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ABSTRACT

In both corporate finance and asset pricing empirical work, researchers are often confronted with

panel data. In these data sets, the residuals may be correlated across firms and across time, and OLS

standard errors can be biased. Historically, the two literatures have used different solutions to this

problem. Corporate finance has relied on Rogers standard errors, while asset pricing has used the

Fama-MacBeth procedure to estimate standard errors. This paper will examine the different methods

used in the literature and explain when the different methods yield the same (and correct) standard

errors and when they diverge. The intent is to provide intuition as to why the different approaches

sometimes give different answers and give researchers guidance for their use.
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1 I searched papers published in the Journal of Finance, the Journal of Financial Economics, and the Review
of Financial Studies in the years 2001- 2004 for a description of how the coefficients and standard errors were estimated
in a panel data set. I included both standard linear regressions as well as non-linear estimation techniques such as logits
and tobits in my survey. Panel data sets are data sets where observations can be grouped into clusters (e.g. multiple
observations per firm, per industry, per year, or per country). I included only papers which reported at least five
observations in each dimension (e.g. firms and years). 207 papers met the selection criteria. Papers which did not report
the method for estimating the standard errors, or reported correcting the standard errors only for heteroscedasticity (i.e.
White standard errors which are not robust to within cluster dependence), were coded as not having corrected the
standard errors for within cluster dependence. Where the paper’s description was ambiguous, I contacted the authors.
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I) Introduction

It is well known that OLS standard errors are correct when the residuals are independent and

identically distributed. When the residuals are correlated across observations, OLS standard errors

can be biased and either over or underestimate the true variability of the coefficient estimates.

Although the use of panel data sets (e.g. data sets that contain observations on multiple firms in

multiple years) is common, the way that researchers have addressed possible biases in the standard

errors varies widely. In recently published finance papers which include a regression on panel data,

forty-three percent of the papers did not report adjusting the standard errors for possible dependence

in the residuals.1 Approaches for estimating the coefficients and standard errors in the presence of

within cluster correlation varied among the remaining papers. 34 percent of the papers estimated

both the coefficients and the standard errors using the Fama-MacBeth procedure (Fama-MacBeth,

1973). 28 percent of the papers included dummy variables for each cluster (e.g. for each firm). The

remaining two methods used OLS (or an analogous method) to estimate the coefficients but reported

standard errors adjusted for correlation within a cluster. Eight percent of the papers adjusted the

standard errors using the Newey-West procedure (Newey and West, 1987) modified for use in a

panel data set, while 23 percent of the papers reported Rogers standard errors (Williams, 2000,

Rogers, 1993, Moulton, 1990, Moulton, 1986) which are White standard errors adjusted to account

for possible correlation within a cluster. These are also called clustered standard errors.
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Although the literature has used a diversity of methods to estimate standard errors in panel

data sets, it has provided little guidance to researchers as to when a given method is appropriate.

Since the methods can sometimes produce different estimates it is important to understand how the

methods compare, when they will produce different estimates of the standard errors, and when they

differ how should researchers choose among the estimates. This is the paper’s objective.

There are two general forms of dependence which are most common in finance applications.

They will serve as the basis for the analysis. The residuals of a given firm may be correlated across

years (time series dependence). I will call this a firm effect. Alternatively, the residuals of a given

year may be correlated across firms (cross-sectional dependence). I will call this a time effect. I will

simulate panel data set with both forms of dependence, first individually and then jointly. With the

simulated data, I can estimate the coefficients and standard errors using each of the methods and

compare their performance. Section II contains the standard error estimates in the presence of a fixed

firm effect. Both the OLS and the Fama-MacBeth standard errors are biased downward and the

magnitude of this bias is increasing in the size of the firm effect. The Rogers standard errors are

unbiased as they account for the dependence created by the firm effect. The Newey-West standard

errors, as modified for panel data, are also biased but their bias is small.

In section III, the same analysis is conducted with a time effect instead of a firm effect. Since

the Fama-MacBeth procedure is designed to address a time effect, not a firm effect, the Fama-

MacBeth standard errors are unbiased and the coefficient estimates are more efficient than the OLS

estimates. The intuition of these first two sections carries over to Section IV, were I simulate data

with both a firm and a time effect. Thus far, the firm effect has been specified as a constant effect

(e.g. does not decay over time). In practice, the firm effect may decay over time and so the
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Yit ' Xit β % εit (1)

correlation between residuals declines as the time between them grows. In Section V, I simulate data

with a more general correlation structure. This not only allows me to compare OLS, Rogers, and

Fama-MacBeth standard errors in a more general setting, it also allows me to access the relative

benefit of using fixed effects (firm dummies) to estimate the coefficients and whether this changes

the way researchers should estimate standard errors. Most papers do not report standard errors

estimated by multiple methods. Thus in Section VI, I apply the various estimation techniques to two

real data sets and compare their relative performance. This allows me to provide guidance as to

which technique should be used in actual situations. It allows me to show how differences in

standard error estimates (e.g. White versus Rogers standard error) can provide information about

the deficiency in a model and directions for improving them.

II) Estimating Standard Errors in the Presence of a Fixed Firm Effect.

A) Rogers Standard Error Estimates.

To provide intuition on why the standard errors produced by OLS are incorrect and how

Rogers standard errors correct this problem, it is helpful to briefly review the expression for the

variance of the estimated coefficients. The standard regression for a panel data set is: 

where we have observations on firms (i) across years (t). X and ε are assumed to be independent of

each other and to have a zero mean. The zero mean is without loss of generality and allows us to

ignore the intercepts and calculate the variances as sums of the squares of the variable. The

estimated coefficient is: 



2 The Rogers standard errors are robust to heteroscedastic residuals. However, since this is not my focus, I
assume that the errors are homoscedastic in the equations and simulations. I use White standard errors as my baseline
estimates when analyzing actual data in section VI, since the residuals are not homoscedastic in either data set.
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and the variance of the coefficient is:

This is the standard OLS formula and is based on the assumption that the errors are independent and

identically distributed (Green, 2000). The independence assumption is used to move from the first

to the second line in equation (3) (i.e., the covariance between residuals is zero). The assumption

of an identical distribution (e.g., homoscedastic errors) is used to move from the second to the third

line.2 It is the independence assumption which is often violated in panel data and which is the focus

of the paper.

In relaxing the assumption of independent errors, I initially assume the data has a fixed firm



3 I am assuming that the model is correctly specified. I do this to focus on estimating the standard errors. In
actual data sets, this assumption would need to be tested.
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εit ' γi % ηit (4)

Xit ' µi % νit (5)

corr ( Xit , Xjs ) ' 1 for i' j and t ' s
' ρX ' σ2

µ / σ2
X for i' j and all t … s

' 0 for all i… j
corr ( εit , εjs ) ' 1 for i' j and t ' s

' ρε ' σ2
γ / σ2

ε for i' j and all t … s
' 0 for all i… j

(6)

effect. Thus the residuals consist of a firm specific component (γi) as well as a component which is

unique to each observation (ηit). The residuals can be specified as:

Assume that the independent variable X also has a firm specific component.

Each of the components of X (µ and ν) and ε (γ and η) are independent of each other. This is

necessary for the coefficient estimates to be consistent.3 This is a typical panel data structure and

implies a specific correlation among the observations of a given firm. Both the independent variable

and the residual are correlated across two observations of the same firm, but are independent across

firms.

Given this data structure [equations (1), (4), and (5)], I can calculate the true standard error

of the OLS coefficient. Since the residuals are no longer independent within cluster, the square of

the summed residuals is no longer equal to the sum of the squared residuals. The same statement can

be made about the independent variable. The co-variances must be included as well. The variance
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4 If the firm effect is not fixed, the correlation of εt and εt-k is a non-trivial function of k. In this case, the
equation is a sum of the correlations between εt and εt-k times the correlation between Xt and Xt-k, for all k<T. When the
correlations are not constant, the variance of the coefficient estimate is: 

When the auto-correlations vary, they can be positive or negative. It is thus possible for the OLS standard error to under
or over-estimate the true standard error. I will address auto-correlations which decline as the lag length (k) increases
in Section V, when I examine non-fixed firm effects. Finally, if the panel is unbalanced (different T for each i), the true
standard error and the bias in the OLS standard errors is even larger than equation (7) (see Moulton, 1986).
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of the OLS coefficient estimate is now:

I used the assumption that residuals are independent across firms [e.g. i … j, see equation (6)]

in deriving the second line. Given the assumed data structure, the within cluster correlations of both

X and ε are positive and are equal to the fraction of the variance which is attributable to the fixed

firm effect. When the data have a fixed firm effect, the OLS standard errors will always understate

the true standard error if and only if both ρX or ρε are non-zero.4 The magnitude of the error is also

increasing in the number of years in the data set (see Bertrand, Duflo, and Mullainathan, 2004). To

understand this intuition, consider the extreme case where the independent variables and residuals
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5 The exact formula for the Rogers standard error is:

6 Each simulated data set contains 10 yearly observations on 500 firms and thus 5,000 observations. The
components of the independent variable and the residual are assumed to be independent and normally distributed with
zero means. For each data set, I estimated the coefficients and standard errors using each method described below. The
reported means and standard deviations reported in the tables are based on 5,000 simulations.
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are perfectly correlated across time (i.e. ρX =1 and ρε =1). In this case, each additional year provides

no additional information and will have no effect on the true standard error. However, the OLS

standard errors will assume each additional year provides N additional observations and the

estimated standard error will shrink accordingly and incorrectly.

The correlation of the residuals within cluster is the problem the Rogers standard errors

(White standard errors adjusted for clustering) are designed to correct.5  By squaring the sum of Xitεit

within each cluster, the covariance between residuals within cluster is estimated (see Figure 1). This

correlation can be of any form; no parametric structure is assumed. However, the squared sum of

Xitεit is assumed to have the same distribution across the clusters. Thus these standard errors are

consistent as the number of clusters grows (Donald and Lang, 2001; and Wooldridge, 2002). We

return to this issue in Section III.

B) Testing the Standard Error Estimates by Simulation.

I simulated a panel data set and then estimated the slope coefficient and its standard error.

By doing this multiple times we can observe the true standard error as well as the average estimated

standard errors.6 In the first version of the simulation, I included a fixed firm effect but no time

effect in the independent variable and the residual. Thus the data are simulated as described in
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equations (4) and (5). Across simulations I assumed that the standard deviation of the independent

variable and the residual are both constant at one and two respectively. This will produce an R2 of

20 percent which is not unusual for empirical finance regressions. Across different simulations, I

altered the fraction of the variance in the independent variable which is due to the firm effect. This

fraction ranges from zero to seventy-five percent in twenty-five percent increments (see Table 1).

I did the same for the residual. This allows me to demonstrate how the magnitude of the bias in the

OLS standard errors varies with the strength of the firm effect in both the independent variable and

the residual.

The results of the simulations are reported in Table 1. The first two entries in each cell are

the average value of the slope coefficient and the standard deviation of the coefficient estimate. The

standard deviation is the true standard error of the coefficient and ideally the estimated standard

error will be close to this number. The average standard error estimated by OLS is the third entry

in each cell and is the same as the true standard error in the first row of the table. When there is no

firm effect in the residual (i.e. the residuals are independent across observations), the standard error

estimated by OLS is correct (see Table 1, row 1). When there is no firm effect in the independent

variable (i.e. the independent variable is independent across observations), the standard errors

estimated by OLS are also correct on average, even if the residuals are correlated (see Table 1,

column 1). This follows from the intuition in equation (7). The bias in the OLS standard errors is

a product of the dependence in the independent variable (ρX) and the residual (ρε). When either

correlation is zero, OLS standard errors are unbiased.

When there is a firm effect in both the independent variable and the residual, then the OLS

standard errors underestimate the true standard errors, and the magnitude of the underestimation can



7 All of the regressions contained a constant whose true value is zero. The above intuition carries over to the
intercept estimation. The estimated slope coefficient averages -0.0003 with a standard deviation of 0.0669, when ρX =
ρε = 0.50. The OLS standard errors are biased (0.0283) and the Rogers standard errors are correct on average (0.0663).

The simulated residuals are homoscedastic, so calculating standard errors which are robust to heteroscedasticity
is not necessary in this case. When I estimated White standard errors in the simulation they have the same bias as the
OLS standard errors. For example, the average White standard error was 0.0283 compared to the OLS estimate of
0.0283 and a true standard error of 0.0508 when ρX = ρε = 0.50.
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be large. For example, when fifty percent of the variability in both the residual and the independent

variable is due to the fixed firm effect (ρX = ρε = 0.50), the OLS estimated standard error is one half

of the true standard error (0.557 = 0.0283/0.0508).7 The standard errors estimated by OLS do not

change as the firm effect increases across either the columns (i.e. in the independent variable) or

across the rows (i.e. in the residual). The true standard error rises.

When I estimate the standard error of the coefficient using Rogers (clustered) standard errors,

the estimates are very close to the true standard error. These estimates rise along with the true

standard error as the fraction of variability arising from the firm effect increases. The Rogers robust

standard errors correctly account for the dependence in the data common in a panel data set (Rogers,

1993, Williams, 2000).

An alternative way to examine the magnitude of the bias in the standard error estimates is

to examine the empirical distribution of the simulated t-statistics. The t-statistics based on the OLS

standard errors are too large in absolute value (see Figure 2-A). 15.3 percent of the OLS t-statistics

are statistically significant at the 1 percent level (i.e. greater than 2.58). This is the intuition we saw

in Tables 1. The Rogers standard errors are correct on average (see Table 1), and the empirical

distribution of the t-statistics is also correct (see Figure 2-B). 0.9 percent of the Rogers t-statistics

are significant at the one percent level. The reason the t-statistics give us the same intuition as the

standard errors is because the standard errors are estimated very precisely. For example, the mean



8 There several differences between OLS and Fama-MacBeth estimates (Jagannathan, and Wang, 1998). Fama-
MacBeth traditionally weights each year of data equally even if there is a different number of observations per year.
Thus in an unbalanced panel data set, the coefficient estimates can differ (Cohen, Gompers, and Vuolteenaho, 2002,
Vuolteenaho, 2002). Fama-MacBeth also runs cross sectional regressions, and thus any variable which does not vary
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OLS standard error is 0.0282 with a standard deviation of 0.0007 and the mean Rogers standard

error is 0.0508 with a standard deviation of 0.0027 (when ρX =ρε =0.50).

The bias in OLS standard errors is highly sensitive to the number of time periods (years)

used in the estimation as well. As the number of years doubles, OLS assumes a doubling of the

information. However if the independent variable and the residual are correlated within the cluster,

the amount of information (independent variation) increases by less than a factor of two. The bias

rises from about 30 percent when there are five years of data per firm to 73 percent when there are

50 years (when ρX=ρε=0.50, see Figure 3). The robust standard errors are consistently close to the

true standard errors independent of the number of time periods (see Figure 3).

Most of the simulations in the paper are based on linear regressions. To evaluate the

performance of the standard error estimates in a non-linear setting, I simulated data according to

equations 4 and 5. I took y as the latent variable and either censored the bottom 25% of the data (y<-

1.5) or created a dummy variable (equal to one if y is positive, and zero otherwise). With this data

I estimated a tobit and a probit model. The usual (”OLS”) standard errors are too small and the

Rogers standard errors are correct. The magnitude of the underestimate is the same as reported in

Table 1 for the tobit model and slightly smaller in the probit model. These results are available from

the author.

C) Fama-MacBeth Standard Errors: The Equations

An alternative way to estimate the regression coefficients and standard errors when the

residuals are not independent is the Fama-MacBeth approach (Fama and MacBeth, 1973).8 In this



across firms within a year (e.g. the stock market return) can not be estimated by the Fama-MacBeth method
(Vuolteenaho, 2002, Cochrane, 2001). Since these have been dealt with elsewhere, I will not discuss them.
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approach, the researcher runs T cross sectional regressions. The average of the T estimates is the

coefficient estimate.

and the estimated variance of the Fama-MacBeth estimate is calculated as: 

The variance formula, however, assumes that the yearly estimates of the coefficient (βt) are

independent of each other. This is only correct if Xit εit is uncorrelated with Xis εis for t … s. As

discussed above, this is not true when there is a firm effect in the data (i.e. ρX ρε … 0). Thus, Fama-

MacBeth variance estimate is too small in the presence of a firm effect. In the presence of a firm

effect, the true variance of the Fama-MacBeth estimate is:

Given our specification of the data structure (equations 4 and 5), the covariance between the
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coefficient estimates of different years is independent of t-s (which justifies the simplification in the

last line of equation 10) and can be calculated as follows if t … s: 

Combining equations (10) and (11) gives us an expression for the true variance of the Fama-

MacBeth coefficient estimates.

This is same as our expression for the variance of the OLS coefficient (see equation 7). Thus

the Fama-MacBeth estimated standard error is too small in exactly the same cases as the OLS

estimated standard error. In both cases, the magnitude of the underestimation is a function of the

correlation of both the independent variable and the residual within a cluster and the number of time

periods per firm.

D) Simulating Fama-MacBeth Standard Errors. 



9 The distribution of empirical t-statistics is even wider for the Fama-MacBeth than for OLS (see Figures 2-A
and 2-C). 24.5 percent of the Fama-MacBeth t-statistics are statistically significant at the 1 percent level compared to
15.3 percent of the OLS t-statistics (when ρX = ρε = 0.50).
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To document the bias of the Fama-MacBeth standard error estimates, I calculate the Fama-

MacBeth estimate of the slope coefficient and the standard error in each of the 5,000 simulated data

sets which were used in Table 1. The results are reported in Table 2. The Fama-MacBeth estimates

are consistent and as efficient as OLS (the correlation between the two is consistently above 0.99).

The standard deviation of the two coefficient estimates is also the same (compare the second entry

in each cell of Table 1 and 2). Like the OLS standard error estimates, the Fama-MacBeth standard

errors are biased downward (see Table 2).

The magnitude of the bias, however, is larger than implied by equation (12) and larger than

the OLS bias. For example, when both ρX and ρε are equal to 75 percent, the OLS standard error has

a bias of 60% (0.595 = 1 - 0.0283/0.0698, see Table I) and the Fama-MacBeth standard error has

a bias of 74 percent (0.738 = 1 - 0.0699/0.0183, see Table II). Moving down the diagonal of Table

2 from upper left to bottom right, the true standard error increases but the standard error estimated

by Fama-MacBeth shrinks. As the firm effect becomes larger (ρX ρε increases), the bias in the OLS

standard error grows, but the bias in the Fama-MacBeth standard error grows even faster.9 The

incremental bias of the Fama-MacBeth standard errors is due to the way in which the estimated

variance is calculated. To see this we need to expand the expression of the estimated variance

(equation 9).
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The true variance of the Fama-MacBeth coefficients is a measure of how far each yearly coefficient

estimate deviates from the true coefficient (one in our simulations). The estimated variance,

however, measures how far each yearly estimate deviates from the sample average. Since the firm

effect influences both the yearly coefficient estimate and the sample average of the yearly coefficient

estimates, it does not appear in the estimated variance. Thus increases in the firm effect (increases

in ρXρε) actually reduce the estimated Fama-MacBeth standard error at the same time it increases

the true standard error of the estimated coefficients. To make this concrete, take the extreme

example where ρXρε is equal to one. OLS underestimates the standard errors by a factor of %&&T (the

standard error estimated by OLS is (σε/NTσX)½ while the true standard error is (σε/NσX)½. The

estimated Fama-MacBeth standard error is zero. This additional source of bias shrinks as the number

of years increases since the estimated slope coefficient will converge to the true coefficient (see

Figure 3).

The firm effect may be less important in regressions where the dependent variable is returns

(and excess returns are serially uncorrelated) than in corporate finance applications where

unobserved firm effects can be very important (see Section VI). The biases which I have highlighted

are less important in those applications. This isn’t surprising since the Fama-MacBeth technique was



10 In the standard application of Newey-West, a lag length of M implies that the correlation between εt and εt-k
are included for k running from -M to M. When Newey-West has been applied to panel data sets, correlations between
lagged and leaded values are only included when they are drawn from the same cluster. Thus a cluster which contains
T years of data per firm uses a maximum lag length of T-1 and would include t-1 lags and T-t leads for the tth

observation where t runs from 1 to T.
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developed to account for correlation between observations on different firms in the same year, not

to account for correlation between observations on the same firm in different years. In fact, Fama

and MacBeth (1973) examine the serial correlation of the residuals in their results and find that it

is close to zero. Its application in the literature, however, has not always been consistent with its

roots. Given the Fama-MacBeth approach was designed to deal with time effects in a panel data set,

not firm effects, I turn to this data structure in the next section. 

E) Newey-West Standard Errors.

An alternative approach for addressing the correlation of errors across observation is the

Newey-West procedure (Newey and West, 1987). This procedure is traditionally used to account

for serial correlation of unknown form in the residuals of a single time series. It can be modified for

use in a panel data set by estimating only correlations between lagged residuals in the same cluster

(see Bertrand, Duflo, and Mullainathan, 2004, Doidge, 2004, MacKay, 2003, Brockman and Chung,

2001). The problem of choosing a lag length is simplified in a panel data set, since the maximum

lag length is one less than the maximum number of years per firm.10 To examine the relative

performance of the Newey-West, I simulated 5,000 data sets with 5,000 observations each. Each

data set includes 500 firms and ten years of data per firm. The fixed firm effect was assumed to

account for twenty-five percent of the variability of both the independent variable and the residual.

The standard error estimated by the Newey-West is an increasing function of the lag length

in this simulation. When the lag length is set to zero, the estimated standard error is numerically
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identical to the White standard error, which is only robust to heteroscedasticity. This is the same as

the OLS standard error in my simulation, since the residuals are homoscedastic. Not surprisingly,

this estimate significantly underestimates the true standard error (see Figure 4). As the lag length

is increased from 0 to 9, the standard error estimated by the Newey-West rises from the OLS/White

estimate of 0.0283 to 0.0328 when the lag length is 9 (see Figure 4). In the presence of a fixed firm

effect, an observation of a given firm is correlated with all other observations for the same firm no

matter how far apart in time the observations are spaced. Thus having a lag length of less than the

maximum (T-1), will cause the Newey-West standard errors to underestimate the true standard error

when the firm effect is fixed (we return to temporary firm effects in Section V). However, even with

the maximum lag length of 9, the Newey-West estimates have a small bias – underestimating the

true standard error by 8% [0.084 = 1-0.0328/0.0358].

As the simulation demonstrates, the Newey-West approach to estimating standard errors, as

applied to panel data, does not yield the same estimates as the Rogers standard errors. The difference

between the two estimates is due to the weighting function used by Newey West. When estimating

the standard errors, Newey-West multiplies the covariance term of lag j (e.g. εt εt-j ) by the weight

[1-j/(M+1)], where M is the specified maximum lag. If I set the maximum lag equal to T-1, then the

central matrix in the variance equation of the Newey-West standard error is:



11 Although the bootstrap method of estimating standard errors was rarely used in the articles which I surveyed,
it is an alternative way to estimate the standard errors in a panel data set (see for example Kayhan and Titman, 2004 and
Efron and Tibshirani, 1986). To test its relative performance, I drew 100 samples with replacement and re-estimated
the regression for each simulated data set. When I drew observations independently (e.g. I drew 5,000 firm-year), the
estimated standard errors are the same as the OLS standard errors reported in Table I (e.g. 0.0282 for the bootstrap
versus 0.0283 for OLS when ρX = ρε = 0.50). When I drew observations as a cluster (e.g. I drew 500 firms with
replacement and took all 10 years for any firm which was drawn), the estimated standard errors are the same as the
Rogers standard errors (e.g. 0.0505 for bootstrap versus 0.0508 for Rogers). The results were essentially the same when
I drew 1,000 samples for each simulated data set.
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This is identical to the term in the Rogers standard error formula (see footnote 5) except for the

weighting function [w(j)]. The Rogers standard errors use a weighting function of one for all co-

variances. The Newey-West procedure was originally designed for a single time-series and the

weighting function was necessary to make the estimate of this matrix positive semi-definite. For

fixed j the weight w(j) approaches 1 as the maximum lag length (M) grows. Newey and West show

that if M is allowed to grow at the right rate with the sample size (T), then their estimate is

consistent. However, in the panel data setting, the number of time periods is usually small. The

consistency of the Rogers standard error is based on the number of clusters (N) being large, opposed

to the number of time periods (T). Thus the Newey-West weighting function is unnecessary and

leads to standard error estimates which have a slightly bias in a panel data setting.11

III) Estimating Standard Errors in the Presence of a Time Effect.

To demonstrate how the techniques work in the presence of a time effect I will generate data

sets which contain only a time effect (observations on different firms with in the same year are

correlated). This is the data structure for which the Fama-MacBeth approach was designed (see

Fama-MacBeth, 1973). If I assume that the panel data structure contains only a time effect, the

equations I derived above are essentially unchanged. The expressions for the standard errors in the

presence of only a time effect are correct once I exchange N and T.

A) Rogers Standard Error Estimates.
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εit ' δt % ηit
Xit ' ζt % νit

(15)

Simulating the data with only a time effect means the dependent variable will still be

specified by equation (1), but now the error term and independent variable are specified as:

As before, I simulated 5,000 data sets of 5,000 observations each. I allowed the fraction of

variability in both the residual and the independent variable which is due to the time affect to range

from zero to seventy-five percent in twenty-five percent increments. The OLS coefficient, the true

standard error, as well as the OLS and robust standard error estimates are reported in Table 3. There

are several interesting findings to note. First, as with the firm effect results, the OLS standard errors

are correct when there is no time effect in either the independent variable (σ(ζ)=0) or the residual

(σ(δ)=0). As the time effect in the independent variable and the residual rise, so does the magnitude

by which the OLS standard errors underestimate the true standard errors. When half of the

variability in both comes from the time effect, the OLS standard errors underestimate the true

standard errors by 91 percent [0.909 = 1 - 0.0282/0.3105, see Table 3].

The robust standard errors are much more accurate, but unlike our results with the firm

effects, they also underestimate the true standard error. The magnitude of the underestimate is small,

ranging from 13 percent [1-0.1297/0.1490] when the time effect accounts for 25 percent of the

variability to 19 percent [1-0.3986/0.4927] when the time effect accounts for 75 percent of the

variability. The problem arises due to the limited number of clusters (e.g. years). When I estimated

the standard errors in the presence of the firm effects, I had 500 firms (clusters). When I estimated

the standard errors in the presence of a time effect, I have only 10 years (clusters). Since the robust

standard errors method places no restriction on the correlation structure of the residuals within a
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cluster, its consistency depends upon having a sufficient number of clusters to estimate the standard

errors. Based on these results, 10 clusters is too small and 500 is sufficient (see Kezdi, 2004, and

Bertrand, Duflo, and Mullainathan, 2004, for similar results). 

To explore this issue further, I simulated data sets of 5,000 observations with the number of

years (or clusters) ranging from 10 to 100. In all of the simulations, 25 percent of the variability in

both the independent variable and the residual is due to the time effect [i.e. σ2(δ)/σ2(ε) = σ2(ζ)/σ2(X)

= 0.25]. The bias in the robust standard error estimates declines with the number of clusters,

dropping from 13 percent when there are 10 years (or clusters) to 4 percent when there are 40 years

to under 1 percent when there are 100 years (see Figure 5). Thus, the bias in the robust standard

error estimates is a product of the small number of clusters. However, since panel data sets of 10 or

20 years are not uncommon in finance, this may be a concern in practice.

B) Fama-MacBeth Standard Errors.

When there is only a time effect, the correlation of the estimated slope coefficients across

years is zero and the standard errors estimated by Fama-MacBeth are correct (see equation 9 and

12). This is exactly what we find in the simulation (see Table 4). The estimated standard errors are

extremely close to the true standard errors and the confidence intervals are the correct size. In

addition to producing unbiased standard error estimates, Fama-MacBeth also produces more

efficient estimates than OLS. For example, when 25 percent of the variability of both the

independent variable and the residual is due to the time effect, the standard deviation of the Fama-

MacBeth coefficient estimate is 81 percent [1-0.0284/0.1490] smaller than the standard deviation

of the OLS estimate (compare Table 3 and 4). The improvement in efficiency arises from the way

in which Fama-MacBeth accounts for the time effect. By running cross sectional regressions for
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each year the intercept absorbs, and is an estimate of, the time effect. Since the variability due to the

time effect is no longer in the residual, the residual variability is significantly smaller. The lower

residual variance leads to less variable coefficient estimates and greater efficiency. I will revisit this

issue in the next section when I consider the presence of both a firm and a time effect.

IV) Estimating Standard Errors in the Presence of a Fixed Firm Effect and Time Effect.

According to the simulation results thus far, the best method for estimating the coefficient

and standard errors in a panel data set depends upon the source of the dependence in the data. If the

panel data only contains a firm effect, the Rogers standard errors (clustered by firm) are superior as

they produce unbiased standard errors. If the data has only a time effect, the Fama-MacBeth

estimates perform better than Rogers standard errors (clustered by time) when there are few years

(clusters) and equally well when the number of years (clusters) is large. The Fama-MacBeth

estimates are more efficient than the OLS coefficients, although as we will see below this advantage

disappears if time dummies are included.

Although the above results are instructive, they are unlikely to be completely descriptive of

actual data confronted by empirical financial researchers. Panel data sets may include both a firm

effect and a time effect. Thus to provide guidance on which method to use I need to assess their

relative performance when both effects are present. In this section, I will simulate a data set where

both the independent variable and the residual have both a firm and a time effect.

A conceptual problem with using these techniques (Rogers or Fama-MacBeth standard

errors) is neither is designed to deal with correlation in two dimensions (e.g. across firms and across



12 It is possible to estimate robust standard errors accounting for clustering in multiple dimensions, but only
if there are a sufficient number of observations within each cluster. For example, if a researcher has observations on
firms in industries across multiple years, she could cluster by industry and year (i.e. each cluster would be a specific
year and industry, see Lipson and Mortal, 2004). In this case, since there are multiple firms in a given industry in each
year, clustering would be possible. If clustering was done by firm and year, since there is only one observation within
each cluster, this is numerically identical to White standard errors.
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time).12 The robust standard error approach allows us to be agnostic about the form of the correlation

within a cluster. However, the cost of this is the residuals must be uncorrelated across clusters. Thus

if we cluster by firm, we must assume there is no correlation between residuals of different firms

in the same year. In practice, empirical researchers account for one dimension of the cross

observation correlation by including dummy variables and account for the other dimension by

clustering on that dimension. Since most panel data sets have more firms than years, the most

common approach is to include dummy variables for each year (to absorb the time effect) and then

cluster by firm (Anderson and Reeb, 2004, Gross and Souleles, 2004, Petersen and Faulkender,

2004, Sapienza, 2004, and Lamont and Polk, 2001). I will use this approach in my simulations. 

A) Rogers Standard Error Estimates.

To test the relative performance of the two methods, 5,000 data sets were simulated with

both a firm and a time effect. Across the simulations, the fixed firm effect accounts for either 25 or

50 percent of the variability. The fraction of the variability due to the time effect is also assumed to

be 25 or 50 percent of the total variability. This gives us three possible scenarios for the independent

variable [(25,25),(25,50), and (50,25)]. The same three scenarios were used for simulating the

residual, for a total of nine simulations (see Table 5).

The results in the presence of both a firm and time effect (Table 5) are qualitatively similar

to what we found in the presence of only a fixed firm effect (Table 1). The OLS standard errors

underestimate the true standard errors whereas the Rogers (clustered by firm) standard errors are



13 The magnitude of the time effect does affect the magnitude of the bias in the OLS estimates, although the
intuition is subtle. To understand the intuition, it is useful to examine several examples. In Table 1, when the firm effect
is 25 percent of the variability of both the independent variable and the residual, OLS underestimates the standard error
by 20 percent [1-0.0283/0.0353]. In Table 5, there are two scenarios where the fixed firm effect is 25 percent for both
the independent variable and the residual. When the magnitude of the time effect rises to 25 percent, the bias in OLS
rises to 31 percent [1-0.0283/0.0407], and when the magnitude of the time effect rises to 50 percent, the bias in the OLS
standard error is 45 percent [1-0.0283/0.0515]. By absorbing the variability due to the time effect from the residual and
the independent variable, the time dummies raise the fraction of the remaining variability which is due to the firm effect
(i.e ρX or ρε rise). This increases the bias in the OLS standard errors.
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consistently accurate independent of how I specify the firm and time effects. As we saw above, the

bias in the OLS standard errors increases as the firm effect becomes larger.13

B) Fama-MacBeth Estimates

The statistical properties of the OLS and Fama-MacBeth coefficient estimates are quite

similar. The means and the standard deviations of the estimates are almost identical (see Table 5 and

Table 6), and the correlation between the two estimates is never less than 0.999 in any of the

simulations. Once I include a set of time dummies in the OLS regression, the difference in efficiency

I found in Tables 3 and 4 disappears. The OLS estimates are now as efficient as the Fama-MacBeth,

even in the presence of a time effect. The standard errors estimated by Fama-MacBeth, however,

are once again too small, just as I found in the absence of a firm effect (Table 2). When 25 percent

of the variability is from the firm effect and 25 percent comes from a time effect, the Fama-MacBeth

standard errors underestimate the true standard errors by 37 percent [1-0.0258/0.0407]. 

Most of the intuition from the earlier tables carries over. In the presence of a fixed firm effect

both OLS and Fama-MacBeth standard error estimates are biased down significantly. Rogers

standard errors which account for clustering by firm produce estimates which are correct on average.

The presence of a fixed time effect, if it is controlled for with dummy variables, does not alter these

results, except for accentuating the magnitude of the firm effect and thus making the bias in the OLS

and Fama-MacBeth standard errors larger.



Var( ηit ) ' σ2
ς if t ' 1

' φ2 σ2
ς % (1 & φ2) σ2

ς ' σ
2
ς if t > 1

14 I multiply the ς term by %&1&- &φ&2  to make the residuals homoscedastic. From equation (16),
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ηit ' ςit if t ' 1

' φ ηit&1 % 1 & φ2 ςit if t > 1
(16)

V) Estimating Standard Errors in the Presence of a Temporary Firm Effect

The analysis thus far has assumed that the firm effect is fixed. Although this is common in

the literature, it may not always be accurate. The dependence between residuals may decay as the

time between them increases (i.e. ρ(εt , εt-k) may decline with k). In a panel with a short time series,

distinguishing between a permanent and a temporary firm effect may be impossible. However, as

the number of years in the panel increases it may be feasible to empirically identify the permanence

of the firm effect. In addition, if the performance of the different standard error estimators depends

upon the permanence of the firm effect, researchers need to know this.

A) Temporary Firm Effects: Specifying the Data Structure. 

To explore the performance of the different standard error estimates in a more general

context, I simulated a data structure which includes both a permanent component (a fixed firm

effect) and a temporary component (non-fixed firm effect) which I assume is a first order auto

regressive process. This allows the firm effect to die away at a rate between a first order auto-

regressive decay and zero. To construct the data, I assumed that non-firm effect portion of the

residual (ηi t from equation 4) is specified as

Thus φ is the first order auto correlation between ηit and ηit-1, and the correlation between ηi t and ηi,t-k

is φk.14 Combining this term with the fixed firm effect (γi in equation 4), means the serial correlation



where the last step is by recursion (if it is true for t=m, it is true for t=m+1). Assuming homoscedastic residuals is not
necessary since the Rogers standard errors are robust to heteroscedasticity. However, assuming homoscedasticity makes
the interpretation of the results simpler. If I assume the residuals are homoscedastic, then any difference in the standard
errors I find is due to the dependence of observations within a cluster opposed to the presence of heteroscedasticity.
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Corr (εi,t , εi,t&k ) '
Cov( γi % ηi,t ,γi % ηi,t&k )

Var ( γi % ηi,t ) Var ( γi % ηi,t&k )

'
σ2
γ % φk σ2

η

σ2
γ % σ2

η

' ρε % (1 & ρε ) φ
k

(17)

of the residuals dies off over time, but more slowly than implied by a first order auto-regressive and

asymptotes to ρε (from equation 6). By choosing the relative magnitude of the fixed firm effect (ρε)

and the first order auto correlation (φ), I can alter the pattern of auto correlations in the residual. The

correlation of lag length k is:

An analogous data structure is specified for the independent variable. The correlation for lags one

through nine for the four data specifications I will examine are graphed in Figure 6. They range from

a fixed firm effect (ρ=0.25 and φ=0.00) to a standard AR1 process (ρ=0.00 and φ=0.75). I have

assumed the same process for both the independent variable and the residual, since as we know from

Section II, if there is no within cluster dependence in the independent variables, OLS standard errors

are correct.

B) Fixed Effects – Firm Dummies.

A significant minority of the papers in the survey, used fixed effects to control for

dependence within a cluster. Using the simulations, I can compare the relative performance of OLS

and Rogers standard errors both with and without firm dummies. The results are reported in Table

7, Panel A. The fixed effect estimates are more efficient in this case (e.g. 0.0299 versus 0.0355),



15 I assumed the model is correctly specified [i.e. Corr( Xi  t , εi  t ) = 0 ]. Thus the only purpose of including
fixed effects, in this case, is to correct the standard errors. In real applications, the model may not be correctly specified
[i.e. Corr( Xi  t , εi  t ) … 0 ], and so including fixed effects may be necessary as part of a model specification test (see
Hausman, 1978). Instead of including firm dummies, we could have first differenced the data within firm. It would still
be necessary to use Rogers opposed to OLS standard error estimates, since the residuals would still be correlated
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although this is not always true. The relative efficiency of the fixed effect estimates depends upon

two offsetting effects. Including the firm dummies uses up N–1 additional degrees of freedom and

this raises the standard deviation of the estimate. However, the firm dummies also eliminate the

within cluster dependence of the residuals which reduces the standard deviation of the estimate. In

this example, the second effect dominates and thus the fixed effect estimates are more efficient.

Once we include the firm effects, the OLS standard error are now correct and the Rogers

standard errors are not necessary (see Table 7 - Panel A, column I).15 The Rogers standard errors are

correct when we do not include the fixed effects and are slightly too large (5%) when we include

the fixed effects (see Kezdi, 2004, for similar results). This conclusion, however, is sensitive to the

firm effect being fixed. If the firm effect decays over time, the firm dummies no longer completely

capture the within cluster dependence and OLS standard errors are still biased (see Table 7 - Panel

A, columns II-IV). In these simulations, the firm effect decays over time (in column II, 92 percent

of the firm effect dissipates after 9 years). Once the firm effect is temporary, the OLS standard errors

again underestimate the true standard errors even when firm dummies are included in the regression

(Wooldridge, 2004, Baker, Stein, and Wurgler, 2003). The magnitude of the underestimation

depends upon the magnitude of the temporary component of the firm effect (i.e. φ). The bias rises

from about 17% when φ is 50 percent (column IV) to about 33 percent when φ is 75% (columns II

and III).

C) Adjusted Fama-MacBeth Standard Errors.



Variance correction ' 1 % 2 j
10&1

k'1
( 10 & k ) θk

16 Thus, instead of multiplying the variance by the infinite period adjustment [(1+θ)/(1-θ)], I multiplied it by
the 10 period adjustment

A third alternative is to estimate a k order auto-regressive model on the yearly βs, and then use the intercept and its
standard error as an estimate of β and its standard error (see Pontiff, 1996). This bias in this method is similar to those
reported in Table 7 (results available from the author).
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As noted in Section II, the presence of a firm effect cause the Fama-MacBeth yearly

coefficient estimates to be correlated and this causes the Fama-MacBeth standard error to be biased

downward. Several authors have acknowledged the bias and have suggested adjusting the standard

errors for the estimated first order auto-correlation of the estimated slope coefficients (Pontiff, 1996,

Graham, Lemmon, and Schallheim, 1998; Christopherson, Ferson, and Glassman, 1998; Chen,

Hong, and Stein, 2001; Cochrane, 2001; Lakonishok, and Lee, 2001; Fama and French, 2002;

Bakshi, Kapadia, and Madan, 2003; Chakravarty, Gulen, and Mayhew, 2004). The proposed

adjustment is to estimate the correlation between the yearly coefficient estimates (i.e. Corr[βt , βt-1

] = θ), and then multiply the estimated variance by (1+ θ)/(1-θ) to account for serial correlation of

the βs (see Chakravarty, Gulen, Mayhew, 2004 and especially Fama and French, 2002, footnote 1).

This makes intuitive sense since the presence of a firm effect will cause the yearly coefficient

estimates to be serially correlated.

To test the merits of this idea, I simulated data sets where the fixed firm effect accounts for

25 percent of the variance. For each simulated data set, ten slope coefficients are estimated, and the

auto-correlation of the slope coefficients is calculated. I then calculate the original and adjusted

Fama-MacBeth standard errors, assuming both an infinite and a finite lag of T-1 periods (see

Lakonishok and Lee, 2001).16 The autocorrelation is estimated imprecisely as predicted by Fama and



17 In the simulation the correlation between βt and βs ranged from 0.0430 to 0.0916 and did not decline as the
difference between t and s increased (the firm effect is fixed). The theoretical value of the correlation between βt and
βs should be 0.0625 (according to equation 11) and would imply a true standard error of the Fama-MacBeth estimate
of 0.0354 (according to equation 12). These match the numbers I report in Table II.

27

Cov( βt ,βt&1 ) ' E[ (βt & βTrue ) (βt&1 & βTrue ) ] (18)

French (2002). The 90th percentile confidence interval ranges from -0.60 to 0.41, but the mean is

-0.1134 (see Table 7 - Panel B). Since the average first-order auto-correlation is negative, the

adjusted Fama-MacBeth standard errors are even smaller and more biased than the unadjusted

standard errors.

We saw the intuition behind the biased auto-correlations above. The problem is the

correlation being estimated (the within sample  auto-correlation of betas) is not the same as the one

which is causing the bias in the standard errors (the population auto-correlation of betas). The co-

variance which biases the standard errors and which I can estimate across the 5,000 simulations is:

To see how the presence of a fixed firm effect influences this covariance, consider the case where

the realization for firm i is a positive value of µiγi (i.e. the realized firm effect in the independent

variable and the residual). This positive realization will result in an above average estimate of the

slope coefficient in year t, and because the firm effect is fixed it will also result in an above average

estimate of the slope coefficient in year t-1 (see equation 8). The realized value of the firm effect (µi

and γi) in a given simulation does not change the average β across samples. The average β across

samples is the true β or one in the simulations. Thus when I estimate the true correlation between

βt and βt-1, the firm effect causes this correlation to be positive and the adjusted and unadjusted

Fama-MacBeth standard errors to be biased downward.17

Researchers are given only one data set. Thus they must calculate the serial correlation of



18 The average within sample serial correlation I estimate is actually less than zero, but this is due to a small
sample bias. With only ten years of data per firm, I have only nine observations to estimate the serial correlation. To
verify that this is correct, I re-ran the simulation using 20 years of data per firm and the average estimated serial
correlation moved closer to zero, rising from -0.1134 to -0.0556.
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Cov( βt ,βt&1 ) ' E[ (βt & β̄Within sample ) (βt&1 & β̄Within sample ) ] (19)

the βs within the sample they are given. This co-variance is calculated as:

The within sample serial correlation measures the tendency of βt to be above its within sample mean

when βt-1 is above its within sample mean. To see how the presence of a fixed firm effect affects this

covariance, consider the same case as above. A positive realization of µiγi will raise the estimate of

β1 through βT, as well as the average of the βs (the Fama-MacBeth coefficient estimate) by the same

amount. Thus a fixed firm effect will not influence the deviation of any βt from the average β. Since

this deviation is the source of the estimated within sample serial correlation, the serial correlation

calculated in sample is asymptotically zero and adjusting the standard errors based on this estimated

serial correlation will still lead to biased standard error estimates.18

The adjusted Fama-MacBeth standard errors do better when there is an auto-regressive

component in the residuals (i.e. φ > 0). In the three remaining simulations in Table 7 – Panel B, the

estimated within sample auto correlation is positive in all cases, but the adjusted Fama-MacBeth

standard errors are still biased downward. Adjusting the standard error estimates moves them closer

to the truth when the firm effect is not fixed (ρ=0). The standard errors based on the infinite period

adjustment underestimate the true standard error by 23 percent (1-0.0374/0.0484, see Table 7 - Panel

B, column II). As the magnitude of the firm effect increases (compare columns II to III and IV), the

bias in the estimated standard errors increases. Thus the Fama-MacBeth standard errors adjusted for

serial correlation do better than the unadjusted standard errors when the firm effect decays over time,



19 The reported R2s do not include the explanatory power attributable to the time dummies. This is done to
make the R2 comparable between the OLS and the Fama-MacBeth results. Although the Fama-MacBeth procedure
estimates a separate intercept for each year, the constant is calculated as the average of the yearly intercepts. Thus the
Fama-MacBeth R2 does not include the explanatory power of time dummies. Procedurally, I subtracted the yearly means
off of each variable before running the OLS regressions.
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but they still significantly underestimate the true standard errors.

VI) Empirical Applications.

The analysis thus far has been on simulated data. In these examples, I had the advantage of

knowing the data structure, which made choosing the method for estimating standard errors much

easier. In real world applications, we may have priors about the data’s structure (are firm effects or

time effects more important and are they permanent or temporary), but we do not know the data

structure for certain. Thus in this section, I will apply the different techniques for estimating

standard errors to two real data sets. This way I can demonstrate how the different methods for

estimating standard errors compare and also show what we can learn from the comparison.

For both data sets, I will first estimate the regression using OLS, and report White standard

errors as well as Rogers standard errors clustered by firm and year (Tables 8 and 9, columns I-III).

By using White standard errors as my baseline, difference across columns are attributable only to

within cluster correlations, not to heteroscedasticity. If the Rogers standard errors clustered by firm

are dramatically different than the White standard errors, then we know there is a significant firm

effect in the data [e.g. Corr( Xi  t εi  t , Xi  t-k εi  t-k ) …0]. I then estimate the slope coefficients and the

standard errors using Fama-MacBeth (Tables 8 and 9, columns IV-V). Finally, I re-estimate OLS

regression including firm dummies and report the slope coefficients and standard errors clustered

by firm and time (Table 8 and 9, columns VI-VIII). Each of the OLS regressions include time

dummies. This makes the efficiency of the OLS and Fama-MacBeth coefficients similar.19
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A) Asset Pricing Application.

For the asset pricing example, I used the equity return regressions from Daniel and Titman

(2004, “Market Reactions to Tangible and Intangible Information”). They regress monthly equity

returns on annual values of lagged book to market ratios, historic changes in book and market

values, and a measure of the firm’s equity issuance. The data is briefly described in the appendix

and in detail in their paper. Each observation of the dependent variable is a monthly equity return.

However, the independent variables are annual values (based on the prior year). Thus for the twelve

observations in a year, the dependent variable (equity returns) changes each month, but the

independent variable (e.g. past book value) does not, and is therefore highly persistent.

The Rogers and White standard errors are essentially the same when I cluster by firm

(ranging from three percent larger to one percent smaller). This occurs because the auto-correlation

in the residuals is effectively zero (see Figure 7). The auto-correlation in the independent variable

is large and persistent, starting at 0.98 the first month and declining to 0.49 to 0.75 by the 24th month

depending upon the independent variable. However, since the adjustment in the standard error is a

function of the monthly auto-correlation in the Xs (a large number) times the auto-correlation in the

residuals (zero), the Rogers standard errors clustered by firm are no different than the White

standard errors.

The story is very different when I clustered by time (months). The standard errors clustered

by month are two to four times larger than the White standard errors. For example, the t-statistic on

the lagged book to market ratio is 7.2 if we use the White standard error and 1.9 if we cluster by

month. This means there is a significant time effect in the data (see Figure 8). Remember, however,

that the regression already contains time dummies. So any fixed time effect (i.e. one which raises



31

the monthly return for every firm in a given month by the same amount) has already been removed

from the data and will thus not affect the standard errors. Thus, the remaining correlation in the time

dimension must vary across observations (i.e. Corr[ ε i t ε j t ] varies across i and j).

Understanding a temporary firm effect is straightforward. A firm effect dies off over time

(is temporary) if the 1980 residual for firm A is more highly correlated to the 1981 residual for firm

A than to the 1990 residual. This is how I simulated the data in Section V. Understanding a non-

constant time effect is more difficult. For the time effect to be non-constant, it must be that a shock

in 1980 has a large effect on firm A and B, but has a significantly smaller affect on firm Z. If the

time effect influenced each firm in a given month by the same amount, the time dummies would

absorb the effect and clustering by time would not change the reported standard errors. The fact that

clustering by time does change the standard errors, means there must be a non-constant time effect.

If we know the data, we can use our economic intuition to determine how the data should

be organized and predict the source of the dependence within a cluster. For example, since this data

set contains monthly equity returns we might consider how a shock to returns would effect firms

differently. If the economy booms in a given month, firms in the durable goods industry may rise

more than firms in the non-durable goods industry. This can create a situation where the residuals

of firms in the same industry are correlated (within the month) with each other but less correlated

with firms in another industry. When I sort the data by month, four-digit industry and then firm, I

see evidence of this in the auto-correlation for the residuals and the independent variables within

each month. The results are graphed in Figure 8. The auto-correlations of the residual is much larger

than when I sort by firm then month (compare Figure 7 and 8) and they die away as we consider



20 A non-constant time effect can be generated by a random coefficient model (Greene, 2004). For example,
if the firm’s return depends upon the firm’s β times the market return, but only the market return or time dummies are
included in the regression, then the residual will contain the term { [ βi -Average(βi)] Market return t }. Firms which have
similar βs will have correlated residuals within a month, and firms which have very different βs will have residuals
whose correlation is small. This is a non-constant time effect. This logic suggests that I should instead sort by month,
β, and then firm. When I sort this way, the auto-correlations are smaller and die away more slowly (declining from 0.030
at a lag of one to 0.028 at a lag of 24) than when I sorted by month, four-digit industry and firm (declining from 0.096
at a lag of one to 0.042 at a lag of 24). 
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firms in more distant industries.20

When calculating the Rogers standard errors clustered by time, we don’t need to make an

assumption about how to sort the data. However, if researchers are going to understand what the

standard errors are telling them about the structure of the data, they need to consider the source of

the dependence in the residuals. By examining how standard errors change when we cluster by firm

or time (i.e. compare columns I to II and I to III), we can determine the nature of the dependence

which remains in the residuals and this can guide us on how to improve our models.

According to the results in Sections II and III, the Fama-MacBeth standard errors perform

better in the presence of a time effect than a firm effect, and so given the above results should do

well in this data set. The Fama-MacBeth coefficients and standard errors are reported in column IV.

These results are a replica of those reported by Daniel and Titman (see Table 3, row 8 in their

paper). The coefficient estimates are similar to the OLS coefficients, and the standard errors are

much larger than the White standard errors (2.0 to 3.4 times) as we would expect in the presence of

a time effect. The Fama-MacBeth standard errors are close to the Rogers standard errors when we

cluster by time, as both methods are designed to account for dependence in the time dimension. The

Fama-MacBeth standard errors are consistently smaller than the Rogers standard errors, but the

magnitude of the difference is not large (twelve to eighteen percent, compare columns III and IV of

Table 8).



21 More sophisticated weighting schemes should be able to improve the efficiency of Fama-MacBeth estimates.
However such estimators can be unstable in small samples (see Skoulakis, 2005).

22 The coefficients change significantly when I include the firm dummies. For example, the coefficient on the
log(share issuance) falls by forty percent. Thus variation in a firm’s share issuance in a given year relative to the firm’s
average share issuance (which is what the within coefficient of -0.29 is measuring) has a smaller effect on returns than
differences in average share issuance across firms (which is what the between coefficient of -0.97 is measuring,
regression not reported). For a discussion of within and between estimates see Wooldridge, Chapter 10, 2002.
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Cross-sectional, time-series regressions on panel data sets treat each observation equally. In

the Fama-MacBeth procedure, the monthly coefficient estimates are averaged using equal weights

for each month, but not each observation. Thus in an unbalanced panel, Fama-MacBeth effectively

weights each observation proportional to 1/Nt where Nt is the number of firms in month t. Since the

number of firms in this sample grows from about 1,000 per month at the beginning to almost 2,300

near the end of the sample, Fama-MacBeth will effectively under weight the later observations. To

correct this, I took a weighted average of the monthly coefficient estimates where the weights were

proportional to Nt. When I compare the weighted and un-weighted coefficient estimates and standard

errors, they are very close (compare columns IV and V of Table 8). The weights are uncorrelated

with the variables and thus do not effect the results, in this case.21

The final set of regressions are OLS regression with both month and firm dummies included

(i.e. within estimates). I estimated White standard errors as well as Rogers standard errors clustered

by firm or month. The lesson from these results is the same as before. Clustering by firm does not

change the standard errors, but clustering by time leads to a significant, although smaller, increase

in the standard errors (52 to 229 percent larger).22

B) Corporate Finance Application. 

For the corporate finance illustration, I used a capital structure regression. The independent

variables are those which are common from the literature (firm size, firm age, asset tangibility, and
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firm profitability). I lagged the independent variables one year relative to the dependent variable,

used a long sample (1965-2003), and excluded firms which did not pay a dividend as in Fama and

French (2002). The results are reported in Table 9.

The relative importance of the firm effect and the time effect can be seen by comparing the

standard errors across the first three columns. The Rogers standard errors clustered by firm are

dramatically larger than the White standard errors (1.8 to 2.3 times larger, see columns I and II). For

example, the t-statistic on the advertising to sales ratio is -1.9 when I use the White standard errors

and -0.7 when I use the Rogers standard errors clustered by firm. It is not surprising that R&D

expenditure is highly persistent, and thus the auto-correlation for R&D expenditure is extremely

high and persistent (see Figure 9). However, the auto-correlation in the residuals is also high and

even after 12 years it remains above 40 percent.

The importance of the time effect (after including time dummies) is generally much smaller

in this data set than in the previous one. The Roger’s standard errors clustered by time are generally

larger than the White standard errors but the magnitude of the difference is not large (except for the

market to book ratio). This is due to a smaller auto-correlation in the residuals (see Figure 10). When

I sorted by year, industry, and then firm, the residual first-order auto-correlation is less than 12

percent. The market to book standard error is the only one to increase dramatically and this occurs

because of the large non-constant time effect discussed above.

These results also point out that the adjustment in the standard error can differ across

variables in both sign and magnitude. Relative to the Roger’s standard errors clustered by year, the

White standard errors overstate the standard error on the “R&D is positive” dummy by 12 percent

and understate the standard error on the market to book ratio by 64%. As long as the auto-correlation
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in the residuals is zero, then the White standard errors are correct. However, when the auto-

correlation in the residuals is not zero, the bias in the standard errors will depend upon how the time

pattern of the residual and independent variable auto-correlations interact (see footnote 4).

The Fama-MacBeth standard errors provide the same intuition as the Rogers standard errors

clustered by time. In most cases, the Fama-MacBeth standard errors are quite close to the Rogers

standard errors clustered by year and close to the White standard errors. Since dependence in the

residual arises mostly from the firm effect, not the time effect, the bias in the Fama-MacBeth

standard errors is similar to the bias in the OLS standard errors (compare equations 7 and 12). The

only place where the standard error estimates differ is the advertising to sale ratio. The standard

error on the advertising to sales ratio is not directly comparable, since the coefficient is not stable

across models (see Table 9, columns III, IV, and V). The coefficient ranges from -0.0977 when

estimated by OLS to 0.0747 when estimated by Fama-MacBeth. The weighted Fama-MacBeth

estimate is -0.0002. The instability is consistent with the imprecision of our estimate. When we

corrected the standard errors for a firm effect, the advertising to sales coefficient is no longer

statistically different from zero.

VII) Conclusions.

It is well known from first-year econometrics classes that OLS standard errors are biased

when the residuals are not independent. It has been less clear how financial researchers should

estimate standard errors when using panel data sets. The empirical finance literature has proposed

and used a variety of methods for estimating standard errors when the residuals are correlated across

firms or years in the data. In this paper, I find that the performance of the different methods varies

considerably and their relative accuracy depends upon the structure of the data. Simply put,



23 Skoulakis (2005) proposes applying the logic of Fama-MacBeth to each firm, instead of each year. He
demonstrates that running N time series regressions and using the standard deviation of the N coefficients produces an
estimate which is correct in the presence of a firm effect. I found only one paper in the literature which has used the
Fama-MacBeth approach in this way (Coval and Shumway, 2005).
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estimates which are robust to the form of dependence in the data produce unbiased standard errors

and correct confidence intervals; estimates which are not robust to the form of dependence in the

data produced biased standard errors and often produce confidence intervals which are too small.

In the presence of a firm effect [e.g. Cov(Xi, t εi, t, Xi, t-k ε i, t-k ) … 0], Rogers standard errors

(clustered by firm) are more accurate than standard errors estimated by OLS, Newey-West (modified

for panel data sets), Fama-MacBeth, or Fama-MacBeth corrected for first-order auto-correlation.23

The Rogers estimates  (when clustered by firm) produce unbiased standard errors and correctly sized

confidence intervals in the presence of a firm, whether the effect is permanent or temporary. When

the firm effect is temporary, the Rogers standard errors are also superior to a fixed effect model.

In the presence of a time effect [e.g. Cov(Xi, t εi, t, Xi, t-k ε i, t-k ) … 0], Fama-MacBeth produce

unbiased standard errors and correctly sized confidence intervals. This is not surprising since it was

designed for a setting where residuals were correlated within a year, not across firms. Rogers

standard errors (clustered by time) also produce unbiased standard errors and correctly sized

confidence intervals, when there are a sufficient number of clusters. When there are too few clusters,

Rogers standard errors are biased even when clustered on the correct dimension (see Figure 5).

None of the methods for estimating standard errors which I discussed are designed to deal

with a firm and a time effect simultaneously. When both a firm and a time effect are present in the

data, researchers need to address one parametrically (for example by including time dummies). The

techniques discussed in the paper can then be applied. This raises the question of how researchers
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can determine what form of dependence may exist in the data and was the purpose of the two

applications I examined in Section VI. By comparing the different standard errors, we can quickly

observe the presence and general magnitude of a firm or a time effect. As we saw in Section VI,

when the Rogers standard errors clustered by firm are much larger than the White standard errors,

this indicated the presence of a firm effect in the data (the corporate finance application). When the

Rogers standard errors clustered by time are much larger than the White standard errors this

indicated the presence of a time effect in the data (the asset pricing application). Although firm

effects seem to be more prevalent in corporate finance applications and time effects in asset pricing

applications, this may not be a general rule, and thus the researcher must consult the data. This

knowledge can provide researchers with intuition as to the deficiency of their models and provide

suggestions for improving their models. 
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Appendix I: Data Set Constructions 

A) Asset Pricing Application.
The data for the regressions in Table 8 are taken from Daniel and Titman’s paper “Market

Reactions to Tangible and Intangible Information” (2004). A more detailed description of the data
can be found in their paper. The dependent variable is monthly returns on individual stocks from
July, 1968 to December, 2001. The independent variables are:

Log(Lagged book to market) is the log of the total book value of the equity at the end of the
firm’s fiscal year ending anywhere in year t-6 divided by the total market equity on
the last trading day of calendar year t-6.

Log(Book return) measures changes in the book value of the firm’s equity over the previous
five years. It is calculated as the log of one plus the percentage change in book value
over the past five years. Thus if you purchased one percent of book value five years
ago, and neither invested additional cash or nor took any cash out of the investment,
book return is the current percentage ownership divided by the initial one percent.

Log(Market return) measures changes in the market value of the firm over the previous five
years. It is calculated as the log of one plus the market return from the last day of
year t-6 to the last day of year t-1. 

Share issuance is a measure of net equity issuance. It is calculated as minus the log of the
percentage ownership at the end of five years, assuming the investor started with 1
percent of the firm. Thus if investor purchases 1 percent of the firm and five years
later they own 0.5 percent of the firm, then share issuance is equal to -log(0.5/1.0)
= 0.693. Investors are assumed to neither take money out of their investment nor add
additional money to their investment. Thus any cash flow which investors receive
(e.g. dividends) would be reinvested. For transactions such as equity issues and
repurchases, the investor is assumed not to participate and thus these will lower or
raise the investor’s fractional ownership.

To make sure that the accounting information is available to implement a trading strategy,
the independent variables are lagged at least six months. Thus the independent variables for a fiscal
year ending anytime during calendar year t-1, are used to predict future monthly returns from July
of year t through June of year t+1. The independent variables are annual measures and are thus
constant for each of the twelve monthly observations during the following year (July through June).
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B) Corporate Finance Application
The data for the regressions in Table 9 are constructed from Compustat and include data

from 1965 to 2003 (the dependent variable). The dependent variable, the market debt ratio, is
defined as the book value of debt (data9 + data34) divided by the sum of the book value of assets
(data6) minus the book value of equity (data60) plus the market value of equity (data25 * data199).
The independent variables are lagged one year and I only include observations where the firm paid
a dividend (data21) in the previous year (Fama and French, 2002). To reduce the influence of
outliers, I capped ratio variables (e.g. profits to sales, tangible assets, advertising to sales, and R&D
to sales) at the one and 99th percentile (Petersen and Faulkender, 2004, and Richardson and Sloan,
2003). The independent variables are:

Ln(Market Value of Assets) is the log of the sum of the book value of assets (data6) minus
the book value of equity (data60) plus the market value of equity (data25 * data199).

Ln(1 + Firm Age). Firm age is calculated as the number of years the firm’s stock has been
listed. Firm age is calculated as the current year (fyenddt) minus the year the stock
began trading (linkdt).

Profits / Sales is defined as operating profits before depreciation (data13) divided by sales
revenue (data12).

Tangible assets is defined as property, plant, and equipment (data8) divide by the book value
of total assets (data6).

Advertising / Sales is defined as advertising expense (data45) divided by sales (data12).
R&D / Sales is defined as R&D expenditure (data46) divided by sales (data12). If R&D is

missing, it is coded as zero.
R&D > 0 is a dummy variable equal to one if R&D expenditure is positive, and zero

otherwise. 
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Table 1: Estimating Standard Errors with a Firm Effect
OLS and Rogers Standard Errors

Avg( βOLS )
Std( βOLS )

Avg( SEOLS )
Avg( SER )

Source of Independent Variable Volatility

0% 25% 50% 75%

So
ur

ce
 o

f R
es

id
ua

l V
ol

at
ili

ty

0% 1.0004
0.0286
0.0283
0.0283

1.0006
0.0288
0.0283
0.0282

1.0002
0.0279
0.0283
0.0282

1.0001
0.0283
0.0283
0.0282

25% 1.0004
0.0287
0.0283
0.0283

0.9997
0.0353
0.0283
0.0353

0.9999
0.0403
0.0283
0.0411

0.9997
0.0468
0.0283
0.0463

50% 1.0001
0.0289
0.0283
0.0282

1.0002
0.0414
0.0283
0.0411

1.0007
0.0508
0.0283
0.0508

0.9993
0.0577
0.0283
0.0590

75% 1.0000
0.0285
0.0283
0.0282

1.0004
0.0459
0.0283
0.0462

0.9995
0.0594
0.0283
0.0589

1.0016
0.0698
0.0283
0.0693

Notes: 
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set (10 years per firm and 500 firms). The true slope coefficient is 1, the standard
deviation of the independent variable is 1 and the standard deviation of the error term is 2. The
fraction of the residual variance which is due to a firm specific component is varies across the rows
of the table from 0% (no firm effect) to 75%. The fraction of the independent variable’s variance
which is due to a firm specific component varies across the columns of the table from 0% (no firm
effect) to 75%. Each cell contains the average slope coefficient estimated by OLS and the standard
deviation of this estimate. This is the true standard error of the estimated coefficient. The third entry
is the average OLS estimated standard error of the coefficient. The fourth entry is the average
Rogers (clustered) standard error which accounts for possible clustering at the firm level (i.e.
accounts for the possible correlation between observations of the same firm in different years). As
an example, when fifty percent of the variability in both the residual and the independent variable
is due to the fixed firm effect (ρX = ρε = 0.50), the true standard error of the OLS coefficient is
0.0508. The OLS standard error estimate is 0.0283 and the Rogers standard error estimate is 0.0508.
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Table 2: Estimating Standard Errors with a Firm Effect 
Fama-MacBeth Standard Errors

Avg( βFM )
Std( βFM )

Avg( SEFM )

Source of Independent Variable Volatility

0% 25% 50% 75%

So
ur

ce
 o

f R
es

id
ua

l V
ol

at
ili

ty

0% 1.0004
0.0287
0.0276

1.0006
0.0288
0.0276

1.0002
0.0280
0.0277

1.0001
0.0283
0.0275

25% 1.0004
0.0288
0.0275

0.9997
0.0354
0.0268

0.9998
0.0403
0.0259

0.9997
0.0469
0.0250

50% 1.0000
0.0289
0.0276

1.0002
0.0415
0.0259

1.0007
0.0509
0.0238

0.9993
0.0578
0.0219

75% 1.0000
0.0286
0.0277

1.0004
0.0460
0.0248

0.9995
0.0595
0.0218

1.0016
0.0699
0.0183

Notes: 
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set (10 years per firm and 500 firms). The true slope coefficient is 1, the standard
deviation of the independent variable is 1 and the standard deviation of the error term is 2. The
fraction of the residual variance which is due to a firm specific component is varied across the rows
of the table from 0% (no firm effect) to 75%. The fraction of the independent variable’s variance
which is due to a firm specific component is varies across the columns of the table from 0% (no firm
effect) to 75%. The first entry is the average estimated slope coefficient based on a Fama-MacBeth
estimation (e.g. I ran the regression for each of the 10 years and took the average). The second entry
is the standard deviation of the coefficient estimated by Fama-MacBeth. This is the true standard
error of the Fama-MacBeth coefficient. The third entry is the average standard error estimated by
the Fama-MacBeth procedure (see equation 9). As an example, when fifty percent of the variability
in both the residual and the independent variable is due to the fixed firm effect (ρX = ρε = 0.50), the
true standard error of the Fama-MacBeth coefficient is 0.0509. The Fama-MacBeth standard error
estimate is 0.0238.
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Table 3: Estimating Standard Errors with a Time Effect 
OLS and Rogers Standard Errors 

Avg( βOLS )
Std( βOLS )

Avg( SEOLS )
Avg( SER )

Source of Independent Variable Volatility

0% 25% 50% 75%

So
ur

ce
 o

f R
es

id
ua

l V
ol

at
ili

ty

0% 1.0004
0.0286
0.0283
0.0277

1.0002
0.0291
0.0288
0.0276

1.0006
0.0293
0.0295
0.0275

0.9994
0.0314
0.0306
0.0270

25% 1.0006
0.0284
0.0279
0.0268

1.0043
0.1490
0.0284
0.1297

0.9962
0.2148
0.0289
0.1812

0.9996
0.2874
0.0300
0.2305

50% 0.9996
0.0276
0.0274
0.0258

0.9997
0.2138
0.0278
0.1812

0.9919
0.3015
0.0282
0.2546

1.0079
0.3986
0.0292
0.3248

75% 1.0002
0.0273
0.0267
0.0244

0.9963
0.2620
0.0271
0.2215

0.9970
0.3816
0.0276
0.3141

0.9908
0.4927
0.0284
0.3986

Notes: 
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set (10 years per firm and 500 firms). The true slope coefficient is 1, the standard
deviation of the independent variable is 1 and the standard deviation of the error term is 2. The
fraction of the residual variance which is due to a year specific component varies across the rows
of the table from 0 percent (no time effect) to 75 percent. The fraction of the independent variable’s
variance which is due to a year specific component varies across the columns of the table from 0
percent (no time effect) to 75 percent. Each cell contains the average estimated slope coefficient
from OLS and the standard deviation of this estimate. This is the true standard error of the estimated
coefficient. The third entry is the average standard error estimated by OLS. The fourth entry is the
average Rogers (clustered) standard error which accounts for possible clustering by year (i.e.
accounts for the possible correlation between observations on different firms in the same year).
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Table 4: Estimating Standard Errors with a Time Effect 
Fama-MacBeth Standard Errors

Avg( βFM )
Std( βFM )

Avg( SEFM )

Source of Independent Variable Volatility

0% 25% 50% 75%

So
ur

ce
 o

f R
es

id
ua

l V
ol

at
ili

ty

0% 1.0004
0.0287
0.0278

1.0004
0.0331
0.0318

1.0007
0.0396
0.0390

0.9991
0.0573
0.0553

25% 1.0005
0.0252
0.0239

1.0003
0.0284
0.0276

1.0006
0.0343
0.0338

0.9999
0.0496
0.0480

50% 1.0000
0.0200
0.0195

1.0002
0.0231
0.0227

1.0006
0.0280
0.0276

1.0007
0.0394
0.0387

75% 1.0001
0.0142
0.0138

0.9996
0.0161
0.0159

1.0000
0.0200
0.0196

0.9999
0.0285
0.0276

Notes
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set (10 years per firm and 500 firms). The true slope coefficient is 1, the standard
deviation of the independent variable is 1 and the standard deviation of the error term is 2. The
fraction of the residual variance which is due to a year specific component varies across the rows
of the table from 0 percent (no time effect) to 75 percent. The fraction of the independent variable’s
variance which is due to a year specific component varies across the columns of the table from 0
percent (no time effect) to 75 percent. The first entry is the average estimated slope coefficient based
on a Fama-MacBeth estimation (e.g. the regression is run for each of the 10 years and the estimate
is the average of the 10 estimated slope coefficients). The second entry is the standard deviation of
the coefficient estimated by Fama-MacBeth. This is the true standard error of the Fama-MacBeth
coefficient. The third entry is the average standard error estimated by the Fama-MacBeth procedure
(e.g. equation 9).



47

Table 5: Estimating Standard Errors with a Firm and Time Effect 
OLS and Rogers Standard Errors 

Avg( βOLS )
Std( βOLS )

Avg( SEOLS )
Avg( SER )

Independent Variable Volatility from Firm Effect

25% 25% 50%

Independent Variable Volatility from Time Effect

25% 50% 25%

R
es

id
ua

l V
ol

at
ili

ty
 fr

om
 F

irm
 E

ff
ec

t

25%

R
es

id
ua

l V
ol

at
ili

ty
 fr

om
 T

im
e 

Ef
fe

ct 25%
0.9997
0.0407
0.0283
0.0400

1.0004
0.0547
0.0347
0.0548

1.0004
0.0489
0.0283
0.0489

25% 50%
1.0005
0.0362
0.0231
0.0364

1.0015
0.0515
0.0283
0.0508

0.9993
0.0468
0.0231
0.0461

50% 25%
1.0002
0.0493
0.0283
0.0490

1.0008
0.0690
0.0347
0.0692

0.9994
0.0631
0.0283
0.0630

Notes: 
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set with 5,000 observations (10 years per firm and 500 firms). The true slope
coefficient is 1, the standard deviation of the independent variable is 1 and the standard deviation
of the error term is 2. In these simulations, the proportion of the variance of the independent variable
and the residual which is due to the firm effect is either 25 or 50 percent. The proportion which is
due to the time effect is also 25 or 50 percent. For example, in the bottom left cell 25 percent of the
variability in the independent variable is from the firm effect and 25 percent is from the time effect.
50 percent of the variability of the residual is from the firm effect and 25 percent is from the time
effect. Each cell contains the average estimated slope coefficient from OLS and the standard
deviation of this estimate. This is the true standard error of the estimated coefficient. The third entry
is the average standard error estimated from OLS. The fourth entry is the average Rogers (clustered)
standard error which accounts for possible clustering at the firm level (i.e. accounts for the possible
correlation between observations of the same firm in different years). Each regression includes nine
year dummies.
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Table 6: Estimating Standard Errors with a Firm and Time Effect 
Fama-MacBeth Standard Errors

Avg( βFM )
Std( βFM )

Avg( SEFM )

Independent Variable Volatility from Firm Effect

25% 25% 50%

Independent Variable Volatility from Time Effect

25% 50% 25%

R
es

id
ua

l V
ol

at
ili

ty
 fr

om
 F

irm
 E

ff
ec

t

25%

R
es

id
ua

l V
ol

at
ili

ty
 fr

om
 T

im
e 

Ef
fe

ct 25%
0.9997
0.0407
0.0258

1.0004
0.0547
0.0309

1.0004
0.0489
0.0243

25% 50%
1.0005
0.0362
0.0206

1.0015
0.0515
0.0239

0.9993
0.0469
0.0185

50% 25%
1.0002
0.0493
0.0244

1.0008
0.0691
0.0275

0.9994
0.0632
0.0206

Notes: 
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set with 5,000 observations (10 years per firm and 500 firms). The true slope
coefficient is 1, the standard deviation of the independent variable is 1 and the standard deviation
of the error term is 2.  In these simulations, the proportion of the variance of the independent
variable and the residual which is due to the firm effect is either 25 or 50 percent. The proportion
which is due to the time effect is also 25 or 50%. For example, in the bottom left cell 25 percent of
the variability in the independent variable is from the firm effect and 25 percent is from the time
effect. 50 percent of the variability of the residual is from the firm effect and 25 percent is from the
time effect. The first entry in each cell is the average estimated slope coefficient based on a Fama-
MacBeth estimation (e.g. I ran the regression for each of the 10 years and took the average). The
second entry is the standard deviation of this coefficient. This is the true standard error of the Fama-
MacBeth coefficient. The third entry is the average standard error estimated by the Fama-MacBeth
procedure (e.g. equation 9).
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Table 7: Estimated Standard Errors with a Non-Fixed Firm Effect
Panel A: OLS and Rogers Standard Errors

Avg(βOLS)
Std(βOLS)

Avg(SEOLS)
Avg(SER)

I II III IV

ρX / ρε  0.25 / 0.25 0.00 / 0.00 0.25 / 0.25 0.50 / 0.50

φX / φε  0.00 / 0.00 0.75 / 0.75 0.75 / 0.75 0.50 / 0.50

OLS 1.0001
0.0355
0.0283
0.0352

1.0001
0.0483
0.0283
0.0488

1.0009
0.0566
0.0283
0.0569

1.0007
0.0587
0.0283
0.0578

OLS with
firm dummies

1.0007
0.0299
0.0298
0.0314

1.0008
0.0443
0.0298
0.0466

1.0013
0.0442
0.0298
0.0465

1.0000
0.0357
0.0298
0.0377

Panel B: Fama-MacBeth Standard Errors

Avg(βFM)
Std(βFM)

Avg(SEFM)
Avg(SEFM-AR1)

I II III IV

ρX / ρε  0.25 / 0.25 0.00 / 0.00 0.25 / 0.25 0.50 / 0.50

φX / φε  0.00 / 0.00 0.75 / 0.75 0.75 / 0.75 0.50 / 0.50

Fama-MacBeth 1.0001
0.0357
0.0267
0.0250
0.0250

1.0001
0.0484
0.0240
0.0374
0.0344

1.0008
0.0567
0.0221
0.0376
0.0336

1.0007
0.0588
0.0220
0.0296
0.0281

Avg(1st order 
auto-correlation)

-0.1134 0.2793 0.3250 0.1759
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εit ' µit % ηit ' µit % ςit if t ' 1

' µit % ηit ' µit % φε ηit&1 % 1 & φ2 ςit if t > 1
(1)

Notes:
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set with 5,000 observations (10 years per firm and 500 firms). The true slope
coefficient is 1, the standard deviation of the independent variable is 1 and the standard deviation
of the error term is 2. Across the columns the magnitude of the fixed firm effect (ρ) and the first
order auto-correlation (φ) is changed. ρX (ρε) is the fraction of the independent variable’s (residual’s)
variance which is due to the fixed firm effect. φx (φε) is the first order auto-correlation of the non-
fixed portion of the firm effect of the independent variable (the residual). Combining equations (4)
and (5) with equation (16), the residual is specified as: 

The independent variable is specified in a similar manner. 
Panel A contains coefficients estimated by OLS. In the first row only the independent

variable (X) is included; in the second row 499 firm dummies (for 500 firms) are also included in
the regression. The first two entries in each cell contain the average slope estimated by OLS and the
standard deviation of the coefficient (i.e. the true standard error). The third entry is the average
standard error estimated from OLS. The fourth entry is the average Rogers (clustered) standard error
which accounts for possible clustering at the firm level (i.e. accounts for the possible correlation
between observations of the same firm in different years).

Panel B contains coefficients and standard errors estimated by Fama-MacBeth. The first two
entries in each cell contain the average slope estimated by Fama-MacBeth and the standard deviation
of the coefficient (i.e. the true standard error). The third entry in these cells is the average standard
error estimated by the Fama-MacBeth procedure (see equation 9). The last two entries are the
average Fama-MacBeth standard error estimate corrected for first order auto-correlation. The fourth
entry assumes an infinite lag (i.e. multiplied by the square root of (1+φ)/(1-φ)), and the fifth entry
assumes a finite lag of 9 periods (i.e. multiply by the square root of sum from k=1 to T of (T-k) φ^k).
The bottom row contains the average across the 5,000 simulation of the first order autocorrelation
of βt and βt-1 estimated within each of the 5,000 samples.
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Table 8: Asset Pricing Application
Equity Returns and Asset Tangibility

I II III IV V VI VII VIII

Log( B/Mt-5 ) 0.18831

(0.0261)
0.18831

(0.0270)
0.188310

(0.1007)
0.17285

(0.0824)
0.150410

(0.0831)
1.12771

(0.0476)
1.12771

(0.0542)
1.12771

(0.1135)

Log(Book Return)
  (last 5 years)

0.19461

(0.0421)
0.19461

(0.0433)
0.19465

(0.0973)
0.16915

(0.0848)
0.154410

(0.0808)
0.58851

(0.0523)
0.58851

(0.0568)
0.58851

(0.1038)

Market Return 
  (last 5 years)

-0.31771

(0.0283)
-0.31771

(0.0292)
-0.31771

(0.1092)
-0.30021

(0.0957)
-0.25361

(0.0910)
-1.22751

(0.0377)
-1.22751

(0.0437)
-1.22751

(0.1242)

Share issuance -0.50121

(0.0471)
-0.50121

(0.0466)
-0.50121

(0.1529)
-0.51721

(0.1275)
-0.51041

(0.1213)
-0.29421

(0.0623)
-0.29421

(0.0718)
-0.29421

(0.0949)

R2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0191 0.0191 0.0191

Coefficient Estimates OLS OLS OLS FM WFM OLS OLS OLS

Standard Errors White Rogers (F) Rogers (T) FM FM White Rogers (F) Rogers (T)

Dummies T T T F & T F & T F & T
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Notes:
The table contains coefficient and standard error estimates of the equity return regressions from Daniel and Titman (2004).  The

data is briefly described in the appendix and in detail in their paper. The sample runs from July, 1968 to December, 2001 and contains
699,707 firm-month observations. The estimates in columns I-III and VI-VII are OLS coefficients. All six regressions contain time
(monthly) dummies and the last three columns contain firm dummies as well (see the last row of the table). Standard errors are reported
in parenthesis. I report White standard errors in columns I and VI, Rogers standard errors clustered by firm in columns II and VII and
Rogers standard errors clustered by month in columns III and VIII. Column IV and V contain coefficients and standard errors estimated
by Fama-MacBeth. In column V, I weighted each of the monthly coefficient estimates by the number of observations in the given month.

10 significant at 10%; 5 significant at 5%; 1 significant at 1%
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Table 9: Corporate Finance Application
Capital Structure Regressions (1965-2003)

I II III IV V VI VII VIII

Ln(MV Assets) 0.07991

(0.0042)
0.07991

(0.0130)
0.07991

(0.0055)
0.08081

(0.0054)
0.07881

(0.0052)
-0.06195

(0.0252)
-0.0619
(0.0400)

-0.06195

(0.0287)

Ln(1+Firm Age) -0.08061

(0.0069)
-0.08061

(0.0229)
-0.08061

(0.0069)
-0.08411

(0.0094)
-0.08211

(0.0083)
0.19481

(0.0707)
0.19485

(0.0923)
0.19485

(0.0744)

Profits / Sales -0.07981

(0.0083)
-0.07981

(0.0253)
-0.07981

(0.0105)
-0.07571

(0.0095)
-0.07811

(0.0100)
-0.57571

(0.1324)
-0.57571

(0.1589)
-0.57571

(0.1550)

Tangible assets 0.10771

(0.0044)
0.10771

(0.0137)
0.10771

(0.0068)
0.10821

(0.0064)
0.10901

(0.0064)
0.21575

(0.0849)
0.21575

(0.0966)
0.21575

(0.0946)

Market to book
    (Assets)

-0.02671

(0.0005)
-0.02671

(0.0016)
-0.02671

(0.0014)
-0.02891

(0.0018)
-0.02821

(0.0017)
-0.02421

(0.0085)
-0.02425

(0.0112)
-0.02421

(0.0086)

Advertising / Sales -0.097710

(0.0499)
-0.0977
(0.1401)

-0.097710

(0.0559)
0.0747

(0.1594)
-0.0002
(0.1221)

0.1561
(1.0263)

0.1561
(0.9953)

0.1561
(1.1532)

R&D / Sales -0.37821

(0.0371)
-0.37821

(0.1128)
-0.37821

(0.0545)
-0.27921

(0.0720)
-0.29801

(0.0616)
-2.41575

(0.9813)
-2.415710

(1.4197)
-2.415710

(1.2721)

R&D > 0 
     (=1 if yes)

0.03061

(0.0019)
0.03061

(0.0055)
0.03061

(0.0017)
0.02881

(0.0020)
0.03031

(0.0019)
-0.0440
(0.0404)

-0.0440
(0.0479)

-0.0440
(0.0458)

R-squared 0.1289 0.1289 0.1289 0.1232 0.1238 0.6730 0.6730 0.6730

Coefficient Estimates OLS OLS OLS FM WFM OLS OLS OLS

Standard Errors White Rogers (F) Rogers (T) FM FM OLS Rogers (F) Rogers (T)



54

Dummies T T T F & T F & T F & T

Notes: 
The table contains coefficient and standard error estimates of the capital structure regressions. The dependent variable is the market

debt ratio (book value of debt divided by the sum of the book value of assets minus the book value of equity plus the market value of
equity). The data is annual observations between 1965 and 2003 and contains 50,870 firm years. Only firms which pay a dividend in the
previous year are included in the sample. The independent variables are lagged one year and are defined in the appendix. The estimates
in columns I-III and VI-VII are OLS coefficients. All six regressions contain time (yearly) dummies and the last three columns contain
firm dummies as well (see the last row of the table). Standard errors are reported in parenthesis. I report White standard errors in columns
I and VI, Rogers standard errors clustered by firm in columns II and VII and Rogers standard errors clustered by year in columns III and
VIII. Column IV and V contain coefficients and standard errors estimated by Fama-MacBeth. In column V, I weighted each of the yearly
coefficient estimates by the number of observations in the given year.
10 significant at 10%; 5 significant at 5%; 1 significant at 1%
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Figure 1: Residual Cross Product Matrix
Assumptions About Zero Co-variances

Firm 1 Firm 2 Firm 3
Fi

rm
 1

,11
2 ,11 ,12 ,11 ,13 0 0 0 0 0 0

,12 ,11 ,12
2 ,12 ,13 0 0 0 0 0 0

,13 ,11 ,13 ,12 ,13
2 0 0 0 0 0 0

Fi
rm

 2

0 0 0 ,21
2 ,21 ,22 ,21 ,23 0 0 0

0 0 0 ,22 ,21 ,22
2 ,22 ,23 0 0 0

0 0 0 ,23 ,21 ,23 ,22 ,23
2 0 0 0

Fi
rm

 3

0 0 0 0 0 0 ,31
2 ,31 ,32 ,31 ,33

0 0 0 0 0 0 ,32 ,31 ,32
2 ,32 ,33

0 0 0 0 0 0 ,33 ,31 ,33 ,32 ,33
2

Notes:
This figure shows a sample covariance matrix of the residuals. Assumptions about elements

of this matrix and which are zero is the source of difference in the various standard error estimates.
The covariance of the matrix of the residuals has (NT)2 elements where N is the number of firms and
T is the number of years. Both are three in this illustration. The standard OLS assumption is that
only the NT diagonal terms are non-zero. Rogers standard errors clustered by firm assumes that the
correlation of the residuals within the cluster may be non-zero (these elements are shaded). The
cluster assumption assumes that residuals across clusters are uncorrelated. These are recorded as
zero in the above matrix.
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Figure 2: Distribution of Simulated T-Statistics

Notes:
The figures contain the theoretical t-distribution (the line), and the distribution of t-statistics

produced by the simulation (the bars) when fifty percent of the variability in the independent
variable and the residual is due to the firm effect. The top figure is the distribution of the t-statistics
based on the OLS standard errors, the middle figure is the distribution of t-statistics based on the
Rogers standard errors clustered by firm, and the bottom figure is the distribution of t-statistics based
on the Fama-MacBeth standard errors. When the standard errors estimates are too small (as with
OLS and Fama-MacBeth) there are too many t-statistics which are large in absolute value.
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Figure 3: Bias in Estimated Standard Errors
As a function of observations per cluster

Notes:
The figure graphs the percentage by which the three methods underestimate the true standard

error in the presence of a firm effect. The results are based on 5,000 simulations of a data set with
5,000 observations. The number of years per firm ranges from five to fifty. The firm effect was
assumed to comprise fifty percent of the variability in both the independent variable and the residual.
The underestimates are calculated as one minus the average standard error estimated by the method
divided by the true standard deviation of the coefficient estimate. For example, the standard
deviation of the coefficient estimate was 0.0406 in the simulation with five years of data (T=5). The
average of the OLS estimated standard errors is 0.0283. Thus the OLS underestimated the true
standard error by 30% (1 - 0.0283/0.0406).
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Figure 4: Relative Performance of OLS, Rogers, and Newey-West Standard Errors 
 

Notes:
The figure contains OLS, Rogers (clustered by firm), and Newey-West standard error

estimates, as well as the true standard error. Estimates are based on 5,000 simulated data sets. Each
data set contains 5,000 observations (500 firms and 10 years for each firm). In each simulation,
twenty-five percent of the variability in both the independent variable and the residual is due to a
firm effect [i.e. ρX = ρε = 0.25]. The true standard error (shaded squares), the OLS standard error
estimates (empty diamonds), and the Rogers standard error estimates (empty squares) are plotted
as straight lines as they do not depend upon the assumed lag length. The Newey-West standard error
estimates, which rise with the assumed lag length, are plotted as triangles.
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Figure 5: True Standard Errors and Robust Estimates
as a function of cluster size (T)

Notes:
The true standard errors (squares) and the Rogers standard error clustered by year (triangles)

are graphed against the number of years (clusters) used in each simulation. The standard errors are
the average across 5,000 simulations. Each simulated data set has 5,000 observations. In each
simulation, twenty-five percent of the variability in both the independent variable and the residual
is due to the time effect [i.e. ρX = ρε = 0.25]. The robust estimates underestimate the true standard
errors, but this underestimate declines with the number of years (clusters). In these simulations, the
underestimation ranges from 15 percent when there were 10 years in the simulated data set to 1
percent when there were 100 years in the simulated data set.
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Figure 6: Auto-correlation Patterns of Non-Fixed Firm Effects

Notes:
This figure contains the auto-correlations of the residuals and the independent variable for

lags one through nine for the data structures used in Table 7. The specifications contain a fixed and
a temporary firm component. ρ is the fraction of the variance which is due to the fixed firm effect
and φ is the first order auto-correlation of the non-fixed firm effect (see equation 17).
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Figure 7: Within Firm Auto-Correlation in the Residuals and the Independent Variables
Asset Pricing Example

Notes:
The auto-correlations of the residual and the four independent variables are graphed for lags

of one to twelve months. Correlations are calculate only for observations of the same firm [i.e. Corr
( ε i t ε i t-k ) for k equal one to twelve]. The independent variables are described in the appendix and
in Daniel and Titman (2004).
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Figure 8: Within Month Auto-Correlation in the Residuals and the Independent Variables
Asset Pricing Example

Notes:
The auto-correlations of the residuals and the four independent variables are graphed for lags

of one to twelve firms. Correlations are calculated only for observations of the same year [i.e. Corr
( ε i t ε i-k t ) for k equal one to twelve]. The data was sorted by month, then by four digit industry, and
then by firm identifier (permco). The independent variables are described in the appendix and in
Daniel and Titman (2004).
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Figure 9: Within Firm Auto-Correlation in the Residuals and the Independent Variables
Corporate Finance Example

Notes:
The auto-correlations of the residual and four of the eight independent variables are graphed

for lags of one to twelve years. Correlations are calculate only for observations of the same firm [i.e.
Corr ( ε i t ε i t-k ) for k equal one to twelve]. The independent variables are described in the appendix.
The graph for the remaining four variables are similar and are available from the author.
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Figure 10: Within Month Auto-Correlation in the Residuals and the Independent Variables
Corporate Finance Example

Notes:
The auto-correlations of the residuals and four of the eight independent variables are graphed

for lags of one to twelve firms. Correlations are calculated only for observations of the same year
[i.e. Corr ( ε i t ε i-k t ) for k equal one to twelve]. The data was sorted by month, then by four digit
industry, and then by firm identifier (gvkey). The independent variables are described in the
appendix. The graph for the remaining four variables are similar and are available from the author.
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