; Azoulay et al., 2005b). Second, there are

important differences in the propensity to patent across fields, and in the motivations un-

derlying patenting activity, most notably between the life and physical sciences/engineering

(Owen-Smith and Powell, 2001). Finally, institutional context exerts a strong influence on

the propensity to patent, either in the form of well-funded technology licensing offices, or

through the presence of prominent peers who themselves are engaged in this activity (Di

Gregorio and Shane, 2003). Most of this evidence, however, stems from analyses of survey

data or from qualitative accounts. While consistent with these previous findings, the results

in this paper qualify them in some important respects. Our study also generates a novel set

of results, underscoring the benefits of fine-grained longitudinal data at the researcher level

of analysis.

The paper’s findings include the following. First, we estimate pronounced life-cycle effects

on the propensity to patent, with mid-career academics being much more likely to patent

than younger and older faculty members. Second, we establish a relationship between the

latent patentability of a faculty’s research and his/her propensity to patent. While latent

patentability is often thought to be unobservable, we compute a patentability score for each
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scientist in our sample by using keywords in the publications of scientists that have already

applied for patent rights as a benchmark for patentable research, and then comparing the

research of each scientist in our dataset to this benchmark. Although there is noise in this

proxy, it nevertheless quite strongly predicts the likelihood of a patenting event.

Third, we document that patenting is often accompanied by a flurry of publication activ-

ity in the year preceding the patent application, even after accounting for the lagged stock

of publications (in hazard rate models) or controlling for scientist fixed effects. This result

highlights the fact that academic patenting, rather than merely reflecting the influence of

time-invariant demographic factors, also responds to variation in scientific opportunities.

Holding life-time scientific achievement constant, we find that surges of scientific productiv-

ity, not steady performance, is most likely to be associated with a patent. Moreover, the

magnitude of the effect of this flurry decreases with the presence of a patenting coauthor, or

with the intensity of patenting activity in the scientist’s university. These findings suggest

that institutional and contextual factors may partially substitute for scientific opportunities

in determining individual rates of patenting.

Lastly, independent of any specific finding, the general analysis herein is relevant to the

broader question of the impact of patenting on the development of academic science. Surveys

of university faculty have found rampant concern that patenting is skewing research agendas

toward commercial priorities, causing delay in the public dissemination of research findings,

and crowding out effort devoted to the pursuit of fundamental knowledge (Blumenthal et

al., 1996; Campbell et al., 2002; Krimsky, 2003). Insofar as our results relate to this issue,

the finding that patenting follows a flurry of publications suggests to us that the crowd-

out hypothesis is unlikely to hold true.1 Although we cannot adjudicate between opposing

claims regarding the effect of patenting on individual-level or university-level outcomes in the

present study, one can construe our results as providing the “first stage” of an econometric

analysis of the effect of academic patenting on the rate and direction of scientific progress,

an evaluation we are pursuing in other research (Azoulay et al., 2005a).

1However, if scientific trajectories associated with patents exhaust themselves more quickly than those
remaining free of associations with the world of commerce, then intertemporal substitution of “basic,”
fundamental knowledge by “applied,” patentable output could still be consistent with the patterns we observe
in the data.
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The rest of the paper proceeds as follows. In the next section, we situate our contribution

in the large and growing literature on academic patenting, and highlight what we regard as

outstanding issues that can only be resolved with researcher-level longitudinal data of the

kind we analyze. Section 3 describes data sources and the construction of the sample and

discusses our econometric approach. Section 4 presents descriptive statistics and reports our

results. Section 5 concludes.

2 Who Patents?

In recent times, the region of overlap between the spheres of academic science and commercial

markets has experienced significant growth. The expanding interface between these two do-

mains raises myriad questions, ranging from the amount of near-term economic value created

by the spillovers of university research, to the emergence of select universities as engines of

entrepreneurial activity, to the influence of opportunities to commercialize scientific research

on the traditional incentive systems that have governed academic science. Researchers have

engaged a variety of these questions, and advancement in our understanding is occurring

along many fronts.

Spurred in part by accessible data, many studies have assessed the role of universities

as direct sources of commercial innovations, primarily considering the quality and quantity

of their innovative outputs. For instance, Henderson et al. (1998) examine the relative

importance of university patents, finding that there has been a secular decline in the positive

quality gap separating university patents from those assigned to for-profit firms. Mowery

et al. (2001) have investigated the consequence of the policy changes brought about by the

Bayh-Dole Act. They challenge the conventional wisdom that Bayh Dole has accelerated

universities’ production of patents, showing that the legislation was not a primary factor

in explaining the uptick in patenting at three prominent universities. At the level of the

university, Thursby and Thursby (2002) find that university administrators have become

more proactive in pursuing patents and licensing opportunities. Di Gregorio and Shane

(2003) explore cross-university differences in the formation of start up companies, discovering
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that intellectual eminence is a central factor distinguishing the universities that spawn start

up companies.

The majority of the archival work that has looked at the commercial outputs of not-

for-profit organizations has treated the university as the level of analysis. Because the

preponderance of the empirical studies have been performed at the university level (notable

exceptions include Murray, 2002; Agrawal and Henderson, 2002; and Stephan et al. 2004),

less is known about the factors that underlie individual scientists’ participation in patenting.

In this article, we analyze the probability of patenting in a large, longitudinal sample of

university faculty in the biomedical area. Our analysis is guided by an interest in four issues.

First, how does the proclivity to patent vary with scientists’ experience in the profession?

Second, what is the relationship between scientific productivity (measured as papers pub-

lished) and patenting? Third, are there significant differences across research areas within

scientific disciplines in terms of the apparent “patentability” of the work, and is there any

evidence to suggest that scientists may be altering their research to move toward patentable

research? Fourth, to what extent is the propensity to patent sensitive to the work context

of the individual scientist, particularly the level of commercial orientation of a scientist’s

university and his or her coauthors?

Treating each of these in turn, we first ask, how does the propensity to patent change over

the scientific career? Economists and sociologists alike have a long-standing interest in career

dynamics in academe, in part because incentives in science vary over the professional life

cycle. Two elements of the institutionalized reward system in science are generally thought

to be tenure-invariant: the tying of peer recognition to priority in research discovery, and the

intrinsic satisfaction garnered from solving vexing problems. However, monetary incentives

to produce research output in science do depend on the career stage, and it is well known

that the wage-tenure profile in academic science is not steep (Stephan, 1996). Given the

shallow slope of post-tenure salary increases, Levin and Stephan (1991) suggest that levels

of investment in research should vary over the career life cycle. In particular, senior scientists

with tenured appointments may reallocate some of their effort to consulting and other extra-

university income generating opportunities. Therefore, if the widely held assumptions about
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changing incentives over the career do in fact hold, we should observe that the rate of

patenting accelerates in the post-tenure interval.

A countervailing possibility is implied by a growing body of ethnographic research that

portrays the increasing acceptance of patenting as a legitimate activity in academic science

(Etzkowitz, 1998). If the pendulum has swung to the point that patenting is perceived to

contribute to scientists’ reputation and influence, we would expect to observe that, viewing

successive cohorts of scientists, patenting occurs with increasing frequency in the early career

stage. Consistent with this perspective, Owen-Smith and Powell (2001) describe interviews

with scientists that have come to view patents as reaffirmations of the originality of their

work and as contributing to their scientific visibility. Recent interview-based accounts thus

raise the possibility of a significant shift in the norms and reward system in science, with

implications for life-cycle effects in patenting.

Next, we seek to identify the relationship between scientists’ productivity and the likeli-

hood that they patent. Existing evidence suggests that the scientists with the most stellar

academic credentials are also the most likely to be involved in commercial endeavors. In

particular, Zucker et al. (1998) describe the importance of the geographic location of star

scientists in the emergence of the biotechnology industry. They argue that the direct partici-

pation of leading academic scientists in early stage biotechnology companies was so important

that the locations of star scientists served as geographical constraints on the development

of the industry. Stuart and Ding (2005) directly analyze the probability that academic sci-

entists either found or join scientific advisory boards of biotechnology firms. They find that

standard measures of human capital strongly associate with the participation of scientists in

entrepreneurial initiatives.

The existing literature thus provides reason to expect that patenting is concentrated

among the group of eminent scientists. Yet, beyond the general association between research

output and the likelihood of engaging in market-related activities, identifying more precisely

the relationship between the production of papers and patents may adjudicate among the

competing mechanisms that could generate the relationship. In particular, if the magnitude

of the stock of scientists’ research output predicts the onset of patenting, it is likely that
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faculty members’ scientific reputations are important considerations in the decision to patent.

If this proves to be the case, a plausible explanation is that the prominence of the inventor on

a patented technology may influence the university’s ability to capitalize on the intellectual

property by affecting the probability that potential licensees become aware of and interested

in the technology.

Consider instead the implication of a positive relationship between the flow, but not

the stock, of scientists’ research output and the probability that a patent is issued. If the

flow of output is the determining factor, we would suggest that technological “opportunity”

looms large in the transition to patenting. A flurry of scientific output — a high flow

of publications — occurs when a scientist unearths a productive domain of research. If

patenting is a byproduct of a surge in productivity, we think it reasonable to conclude that

a patent is often an opportunistic response to the discovery of a promising research area.

The third issue we consider is how the specific areas of expertise of academic scientists

affect the likelihood of patenting. Obviously, there exists heterogeneity across scientists

in the potential commercial value of the research they produce. If one needs to account

for such differences, it is tempting to argue that the analyst can accommodate them by

incorporating scientist fixed effects in the analysis. We believe, however, that this represents

just a partial solution given the volume and the diversity of research projects that scientists

participate in throughout their careers. We therefore attempt to develop a direct measure of

the “patentability” of scientific research. The intuition behind the measure is that knowledge

of the research foci of academic scientists who have already patented can be used to identify

the domains of science in which research is patentable. With such a measure in hand, we

ask two questions. First, does the latent patentability of scientists’ research in fact affect the

probability of patenting? Second, is it the patentability of the stock or the flow of research

outputs that most consequentially influences the propensity to patent?

Fourth, we explore two elements of scientists’ work contexts. While it is well established

that propensities to patent vary substantially across universities, we do not have a clear

sense for the influence of organizational characteristics on the patenting rates of otherwise

similar scientists within different universities. Numerous studies suggest that the decision
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to engage in commercial activity of all sorts is strongly influenced by factors ranging from

the norms and culture of an institution vis-à-vis commercial activity, to the quality of the

university’s technology transfer office (Thursby and Thursby 2002; Owen-Smith and Powell,

2001). Two prevalent considerations are thus the (potentially endogenous) role of a smooth

functioning technology transfer office in encouraging faculty to disclose possibly patentable

research findings, and more generally, a pro-commercialization “entrepreneurial culture” at

a university. In our analysis, we ask whether university-level variables influence the patent

rate net of controls for many observable individual-level characteristics.

A related question concerns the influence of proximate colleagues on the patent procliv-

ities of individual scientists. There are a set of reasons to expect that scientists who work

closely with commercially-inclined peers will be more likely to pursue commercial applica-

tions of their scientific research. Stuart and Ding (2005) argue that there are two mechanisms

through which colleagues affect the probability that a particular scientist engages in com-

mercial activities. First, peers exert attitudinal influences, in particular shaping the degree

to which a given scientist is likely to embrace patenting as both a legitimate undertaking for

an academic scientist and as a potential contributor to his or her professional standing. Sec-

ond, peers convey information that may lower the cost of patenting, such as contacts in the

technology transfer office and advice about how to minimize the amount of time consumed

in patenting. We thus look for what might be labeled as “peer effects” on the transition

to patenting. Specifically, we examine whether scientists who have co-authorship links with

patent holders, or with researchers employed in the private sector, are themselves more likely

to patent.

A necessary caveat pertains to the thorny issue of causality. Many of our independent

variables, such as publications or latent patentability, could be considered outcomes of in-

terest. Moreover, it would be incorrect to interpret our findings as providing evidence, inter

alia, that publications and patents are complements, or that latent patentability “causes”

patent applications. Rather, we have identified correlates of patenting. The conditional

correlations we estimate can still be useful insofar as they help narrow the range of plausible

theories regarding the effect of academic patenting on scientific productivity. In addition,
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since our most interesting results pertain to what are in fact lagged dependent variables, the

study highlights the need to use correct econometric methodologies to recover causal effects.

This is pursued in a companion paper (Azoulay et al., 2005a).

3 Data, Sample Characteristics, and Econometric Ap-

proach

We examine the determinants of faculty patenting behavior in a panel dataset of academic

life scientists employed at universities and non-profit research institutes. This area was

chosen because the biomedical fields have accounted for the preponderance of university

patenting and licensing activity (Mowery et al., 2001). While we have not selected scientists

because they have patented, we have sampled from scientific disciplines that we know to

have significantly contributed to a vibrant area of technological development. We began by

drawing 12,000 doctoral degree recipients from UMI Proquest Digital Dissertations, which

lists Ph.D. recipients from more than one thousand universities. In forming the sample, we

randomly selected individuals, but only those with Ph.D.s in scientific disciplines that have

informed commercial biotechnology.2 This assures a random sample of Ph.D.s in areas in

which academic research may have significant, short-term commercial value.

Next, we obtained scientists’ publication records from the ISI’s Web of Science database.

Because the Web of Science includes authors’ affiliations, we were able to identify Ph.D.

graduates who pursued careers outside of academe. After removing individuals that (i)

had no publications in any post-graduate year, (ii) published exclusively under corporate

affiliations, or (iii) exited academe early in their careers,3 we were left with 3,884 scientists,

all of whom we know to have been employed at research institutions. Each scientist is

2To identify the scientific disciplines that have been most important to biotechnology, we coded the
educational backgrounds of the Ph.D.-holding, university-employed scientific advisory board members of all
publicly traded biotechnology firms. The source of information on scientific advisors’ degrees was the IPO
prospectuses of the 533 U.S.-based biotechnology firms that have been filed with the U.S. Securities and
Exchange Committee. We then stratified the random draw from UMI to correspond to the disciplines and
Ph.D. grant years of firms’ scientific advisors. For example, 22 percent of biotechnology company scientific
advisors hold biochemistry Ph.D.s; we drew a corresponding proportion of biochemists into our sample.
Table 1 lists the Top 15 disciplines from which scientists in our sample are selected.

3Ph.D.s with academic affiliations lasting less than five years were dropped from the dataset to exclude
post-doctoral fellows that later moved to jobs in industry.

8



observed from the year after he or she earned a Ph.D. until 1999, unless the individual

exited academia.4 The final panel contains 59,069 person-year observations between 1967

and 1999.

3.1 Variables

A brief description of the patenting process in academia is useful to interpret the results

we will present. The process begins when a faculty member discloses an invention to the

university’s Technology Transfer Office (TTO).5 The commercial potential of this invention

is then evaluated by the TTO, which may decide to seek patent rights on the invention.

Concurrently, the TTO will market the innovation to potential licensing partners in industry.

A typical licensing agreement specifies a 40% royalty rate for the individual faculty inventor,

to be assessed on the gross licensing revenues the invention accrues.

The patents of the academic scientists in our data were assembled from the NBER patent

database (Hall, Jaffe, and Trajtenberg, 2001). To identify academic patenters, we matched

the scientists in our dataset to the list of inventors in the NBER patent database. Matches

were performed on the basis of last and first names, and we used information on assignee

(university) and geographic region to eliminate false matches.6 For each scientist in our

data, we generated two dependent variables: time of first patent application and a dummy

variable indicating whether the researcher applied for at least one patent in a given year.

Research Output and Latent Patentability. We create three measures of scientists’

research output. From the Web of Science we computed annual paper publication counts for

each scientist. We count all papers on which a scientist is listed as an author.7 While this

4We assume a researcher has exited academia when he or she fails to publish for five consecutive years, or
in fewer instances, when the scientist begins to publish almost exclusively under a corporate affiliation. In
either case, we censor observation in the year in which a scientist last publishes under a university affiliation.

5Faculty members are contractually obligated to disclose potentially commercializable discoveries de-
veloped on university premises to the TTO. They do not have the option to patent university-originated
discoveries without going through the official channels. Because university-employed scientists rarely patent
their research outside of the TTO, we are able to incorporate assignee (university) information in matching
scientists’ names to inventors listed on patents.

6Because we know the affiliations of the scientists in our data, we do not face the daunting name-matching
challenges described in Trajtenberg (2004). We are able to rule out false positives by insisting that both
scientists’ names and affiliations match the inventor and assignee fields in the patent data.

7In other words, we treat sole-authored and co-authored papers as equivalents. By convention in the life
sciences, the first author has made the greatest intellectual contribution to the project, and the last author
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seems a good proxy for the rate of a given scientist’s output, we would also like to measure

the content of this output. We do this in two different ways. First, we use the affiliation data

available from Web of Science to identify all instances in which a scientist wrote a paper that

was coauthored with one or more individuals in a corporate research and development lab.

We assume that papers coauthored with researchers in industry are more likely to be of an

applied nature, and thus we consider publishing with coauthors in industry as an indicator

of the degree to which scientists are engaging in commercially-oriented research.

Second, it would be desirable to directly account for differences among scientists in the

inherent “patentability” of their research. To construct such a measure, we have used the

title words in scientists’ publications to identify the areas in which they have conducted

research, and then applied weights to theses areas based on an (endogenous-to-the-sample)

measure of the extent to which other scientists working in these areas have patented their

discoveries. Intuitively, we use the publications of scientists that have already applied for

patent rights as the benchmark for patentable research, and then compare the research of

each scientist in our dataset to this benchmark to generate a research patentability score for

each scientist-year. Specifically, the research patentability score for scientist i in year t is

defined as:

PATENTABILITYit =
J∑

j=1

wi
j,t−1

nijt∑
k nikt

where j = 1, . . . , J indexes each of the scientific keywords appearing in the titles of the

journal articles published by scientist i in year t,8 nijt is the number of times each of the

keywords j has appeared in scientist i’s articles published in year t, and wi
jt is a weight for

each keyword that measures the frequency with which word j is used in the titles of articles

published by scientists who have entered the patenting regime in year t or earlier, relative

to those who have not entered the patenting regime as of year t (the calculation of wi
jt is

detailed in the data appendix). Intuitively, the patentability of a scientist’s research can

is the research group leader, typically the senior scientist on the team. Restricting the set of papers to those
where the focal scientist appears first or last in the authorship list generates results substantively similar to
those we present below.

8We relied on title words in journal articles instead of journal- or author-assigned keywords because the
Web of Science database did not begin to include keyword descriptors until 1992. However, the titles of
biomedical research papers typically indicate the research area and the methodology used in the paper. We
find high overlap between title words and keywords in papers for which both are available.
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change because of a change in the direction of the research of that scientist, or because other

patenters’ research increasingly comes to resemble that of the scientist. The former effect is

captured by the ratio
nijtP
k nikt

, the latter by the weights wi
j,t−1. Because the benchmark in year

t−1 is used to weight title words in year t, year-to-year changes in the research patentability

score will only reflect actions of the scientist (through their choices of title keywords), rather

than contemporaneous changes in the benchmark.9

Finally, to capture the idea that the inherent patentability of past research might still

influence the current propensity to patent, we compute a depreciated stock of the research

patentability score using a perpetual inventory model. Through the impact of the deprecia-

tion rate δ10, this formulation captures the fact that the recent substantive research orienta-

tion of a scientist’s research should influence current behavior more strongly than scientific

trajectories that unfolded in the more distant past:

STOCK RPit = (1− δ)STOCK RPi,t−1 + FLOW RPit =
t∑

τ=0

(1− δ)t−τ · FLOW RPiτ

Following a number of studies of the determinants of scientists’ productivity, we were

also able to construct many control variables to account for individual and institutional

attributes that may influence rates of publication and patenting. To account for life-cycle

effects (Stephan, 1996), we include the number of years since a scientist earned his or her

Ph.D. Because the time involved in publishing scientific research varies across fields, the

regressions include a full set of dummies for researchers’ dissertation subject areas. Some

of the regressions control for time invariant quality differences among researchers through

the inclusion of scientist fixed effects. In specifications without fixed effects, we enter a

dichotomous measure of the quality of a scientists’ Ph.D.-degree granting institution — a

dummy variable indicating whether or not a scientists’ doctoral program was ranked in the

Top 20. Specifically, we collected Gourmand Report rankings for all institutions in our

9Previous researchers have developed other measures of proximity in technological space. For instance,
Jaffe (1986) used a cosine-based measure to assess the proximity between the R&D portfolio of any given
pair of firms. While this approach works well for measuring technological distance between dyads, it is not
well suited to our setting, since we need to measure the distance between the scientific trajectory of any
given scientist relative to that of a benchmark group of (patenting) scientists.

10We set δ equal to .15 — the Griliches constant — which has been used by many innovation researchers
on whose work this paper builds. We verified that our core results are not sensitive to this arbitrary choice.
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dataset. Gourmand ranking are available at the field level and were issued for the first time

in 1980. We assigned universities their original rating for all years prior to 1980 (and updated

them every other year for the subsequent period).

We also include a number of employer-level variables that may influence scientists’ patent-

ing. These covariates are updated each year and when scientists change employers. First,

given the existing evidence that prominent universities are more likely to be involved in

commercial activities, we include a quality rank dummy variable analogous to the one con-

structed for Ph.D.-granting institutions. Second, we used the AUTM surveys to create a

technology transfer office (TTO) dummy variable, which is set to one in all years in which

a scientist’s employing university has an active TTO. Third, a university’s stock of patents

(excluding those of the focal scientist) is entered in the model, among other things to further

control for institutional differences in support for patenting. We include a five year patent

stock measure for scientists’ doctoral training universities.

Finally, to capture the patenting proclivities of our scientists’ coauthors, we measure both

the number of coauthors and whether the coauthors have applied for patents. We are able

to identify patenting behavior only for coauthors that are also members of our sample. Since

the set of scientists analyzed here are drawn randomly from the population, this limitation

should not introduce bias, although the resulting count is clearly a noisy proxy for the

underlying concept. Furthermore, to distinguish the coauthor peer effect from the influence

of peers at the same institution, we exclude coauthors that are also co-workers when creating

these two variables.

3.2 Econometric Considerations

Estimating the determinants of faculty patenting behavior requires a procedure that accom-

modates the discrete nature of the event. Since our interest lies in analyzing the dynamics as-

sociated with the onset of patenting in scientific careers, we employ discrete-time hazard rate

models (Cob 1972, Ayers, Hanky and Mantel 1973, Alison 1982). The use of discrete-time

models (as opposed to continuous-time models such as the Cob) is motivated by the fact that

our failure time variable displays multiple events within each time period. For a researcher i
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during experience interval t, let the discrete time hazard rate be pit = Pr[Ti = t|Ti ≥ t,Xit],

where Ti is the time at which research i experiences an event and Xit a vector of covariates.

We use a logistic regression function to link the hazard rate with time and the explanatory

covariates:

Ln[
pit

1− pit

] = αt + β
′
Xit

where αt is a set of experience interval dummies. In practice, we estimate a simple logit of

the decision to apply for a patent, where the observations corresponding to years subsequent

to the first event have been dropped from the estimation sample.

These models essentially rely on between-scientist covariate variation to identify the de-

terminants of the first transition to patenting. A complementary approach is to consider

how within-scientist changes in covariates influence the propensity to patent. We do so by

estimating so-called “fixed-effects” logit models by conditional maximum likelihood (Cham-

berlain, 1984). In contrast to our implementation of the standard logits, this approach

analyzes the careers of patenting scientists in their entirety, rather than just until the year

of first patent application. In other words, we treat patenting as a repeatable event in the

fixed-effects logit regressions. There is, however, a countervailing cost in the fixed-effects

approach, in that it drops all observations corresponding to scientists who never patent.11

We believe that, together, the discrete-time hazard models and the fixed effects logit models

provide a comprehensive picture of the academic patenting phenomenon.

4 Results

Among the 3,884 researchers in our sample, 758 (20%) hold one or more patents. In Figure 1,

we plot the distribution of patents for the patenting researchers in our sample. The histogram

illustrates a rapid drop off after one — most patenters are listed on 1 or 2 patents throughout

their career, and very few scientists in our data receive more than 10 patents. Figure 2

displays the distribution of scientists’ total publication counts, broken out by their patenting

status. Consistent with the conventional wisdom that patenting is concentrated among the

11Conditional maximum likelihood estimation requires some variation in the dependent variable to con-
dition out the individual scientist effects. Because scientists that have never patented have no variation on
the outcome variable, they must be dropped from the analysis.
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group of academically productive scientists, the distribution for the patenter subsample is

much less skewed than that of the non-patenter subsample.

Descriptive statistics. Table 2 presents the summary descriptive statistics for variables

used in our analysis. Table 3 reports, by scientists’ patenting status, the mean research and

employer characteristics measured at five career stages. This table shows that researchers

who have sought and received patent rights for their discoveries are more productive at each

career stage: they publish almost twice as many research papers as those who have not

yet entered the patenting regime. Scientists who have applied for patent rights are closer to

commercial research than their non-patenting counterparts, as indicated by the fact that they

have collaborated more often with researchers in the private sector. Likewise, the intrinsic

patentability of their research appears higher. Finally, patenters are more likely to work in

settings where a technology transfer office exists and patenting activity is intensive, and they

are more likely to have coauthors that have themselves patented.

Figure 3 displays the distribution of patenting events over time. Although we observe an

uptick in the years following Bayh-Dole, it is also clear that patenting activity was taking

place even before the adoption of the Act. This is consistent with the findings of Mowery et

al. (2001).

Figure 4 displays, for the first decade of scientists’ careers, the unconditional hazard of

first patent application against experience (as measured by years since graduation) for three

distinct cohorts of scientists: those who received their Ph.D. between 1967 and 1975, those

who earned their degree between 1976 and 1985, and those who matriculated between 1986

and 1990. It is clear from Figure 4 that, over successive cohorts, the probability of patenting

in an early career stage has increased, and in the latest cohort of life scientists in our data,

it is increasing at a greater rate.12

One possible explanation for the greater incidence of patenting among early career scien-

tists is that, in recent years, post-doctoral fellows are more likely to be listed as co-inventors

12The decline in the unconditional hazard for the third cohort after the fifth year of experience is caused by
the gradual censoring of the patent data. Specifically, the NBER patent database contains data on patents
issued until 1999. Because our measure of patenting is dated to the time of the filing of an application for a
patent that eventually issues, the final years of our data contain fewer patenting events because we do not
observe patents that were applied for prior to 1999, but did not issue until after this year.
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on patents emanating from the research conducted in their advisors’ labs. Examining data

from the 1970s and 1980s, Stephan and Ma (2004) report that there has been an increase dur-

ing this period both in the proportion of scientists who begin their careers as post-doctoral

fellows, and in the duration of these fellowships. We cannot explore this possibility directly

because our data neither allow us to distinguish post docs from regular faculty, nor do they

identify advisor/post-doc pairings. However, we are able to document general trends in the

incidence of patent co-inventorship.

Figure 5 presents the proportion of all patents in our data that list (i) a sole inventor

(dashed line) or (ii) list three or more inventors (solid line), plotted against the number of

years since the patenting academic scientist received his or her Ph.D. degree. The figure

demonstrates a clear negative trend in scientists’ proclivities to receive sole invented patents

over their careers, and a slightly positive trend in the incidence of multiple-inventor patents

over the career. These data alone do not permit us to firmly rule out the possibility that

early career patenting is somehow associated with changes in the duration and prevalence

of post-docs, but it is evidently the case that the life-cycle trend is from sole to multiple-

inventor patents, and not vice versa. As a result, we consider it likely that the increase

in slope in the early career hazard of patenting observed in Figure 4 reflects the fact that

patenting increasingly has come to be recognized as a legitimate form of scientific output in

the academic life sciences.

Discrete-time hazard rate models. We now present results from the discrete-time haz-

ard rate regressions. The results can be found in Tables 4a, b and c. Model (1) includes

the variables often thought to be associated with academic patenting, but without the paper

count and the patentability variables. All models control for (unreported) Ph.D subject

areas and calendar year dummies. The results are consistent with the findings of previous

studies, and confirm the patterns that were already apparent in the descriptive statistics.

We find evidence that controlling for the number of coauthors, scientists with at least one

patenting coauthor are more likely to patent. We caution readers against interpreting this

correlation as evidence of patenting peer effects, as it could merely reflect assortative match-

ing among scientists along some other dimension correlated with patenting. We also find a
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strong influence of co-authorship with corporate researchers on the likelihood of first patent

application. At the mean of the other covariates, having coauthored with researchers in

industry increases the predicted probability of patenting by 76%.

In contrast to the individual-level covariates, the impact of employer-related variables is

mixed. We fail to find an effect of the presence of a technology licensing office (although this

could be due to the fact that this organizational innovation diffused quite rapidly among

Tier-1 universities following the Bayh-Dole Act). However, we do find an effect for the

intensity of patenting at the university where the scientist earned his/her doctorate in the

five years preceding the award of the degree (but not for the patent stock of the current

employer).13

Model (2) adds two variables to the specification: a scientist’s count of publications in

year t − 1, and a cumulative stock of publications up to year t − 2. Only the flow variable

is significant, suggesting that patenting is accompanied by a flurry of scientific activity. At

the mean of the data, each additional research publication increases the researcher’s odds

of entering the patenting regime during the next year by 7.6%; a one standard deviation

increase (2.7) in the flow of research publications is associated with a 18% increase in the

likelihood of patenting relative to the baseline rate. In Models (3) and (4), we explore

further the timing of this flurry by using more flexible specifications for the distributed lag

of publications. In Model (3), we include the flow of publications in year t− 2 and the stock

up to year t − 3. In Model (4), we include the flow of publications in year t − 3 and the

stock up to year t − 4. In both cases, only the coefficient for the one-year lagged variable

is significant; in other words, Model (2) appears to capture accurately the timing of the

publication flurry associated with patenting.

This conditional correlation strikes us as being an important finding, for it can help distin-

guish between competing interpretations of the association between scientific productivity

13In Table 4, the hazard of patenting appears to be monotonically decreasing in experience. However, this
trend merely reflects our decision to limit the analysis to the first patenting event. Because we drop scientists
from the data once they have patented, we would expect to observe negative duration dependence as only
those scientists that have not yet patented prior to an experience interval remain in the risk set during that
interval. In other words, the scientists that remain in the risk set to inform the coefficient estimates for the
later experience intervals are predominantly non-patenters.
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and involvement with the world of commerce. In the first interpretation, commercializa-

tion activities correspond to attempts by academics to monetize established reputations and

professional status. In the second interpretation, publications and patents are co-occuring

outputs that encode the same set of scientific insights; patents, just like publications, re-

flect genuine shocks to scientific opportunities. We see the correlation between the onset of

patenting and the lagged flow, but not the stock, of publications as much more consistent

with the latter interpretation.14 The plausibility of this interpretation is reinforced by a

peculiar aspect of US patent law, which grants inventors a one-year grace period from the

date of publication for the filing of a patent application (Merges, 1997, p. 226). In other

words, an academic inventor wishing to maximize the effective life of a patent would apply

to the USPTO exactly 364 days after the date of publication, provided that he/she is willing

to forego patent protection in foreign jurisdictions.

Using the specification in Model (2) as a benchmark, Table 4b examines the influence of

the latent patentability of the scientist’s research on his/her propensity to enter the patenting

regime. We proceed with the analysis parallel to the approach taken in Table 4a. Model (5)

adds the flow of our research patentability score in year t−1 (i.e., based on our endogenous-to-

the-sample measure, the extent to which the papers a scientist has published in the previous

year are substantively similar to the work previously published by patenting scientists) and

the corresponding cumulative stock up to year t− 2. Here again, we find that only the flow

influences the likelihood of patenting. At the mean of the data, increasing the patentability

score by one standard deviation increases the likelihood of first patent application by 15%.

Moreover, as can be seen in Models (6) through (8), the conclusion is not altered when

using a more flexible functional form to model the distributed lag of the latent patentability

score.15 Just as in the case of publications, the onset of patenting appears simultaneous with

14This interpretation is also consistent with Murray and Stern’s (2005) analysis of paper-patent pairs,
but it suggests that this phenomenon is not confined to the single journal whose articles they analyze. Of
course, since we do not examine the actual content of patents and papers, we can only provide circumstantial
evidence in favor of a substantive linkage between these two forms of output. In practice, it seems likely that
patentable claims will be spread over a number of papers revolving around a common theme, some published
before, some after the filing of the patent application.

15Specifically, in Model (8), we replace the research patentability flow at t − 1 with two dummies: one
for observations that lie strictly above 0 but below the to 75th percentile of the research patentability flow
variable; and the other for observations above the 75th percentile of the variable.
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a change in the content of a scientist’s research in a direction that makes it more similar to

that of scientists who have already applied for patent rights. But because it is the flow, and

not the stock of this measure that seems to matter, the evidence is consistent with the idea

that a patent application does not constitute merely a response to changes in the formal

and informal incentives faced by academic scientists over their careers, but also reflects the

seizing of opportunities along a novel research trajectory.

Using Model (8) as the benchmark, Table 4c examines a variety of interactions between

known determinants of patenting behavior and the flurry of publications observed in Ta-

ble 4a. Model (9) interacts the flurry with five dummies corresponding to different levels of

experience. Although the patterns are not very pronounced, it appears that the magnitude

of the publication flurry required to shift a scientist into the patenting regime varies over

the life cycle and follows an inverted U-shape. In particular, it is during the first five to

eight years of the experience clock that the effect of the flurry is most pronounced. For life

scientists, this typically corresponds to their first job as established, independent investiga-

tors. The decrease observed in subsequent years is consistent with human capital vintage

effects that have been frequently mentioned (though not often estimated) in the economics

of science literature. Models (10) through (13) interact the flurry with different institutional

and contextual measures. We find that the magnitude of the flurry is smaller for scientists

working in “patent-intensive” universities (Model 10) and for scientists who have coauthors

who themselves have patented (Model 13). In other words, the evidence suggests that the

magnitude of the opportunity necessary to shift an individual into the patenting regime is

larger in academic environments in which the costs of patenting are higher, either because

of bureaucratic hurdles, or a lack of cultural support for involvement in commercial activity.

In summary, we find that individual rates of patenting respond to scientific opportunities,

and that patenting coincides with a genuine change in the content of these scientists’ research.

In addition, our results suggest that social influences operating in graduate school, in the

scientist’s current university, or through his/her “invisible college” of collaborators shape

the intensity of commercial activities among academics.
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Fixed-effects logit models. The results presented above suffer from two limitations. First,

they only pertain to the decision to apply for the first patent. For a sizable proportion of

scientists, patenting is a repeated event, and the determinants of patenting could differ in the

group of serial patenters. Moreover, one might object that our result regarding the flurry of

publications contemporaneous with patenting assumes that the lagged stock of publications

adequately captures differences in talent among scientists. It would be desirable to subject

this set of results to a more stringent test. For these reasons, Tables 5a, 5b and 5c replicate

the analyses presented in tables 4a, 4b and 4c using fixed-effects logit models. In these

models, patenting is treated as a repeated event, and there are as many observations in the

estimation sample as there are person-years for patenting scientists.16

Table 5a shows that the impact of the one-year lagged count of publications remains

even after accounting for time-invariant talent differences among scientists through fixed

individual effects, and that the inclusion of additional lags does not modify the result. We

interpret this finding as suggesting that within-scientist changes in scientific opportunities

influence their likelihood of patenting.

Similarly, Table 5b highlights the role of changes in the latent patentability of a scientist’s

research, which again appear to correlate with patenting events. The statistical significance

of these results is weaker than in the corresponding “cross-sectional” hazard rate models.

In Model (8), we partition the one-year lag of the patentability measure into three separate

dummy variables corresponding to 0, above 0 but below the 75th percentile, and above the

75th percentile. Using this more flexible specification, Model (8) demonstrates a statistically

significant influence of changes in latent research patentability on individual rates of patent-

ing. Finally, Table 5c replicates the specifications in Table 4c. While we cannot replicate the

results pertaining to the life cycle, the other results are qualitatively similar. Like the results

in Table 4c, the fixed effects logit specifications indicate that an environment conducive to

patenting and scientific opportunities are substitute inputs in the decision to patent among

“serial patenters.” In addition to the negative interactions between one-year lagged flow

of publications and the university patent count (Model 10) and that between the one-year

16We also drop the stock variables from the specifications, since they move too slowly to be separately
identified from the individual effects.
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lagged flow of publications and the coauthor patenting variable (Model 13), we also observe

a negative and marginally significant interaction with the number of scientists who have

founded companies or sit on advisory boards (Model 11).

5 Discussion and Conclusion

The policy debate regarding interactions between industry and academia in general, and aca-

demic patenting in particular, has often taken for granted the idea that patenting represents

a fundamental departure from the norms of the “Republic of Science.” According to this

view, academic researchers toil in relative obscurity by producing fundamental knowledge

up until the time they receive tenure; subsequently, they may monetize their reputation by

involving themselves in commercial pursuits. Patents, though not necessarily remunerative

in and of themselves, provide academic researchers with visibility and status in the world

of commerce, for example by contributing to the likelihood that they are invited to sit on

corporate advisory boards (Stuart and Ding, 2005).

The findings in this paper challenge the standard account. First and foremost, our

results suggest that patents and publications correspond to two types of output that have

more in common than previously believed. Certainly, the positive relationship between

patent applications and the flow, but not the stock, of publications suggest that patents

and papers encode similar pieces of knowledge, a fact exploited by Murray and Stern (2005)

in their investigation of the anti-commons hypothesis. Second, our results suggest that the

academic incentive system is evolving in ways that accommodate deviations from traditional

scientific norms of openness. Many patenting events in our data take place in the early

years of scientists’ careers, and the slope of the patent-experience curve has become steeper

with more recent cohorts of scientists. This finding dovetails with qualitative accounts that

emphasize that patents are becoming de rigueur on academic vitas in many institutions, and

are even considered legitimate forms of research output in promotion decisions.

If the present paper investigates the antecedents of academic patenting, much work re-

mains to be done on the effects of this now-prevalent practice on the rate of scientific progress.

Does applied research (as embodied in patents) crowd out the fundamental pursuit of knowl-
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edge (as measured by publications)? Answering this question is difficult, because patenting

is a choice variable for scientists, and the outcome of a decision that could easily reflect

expectations of future scientific productivity. Our paper provides an important input into

this analysis by presenting the results of a selection equation whose estimation is necessary

to recover causal effects of patenting on scientific output (Azoulay et al., 2005a). But our

results also alert us to the possibility that the substantive content of post-patent publica-

tions might be different from these scientists’ pre-patent output, leading naturally to the

study of the effect of patenting on the direction of scientific progress. Our measure of latent

patentability, whose construction is an important contribution of this paper, can be used on

the left-hand side of a regression equation to investigate this important question.

Finally, our findings suggest that social contagion might be an important mechanism

through which the practice of academic patenting diffuses among the population of life sci-

entists. The result that scientists whose coauthors patent are more likely to patent themselves

is consistent with genuine “peer effects,” but it is also consistent with assortative matching

of coauthors along some other dimension correlated with patenting — such as scientific pro-

ductivity. Distinguishing between these competing hypotheses remains a valuable goal for

future research.
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Table 1 
Top 15 Scientific Disciplines in the Sample 

UMI Subject  
Code UMI Subject Description Frequency 

487; 303 Biochemistry 861 (22.2%) 

306 Biology, General 568 (14.6%) 

410 Biology, Microbiology 469 (12.1%) 

419 Health Sciences, Pharmacology 240 (6.2%) 

490 Chemistry, Organic 213 (5.5%) 

786 Biophysics, General 211 (5.4%) 

369 Biology, Genetics 191 (4.9%) 

433 Biology, Animal Physiology 171 (4.4%) 

982 Health Sciences, Immunology 167 (4.3%) 

307 Biology, Molecular 102 (2.6%) 

301 Bacteriology 63 (1.6%) 

287 Biology, Anatomy 54 (1.4%) 

571 Health Sciences, Pathology 52 (1.3%) 

349 Psychology, psychobiology 37 (1.0%) 

572 Health Sciences, Pharmacy 34 (0.9%) 

Legend: Table 1 reports the Top 15 disciplines from which our sample was 
drawn. These disciplines have spawned the greatest number of biotechnology 
firm founders, scientific advisors and executives. The table also reports the 
frequency and the proportion of scientists in our sample for each of these 15 
scientific disciplines. 
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Table 2  
Descriptive Statistics 

Mean Std. Dev. Min. Max. 

Time-varying (59,069 person-year observations) 

Experience 10.22 7.127 1 32 
Patent flow dummy 0.039 0.194 0 1 
Patent regime dummy 0.125 0.330 0 1 
Publications flow 1.677 2.667 0 100 
Publications stock 16.48 27.68 0 645 
Research patentability flow 0.084 0.108 0 5.185 
Research patentability stock 0.460 0.417 0 5.659 
Collaboration tie with company scientists 0.263 0.441 0 1 
Average number of identified coauthors per paper 0.131 0.248 0 10 
Identified coauthors have patents 0.200 0.400 0 1 
Employer graduate school in top 20 0.232 0.422 0 1 
Employer has TTO 0.489 0.500 0 1 
Employer patent stock (in hundred) 0.717 1.450 0 22 
Employer entrepreneurial faculty count 8.634 22.89 0 199 
Calendar year 1986 7.741 1968 1999 

Time-invariant (3,884 observations) 

Ph.D. univ. grad. school in top 20 0.308 0.462 0 1 
Ph.D. univ. 5-yr patent stock (in hundred) 19.02 40.89 0 566 
Ph.D. univ. entrepreneurial faculty count 2.294 8.304 0 182 

 
 
.  
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Table 3 
Scientists’ Mean Research and Employer Characteristics at Five Career 

Stages by Patent Application Status 

 Experience = 5 Experience = 10  Experience = 15 Experience = 20 Experience = 25

Scientist Has at least one patent 
application Yes No Yes No Yes No Yes No Yes No

Research publications stock 9.610 4.456 23.082 12.485 39.579 22.003 55.917 32.843 77.679 41.747

Research patentability stock 0.342 0.244 0.613 0.491 0.856 0.662 1.021 0.788 1.103 0.833
Count of collaboration ties with company 
scientists 0.968 0.206 2.282 0.697 3.562 1.280 4.838 2.168 7.540 2.562

Identified coauthors have patents 0.197 0.081 0.367 0.176 0.525 0.265 0.611 0.337 0.636 0.396

Employer grad. school ranks in top20 0.261 0.266 0.261 0.220 0.249 0.196 0.195 0.182 0.187 0.170

Employer has TTO 0.463 0.383 0.576 0.482 0.698 0.586 0.735 0.682 0.829 0.727

Employer Patent stock (in 100) 0.738 0.537 1.072 0.650 1.223 0.741 1.279 1.089 1.571 1.212

Employer entrepreneurial faculty count 7.110 6.260 11.815 8.683 14.983 10.736 14.723 12.905 16.652 12.251

Observations 218 3612 330 2286 354 1503 339 978 187 454

Legend: Table 3 reports the mean research and employer characteristics measured at five different stages in scientists’ career: the 5th, 10th, 15th, 20th 
and 25th year after the scientist was granted a Ph.D. Within each career stage, the table is further broken out by whether a scientist has ever received 
a patent.
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Table 4a 
First Patenting Event — Discrete-Time Hazard Models 

 (1) (2) (3) (4)
0.700 0.691 0.648 0.625Experience [1, 4] 
(0.224)** (0.240)** (0.238)** (0.237)**

0.627 0.593 0.537 0.490Experience [5, 8] 
(0.211)** (0.228)** (0.227)* (0.226)*
0.609 0.573 0.526 0.487Experience [9, 15] 
(0.197)** (0.212)** (0.212)* (0.211)*
0.547 0.526 0.502 0.482Experience [16, 22] 
(0.194)** (0.201)** (0.201)* (0.201)*
0.576 0.478 0.474 0.471Collaboration tie with company scientistst-1 (0.093)** (0.098)** (0.099)* (0.100)**

0.319 0.360 0.364 0.370Average number of identified coauthors per paper t-1 (0.124)* (0.122)** (0.123)* (0.123)**

0.522 0.419 0.416 0.412Identified Coauthors have patent t-1 (0.096)** (0.104)** (0.105)* (0.106)**

-0.058 -0.065 -0.065 -0.066Ph.D. University Grad School in Top 20  
(0.086) (0.087) (0.087) (0.087)
0.002 0.002 0.002 0.002Ph.D. University 5-year Patent Stock 
(0.001)† (0.001)† (0.001)† (0.001)†

0.004 0.004 0.004 0.004Ph.D. University Entrepreneurial Faculty Count 
(0.006) (0.006) (0.006) (0.006)
-0.034 -0.052 -0.054 -0.054Employer Grad School in Top 20 
(0.104) (0.105) (0.105) (0.106)
0.120 0.106 0.105 0.103Employer has a TTOt-1 (0.092) (0.093) (0.093) (0.094)
0.046 0.044 0.044 0.044Employer Patent Stockt-1 (0.030) (0.031) (0.032) (0.032)
-0.001 -0.001 -0.001 -0.001Employer Entrepreneurial Faculty Countt-1 (0.002) (0.002) (0.002) (0.002)

-0.002   Research Publication Stockt-2 (0.003)   
-0.004  Research Publication Stockt-3 (0.003)  
 -0.006Research Publication Stockt-4  (0.003)†

0.079 0.069 0.065Research Publication Flowt-1 (0.021)** (0.020)* (0.020)**

0.025 0.016Research Publication Flowt-2 (0.020) (0.022)
 0.025Research Publication Flowt-3  (0.020)

-9.010 -9.043 -9.000 -8.973Constant 
(1.022)** (1.026)** (1.025)* (1.025)**

Number of observations 52,466 52,466 52,466 52,466
Number of researchers 3,884 3,884 3,884 3,884
Number of first patenting events 758 758 758 758
Log-likelihood -3788.78 -3766.02 -3765.05 -3764.17
Wald Chi2 313.42 321.71 323.42 327.00
Model d.f. 47 49 50 51
Pseudo-R2 0.04 0.05 0.05 0.05
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Table 4b 
First Patenting Event — Discrete-Time Hazard Models 

 (5) (6) (7) (8)
0.791 0.846 0.886 0.761Experience [1, 4] (0.241)** (0.243)** (0.250)** (0.241)**

0.598 0.576 0.564 0.593
Experience [5, 8] (0.227)** (0.229)* (0.232)* (0.227)**

0.553 0.530 0.518 0.544
Experience [9, 15] (0.211)** (0.211)* (0.212)* (0.211)**

0.511 0.498 0.491 0.499
Experience [16, 22] (0.199)* (0.199)* (0.199)* (0.200)*

0.419 0.401 0.396 0.429
Collaboration tie with company scientistst-1 (0.095)** (0.094)** (0.094)** (0.095)**

0.302 0.312 0.322 0.300
Average number of identified coauthors per paper t-1 (0.127)* (0.128)* (0.128)* (0.125)*

0.363 0.353 0.347 0.355
Identified Coauthors have patent t-1 (0.102)** (0.101)** (0.101)** (0.101)**

-0.071 -0.075 -0.076 -0.078
Ph.D. University Grad School in Top 20  (0.087) (0.087) (0.087) (0.087)

0.002 0.002 0.002 0.002
Ph.D. University 5-year Patent Stock (0.001)† (0.001)† (0.001)† (0.001)†

0.005 0.005 0.005 0.005
Ph.D. University Entrepreneurial Faculty Count (0.006) (0.006) (0.006) (0.005)

-0.052 -0.051 -0.050 -0.056
Employer Grad School in Top 20 (0.104) (0.104) (0.104) (0.104)

0.103 0.101 0.100 0.099
Employer has a TTOt-1 (0.094) (0.094) (0.094) (0.093)

0.051 0.050 0.050 0.049
Employer Patent Stockt-1 (0.032) (0.032) (0.032) (0.032)

-0.001 -0.001 -0.001 -0.001
Employer Entrepreneurial Faculty Countt-1 (0.002) (0.002) (0.002) (0.002)

-0.002 -0.002 -0.002 -0.003
Research Publication Stockt-2 (0.002) (0.002) (0.003) (0.003)

0.060 0.059 0.060 0.072
Research Publication Flowt-1 (0.016)** (0.016)** (0.016)** (0.017)**

0.014  0.107
Research Patentability Stockt-2 (0.133)  (0.125)

0.007  
Research Patentability Stockt-3 (0.144)  

-0.003 
Research Patentability Stockt-4 (0.154) 

1.787 1.713 1.693 
Research Patentability Flowt-1 (0.459)** (0.465)** (0.469)** 

-0.583 -0.552 
Research Patentability Flowt-2 (0.495) (0.491) 

-0.216 
Research Patentability Flowt-3 (0.498) 

 0.465
Intermediate Research Patentability Flowt-1   (0.097)**

 0.552
High Research Patentability Flowt-1  (0.110)**

-8.885 -8.714 -8.648 -9.206
Constant (1.026)** (1.028)** (1.030)** (1.027)**

Number of observations 52,064 52,064 52,064 52,466
Number of researchers 3,884 3,884 3,884 3,884
Number of first patenting events 758 758 758 758
Log-likelihood -3,718.31 -3,714.07 -3,713.31 -3,747.64
Wald Chi2 369.26 377.28 378.67 372.57
Model d.f. 52 54 56 52
Pseudo-R2 0.05 0.05 0.05 0.05



 30

Table 4c 
First Patenting Event — Discrete-Time Hazard Models 

 (9) (10) (11) (12) (13) 
0.700 0.757 0.775 0.807 0.862 

Experience [1, 4] (0.256)** (0.242)** (0.241)** (0.243)** (0.246)** 
0.474 0.586 0.604 0.635 0.676 

Experience [5, 8] (0.230)* (0.229)* (0.228)** (0.230)** (0.232)** 
0.491 0.533 0.548 0.578 0.610 

Experience [9, 15] (0.218)* (0.211)* (0.211)** (0.213)** (0.214)** 
0.536 0.480 0.501 0.517 0.528 

Experience [16, 22] (0.210)* (0.198)* (0.199)* (0.200)** (0.199)** 
0.388 0.408 0.419 0.424 0.396 

Collaboration tie with company scientistst-1 (0.096)** (0.095)** (0.095)** (0.095)** (0.095)** 
0.331 0.314 0.306 0.305 0.289 

Average number of identified coauthors per paper t-1 (0.125)** (0.125)* (0.125)* (0.125)* (0.127)* 
0.328 0.335 0.350 0.346 0.558 

Identified Coauthors Have Patents t-1 (0.102)** (0.101)** (0.101)** (0.101)** (0.123)** 
-0.088 -0.089 -0.082 -0.081 -0.089 

Ph.D. University Grad School in Top 20  (0.087) (0.087) (0.087) (0.087) (0.087) 
0.002 0.002 0.002 0.002 0.002 

Ph.D. University 5-year Patent Stock (0.001) (0.001) (0.001)† (0.001)† (0.001)† 
0.006 0.005 0.005 0.005 0.005 

Ph.D. University Entrepreneurial Faculty Count (0.005) (0.005) (0.006) (0.005) (0.006) 
-0.042 -0.034 -0.050 -0.048 -0.042 

Employer Grad School in Top 20 (0.104) (0.103) (0.104) (0.104) (0.103) 
0.086 0.093 0.090 0.183 0.090 

Employer has a TTOt-1 (0.094) (0.093) (0.094) (0.112) (0.094) 
0.052 0.072 0.050 0.049 0.050 

Employer Patent Stockt-1 (0.032)† (0.030)* (0.031) (0.031) (0.031) 
-0.001 -0.001 0.001 -0.001 -0.001 

Employer Entrepreneurial Faculty Countt-1 (0.002) (0.002) (0.002) (0.002) (0.002) 
0.001 -0.002 -0.002 -0.002 0.001 

Research Publication Stockt-2 (0.003) (0.003) (0.003) (0.003) (0.003) 
 0.096 0.086 0.098 0.116 

Research Publication Flowt-1  (0.022)** (0.020)** (0.030)** (0.028)** 
0.067 0.074 0.090 0.091 0.028 

Research Patentability Stockt-2 (0.127) (0.126) (0.125) (0.125) (0.131) 
0.432 0.443 0.454 0.453 0.418 

Intermediate Research Patentability Flowt-1  (0.101)** (0.098)** (0.098)** (0.099)** (0.101)** 
0.527 0.537 0.546 0.542 0.516 

High Research Patentability Flowt-1 (0.113)** (0.111)** (0.110)** (0.111)** (0.113)** 
0.110     

Publication Flowt-1× Experience [1,4] (0.073)     
0.124     

Publication Flowt-1× Experience [5,8] (0.024)**     
0.076     

Publication Flowt-1× Experience [9,15] (0.023)**     
0.027     

Publication Flowt-1× Experience [16,22] (0.026)     
0.025     

Publication Flowt-1× Experience [23,29] (0.023)     
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 (9) (10) (11) (12) (13) 
 -0.014    Publication Flowt-1 

× Employer Patent Stockt-1  (0.006)*    
  -0.001   Publication Flowt-1 

× Employer Entrepreneurial Facultyt-1   (0.001)   
   -0.042  Publication Flowt-1 

× Employer has a TTOt-1    (0.031)  
    -0.084 Publication Flowt-1 

× Identified Coauthors have patent t-1     (0.030)** 
-9.163 -9.216 -9.226 -9.271 -9.320 

Constant (1.029)** (1.027)** (1.027)** (1.028)** (1.028)** 

Number of observations 52,466 52,466 52,466 52,466 52,466 
Number of researchers 3,884 3,884 3,884 3,884 3,884 

Number of first patenting events 758 758 758 758 758 
Log-likelihood -3,741.34 -3,743.40 -3,746.02 -3,745.79 -3,740.71 
Wald Chi2 391.68 388.76 380.13 377.52 381.33 
Model d.f. 56 53 53 53 53 
Pseudo-R2 0.06 0.06 0.06 0.06 0.06 

 
Notes: 
(1) For all researchers in the sample, only observations on or before the year of the first patenting event or censoring 
have been used, i.e., for all researchers that have patented, the observations after the year of their first granted patent 
application were not used in the analysis. 
(2) Models (5)-(7) use a restricted sample, in which 402 person-year observations in the unrestricted sample were 
excluded from the analysis. These 402 observations account for the top 1% of the research patentability flow measure. 
(3) All models control for Ph.D. subject areas and calendar year dummies. 
(4) Experience [23, 29] is the base category. 
(5) A dummy variable indicating whether the researcher has zero publication in year t-1 is included in models (5)-(7), 
though not reported in the table; a dummy variable indicating whether the researcher has zero publication in year t-2 is 
included in models (6) and (7), though not reported in the table; a dummy variable indicating whether the researcher 
has zero publication in year t-3 is included in model (7), though not reported in the table. 
(6) Robust standard errors in parentheses, clustered by scientist. 
(7) †significant at 10%; *significant at 5%; **significant at 1%.  
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Table 5a 
Logit Models of Patenting with Scientist Fixed Effects 

 (1) (2) (3) (4)
0.293 0.296 0.301 0.303 

Experience [1, 4] 
(0.318) (0.318) (0.319) (0.319) 
0.652 0.631 0.632 0.632 

Experience [5, 8] 
(0.268)* (0.268)* (0.268)* (0.268)* 
0.692 0.666 0.666 0.667 

Experience [9, 15] 
(0.202)** (0.202)** (0.202)** (0.202)** 
0.534 0.512 0.511 0.511 

Experience [16, 22] 
(0.132)** (0.133)** (0.133)** (0.133)** 
0.388 0.341 0.338 0.338 

Collaboration tie with company scientistst-1 (0.096)** (0.097)** (0.097)** (0.098)** 
0.367 0.385 0.388 0.389 

Average number of identified coauthors per paper t-1 (0.148)* (0.148)** (0.148)** (0.149)** 
-0.025 -0.059 -0.062 -0.062 

Identified Coauthors Have Patentst-1 (0.100) (0.101) (0.101) (0.101) 
0.066 0.085 0.087 0.087 

Employer Grad School in Top 20 
(0.144) (0.144) (0.144) (0.144) 
0.098 0.101 0.101 0.101 

Employer has a TTOt-1 (0.094) (0.094) (0.094) (0.094) 
-0.010 -0.010 -0.010 -0.010 

Employer Patent Stockt-1 (0.031) (0.031) (0.031) (0.031) 
0.005 0.006 0.006 0.006 

Employer Entrepreneurial Faculty Countt-1 (0.002)** (0.002)** (0.002)** (0.002)** 
 0.036 0.034 0.034 

Research Publication Flowt-1  (0.011)** (0.011)** (0.011)** 
  0.004 0.004 

Research Publication Flowt-2   (0.011) (0.012) 
   0.001 

Research Publication Flowt-3    (0.012) 

Number of observations 14,507 14,507 14,507 14,507 
Number of researchers 758 758 758 758 
Log-likelihood -3,932.78 -3,927.03 -3,926.97 -3,926.97 
Wald Chi2 805.64 817.13 817.25 817.25 
Model d.f. 20 21 22 23 
Pseudo-R2 0.09 0.09 0.09 0.09 
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Table 5b 
Logit Models of Patenting with Scientist Fixed Effects 

 (5) (6) (7) (8)
0.249 0.273 0.284 0.283 

Experience [1, 4] 
(0.319) (0.319) (0.323) (0.318)
0.540 0.520 0.511 0.596 

Experience [5, 8] 
(0.269)* (0.270)† (0.270)† (0.268)*

0.593 0.576 0.570 0.633 
Experience [9, 15] 

(0.203)** (0.203)** (0.204)** (0.202)**

0.482 0.475 0.471 0.494 
Experience [16, 22] 

(0.133)** (0.133)** (0.133)** (0.133)**

0.319 0.308 0.307 0.336 
Collaboration tie with company scientistst-1 (0.098)** (0.098)** (0.099)** (0.097)**

0.332 0.332 0.336 0.336 
Average number of identified coauthors per paper t-1 (0.151)* (0.152)* (0.152)* (0.150)*

-0.063 -0.067 -0.066 -0.072 
Identified Coauthors Have Patentst-1 (0.101) (0.102) (0.102) (0.101)

0.082 0.084 0.084 0.092 
Employer Grad School in Top 20 

(0.146) (0.146) (0.146) (0.144)
0.089 0.087 0.086 0.097 

Employer has a TTOt-1 (0.095) (0.095) (0.095) (0.094)
-0.011 -0.012 -0.012 -0.011 

Employer Patent Stockt-1 (0.031) (0.031) (0.031) (0.031)
0.005 0.006 0.006 0.005 

Employer Entrepreneurial Faculty Countt-1 (0.002)** (0.002)** (0.002)** (0.002)**

0.026 0.025 0.025 0.033 
Research Publication Flowt-1 (0.011)* (0.011)* (0.011)* (0.011)**

0.735 0.719 0.712  
Research Patentability Flowt-1 (0.383)† (0.383)† (0.383)†  

 -0.394 -0.390  
Research Patentability Flowt-2  (0.371) (0.370)  

  -0.359  
Research Patentability Flowt-3   (0.373)  

   0.173 
Intermediate Research Patentability Flowt-1     (0.080)*

   0.252 
High Research Patentability Flowt-1    (0.083)**

Number of observations 14,332 14,332 14,332 14,507 
Number of researchers 755 755 755 758 
Log-likelihood -3,881.96 -3,881.39 -3,881.39 -3,922.42
Wald Chi2 816.11 817.24 817.24 826.36 
Model df 23 24 25 23 
Pseudo-R2 0.10 0.10 0.10 0.10 
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Table 5c 
Logit Models of Patenting with Scientist Fixed Effects 

 (9) (10) (11) (12) (13)
0.208 0.279 0.289 0.281 0.283Experience [1, 4] 

(0.336) (0.318) (0.318) (0.318) (0.318)
0.645 0.592 0.594 0.592 0.574Experience [5, 8] 

(0.289)* (0.268)* (0.268)* (0.268)* (0.268)*

0.664 0.628 0.627 0.628 0.612Experience [9, 15] 
(0.225)** (0.202)** (0.203)** (0.202)** (0.202)**

0.671 0.495 0.501 0.491 0.486Experience [16, 22] 
(0.161)** (0.133)** (0.133)** (0.133)** (0.133)**

0.332 0.333 0.328 0.334 0.311Collaboration tie with company scientistst-1 (0.098)** (0.097)** (0.097)** (0.097)** (0.097)**

0.302 0.331 0.337 0.334 0.303Average number of identified coauthors per paper t-1 (0.154)* (0.150)* (0.150)* (0.150)* (0.152)*

-0.042 -0.067 -0.065 -0.067 0.148Identified Coauthors Have Patentst-1 (0.102) (0.101) (0.101) (0.101) (0.123)
0.090 0.082 0.081 0.089 0.078Employer Grad School in Top 20 

(0.145) (0.145) (0.145) (0.145) (0.145)
0.099 0.090 0.092 0.150 0.093Employer has a TTOt-1 (0.094) (0.094) (0.094) (0.110) (0.094)
-0.007 0.030 -0.007 -0.010 -0.010Employer Patent Stockt-1 (0.031) (0.035) (0.031) (0.031) (0.031)
0.006 0.006 0.008 0.005 0.005Employer Entrepreneurial Faculty Countt-1 (0.002)** (0.002)** (0.002)** (0.002)** (0.002)**

0.046 0.047 0.046 0.071Research Publication Flowt-1 (0.012)** (0.012)** (0.017)** (0.016)**

0.157 0.172 0.172 0.171 0.160Intermediate Research Patentability Flowt-1  (0.080)† (0.080)* (0.080)* (0.080)* (0.080)*

0.240 0.252 0.254 0.252 0.241High Research Patentability Flowt-1 (0.083)** (0.083)** (0.083)** (0.083)** (0.083)**

0.111   Publication Flowt-1× Experience [1,4] 
(0.030)**   
0.034   Publication Flowt-1× Experience [5,8] 

(0.023)   
0.042   Publication Flowt-1× Experience [9,15] 

(0.016)**   
0.005   Publication Flowt-1× Experience [16,22] 

(0.014)   
0.050   Publication Flowt-1× Experience [23,29] 

(0.018)**   
-0.011   Publication Flowt-1 

× Employer Patent Stockt-1 (0.005)*   
-0.001  Publication Flowt-1 

× Employer Entrepreneurial Facultyt-1 (0.000)*  
 -0.016Publication Flowt-1 

× Employer has a TTOt-1  (0.018)
  -0.055Publication Flowt-1 

× Identified Coauthors have patent t-1   (0.018)**

Number of observations 14,507 14,507 14,507 14,507 14,507
Number of researchers 758 758 758 758 758
Log-likelihood -3,915.25 -3,919.65 -3,919.74 -3,922.01 -3,917.53
Wald Chi2 840.71 831.90 831.71 827.19 836.14
Model d.f. 27 24 24 24 24
Pseudo-R2 0.10 0.10 0.10 0.10 0.10
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Notes: 
(1) Models (5)-(7) use a restricted sample, in which 175 person-year observations in the unrestricted sample were excluded 
from the analysis. These 175 observations account for the top 1% of the research patentability flow measure. 
(2) All models control for period dummies 1975-76, 1977-79, 1980-82, 1983-85, 1986-88, 1989-91, 1992-94, 1995-97, 1998-99; 
base category is 1967-74. 
(3) Experience [23, 29] is the base category. 
(4) A dummy variable indicating whether the researcher has zero publication in year t-1 is included in models (5)-(7), though 
not reported in the table; a dummy variable indicating whether the researcher has zero publication in year t-2 is included in 
models (6) and (7), though not reported in the table; a dummy variable indicating whether the researcher has zero 
publication in year t-3 is included in model (7), though not reported in the table. 
(5) †significant at 10%; *significant at 5%; **significant at 1%. 
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Figure 1: Distribution of Patent Count for 
Patenting Scientists 
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Legend: Figure 1 plots the histogram of the distribution of patents 
received by our 3,884 scientists over the complete sample period. 

 
 

Figure 2: Distribution of Publication Count for 
Patenting and Non-Patenting Scientists 
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Legend: Figure 2 plots the histogram for the distribution of publication 
counts for our 3,884 scientists over the complete sample period, 
separately for patenting and non-patenting scientists. 
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Figure 3: Distribution of Patenting Activity over Time 

 
Legend: Figure 3 plots the number of patent applications filed by the 
scientists in each year and the proportion of scientists that have filed 
one or more patent applications in each year. 

 
 
 
 

Figure 4: Unconditional Hazard of First Patent 
Application by Ph.D. Cohort 
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Legend: Figure 4 plots the kernel-smoothed estimate of the 
unconditional hazard of first patent application for three cohorts 
of scientists. 
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Figure 5: Patent Coinventorship Patterns over 
Professional Experience 
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Legend: A “solo” inventor patent is one that lists a single inventor. 
A “3 or more inventor” patent is one that lists at least three 
inventors. Proportions represent the percent of all first-time 
patents applied for by academic scientists in a given post-Ph.D. 
experience year that belong to either of these two categories. 



Data Appendix: Keyword Weights

wi
jt, the patentability weight for each keyword j in year t is defined as:

wi
jt =

∑
s∈Ip

t −{i}
msjtP
k mskt∑

s∈Inp
t −{i}msjt

where msjt denotes the number of times keyword j has appeared in articles published up to year t
by scientist s, Ip

t is the subset of scientists in our sample that have already applied for one or more
patents as of year t, and Inp

t is the subset of scientists in our sample that have not yet applied for
any patent as of year t. The weight is also indexed by scientist i, because i’s publications are taken
out of the set of articles used to compute the formula above.

To create the numerator of wi
jt, we first create a row-normalized matrix with each scientist in the

patenting regime listed in a row and each of the keywords used to describe their papers up to year
t listed in a column. The sjth cell in the matrix, [msjt/

∑
k mskt], corresponds to the proportion of

title keywords for scientist s that corresponds to keyword j. We then take the column sums from
this matrix, i.e., we sum the contributions of individual patenting scientists for keyword j. Turning
next to the denominator, we proceed in a similar manner, except that the articles considered only
belong to the set of scientists who have not applied for patents as of year t. The numerator is then
deflated by the frequency of use for j by non-patenters (in the rare case of keywords exclusively
used by patenters, we substitute the number 1 for the frequency).

The weights wi
jt are large for keywords that have appeared with disproportionate frequency as

descriptors of papers written by scientists already in the patenting regime, relative to scientists not
yet in the patenting regime.

Two things should be noted about the construction of these weights. First, wi
jt = 0 for all

keywords that have never appeared in the titles of papers written by scientists that have patented
before t. Second, the articles written by scientist i him/herself do not contribute at all to the
weights wi

jt. Therefore, no scientist can directly influence year-to-year changes in these weights.

The final step for each scientist i in the dataset is to produce a list of the keywords in the
individual’s papers published in year t, calculate the proportion of the total represented by each
keyword j, apply the appropriate keyword weight wi

j,t−1, and sum over keywords to produce a
composite score. The resulting variable increases in the degree to which keywords in the titles of
a focal scientist’s papers have appeared relatively more frequently in the titles of other academics
who have applied for patents. This score is entered in the regressions to control for the research
patentability of scientists’ areas of specialization.

To illustrate the construction of the research patentability measure, Table A1 lists some repre-
sentative keywords, along with their patentability weights in the year 2000. Consider the keyword
“Endoplasmic-Reticulum” (italicized in the table) in group 1. In 2000, it had previously appeared
22 times as a keyword in one or more articles of scientists who had patented prior to 2000. Among
them is Carlos B. Hirschberg, professor and chair of molecular and cell biology at Boston Uni-
versity, who is listed as an inventor on a patent filed in 1996. To compute the numerator of the
patentability weight for this keyword, we begin with the fraction of Hirschberg’s research using
“Endoplasmic-Reticulum” in the title. In his 29 ISI-listed research papers published between 1970,
when he was granted a Ph.D. and 2000, 234 unique keywords have been used a total of 445 times.
The word “Endoplasmic-Reticulum” was used 5 times, hence the fraction of Hirschberg’s research
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stock devoted to “Endoplasmic-Reticulum” is 0.011. This procedure is repeated for the other 21
patenting scientists who have used the word. The sum of these fractions taken over all 21 patenting
scientists is reported in the second column of the table. Next, to compute the denominator in the
above equation, we examine the keywords of all scientists who had not yet received a patent by 2000
for the appearance of Endoplasmic-Reticulum. In the research publications of 3,841 such scientists,
this keyword has appeared on 46 occasions. The patentability weight for Endoplasmic-Reticulum is
obtained by dividing the sum of proportions of keyword use among patenting scientists (column 2)
by the frequency of use for this same keyword among non-patenting scientists (column 3).
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Table A1: Sample Title Keywords in the year 2000 

 (1) (2) (3) (4) 

 

Number of times 
keyword used by 

patenting 
scientists 

Sum over all 
patenting scientists 

of keyword’s 
proportion of total 

keywords used 

Number of 
times keyword 
used by non-

patenting 
scientists 

Keyword weight:
Column (2) 

/ Column (3) 

 
 

Group 1  
Polyhedrosis-Virus 31 0.144 14 1.030 
Trypanosoma-Cruzi 37 0.123 14 0.877 
Copolymerization 29 0.067 11 0.612 
Schistosoma-Mansoni 44 0.083 17 0.491 
Phosphoribosyltransferase 36 0.092 27 0.342 
Autocrine 33 0.073 22 0.330 
Follicle-Stimulating-Hormone 45 0.061 19 0.323 
Etoposide 34 0.052 17 0.306 
Atherosclerosis 43 0.101 35 0.289 
Methotrexate 73 0.170 63 0.271 
Endoplasmic-Reticulum 54 0.114 46 0.247 
Antitumor 106 0.220 92 0.240 
Integrin 113 0.229 98 0.234 
Leukotriene 43 0.078 34 0.231 
Monooxygenase 38 0.051 33 0.156 

Group 2     
Enzyme 498 1.069 1148 0.097 
Escherichia-Coli 552 3.251 1500 0.093 
RNA 393 1.383 1097 0.120 
Transcription 385 1.795 974 0.120 
Receptor 1,328 0.941 3513 0.097 

Group 3     
Tropomyosin 7 0.012 62 0.015 
Peroxisomal 6 0.023 56 0.023 
Aplysia 4 0.015 102 0.026 
Photosystem-Ii 4 0.006 80 0.007 
Dynein 3 0.038 89 0.062 

Legend: To illustrate the construction of keyword weights, we have chosen representative words in three categories. Group 1 
keywords are typical of those that appear frequently in the work of patenting scientists, and infrequently in the work of non-
patenting scientists. These words receive high patentability weights. Group 2 comprises keywords that occur frequently in the 
journal articles of both patenting and non-patenting scientists. Words in this group garner intermediate weights. Group 3 
contains keywords that are very common in the research of non-patenting scientists but uncommon in the work of patenters. In 
consequence, these keywords receive low weight. 
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