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1 Introduction

I develop a model of an exchange economy with a continuum of agents who have power utility

with risk aversion coefficient γ, complete markets, but imperfect enforcement of contracts.

Because households can declare themselves bankrupt and escape their debts, they face en-

dogenous solvency constraints that restrain their resort to the bankruptcy option. In the

benchmark calibration, the risk associated with these solvency constraints delivers an equity

premium of 7 percent, a risk-free rate of 1 percent and substantial variation in equity risk

premia, as well as an upward sloping yield curve, consistent with the data. This variation

in risk premia is driven by shocks to the wealth distribution induced by these solvency con-

straints. The fraction of the economy’s endowment yielded by the Lucas tree plays a key role

in my economy. If the labor share of aggregate income is one, all wealth is human wealth,

the solvency constraints always bind and there can be no risk sharing. As the fraction of

wealth contributed by the Lucas tree increases, risk sharing is facilitated.

An economy that is physically identical but with perfect enforcement of contracts forms a

natural benchmark with which to compare my model. Because assets only reflect aggregate

consumption growth risk in this benchmark representative agent model (Lucas (1978) and

Breeden (1979)), two quantitative asset pricing puzzles arise. These puzzles follow from the

fact that aggregate consumption growth in the US is i.i.d. and not volatile. First, risk premia

are small for plausible levels of risk aversion (Hansen and Singleton (1982) and Mehra and

Prescott (1985)), and second, risk premia do not vary in this economy while they do in the

data (see e.g. Campbell and Cochrane (1999)). My model produces an additional risk factor

that addresses these puzzles.

Since aggregate endowment growth is i.i.d., there are no built-in dynamics in risk premia.

Beyond the constant risk in the aggregate endowment process, the bankruptcy technology

contributes a second source of time-varying risk, the risk associated with binding solvency

constraints1. I call this liquidity risk. In the model without solvency constraints households

consume a constant share of the aggregate endowment, governed by fixed Pareto-Negishi

weights. In the case of limited commitment these weights increase each time the solvency

constraint binds. The average of these increases across households contributes a multiplica-

tive adjustment to the standard Lucas-Breeden SDF βλ−γ
t+1 (stochastic discount factor): the

growth rate of the γ−1-th moment of the distribution of stochastic Pareto-Negishi weights,

denoted gt+1, raised to the power γ:

mt+1 = βλ−γ
t+1g

γ
t+1

1This paper follows He and Pearson (1991) and Luttmer (1992) in exploring solvency constraints as a
device for understanding asset pricing anomalies.
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This last component reflects the aggregate shadow cost of the solvency constraints. If this

growth rate is high, a large fraction of agents is constrained, trading volume is low and the

economy is said to be hit by a negative liquidity shock. Figure 1 plots these liquidity shocks

gγ in the top panel and the trading volume in the bottom panel for 55 periods simulated

from a calibrated version of my model. The aggregate trade volume in financial markets

drops by 20 % when there is a large liquidity shocks, after which it gradually recovers. The

shaded areas indicate low aggregate consumption growth states. There is a growing body

of evidence that aggregate liquidity risk is priced, both from the cross-section and the time-

series variation in stock returns (Pastor and Stambaugh (2003)). This papers delivers a

theoretical underpinning for these findings in a model with solvency constraints as the only

trading friction.
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Figure 1: Liquidity Shocks and Trading Volume In the top panel, the full line is the aggregate liquidity
shock gγ over 55 years, generated by simulating the model. In the bottom panel, the full line is the aggregate trading volume
in financial markets, 1

et(zt)

∫ ∑
yt abs

(
Πst [{c(µ0, st)}]−Πst [{η(st)}]) dΦ0 over 55 years. The shaded areas are low aggregate

consumption growth states. γ is 7, α is 7.5% and β is .95.

The wealth distribution dynamics increase the unconditional volatility of the SDF if nega-

tive liquidity shocks occur when aggregate consumption growth is low (recessions). Liquidity

shocks in recessions emerge from the properties of the labor income process when the disper-

sion of idiosyncratic labor income shocks increases in recessions. Households would like to

borrow against their income in the “high idiosyncratic states” to smooth consumption but

they are not allowed to, because they would walk away from the contract when that state of

the world is realized. The labor risk channel has support in the data. Storesletten, Telmer,

and Yaron (2004) argue that the conditional standard deviation of labor income shocks more
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than triples in recessions.

Leading asset pricing models cannot generate enough variation in the Sharpe ratio. Let-

tau and Ludvigson (2003) call this the Sharpe ratio volatility puzzle. The wealth distribution

dynamics of my model endogenously generate more time-variation in the conditional volatil-

ity of the SDF than competing equilibrium models. The liquidity shocks are largest when a

recession hits after a long expansion. In long expansions, there is a buildup of households

in the left tail of the wealth distribution: more agents do not encounter states with binding

constraints and they deplete their financial assets because interest rates are lower than in

the representative agent economy. When the recession sets in, those low-wealth agents with

high income draws encounter severely binding constraints and the left tail of the wealth

distribution is erased. After the recession, the conditional market price of risk decreases

sharply.

To deal with a continuum of consumers and aggregate uncertainty, I extend the methods

developed by and Krueger (1999). Building on work by Atkeson and Lucas (1992,1995),

Krueger computes the equilibrium allocations in a limited commitment economy without

aggregate uncertainty, in which households are permanently excluded upon default. These

methods cannot handle aggregate uncertainty. The use of stochastic Pareto-Negishi weights

(Marcet and Marimon (1999)) allows me to state an exact aggregation result: equilibrium

state prices depend only on the γ−1-th moment of the distribution of weights and I extend this

result to the case of recursive utility. This reduces the problem of forecasting the multiplier

distribution -the state of the economy- to one of forecasting a single moment.

There is a growing literature on collateral constraints and asset prices. Geanakoplos and

Zame (1998)(henceforth GZ) consider an environment in which households can default on

their promises at any time, and financial securities are only traded if the promises associated

with these securities are backed by collateral. What distinguishes my setup from GZ is

the fact that only outright default on all promises is allowed, not default on individual

obligations. Kubler and Schmedders (2003) develop a computational algorithm for an infinite

horizon version of the GZ economy.

This paper is organized as follows. The second section of the paper describes the en-

vironment. The third section discusses the equilibrium allocations prices, using stochastic

Pareto-Negishi weights. This section can be skipped by those not interested in the mechan-

ics of the model. The fourth section discusses the results; the fifth section discusses the

computation. All the proofs are in the appendix.
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2 Environment and Equilibrium

2.1 Uncertainty

The events s = (y, z) take on values on a discrete grid S = Y ×Z where Y = {y1, y2, . . . , yn}
and Z = {z1, z2, . . . , zm} . y is household specific and z is an aggregate event. Let st = (yt, zt)

denote an event history up until period t. This event history includes an individual event

history yt and an aggregate event history zt. I will use sτ ≥ st to denote all the continuation

histories of st. s follows a Markov process such that:

π(z′|z) =
∑

y′∈Y

π(y′, z′|y, z) for all z ∈ Z, y ∈ Y.

I assume a law of large numbers holds such that the transition probabilities can be interpreted

as fractions of agents making the transition from one state to another. In addition, I assume

there is a unique invariant distribution πz(y) in each state z : by the law of large numbers

πz(y) is also the fraction of agents drawing y when the aggregate event is z. (S∞,F , P ) is

a probability space where S∞ is the set of all possible histories and P is the corresponding

probability measure induced by π. The transition probabilities for idiosyncratic and aggregate

shocks are assumed to be independent.

Condition 2.1. The transition probabilities can be stated as:

π(y′, z′|y, z) = ϕ(y′|y)φ(z′|z)

I assume the transition matrix for idiosyncratic events y, φ(y′|y), satisfies monotonicity

and there are no absorbing states, φ(y′|y) >> 0. Finally, I also assume the aggregate shocks

are independent over time:

Condition 2.2. The aggregate shocks are i.i.d.:

φ(z′|z) = φ(z′)

2.2 Preferences and Endowments

There is a continuum of consumers of measure 1. There is a single consumption good and

it is non-storable. The consumers rank consumption streams {ct} according to the following

utility function:

U(c)(s0) =
∞∑

t=0

∑

st≥s0

βtπ(st|s0)
ct(s

t)

1− γ

1−γ

, (1)
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where γ is the coefficient of relative risk aversion.

The economy’s aggregate endowment process {et} depends only on the aggregate event

history: et(z
t) is the realization at aggregate node zt. Each agent draws a labor income share

η̂(yt, zt) as a fraction of the aggregate endowment in each period. Her labor income share only

depends on the current individual and aggregate event. {ηt} denotes the individual labor

income process ηt(s
t) = η̂(yt, zt)et(z

t),with st = (st−1, y, z). I assume η̂(yi+1, zt) > η̂(yi, zt)

and η̂(yt, zt) >> 0 in all states of the world.

There is a Lucas (1978) tree that yields a non-negative dividend process {xt} . The

dividends are not storable but the tree itself is perfectly durable. The Lucas tree yields a

constant share α of the total endowment, the remaining fraction is the labor income share.

By definition, the labor share of the aggregate endowment equals the aggregated labor income

shares: ∑

y′∈Y

πz(y
′)η̂(y′, z′) = (1− α), (2)

for all z′. An increase in α translates into proportionally lower η̂(y, z) for all (y, z).

Agents are endowed with initial non-labor wealth (net of endowment) θ0. This represents

the value of this agent’s share of the Lucas tree producing the dividend flow in units of time

0 consumption. Θ0 denotes the initial distribution of wealth and endowments (θ0, y0).

2.3 Market Arrangements

Claims to one’s entire labor income process {ηt} cannot be traded directly while shares in

the Lucas tree can be traded. Households can write borrowing and lending contracts based

on individual labor income realizations. I use φt(s
t) to denote an agent’s holdings of shares

in the Lucas tree. In each period households go to securities markets to trade φt(s
t) shares in

the tree at a price pe
t (z

t) and a complete set of one-period ahead contingent claims at(s
t, s′)

at prices qt(s
t, s′). at(s

t, s′) is a security that pays off one unit of the consumption good if

the household draws private shock y′ and the aggregate shock z′ in the next period with

s′ = (y′, z′). qt(s
t, s′) is today’s price of that security. In this environment the payoffs are

conditional on an individual event history and the aggregate event history rather than just

the aggregate state of the economy.

An agent starting period t with initial wealth θt(s
t) buys consumption commodities in

the spot market and trades securities subject to the usual budget constraint:

ct(s
t) + pe

t (z
t)φt(s

t) +
∑

s′
at+1(s

t, s′)qt(s
t, s′) ≤ θt. (3)
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If the next period’s state is st+1 = (st, s′), her wealth is given by her labor income, the value

of her stock holdings -including the dividends issued at the start of the period- less whatever

she promised to pay in that state:

θt+1(s
t+1) = η̂(yt+1, zt+1)et+1(z

t+1)︸ ︷︷ ︸ +
[
pe

t+1(z
t+1) + αet+1(z

t+1)
]
φt(s

t)︸ ︷︷ ︸ + at+1(s
t+1)︸ ︷︷ ︸ .

labor income value of tree holdings contingent payoff

2.4 Enforcement Technology

In this literature, it has been common to assume that households can be excluded from

financial markets forever when they default, following Kehoe and Levine (1993) and Kocher-

lakota (1996). I allow agents to file for bankruptcy. When a household files for bankruptcy,

it loses all of its asset but its labor income cannot be seized by creditors and it cannot be

denied access to financial markets (see Lustig (2000) for a complete discussion).

Bankruptcy imposes borrowing constraints on households, one for each state:

[
pe

t+1(z
t+1) + αet+1(z

t+1)
]
φt(s

t) ≥ −at+1(s
t, s′) for all s′ ∈ S,

where st+1 = (st, s′). (4)

These borrowing constraints follow endogenously from the enforcement technology if we

rule out borrowing constraints that are too tight (see Alvarez and Jermann (2000)); these

constraints only bind when the participation constraint binds. If the agent chooses to default,

her assets and that period’s dividends are seized and transferred to the lender. Her new

wealth level is that period’s labor income:

θt+1(s
t+1) = η̂(yt+1, zt+1)et+1(z

t+1).

If the next period’s state is st+1 = (st, s′) and the agent decides not to default, her wealth is

given by her labor income, the value of her tree holdings less whatever she promised to pay

in that state:

θt+1(s
t+1) = η̂(yt+1, zt+1)et+1(z

t+1) +
[
pe

t+1(z
t+1) + αet+1(z

t+1)
]
φt(s

t) + at+1(s
t+1).

This default technology effectively provides the agent with a call option on non-labor wealth

at a zero strike price. Lenders keep track of the borrower’s asset holdings and they do not

buy contingent claims when the agent selling these claims has no incentive to deliver the

goods. The constraints in (4) just state that an agent cannot promise to deliver more than
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the value of his Lucas tree holdings in any state s′.

Bankruptcy and Permanent Exclusion Two key differences between bankruptcy and

permanent exclusion deserve mention. First, the bankruptcy constraints in (4) only re-

quire information about the household’s assets and liabilities. To determine the appropriate

borrowing constraints in the case of permanent exclusion, the lender needs to know the bor-

rower’s endowment process and her preferences (Alvarez and Jermann (2000)). This type

of information is not readily available and costly to acquire. Moreover, the borrower has an

incentive to hide his private information. Second, in the case of bankruptcy it is immaterial

whether or not the household actually defaults when the constraint binds. The lender is paid

back anyhow and the borrower is indifferent as well. Households could randomize between

defaulting and not defaulting when the constraint binds.

These collateral constraints are much tighter than the ones that decentralize the con-

strained efficient allocations when agents can be excluded from trading (see Section 3.2) and

they support less risk sharing as a result.

2.5 Sequential Equilibrium

The definition of equilibrium is standard. Each household is assigned a label that consists

of its initial financial wealth θ0 and its initial state s0. A household of type (θ0, s
0) chooses

consumption {ct(θ0, s
t)}, trades claims {at(s

′; θ0, s
t)} and shares {φt(θ0, s

t)} to maximize her

expected utility:

max
{c},{φ}{a}s′

∞∑
t=0

∑

st≥s0

βtπ(st|s0)
ct(s

t)

1− γ

1−γ

subject to the usual budget constraint:

ct(θ0, s
t) + pe

t(z
t)φt(θ0, s

t) +
∑

s′
at(s

′; θ0, s
t)qt(s

t, s′) ≤ θt, (5)

and a collection of collateral constraints, one for each state:

[
pe

t+1(z
t+1) + αet+1(z

t+1)
]
φt(θ0, s

t) ≥ −at(s
′; θ0, s

t) for all s′ ∈ S,

where st+1 = (st, s′). (6)

The appropriate transversality conditions read as

lim
t→∞

∑

st

βtπ(st|s0)u
′(ĉt(s

t))[at(s
′; θ0, s

t) +
[
pe

t+1(z
t+1) + αet+1(z

t+1)
]
φt(θ0, s

t)] = 0

8



The definition of a competitive equilibrium is straightforward.

Definition 2.1. A competitive equilibrium with solvency constraints for initial distribution

Θ0 over (θ0, y0) consists of trading strategies {at(s
′; θ0, s

t)} , {ct(θ0, s
t)} and {φt(θ0, s

t)} and

prices {qt(s
t, s′} and {pe

t(z
t)} such that (1) these solve the household problem (2) the markets

clear ∫ ∑

yt

ϕ(yt|y0)

(∑

y′
at(y

′, z′; θ0, y
t, zt)

)
dΘ0 = 0 for all zt

∫ ∑

yt

ϕ(yt|y0)φt(θ0, s
t)dΘ0 = 1 for all zt

To prevent arbitrage opportunities in my economy for unconstrained agents in some state

tomorrow, the SDF is set equal to the highest IMRS across all agents:

mt+1 = max
(θ0,st)

u′(ct+1(θ0, y
t+1, zt+1))

u′(ct(θ0, yt, zt))
.

This follows immediately from the household’s first order condition and the observation that

same households with positive measure are unconstrained in each node zt+1.

3 Characterizing Equilibrium Prices and Allocations

To facilitate the analysis, I restate the household problem in a time zero trading environment

and I define the analogue to Kehoe and Levine (1993) and Krueger (1999)’s equilibrium

concept. Pareto-Negishi weights summarize a household’s history of shocks. The stochastic

discount factor depends on the growth rate of the 1\γ-th moment of the weight distribution.

This section can be skipped by the reader who wants to get to the asset pricing results.

3.1 Solvency Constraints

The collateral constraints in the sequential formulation can be restated as restrictions on the

price of two claims. Πzt [{d}] denotes the price at node zt in units of zt consumption of a

claim on {dt(s
t)}∞t=0 . The collateral constraints are equivalent to the following restriction on

the price of two claims, one on consumption and one on labor income:

Πst [{c}] ≥ Πst [{η}] , for each st. (7)

9



3.2 Solvency Constraints

First, I show that imposing these solvency constraints is equivalent to imposing participation

constraints that prevent default in an environment where agents can default without being

excluded from trading. In other words, these solvency constraints are not too tight.

Bankruptcy technology Let κt(s
t) be the continuation utility associated with bankruptcy,

conditional on a pricing functional Π :

κt(s
t) = max

{c′}
U(c)(st) s.t. Πst [{c′}] ≤ Πst [{η}] ,

and such that the participation constraints are satisfied in all following histories sτ ≥ st.

Let U({c})(st) denote the continuation utility from an allocation at st. An allocation is

immune to bankruptcy if the household cannot increase its continuation utility by resorting

to bankruptcy at any node.

Definition 3.1. For given Π, an allocation is said to be immune to bankruptcy if

U(
{
c
(
θ0, y

t, zt
)}

)(st) ≥ κt(s
t) for all st. (8)

These participation constraints can be recast as solvency constraints. I choose solvency

constraints that only bind when the participation constraints bind, and hence they are not

too tight, in the sense of Alvarez and Jermann (2000)2. These put a lower bound on the

value of the household’s consumption claim.

Proposition 3.1. For given Π, an allocation is said to be immune to bankruptcy iff:

Πst

[{
c
(
θ0, y

t, zt
)}] ≥ Πst [{η}] , for all st ∈ St, t ≥ 0. (9)

These solvency constraints keep net wealth non-negative in all states of the world. If

these constraints are satisfied in all states, households do not wish to exercise their option

to default3.

3.3 Risk Sharing

This section uses the solvency constraints to characterize the regions of the parameter space

where (no) risk sharing can be sustained.

2Zhang (1997) first endogenized borrowing constraints in a class of incomplete markets models.
3Detemple and Serrat (2003) consider an environment in which only a fraction of agents face these

constraints. They find small effects on risk premia.
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No Collateral The amount of collateralizable wealth plays a key role. When there is no

collateralizable wealth, the solvency constraints bind for all agents in all states of the world

and households are in autarky. If the constraint did not bind for one set of households with

positive measure, it would be have to be violated for another one with positive measure4.

Proposition 3.2. If there is no outside wealth (α = 0), then there can be no risk sharing in

equilibrium.

Perfect Risk Sharing When there is enough collateral, agents may be able to share risks

perfectly. Let Π∗ denote the pricing functional defined by the perfect insurance, Lucas-

Breeden SDF.

Proposition 3.3. If the value of the aggregate endowment exceeds the value of the private

endowment at all nodes, perfect risk sharing is feasible:

Π∗
st [{e}] ≥ Π∗

st [{η}] for all st.

If there is sufficient collateralizable wealth, then the solvency constraint is satisfied for

each (y, z) at perfect-insurance (Breeden-Lucas) prices, and perfect risk sharing is attainable.

Each household can sell a security that replicates its labor income and buy an equivalent

claim to the aggregate dividends stream that fully hedges the household.

Permanent Exclusion How does this relate to the Kehoe-Levine-Kocherlakota setup with

permanent exclusion? The solvency constraints are tighter in the case of bankruptcy than

under permanent exclusion, simply because one could always default and replicate autarky

in the economy with bankruptcy by eating one’s endowment forever after. The reverse is

clearly not true. Let U({η})(st) denote the continuation utility from autarky.

Proposition 3.4. In the economy with permanent exclusion, the participation constraints

can be written as solvency constraints as follows:

Πst [{c}] ≥ Πst [{η}] ≥ Baut
st [{η}] ,

where U({η})(st) = sup{c′}U(c′)(st) s.t. Πst [{c′}] ≤ Baut
st [{η}] and s.t. the participation

constraint is satisfied at all future nodes .

Because this inequality holds for any pricing functional, if perfect risk sharing is feasible

in the economy with bankruptcy, it is feasible in the economy with permanent exclusion.

4Krueger and Uhlig (2005) derive a similar result in an environment with one-sided commitment, on the
part of financial intermediaries.

11



Loosely speaking, the Pareto frontier shifts down as one moves from permanent exclusion to

bankruptcy.

3.4 Kehoe-Levine Equilibrium

This section sets up the household’s problem and defines an equilibrium, when all trading

occurs at time zero. Taking prices {pt(s
t|s0)} as given, the household purchases history-

contingent consumption claims subject to a standard budget constraint and a sequence of

solvency constraints, one for each history:

Primal Problem (PP)

sup
{c}

u(c0(θ0, s
0)) +

∑
t=1

∑

st≥s0

βtπ(st|s0)u(ct(θ0, s
t)),

∑
t≥0

∑

st≥s0

pt(s
t|s0)

[
ct(θ0, s

t)− ηt(s
t)

] ≤ θ0,

Πst

[{
c
(
θ0, y

t, zt
)}] ≥ Πst [{η}] , for all st ∈ St, t ≥ 0.

The solvency constraints keep the households from defaulting. The following definition

of equilibrium is in the spirit of Kehoe and Levine (1993) and in particular Krueger (1999).

Definition 3.2. For given initial state z0 and for given distribution Θ0, an equilibrium

consists of prices {pt(s
t|s0)} and allocations {ct(θ0, s

t)} such that

• for given prices {pt(s
t|s0)} , the allocations solve the household’s problem PP (except

possibly on a set of measure zero),

• markets clear for all t, zt :

∑

yt

∫
ct(θ0, y

t, zt)ϕ(yt|y0)dΘ0 = et(zt). (10)

In equilibrium households solve their optimization problem subject to the participation

constraints and the markets clear. I assume that the endowments are finitely valued in

equilibrium.

Condition 3.1. Interest rates are high enough:

Πs0 [{η}] < ∞ for all y0 and Πz0 [{e}] < ∞. (11)
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When interest rates are high enough, the economy with sequential trading is equivalent

to an economy in which all trading occurs at time zero subject to these solvency constraints.

In the case of a continuum of consumers, it is not sufficient to restrict the value of the

aggregate endowment to be finite (as in Alvarez and Jermann (2000)). It is also necessary

to restrict the value of labor income to be finite. If the value of the aggregate endowment is

finite, then all θ0 will be finite as well, since these are claims to the aggregate endowment.

From the time 0 budget constraint, I know that Πs0 [{c (µ0, s
t)}] < ∞. This means I can

apply Proposition 4.6 in Alvarez and Jermann (2000)5.

The next subsection makes use of Pareto-Negishi weights as a device for characterizing

equilibrium allocations and prices. These weights encode the wealth distribution dynamics

that are central to my results. I do not solve a planner’s resource allocation problem, but I

characterize equilibrium allocations and prices from the household’s first order conditions.

3.5 Stochastic Pareto-Negishi Weights

These solvency constraints introduce a stochastic element in the consumption share of each

household. The household’s wealth at time 0, θ0, determines its initial Pareto-Negishi weight

µ0. This weight µ0 governs the share of aggregate consumption allocated to this household

in all future states of the world st. Φ0 is the joint measure over initial states and multipliers

(µ0, s0). When there are no solvency constraints, this share is fixed:

ct

(
µ0, s

t
)

=
µ

1/γ
0

Eµ
1/γ
0

et(z
t) where st = (yt, zt), (12)

where the constant Eµ
1/γ
0 =

∫
µ

1/γ
0 dΦ0 guarantees market clearing after each aggregate

history.

In the presence of solvency constraints, the Pareto-Negishi weights are no longer fixed. I

use ζt(µ0, s
t) to denote the weight of a household with initial weight µ0 in state st. {ζt(µ0, s

t)}
is a non-decreasing stochastic process. These weights are constant, unless the household

switches to a state with a binding solvency constraint. In these instances the weight increases

such that the solvency constraint in (7) is satisfied with equality. Typically, these are states

with high labor income realizations. These weights record the sum of all solvency constraint

5This proposition demonstrates the equivalence between the Arrow-Debreu economy and the economy
with sequential trading, provided that there is a ξ such that

c (µ0, s
t)1−γ

1− γ
≤ ξ

ct (µ0, s
t)−γ

1
ct

(
µ0, s

t
)
,

which is automatically satisfied for power utility.
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multipliers in history st.

Consumption is characterized by the same linear risk sharing rule:

ct(µ0, s
t) =

ζ
1/γ
t (µ0, s

t)

E
[
ζ

1/γ
t (µ0, st)

]et(z
t), (13)

but each household’s consumption share is stochastic. Let ht(z
t) denote this cross-sectional

multiplier moment:

ht(z
t) = E

[
ζ

1/γ
t (µ0, s

t)
]
.

The average weight process {ht(z
t)} is a non-decreasing (over time) stochastic process that

is adapted to the aggregate history zt. This process experiences a high growth rate when

a large fraction of agents find themselves switching to states with binding constraints -I

call this a liquidity shock. {ht(z
t)} can be interpreted as the aggregate shadow cost of the

solvency constraints. I will refer to this simply as the average weight process.

To derive this consumption sharing rule, I relabel households with initial promised utilities

w0 instead of initial wealth θ0. The dual program consists of minimizing the resources spent

by a consumer who starts out with “promised” utility w0:

Dual Problem (DP)

C∗(w0, s
0) = inf

{c}
c0(w0, s

0) +
∑
t=1

∑

st≥s0

pt(s
t|s0)ct(w0, s

t),

∑
t≥0

∑

st≥s0

βtπ(st|s0)u(ct(w0, s
t)) = w0, (14)

Πst

[{
c
(
w0, y

t, zt
)}] ≥ Πst [{η}] , for all st ∈ St, t ≥ 0. (15)

The convexity of the constraint set implies that the minimizer of DP and the maxi-

mizer of PP (the primal problem) coincide for initial wealth θ0 = C∗(w0, s
0)−Πs0 [{η}](see

Luenberger (1969), p. 201).

To solve for the equilibrium allocations, I make the dual problem recursive. To do so, I

borrow and extend some tools recently developed to solve recursive contracting problems by

Marcet and Marimon (1999). Let mt(s
t|s0) = pt(s

t|s0)/πt(s
t|s0), i.e. the state price deflator

for payoffs conditional on event history st. τt(s
t) is the multiplier on the solvency constraint

at node st. I can transform the original dual program into a recursive saddle point problem

for household (w0, s0) by introducing a cumulative multiplier:

χt(w0, s
t) = χt−1(w0, s

t−1)− τt(w0, s
t), χ0 = 1. (16)
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Let µ0 denotes the Lagrangian multiplier on the initial promised utility constraint in (14).

I will use these to index the households with, instead of promised utilities. It is the initial

value of the household’s Pareto-Negishi weights. After history st, the Pareto-Negishi weight

is given by ζt(µ0, s
t) = µ0/χt(µ0, s

t). If a constraint binds (τt(s
t) > 0), the weight ζ goes up,

if not, it stays the same. These weight adjustments prevent the value of the consumption

claim from dropping below the value of the labor income claim at any node.

Formally, I can transform the original dual program into a recursive saddle point problem

for household (w0, s0) by introducing a cumulative multiplier:

D(c, χ; w0, s0) =
∑
t≥0

∑

st

{
βtπ(st|s0)mt(s

t|s0)

[
χt(s

t|s0)ct(w0, s
t)

+τt(s
t)Πst [{η}]

]}
, (17)

where χt(s
t) = χt−1(s

t−1) − τt(s
t), χ0 = 1. Then the recursive dual saddle point problem

facing the household of type (w0, s0) is given by:

inf
{c}

sup
{χ}

D(c, χ; w0, s0), (RSDP)

such that ∑
t≥0

∑

st

βtπ(st|s0)u(ct(w0, s
t)) = w0.

Let µ0 denotes the Lagrangian multiplier on the promise keeping constraint. The next step

is to use those Pareto-Negishi weights and exploit the homogeneity of the utility function

to construct a linear consumption sharing rule, as in the benchmark model. This allows me

to recover allocations and prices from the equilibrium sequence of multipliers {ζt(µ0, s
t)} . I

will proceed in two steps.

First, consider 2 households having experienced the same history st. We know from the

first order conditions of the recursive dual saddle point problem for two different households

(µ′0, y0) and (µ′′0, y0) that the ratio of marginal utilities has to equal the inverse of the weight

ratio: [
ct(µ

′
0, s

t))

ct(µ′′0, st))

]−γ

=
ζt(µ

′′
0, s

t)

ζt(µ′0, st)
. (18)

If the constraints never bind, ζt = µ0 at all nodes and the condition in (18) reduces to

condition that characterizes perfect risk sharing. Second, the resource constraint implies

that for all aggregate states of the world zt consumption adds up to the total endowment:

∑

yt

∫
ct(µ0, y

t, zt)ϕ(yt|y0)dΦ0 = et(z
t), (19)
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(18) and (19) completely characterize the equilibrium consumption allocation for a given

sequence of multipliers. The objective is to find the risk sharing rule that satisfies these

conditions:

ct(µ0, s
t) =

ζ
1/γ
t (µ0, s

t)

E
[
ζ

1/γ
t (µ0, st)

]et(z
t). (20)

This rule satisfies the condition on the ratio of marginal utilities (18) and it clears the market

in each aggregate history zt. This can be verified by taking cross-sectional averages of the

individual consumption rule.

Cutoff Rule I derive a simple characterization of the optimal weight policy and then I

show that these weights fully characterize an equilibrium. The optimal policy rule has a

simple recursive structure. Let C (µ0, s
t; ζ) denote the continuation cost of a consumption

claim derived from a weight policy {ζt(µ0, s
t)} :

C
(
µ0, s

t; ζ
)

= Πst [{cτ (ζτ (µ0, s
τ ))}] ,

where consumption at each node is given by the risk sharing rule in (20). The optimal

weight updating rule has a simple structure. I will let lt(y, zt) denote the weight such that

a household starting with that weight has a continuation cost that exactly equals the price

of a claim to labor income:

C
(
µ0, s

t; ζ
)

= Πst [{η}] with ζt(µ0, s
t) = lt(y, zt).

A household compares its weight ζt−1(µ0, s
t−1) going into period t at node st to its cutoff

weight and adjusts its weight only if it is lower than the cutoff.

Lemma 3.1. The optimal weight updating policy consists of a cutoff rule {lt(y, zt)} where

ζ0(µ0, s
0) = µ0 and for all t ≥ 1

if ζt−1(µ0, s
t−1) > lt(y, zt)

ζt(µ0, s
t) = ζt−1(µ0, s

t−1) ,

else ζt(µ0, s
t) = lt(y, zt).

The following theorem explains that an equilibrium is fully characterized by these Pareto-

Negishi weight processes.

Theorem 3.1. An allocation {ζt(µ0, s
t)} for all (µ0, s

t), state price deflators {Qt(z
t)} and

forecasts {ht(z
t|z0)} define an equilibrium if (i) {ζt(µ0, s

t)}∞t=0 solves (DP) and (ii) the market
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clears for all zt:

ht(z
t) =

∑

yt

∫
ζ

1/γ
t (µ0, y

t, zt)ϕ(yt|y0)dΦ0

and (iii) there are no arbitrage opportunities :

Q(zt) = βt

(
et(z

t)

e0(z0)

)−γ (
ht(z

t)

h0(z0)

)γ

Properties of the Cutoff Rule These cutoff rules have two key properties that will prove

useful for understanding the consumption and wealth dynamics inside the model, and for

solving the model. First, the cutoff rules for the consumption shares are weakly lower than

the endowment share. The intuition is simple: the agent consumes less today in exchange

for the promise of higher consumption tomorrow.

Lemma 3.2. The consumption shares at the cutoff do not exceed the labor endowment shares:

l
1/γ
t (zt, y)

ht(zt)
≤ η̂(y, z) for all (zt, y) (21)

Of course, as the collateralizable share of income decreases, the cutoff consumption shares

approach the labor endowment shares; when α = 0, equation (21) holds with equality at all

nodes. Second, if the transition matrix satisfies monotonicity, the cutoffs can be ranked and

the consumption share in the lowest income state equals the labor endowment share.

Lemma 3.3. If the transition matrix satisfies monotonicity, then the cutoff rules can be

ranked:

lt(z
t, yn) ≥ lt(z

t, yn−1) ≥ lt(z
t, yn−2) ≥ . . . ≥ lt(z

t, y1)

and
l
1/γ
t (zt,y1)

ht(zt)
= η̂(y1, z) for all zt.

What are the implications for household consumption? Suppose perfect risk sharing

cannot be sustained, and h >> 1. Naturally, a wealthy household that starts off with an

initial weight above the highest cutoff will end up hitting that bound in finite time, unless

there is perfect risk sharing. This random stopping time is defined as:

τ = inf

{
t ≥ 0 :

µ0

ht(zt)
≤ η̂(yn, z)

}

The less risk sharing, the smaller τ in expectation for a given µ0. I will assume this

economy has been running long enough such that the agents with weights higher than the
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highest reservation weight have measure zero:

∑

yt

∫

l
1/γ
t (zt,yn)

ϕ(yt|y0)dΦ0 = 0 for all zt.

After some finite τ, all of the consumption shares $(µ0, s
t) are fluctuating between the

highest and the lowest endowment shares

η̂(y1, z) ≤ $(µ0, s
t) < η̂(y1, z) for all (µ0, s

t) and t ≥ τ (22)

This follows directly Lemma (3.3) and (3.2). All households face at least one binding solvency

constraint, in the highest state y tomorrow. In this environment, wealthy agents simply run

down their wealth, until they reach the region of binding solvency constraints. The risk

sharing rule implies that, as long as agents do not switch to a state with a binding solvency

constraint, their consumption share drifts downward. So, if an agent were to start off with

a lot of financial wealth at time 0, her consumption share $(µ0, s
t) would keep drifting

down until she reaches the region in which the solvency constraints start to bind. This

is the signature of complete markets: there is no motive for unconstrained households to

accumulate wealth. The rate of decrease is driven by the growth rate of {ht(z
t)} and this

growth rate is governed by the wealth distribution dynamics. Wealthy households chose

to run down their assets because interest rates are low. It would be inefficient to have

some households hold too much financial wealth when collateral is scarce. As a result, in a

stationary equilibrium, all households face at least one binding solvency constraint, the one

for the highest income share tomorrow, because their consumption share is -weakly- smaller

than ω(yn, z
t).

This explains how this model reconciles fairly smooth individual consumption processes

with highly volatile SDF’s. This also points to a crucial distinction between this model and

standard incomplete market models. In these models, wealthy agents do not run down their

financial wealth holdings, and as a result, may not face any binding solvency constraints

at all. In some sense, the stock of scarce collateral is not being used as efficiently in those

equilibria. The next subsection derives an expression for the SDF.

3.6 Risk Premia

The structure of the SDF is very revealing. The first part is the Breeden-Lucas SDF that

emerges in a representative agent economy. The second part is the multiplicative adjustment

of the SDF that summarizes the shocks to the wealth distribution induced by the solvency
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constraints; it is the liquidity shock, raised to the power γ.

Proposition 3.5. The equilibrium SDF is given by:

mt+1 = β

(
et+1

et

)−γ (
ht+1

ht

)γ

. (23)

In each aggregate state zt+1 payoffs are priced off the IMRS of unconstrained agents,

whose Pareto-Negishi weight did not change between t and t + 1. The risk sharing rule for

consumption directly implies that his or her IMRS equals the SDF expression in equation

(23).

Bounds The theory puts upper and lower bounds on the size of these liquidity shocks that

depend only on the primitives of this economy. In the perfect insurance equilibrium, the

average weights do not grow. In the autarchic equilibrium, the weights grow at a rate that

equals the ratio of the largest and the smallest endowment shares.

Lemma 3.4. The equilibrium average weight growth is bounded between the perfect insurance

and autarchy values:

1 ≤ ht(z
t+1)

ht(zt)
≤ η̂(yn, zt)

η̂(y1, zt+1)
for all

(
zt, z

)

When all households are constrained, the SDF equals the autarchic IMRS of the household

switching from the highest to the lowest income state. When none of the households are

constrained, their Pareto-Negishi weights are constant. In equilibrium, these liquidity shocks

will vary between these bounds depending on the history of aggregate shocks.

Why are these liquidity shocks? If g = 1, then the economy sustains the maximum

amount of trading, to implement complete risk insurance. The aggregate volume of trade in

node zt is measured by the average (across households) distance between the consumption

and the endowment stream in present discounted value, scaled by the level of the aggregate

endowment:
1

et(zt)

∫ ∑

yt

abs
(
Πst [{c(µ0, s

t)}]− Πst [{η(st)}]) dΦ0. (24)

This is a direct measure of how far the allocations are from autarchy. The trading volume in

financial markets peaks when perfect insurance is implemented. On the other hand, when

g hits the upper bound, the trading volume reaches the absolute minimum (zero). So, g is

a perfect liquidity indicator. The size of these liquidity shocks is governed by the mass of

households in the left tail of the wealth distribution, as explained in the next subsection.
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Liquidity Shocks and the Wealth Distribution I use consumption weights as station-

ary state variables to replace the Pareto-Negishi weights. gt(z
t) denotes the growth rate of

the aggregate weight process ht/ht−1. At the end of each period, I re-normalize the weights

into consumption shares:

ωt =
ζ1/γ(µ0, s

t)

gt(zt)
,

and I store this as the household’s state variable. Φzt denotes the joint measure over (y, ω)

in state zt. These consumption shares integrate to one by construction, and they evolve

according to a simple cutoff rule. If the share of a household going into a period is larger

than the cutoff value ω(y′, zt), it remains unchanged, else it is increased to its cutoff value:

ω′(y′, zt; ω) = ω if ω > ω(y′, zt)

= ω(y′, zt) elsewhere (25)

Making use of the cutoff rule, the liquidity shock gt+1 can be stated as follows:

gt(z
′, zt−1) =

∑

y′

∫ ∞

ω(y′,zt)

ωϕ(y′|y)dΦzt−1 (dy × dω) + (26)

∑

y′
ω(y′, zt)

∫ ω(y′,zt)

0

ϕ(y′|y)dΦzt−1 (dy × dω) . (27)

It immediately follows that g ≥ 1, because =
∑

y′
∫

ϕ(y′|y)ωdΦzt−1 (dy × dω) = 1 by con-

struction. The size of the liquidity shock is determined by the mass of households in the

left tail. In general, the size of these shocks depends on the entire aggregate history zt6.

However, if labor income risk is independent of the aggregate shocks, these liquidity shocks

are constant. We start by considering this simple case.

Benchmark: Independent Labor Income risk

Condition 3.2. The labor income shocks are independent of the aggregate shocks if η̂(yt, zt) =

η̂(yt)

In this case, it is easy to show that the cutoff weight ω(y′) does not depend on the

aggregate history, simply because the price of a claim to labor income relative to the level of

the aggregate endowment, Πst [{η}] /et(z
t), does not depend on zt. Hence, neither does the

cutoff weight ω(y′). As a result, after the transitional dynamics have dissipated, the liquidity

shock is constant and so is the joint distribution of consumption weights and endowments.

6This creates a computational problem that I deal with in section 5.
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Proposition 3.6. : If aggregate uncertainty is i.i.d. and labor income risk is independent

of the aggregate state, then there is a stationary equilibrium in which g∗ is constant.

g =
∑

y′

∫ ∞

ω(y′)
ωϕ(y′|y)dΦ (dy × dω) + (28)

∑

y′
ω(y′)

∫ ω(y′)

0

ϕ(y′|y)dΦ (dy × dω) (29)

The mass of households in the left tail is constant over time.

Asset Pricing Implications Absent any arbitrage opportunities, payoffs in state zt+1 are

priced by:

mt+1 = β

(
et+1

et

)−γ

gγ (30)

The second part, gγ, is constant in the case of independent labor income risk. As a result,

the liquidity constraints push up the price of consumption in all states tomorrow. This

lowers the risk-free rate, but it does not change risk premia relative to the full insurance

benchmark. Next, I relax this independence assumption, and I look at a calibrated version

of the model.

4 Results

This sections starts by explaining the calibration, then we discuss the dynamics of the liquid-

ity shocks and their connection to the wealth distribution and the dynamics of consumption.

Finally, I conclude by discussing the asset pricing implications.

4.1 Calibration

We choose a γ of seven and a time discount factor β of .95. These preference parameters

allow us to match the collaterizable wealth to income ratio in the data when the collaterizable

income share α is 7.5%, as discussed below.

Collateralizable Wealth The average ratio of collateralizable wealth to aggregate income

in the US is 3.87 between 1950 and 2005. The wealth measure includes the value of the non-

financial corporate sector and the value of residential wealth (Flow of Funds). We exclude

government debt. Aggregate income includes tradeable income (payouts to securities owners
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of the non-financial, corporate sector, and rental income) and non-tradeable income (labor

income and proprietary income). The collaterizable wealth to income ratio is 3.87 in the

post-war US data. Tradeable or collateralizable income is 8.3% of total income. In the

model, we choose α equal to 7.5 % to match the collaterizable wealth to income ratio of 3.87

in the data7. The details are in the appendix in section B. The collateralizable wealth share

governs the average size of the liquidity shocks, while the labor income dynamics control the

time-variation in the size of these shocks.

Aggregate and Idiosyncratic Endowment Risk The Markov process for log η(y, z)

is taken from Storesletten, Telmer, and Yaron (2006) (see page 28). We use a 4-state dis-

cretization. The conditional variance in recessions and booms is 0.181 and 0.037, and the

autocorrelation is 0.89. The elements of the process log η are {−2.385, 0.646} in low aggre-

gate consumption growth states and {−0.904, 0.467} in high aggregate consumption growth

states. Labor income risk doubles in low aggregate consumption growth states. Aggregate

consumption growth λ(zt) is i.i.d. This ensures all the dynamics in risk premia flow from the

liquidity shocks. The moments for aggregate consumption growth are taken from Mehra and

Prescott (1985). The average consumption growth rate is 1.8 %. The standard deviation

is 3.15 %. Recessions are less frequent: 27% of realizations are low aggregate consumption

growth states. Finally, section 5 explains the computational procedure in detail.

4.2 Liquidity Shocks

While the aggregate consumption growth shocks are i.i.d., the wealth dynamics induced by

these shocks are not, as is clear from figure 1. In this calibrated version of the model, the

liquidity shocks vary a lot in size depending on the history of aggregate consumption growth

shocks.

In this calibrated version of the model, liquidity shocks are larger in low aggregate con-

sumption growth states, because the increase in the cross-sectional variation of idiosyncratic

income shocks raises the cutoff values ω(y′, zt), as is clear from inspecting the expression for

g in equation (27). In the bottom panel of figure 1, we also plot the trade volume (defined

in equation (24)). Large liquidity shocks coincide with equally large drops in trade volume.

When these large shocks occur, the fraction of constrained agents increases to forty-five

percent, compared to 10 percent in high aggregate consumption growth states.

History of Aggregate Consumption Growth Shocks The model also produces history

dependence in these liquidity shocks. Figure 2 plots the liquidity shocks and the moments of

7The ratio is 3.79 in the model’s benchmark calibration.
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Figure 2: The Distribution of Wealth. The figure plots the liquidity shocks and the centered moments of
cross-sectional distribution of wealth over 55 years, generated by simulating the model. Household wealth is defined as:

1
et(zt)

(
Πst [{c(µ0, st)}]−Πst [{η(st)}]). The shaded areas are low aggregate consumption growth states. γ is 7, α is 7.5% and

β is .95.

the wealth distribution; we keep the same draw of aggregate shocks as in figure 1. ‘Household

financial wealth’ is defined as

1

et(zt)

(
Πst [{c(µ0, s

t)}]− Πst [{η(st)}]) .

I divide by the level of the aggregate endowment, to render it stationary. During a long series

of high aggregate consumption growth realizations (say between period 83 and 93 in figure

2), there is a build-up of low wealth households in the left tail of the wealth distribution.

The standard deviation of the wealth distribution increases. Mechanically, this means the

mass of agents with weights below the cutoff value is large:

∑

y′

∫ ω(y′,zt)

0

ϕ(y′|y)dΦzt−1 (dy × dω) (31)
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These households have been running down their asset levels as long as they are in low

idiosyncratic income states. Their Pareto-Negishi weights remain unchanged throughout,

and as a result, their consumption shares were drifting downwards. When a low aggregate

consumption growth state is realized, a larger fraction of households draws a high income

state with a high cutoff value ω(y′, zt). This translates into a large liquidity shock as their

consumption shares jump up from very low levels (see the definition of the liquidity shock

in eq. 27). The left tail of the wealth distribution is eliminated, and the standard deviation

of the wealth distribution drops and so does the skewness and the kurtosis.

4.3 Consumption Dynamics

Risk Sharing This calibrated version of the collateral economy sustains a lot of risk shar-

ing. In the benchmark calibration the standard deviation of consumption share growth for

households is 7.5 percent, less than twice the standard deviation of aggregate consumption

growth, while the standard deviation of endowment share growth is thirty-three percent.

Not all agents in states with binding solvency constraints experience large shocks to their

consumption shares. In the history with the largest liquidity shock, forty-nine percent expe-

rience a four percent consumption share drop, thirty-six percent experience an eight percent

increase and six percent experience an eleven percent increase. In the history with the small-

est liquidity shock (after consecutive low aggregate consumption growth shocks) almost all

households have roughly constant consumption shares.

The left panel of figure 3 plots the consumption share as a fraction of the average endow-

ment of a single household against its labor income share. The consumption shares fluctuate

between the highest and the lowest income shares. This is what I showed in equation (22).

In low income states, the household’s consumption share decreases as the household runs

down its assets. The largest consumption share increases occur when the household switches

from the low state to the high state after a large string of adverse idiosyncratic shocks. In

the favorable income states, its consumption share increases somewhat when it switches to

the highest states. These consumption share increases are larger in recessions and produce

large liquidity shocks when aggregated across consumers. Recessions are periods when the

aggregate show cost of the solvency constraint increases.

The right panel of figure 3 plots the net wealth (net of human wealth) scaled by the

aggregate endowment for the same history of shocks. Each time the household switches to

a state with a binding solvency constraint, its net wealth position hits zero. Net wealth is

obviously much more volatile than the consumption. The household’s portfolio realizes high

returns when bad income shocks arrive and low returns when good income shocks arrive,
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Figure 3: Solvency Constraints In the left panel, the full line is the consumption share of a household plotted
against the labor income share (dotted line) over a period of 300 years. The y-axis on the left hand side shows the consumption
shares; on the right hand side is the labor income share. In the right panel, the full line is net wealth of a household scaled by
its aggregate endowment, plotted against its labor endowment share (dotted line) over a period of 55 years. The y-axis on the
left hand side shows the endowment shares; on the right hand side is net wealth. γ is 7, α is 7.5% and β is .95.

but the hedge is incomplete because of the collateral constraints. To illustrate the difference,

figure 4 plots the consumption share and the wealth of a household not facing any solvency

constraints, for the same history of shocks. This household is perfectly hedged, and net

wealth is negative in the high y states.

4.4 Asset Pricing Results

The liquidity risk induced by the wealth distribution shocks interacts with aggregate con-

sumption growth risk to modify the SDF’s properties in the right direction to match the

dynamics of equity and bond risk premia.

Dividend Process Following Bansal and Yaron (2004), dividend growth is a function of

aggregate consumption growth and the change in the dividend/consumption ratio qt:

∆dt+1 = δ + φ∆ct+1 + ∆qt+1 (32)

qt+1 = ρqqt + ϕdσut+1

u is white noise with mean zero and variance 1. σ is the standard deviation of aggregate

consumption growth. Following Bansal and Yaron (2004), I choose ρq = 0.8 for the autocor-
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Figure 4: No Solvency Constraints In the left panel, the full line is the consumption share of a household plotted
against the labor income share (dotted line) over a period of 300 years. The y-axis on the left hand side shows the consumption
shares; on the right hand side is the labor income share. In the right panel, the full line is net wealth of a household scaled by
its aggregate endowment, plotted against its labor endowment share (dotted line) over a period of 55 years. The y-axis on the
left hand side shows the endowment shares; on the right hand side is net wealth. γ is 7, α is 7.5% and β is .95.

relation of the consumption/dividend ratio, the leverage parameter φ in the dividend growth

process is set to 3 , and ϕd = 4.5. Equity is a claim to this dividend process.

My benchmark calibration sets the time discount factor β equal to .95 and γ to 7. Table

1 compares the moments of the data, the representative agent model and the collateral

model. The excess return on equity is denoted Re, while Rc,e denotes the excess return on

a non-levered claim to the aggregate endowment process. The asset pricing statistics were

generated by drawing 10.000 realizations from the model, simulated with 5000 agents.

Representative agent The benchmark perfect insurance economy produces a risk-free

rate of thirteen percent and an equity premium of 2.8 percent, one percent for the non-

levered claim to consumption. This is the risk-free rate and the equity premium puzzle. In

addition, the model produces a constant conditional market price of risk (second column of

Table 1).

Collateral economy In the collateral model, the maximum Sharpe Ratio is .43. The

liquidity risk induced by the solvency constraints delivers a low risk-free rate of 19 basis

points and a high equity premium of 6.63 percentage points. The compensation per unit of

risk is large as well; the Sharpe ratio on the non-levered claim is around 39 percent, compared

to 38 percent in the data. The standard deviation of the conditional market price of risk in
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Table 1: Benchmark Calibration Results.

Re is the return on a leveraged dividend claim; Rc,e is the excess return on a claim to aggregate consumption. The first panel
shows moments for the data, the second panel for the representative agent model and the third panel for the collateral model.
These moments were generated by averaging 10.000 draws from an economy with 5000 agents. α is 7.5 percent, γ is 7 and β
is .95. The CRSP-VW index was used to compute the market return, while the Fama-Bliss risk-free rate was used to compute
excess returns. The sample is 1928-2005.

σ(m)
E(m)

std
σt(m)
Et(m)

E(Re) std(Re)
E(Re)

std(Re)
E(Rc,e) std(Rc,e)

E(Rc,e)
std(Rc,e)

E(rf ) std(rf )

data 7.08 20.0 0.382 0.96 4.80

rep 0.279 0 2.88 13.18 0.218 1.06 4.10 0.260 15.03 0

coll 0.433 0.07 6.63 16.78 0.394 4.18 10.55 0.397 0.193 5.31

the collateral model (second column of Table 1) is 7 percent. Finally, the model overstates

the volatility of the risk-free rate relative to the data.

To understand these results, we need to understand the effect of these liquidity shocks.

First, the liquidity shocks increase the demand for insurance and lower the risk-free rate. This

is obvious from the SDF in (30), because gt > 1. The solvency constraints keep the agents

from borrowing against their future labor income and the liquidity risk also induces them

to save more as a precautionary device. Second, the liquidity shocks increase the volatility

of the SDF because the shocks are negatively correlated with the aggregate consumption

growth process. This pattern emerges in equilibrium when a larger fraction of agents is

constrained in states with low aggregate consumption growth realization, as is the case in

this calibrated version of the economy (see subsection 4.2 ).

Liquidity Premium The increased volatility raises risk premia because returns are low

in the low aggregate consumption growth states, when the liquidity shocks are large. I use

Ri to denote the return on some risky security. Under joint lognormality of ∆ log(et+1/ht+1)

and log(Ri
t+1) the expected return on asset i is given by:

Et log Ri
t+1 − log rf

t = γcovt(∆ log(et+1), log Ri
t+1)− γcovt(log(gt+1), log Ri

t+1)

The first part is the standard compensation for consumption growth risk. The second part

is the compensation for liquidity risk. This liquidity part accounts for over two thirds of the

equity premium in my benchmark calibration8.

Figure 1 plots liquidity shocks and trading volume for the same sequence of aggregate

8In the data, this liquidity premium is large. Pastor and Stambaugh (2003) find that the average return
on stocks with high sensitivities to liquidity exceeds that for stocks with low sensitivities by 7.5 % annually.
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shocks. These shocks coincide with large negative innovations to trading volume. As is

clear from figure 1, since trading volume or liquidity co-moves with all other returns, it also

predicts future excess returns in the collateral model. This is consistent with the evidence

from the data (see for example Pastor and Stambaugh (2003)).

Bonds The same mechanism increases risk premia on bonds of longer maturity. Since the

aggregate shocks are i.i.d., the representative agent model produces a flat yield curve, but

the collateral model produces an upward sloping yield curve on average. Let pN
t denote the

log of the price of a N-year zero coupon bond. The yield yN
t = −pN

t /N increases from zero

to 2.1 % at 10 years. The average excess return pN
t − pN+1

t−1 − rf
t−1 (in logs) on a 2-year zero

coupon bond is 1.28 % and it is 2.78% on a 10-year bond. Longer maturity bonds are riskier:

−covt(log(gt+1), p
N
t − pN+1

t−1 )

increases as N increases, because the liquidity shocks trigger a persistent, subsequent increase

in the short rate, inflicting larger losses on holders of longer maturity bonds. As a result,

these zero coupon bond holding period returns become more sensitive to liquidity shocks as

the maturity increases.

Time Variation in Risk Premia Recall that, in the representative agent economy, the

conditional Sharpe ratio, the conditional risk premium, the conditional volatility, the risk-

free rate, the slope of the yield curve and the trading volume are all constant over time,

because the aggregate shocks are i.i.d. The collateral model’s liquidity shocks generate time

varying risk premia.

Figure 5 plots some key asset pricing statistics that illustrate the time variation in risk

premia. The first plot shows the liquidity shocks, while the second plot shows the conditional

Sharpe ratio on equity, which varies from .3 , after a recession, to .55, after a long series of

high aggregate consumption growth shocks. The conditional risk premium on equity (third

plot) varies between 5 and 10 percent. After a long series of high aggregate consumption

growth realizations, the risk-free rate (fifth plot) drops and the conditional market price

of risk increases. The low risk-free rate predicts high excess returns on equity, because it

signals large liquidity shocks are likely to occur. This reflects the build-up of households in

the left tail of the wealth distribution. At the same time, the conditional volatility of equity

returns (fourth plot) increases as well. The slope of the yield curve increases in anticipation

of a large liquidity shock, and this partly reflects an increase in the risk premium. After

the recession, the conditional market price of risk drops to its lowest level, and the risk-free

rate increases sharply, while the yield curve flattens. Interestingly, the negative correlation
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between the conditional market price of risk and the riskfree rate is a sufficient condition to

explain the forward premium puzzle (Lustig and Verdelhan (2007)).
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Figure 5: Liquidity Shocks, Market Price of Risk and Aggregate Consumption
Growth The shaded area indicates low aggregate consumption growth states. The upper panel plots the liquidity shocks
(left) and the conditional Sharpe ratio on equity (right). The middle panel plots the conditional expected excess return on
equity (left) and the conditional standard deviation (right). The lower panel plots the risk-free rate (left) and the slope of the
yield curve (right). The slope of the yield curve is y10

t − y1
t . β is .95, γ is 7, and α is 7.5%.

Summary What is critical for these result? I list three ingredients: (i) scarcity of collat-

eral, (ii) state-contingent nature of the constraints, and (iii) large number of agents.

• The quantity of collateral: The quantity of collateral was calibrated to match ratio of

collateralizable wealth to total income of 3.8 in US data. The collateralizable income

faction α is 7.5 %, compared to 8.3 % in the data. This calibrated version of the

collateral economy also matches the equity premium and the risk-free rate. If α is set

equal to 10 %, the risk-free rate increases to 1.28 % and the equity premium drops to

6.41 %. When α is 15 %, the equity premium drops ro 5.7 % and the risk-free rate

increases to 3.91 %. Finally, when α is 30 percent, the collateral economy is identical

to the representative agent economy; the solvency constraints no longer bind.

• The state-contingent nature of the collateral constraints, not the tightness of the con-

straints. In the same environment, an “exogenous” constraint on the value of the net
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wealth today contributes a factor to the Lucas-Breeden SDF that does not depend on

the aggregate shock in the next period; the aggregate cost of this type of constraint

raises the market price of consumption by the same amount in all states of the world

tomorrow (see Luttmer (1991)). This factor only lowers the risk-free rate, but does

not affect risk premia.

• Large number of agents: In the same economy with two agents and i.i.d. aggregate

shocks, risk premia are essentially constant over time.

The last section explains the computational procedure in detail.

5 Approximation

A household’s Pareto-Negishi weight summarizes its history of private shocks, but obviously

not the history of aggregate shocks. In fact, the liquidity shocks depend on the entire

history of aggregate shocks. To compute equilibrium prices and allocations, I keep track of

only a truncated version of the aggregate history. This approach is motivated by the limited

memory of these economies, if there is sufficient growth in the aggregate weight process.

This is borne out by the computations. Using these consumption weights, I construct an

approximate equilibrium in which agents use only the last k aggregate shocks to forecast g.

Stationary approximating equilibrium. In a stationary equilibrium, there is no prob-

ability mass on weights above the highest reservation level. Let L denote the domain for the

consumption weights ω. l(ω, y′, z′; zk) : L× Y × Z × Zk → R, one for each (y′, z′) ∈ Y × Z,

gives the new consumption weight for a household entering the period with weight ω, having

drawn private shock y′ and aggregate shock z′. Its new consumption share is given by:

c(ω, y′, z′; zk) =
l(ω, y′, z′; zk)

g∗(z′, zk)
,

where g∗(z′, zk) is the forecast of the liquidity shock. This consumption share will be stored

as the new state variable for this household at the end of the period. The reservation

weight policy function ω(y′, z′; zk) : Z×Zk → R and the average weight forecasting function

g∗(z′, zk) : Zk → R induce the consumption share policy function:

l(ω, y′, z′; zk) = ω if ω > ω(y′, z′; zk)

= ω(y′, z′; zk) elsewhere. (33)
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The reservation weights are determined such that the solvency constraints bind exactly.

The cost functions C
(
ω, y′, z′; zk

)
and Cy

(
y′, z′; zk

)
record the price in units of today’s

consumption of claim to the consumption stream and the labor income stream respectively,

scaled by the aggregate endowment today, to keep them stationary. The reservation weights

satisfy this functional equation:

C
(
ω(y′, z′; zk) , y′, z′; zk

)
= Cy

(
y′, z′; zk

)
for all

(
y′, z′; zk

)

The optimal forecast when going from state zk to z′ is given by its average for that truncated

history:

g∗(z′, zk) = Ez∞⊂zkg(z′, z∞), (34)

where the actual liquidity shock is given by:

g(z′, z∞) =
∑

y′

∫
l
(
ω, y′, z′; zk

)
Φz∞ (dω × dy) ϕ(y′|y)

for each pair (z′, zk). E denotes the expectation operator over all possible histories z∞ con-

sistent with zk. The actual measure Φz∞ depends -possibly- on the entire history of shocks

z∞. The state prices are set using the forecast of the liquidity shock:

m(z′, zk) = βg∗(z′, zk)γλ(z′)−γ.

Households do not make Euler equation errors, but the markets do not clear exactly. That

is the sense in which this equilibrium is approximate. The percentage allocation error is

simply the percentage forecast error: g(z′,z∞)−g(z′,zk)
g(z′,zk)

. These will turn out to be very small.

As k →∞, the errors tend to zero.

Definition 5.1. An approximate stationary equilibrium is fully characterized by a list of

functions l
(
ω, y′, z′; zk

)
, C

(
ω, y′, z′; zk

)
, Cy

(
y′, z′; zk

)
and g(z′, zk) such that (i) g(z′, zk)

equals the average liquidity shock in zk and (ii) l
(
ω, y′, z′; zk

)
satisfies the optimal policy

rule.

The optimal household consumption policy functions and equilibrium prices are embed-

ded in this information through the risk sharing rule and the expression for the SDF.

Computational Algorithm The algorithm iterates on liquidity shock forecasts:

• The algorithm starts with the perfect insurance growth function ĝ1(z
k, z′) = 1 for all
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(
zk, z′

)
.9

• Conditional on this function, I compute the cost functions C1

(
ω, y′, z′; zk

)
, Cy

1

(
y′, z′; zk

)

and the policy function l1
(
ω, y′, z′; zk

)
. To do so, I simply determine the cutoff level at

which the value of the consumption stream equals the value of the endowment stream:

C0

(
ω, y′, z′; zk

)
= Cy

0

(
y′, z′; zk

)
for each (y′, z′; zk).

• Next, I simulate a T -period aggregate history {zt}∞t=0 for a cross-section of N agents.

I use T = 10.000 and N = 5000. For each
(
zk, z′

)
, I compute the average growth rate

ĝa
1(z

k, z′) implied by the policy function. This provides a new guess ĝ2(z
k, z′) for the

weight growth functions.

• Finally, I iterate on the liquidity shock forecasts until
{
ĝn(zk, z′)

}
convergence to

ĝ∗(zk, z′). The policy functions and the average weight growth functions character-

ize a stationary, stochastic equilibrium. The household Euler equations are satisfied

exactly by construction. The sup prediction error is exactly the sup percentage allo-

cation error:

εk = sup

∣∣∣∣
ga(zk, z′)− g∗(zk, z′)

g∗(zk, z′)

∣∣∣∣ = sup
∣∣ca(zk, z′)− 1

∣∣ .

The allocation error decreases as k is increased. To approximate the consumption cost

function C
(
ω, y′, z′; zk

)
, I use a Tchebychev polynomial approximation in the consumption

weight ω (Judd (1998)). The polynomial is of order 7 and I use 30 nodes. The approximation

works well. The mean of the allocation errors is close to .05 percent for all computations,

while the standard deviation is roughly the same size. The low standard deviation of the

errors indicates that the errors are tightly distributed around zero. The sup norm is around

2 percent.

6 Conclusion

There is a growing literature that tries to explain the empirical evidence on liquidity risk

(see e.g. Acharya and Pedersen (2005). My paper shows there is a tight connection between

the aggregate volume of trade in securities markets and risk premia in a model with solvency

constraints as the only trading friction. The liquidity risk produces a low risk-free rate, a

large equity premium, an upward sloping yield curve and substantial time variation in risk

premia in a model with i.i.d. aggregate consumption growth innovations and standard power

9This algorithm can be shown to converge as k →∞. The proof is available upon request.
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utility preferences. In related work, Lustig and VanNieuwerburgh (2006) introduce housing

into a version of my model and they show the housing collateral dynamics help to match

lower frequency variation in risk premia, while Lustig and VanNieuwerburgh (2005) test the

empirical predictions of this housing collateral model.
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A Proofs

• Proof of Proposition 3.1:

Proof. First, I show that the solvency constraints imply that the participation con-

straints are satisfied:

U(
{
c
(
θ0, y

t, zt
)}

)(st) ≥ κt(s
t),

and U(
{
c
(
θ0, y

t, zt
)}

)(st) = κt(s
t) ⇐⇒ Πst [{η}] = Πst

[{
c
(
θ0, y

t, zt
)}]

and that the participation constraints bind only if the solvency constraints bind. This

follows directly from the definition of κt(s
t). If Πst [{c (θ0, y

t, zt)}] ≥ Πst [{η}] , then

U({c (θ0, y
t, zt)})(st) ≥ κt(s

t) because

U(
{
c
(
θ0, y

t, zt
)}

)(st) = max
{c′}

U(c)(st), (35)

such that the budget constraint is satisfied Πst [{c′}] ≤ Πst [{c (θ0, y
t, zt)}] and such

that the solvency constraints are satisfied in all following histories:

U(c)(sτ ) ≥ κτ (s
τ ) for all sτ ≥ st.

The rest of the proof follows from the definition of κt(s
t) :

κt(s
t) = max

{c′}
U(c)(st), (36)

such that the budget constraint is satisfied Πst [{c′}] ≤ Πst [{η}] and the solvency

constraints are satisfied in all following histories: U(c)(sτ ) ≥ κτ (s
τ ) for all sτ ≥ st.

This shows that the solvency constraints ensure that the participation constraints are

satisfied. In addition, the same argument implies that, if the solvency constraints

bind, then the participation constraints bind. The solvency constraint is not too tight.

Second, the participation constraints imply that the solvency constraints are satisfied.

If U({c (θ0, y
t, zt)})(st) ≥ κt(s

t), then from (35) and (36), it follows that Πst [{η}] ≤
Πst [{c (θ0, y

t, zt)}] . The second part is obvious.

• Proof of Proposition 3.2:
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Proof. Summing across all of the individual participation constraints at some node zt:

∫ ∑

yt

[
Πst [{c (µ0, y

t, zt)}]
−Πst [{η}])

]
ϕ(yt|y0)dΦ0 ≥ 0. (37)

Using p(st|s0) = Q(zt|z0)
π(yt,zt|y0,z0)

π(zt|z0)
-this is w.l.o.g.-, this can be rewritten as:

∑

zτºzt

Q(zτ |zt)

[∫ ∑
yτ

[
c (µ0, y

τ , zτ )

−η̂τ (yτ , zτ )eτ (z
τ )

]
ϕ(yt|y0)dΦ0

]
, (38)

with (zτ , yτ ) º st. To justify the interchange of limits and expectations, I appeal to

the monotone convergence theorem. Let Πn
st [{c (µ0, y

t, zt)}] be the value of the claim

to the consumption stream until t + n and let Πn
st [{η}] be similarly defined. Then

the monotone convergence theorem can be applied for both sequences because for all

n : 0 ≤ Xn ≤ Xn+1. Let X = limn Xn. Then EXn ↗ X as n → ∞ (where EX is

possibly infinite). This justifies the interchange of limit and the expectation (SLP,

1989, p.187).

The Law of Large Numbers and the definition of the labor share of the aggregate

endowment imply that the average labor endowment share equals the labor share:

∫ ∑

yt

η̂t(yt, zt)ϕ(yt|y0)dΦ0 =
∑

y′
πzt(yt)η̂t(yt, zt) = (1− α), (39)

and the market clearing condition implies that:

∫ ∑

yt

c
(
µ0, y

t, zt
)
ϕ(yt|y0)dΦ0 = et(z

t). (40)

Plugging eqs. (39) and (40) back into eq. (38) implies the following inequality must

hold at all nodes zt: αΠzt [{et(z
t)}] ≥ 0. If there is no outside wealth (α = 0) in the

economy, then the expression is zero at all nodes zt and eq. (37) holds with equality

at all nodes zt. This implies that each individual constraint binds for all st and there

can be no risk sharing. Why? Suppose there are some households (µ0, y
t, zt) ∈ A at

node zt where A has non-zero measure:

∑∫

A

ϕ(yt|y0)dΦ0 > 0,

and their constraint is slack: Πst [{c (µ0, y
t, zt)}] > Πst [{η}] . Given that eq. (37) holds
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with equality at all nodes zt with α = 0, there are some households (µ′0, y
t, zt) at node

zt ∈ B for which ∑ ∫

B

ϕ(yt|y0)dΦ0 > 0,

which have constraints that are violated: Πst [{c (µ′0, y
t, zt)}] < Πst [{η}] . If not, (37)

would be violated. But this violates the participation constraints for these agents. So,

for α = 0, for all households with positive measure:

Πst

[{
c
(
µ0, y

t, zt
)}]

= Πst [{η}] for all yt at zt.

The same argument can be repeated for all zt. This implies that the following equality

holds for all st and for all households with positive measure:

Πst

[{
c
(
µ0, y

t, zt
)}]

= Πst [{η}] for all st,

and there can be no risk sharing: c (µ0, y
t, zt) = ηt(s

t) for all st and µ0

• Proof of Proposition 3.3:

Proof. If this condition is satisfied: Π∗
st [{e}] ≥ Π∗

st [{η}] for all st, where Π∗
st is the

complete insurance pricing functional, then each household can get a constant and

equal share of the aggregate endowment at all future nodes. Perfect risk sharing is

possible.

• Proof of Proposition 3.4:

Proof. The value of the outside option at each node st is simply the value of autarky:

U(η)(st). The value of bankruptcy has to exceed the value of autarky for any pricing

functional, since continuation values are monotonic in wealth:

Πst [{c}] ≥ Πst [{η}] ≥ Baut
st [{η}] ,

where Ut(B
aut
st [{η}] , st, c) = U({η})(st).

• Proof of Lemma 3.1:

Proof. The sequence of implied weights {ζt(µ0, s
t)} satisfies the necessary Kuhn-Tucker

conditions for optimality:

[
ζt(µ0, s

t)− ζt−1(µ0, s
t−1)

]
(C

(
µ0, s

t; l
)− Πst [{η}]) = 0,
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and C (µ0, s
t; l) ≥ Πst [{η}] for all st. The last inequality follows from the fact that

C(·) is non-decreasing in µ0. It is easy to verify that there exist no other weight policy

rules that satisfy these necessary conditions. Since the optimal policy is to compare

the current weight ζ to the cutoff rule lt(y, zt), the continuation cost can be stated

as a function of the current weight, the current idiosyncratic state and the aggregate

history: C (µ0, s
t; l) = Ct(ζ, y, zt).

The household’s policy rule {ζt(µ0, s
t)} can be written recursively as {lt(l, y, zt)} where

l0 = µ0 and lt(lt−1, y, zt) = lt−1 if lt−1 > lt(y, zt) and lt(lt−1, y, zt) = lt(y, zt) elsewhere.

The reason is simple. If the constraint does not bind, the weight is left unchanged. If

it does bind, it is set to its cutoff value.

• Proof of Theorem 3.1:

Proof. {ζt(µ0, s
t)}∞t=0 and {ht(z

t)} define an allocation {ct(µ0, s
t)} through the risk

sharing rule

ct(µ0, s
t) =

ζ
1/γ
t (µ0, s

t)

ht(zt)
et(z

t).

The sequence of Lagrangian multipliers {ζt(µ0, s
t)− ζt−1(µ0, s

t−1)} satisfy the Kuhn-

Tucker conditions for a saddle point. The consumption allocations satisfy the first

order conditions for optimality (see derivation of risk sharing rule ). Market clearing

is satisfied because E
[
ζ

1/γ
t (µ0, y

t, zt)
]

= ht(z
t) implies that E [ct(µ0, y

t, zt)] = et(z
t).

Now, let θ0 = C(µ0, s
0; l)−Πs0 [{η}] . The prices implied by {mt(z

t|z0)} are equilibrium

prices by construction and rule out arbitrage opportunities. So, now I can relabel the

households as (θ0(µ0), s
0) and I have recovered the equilibrium allocations {ct(θ0, s

t)}
and the prices {pt(s

t|s0)} .

• Proof of Lemma 3.2:

Proof. First, I will transform this growth economy into a stationary economy with

stochastic discount rates (Alvarez and Jermann (2001)) . The aggregate growth rate

is a function λ(zt). Let utility over consumption streams be defined as follows:

U(ĉ)(st) =
ĉt(s

t)

1− γ

1−γ

+ β̂
∑

st+1

U(ĉ)(st+1)π̂(st+1|st),
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where ĉ represents the consumption share of the total endowment and let the trans-

formed transition matrix be given by:

φ̂(zt+1) =
φ(zt+1)λ(zt+1)

1−γ

∑
zt+1

φ(zt+1)λ(zt+1)1−γ
and β̂ = β

∑
zt+1

φ(zt+1)λ(zt+1)
1−γ. (41)

The (cum dividend) price-dividend ratio of a dividend stream can be written recursively

as:

Π̂st

[{
d̂
}]

= d̂t(s
t) + β̂(zt)

∑

st+1

Π̂st+1

[{
d̂
}] (

ht+1(z
t+1)

ht(zt)

)γ

π̂(st+1|st), (42)

and let Vst

[{
d̂
}]

denote the ex-dividend price-dividend ratio (i.e. the previous ex-

pression less today’s dividend). The equilibrium consumption shares in the stationary

economy can simply be scaled up to obtain the allocations in the growth economy. The

prices of claims to a dividend stream in the stationary economy are the price-dividend

ratio’s in the growth economy.

Second, the lemma itself follows directly from the definition of the cutoff level:

Ĉ
(
µ0, s

t; l
)

= η̂(y, z) + β̂
∑

z′

(
ht+1(zt,z′)

ht(zt)

)γ

φ̂(z′)
∑

y′
Π̂zt+1,y′ [{η̂}] ϕ(y′|y),

where lt(µ0, s
t) = lt(z

t, y). Now since, Ĉ (µ0, s
t+1; l) ≥ Π̂zt+1,y′ [{η̂}] for all (yt+1, zt+1),

this equality implies that
l
1/γ
t (zt,y)

ht(zt)
≤ η̂(y, z) for all (y, z).

• Proof of Lemma 3.3:

Proof. Since ϕ(y′|y) satisfied monotonicity, I can rank the cutoff weights, because the

value of the endowment claims can be ranked such that:

Π̂zt,yn [{η̂}] ≥ Π̂zt,yn−1 [{η̂}] ≥ . . . ≥ Π̂zt,y1 [{η̂}] , (43)

for all zt. To show this, I start with a truncated version of this economy at T − 1 I use

Π̃ to denote the claims in the truncated version of this economy. By definition, for all

zT−1 :

Π̃zT−1,y [{η̂}] = η̂(y, zT−1) + β̂
∑

z′

(
hT (zT−1,z′)
hT−1(zT−1)

)γ

φ̂(z′)
∑

y′
η(y′, z′)ϕ(y′|y),
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and verify that these objects can be ranked:

Π̃zT−1,yn
[{η̂}] ≥ Π̃zT−1,yn−1

[{η̂}] ≥ Π̃zT−1,y1
[{η̂}] ,

because
∑

y′ η(y′, z′)ϕ(y′|y) is non-decreasing in y. This follows immediately from the

definition of monotonicity of ϕ(y′|y). Next, I roll the truncated economy back one

more period:

Π̃zT−2,y [{η̂}] = η̂(y, zT−2) + β̂
∑

z′

(
hT (zT−2,z′)
hT−1(zT−2)

)γ

φ̂(z′)
∑

y′
Π̃zt+1,y′ [{η̂}] ϕ(y′|y),

and using the result for T − 1, one obtains the following ranking:

Π̃zT−2,yn
[{η̂}] ≥ Π̃zT−2,yn−1

[{η̂}] ≥ . . . ≥ Π̃zT−2,y1
[{η̂}] .

By backward induction, for any zt, the claims in the truncated economy can be ranked

such that:

Π̃zt,yn ≥ Π̃zt,yn−1 ≥ . . . ≥ Π̃zt,y1 .

Next, I note that the price of a claim in the infinite horizon economy can be stated as:

Π̂zt,yt = Π̂zt,yt + Ẽtβ
T−t

(
hT

ht

)γ

Π̂zT ,yT
,

and that limT→∞Ẽtβ
T−t hT

ht
Π̂zT ,yT

is independent of yt and converges to some finite x

that does not depend on yt : the transition matrix has no absorbing states, all states y′

will be visited infinitely often in the limit and the limit cannot depend on yt. The limit

is finite by assumption. Hence, the results for the truncated economy are valid for the

infinite horizon economy. This shows equation (43) holds. Finally, I need to show that

this implies a similar ranking for the cutoff weights. When ζt(µ0, s
t) = lt(z

t, y), by

definition,the following holds:

Ĉ
(
µ0, s

t; l
)

= η̂(y, z) + β̂
∑

z′

(
ht+1(zt,z′)

ht(zt)

)γ

φ̂(z′)

[∑

y′
Π̂zt+1,y′ [{η̂}] ϕ(y′|y)

]
.

Since Ĉ is monotonically increasing in ζ, I know that for all y′ and zt :

lt(z
t, yn) ≥ lt(z

t, yn−1) ≥ . . . ≥ lt(z
t, y1).

This result, combined with Lemma 3.2, implies directly that the consumption share in
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the lowest state equals the endowment share:
lt(z

t,y1)

ht(zt)
= η̂(y1, z

t) for all zt.(q.e.d.)

• Proof of Proposition 3.5:

Proof. Consider the necessary f.o.c. for optimality in (RSDP):

χt(µ
′
0, s

t)p(st|s0) = µ0uc(ct(µ
′
0, s

t))βtπ(st|s0).

To economize on notation, let ζt(µ0, s
t) = µ0/χt(µ0, s

t). Consider the ratio of first order

conditions for an individual of type (µ0, s
0) at 2 consecutive nodes (st+1, st):

p(st+1|s0)

p(st|s0)
= βπ(st+1|st)

ζt+1(µ0, s
t+1)

ζt(µ0, st)

[
ct+1(µ0, s

t+1))

ct(µ0, st))

]−γ

,

and substitute for the optimal risk sharing rule, noting that the unconstrained investor’s

weight ζt+1 does not change. Then the following expression for the ratio of prices

obtains:
p(st+1|s0)

p(st|s0)
= βπ(st+1|st)

(
et+1(zt+1)

et(zt)

)−γ (
ht+1(z

t+1)

ht(zt)

)γ

.

• Proof of Lemma 3.4:

Proof. First, I prove that ht+1(z
t+1)/ht(z

t) ≥ 1. The definition of ht implies that:

ht(z
′, zt−1) =

∑

yt

∫ ∞

l(y′,zt)

ζ
1/γ
t−1dΦzt−1 (dy × dζ)

π(y′, z′|y, z)

π(z′|z)
+

(
l(y′, zt)

)1/γ
∑

yt

∫ l(y′,zt)

0

dΦzt−1 (dy × dζ)
π(y′, z′|y, z)

π(z′|z)
,

which is obviously larger than:

ht−1(z
t−1) =

∑

yt

∫ ∞

0

ζ
1/γ
t−1dΦzt−1 (dy × dζ)

π(y′, z′|y, z)

π(z′|z)
.

Second, I prove that the following inequality holds: ht+1(z
t+1)/ht(z

t) ≤ η̂(yn,zt)
η̂(y1,zt+1)

. If

not, this would imply that the highest IMRS satisfies:

max

(
ct+1(y

t+1, zt+1, µ0)

ct(yt, zt, µ0)
/
et+1(z

t+1)

et(zt)

)−γ

>

(
η̂(yn, zt)

η̂(y1, zt+1)

)γ

,
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which implies that the unconstrained agent is consuming less than her endowment at

zt and more than her endowment at zt+1, but that can be ruled out on the basis of

Lemma (3.2).

• Proof of Proposition 3.6:

Proof. In this case, in the transformed economy, the z shocks have disappeared alto-

gether, since η̂ does not depend on z. I will use ω to denote the consumption share

of an agent at the end of the previous period. Let Ĉ(ω, y) denote the cost of the

consumption stream for a household in state y. Similarly, I use Ĉy(y) to denote the

cost of the labor endowment stream. Finally, l(ω, y) denotes the policy rule for the

consumption weights. ω′ = l(ω, y′)/g is the new consumption share. The cutoff rule

l(y′) depends only on y, because the value of the labor income claim Ĉη(y) does not

depend on z. The proof proceeds in two steps. First, I assume that there exists a

stationary equilibrium characterized by the following condition:

ht+1(z
t+1)

ht(zt)
= g∗for all zt+1

I compute g∗. Second, I show that for given g∗,there exists a stationary distribution of

consumption weights ω.

First, the cutoff rule l(y′) depends only on y because the value of the labor income

claim Cη(y) does not depend on zt :

Ĉη(y) = Π̂y [{η(y)}] = η̂(y) + β̂
∑

y′
Π̂,y′ [{d}] (g∗)γ ϕ(y′|y)

and neither does the value of the consumption claim C(ω, y):

Ĉ(ω, y) = l(ω, y′)/g∗ + β̂
∑

y′
Ĉ(ω′, y′) (g∗)γ ϕ(y′|y),

where the next period ’s weight is discounted: ω′ = l(ω, y′)/g.

The distribution is rescaled at the end of each period (after the cutoff rule is applied)

such that growth is eliminated from the consumption weights:
∫

ωΦ∗ (dω × dy) = 1.

This is done simply by dividing all the weights by the growth rate g. The policy rules

induce the following growth rate for the average weight: g∗ =
∫

l (ω, y′) Φ∗ (dω × dy) .

This establishes the equivalence of the economy with i.i.d. aggregate uncertainty and

the one without aggregate uncertainty and a twisted transition probability matrix.
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Given the monotonicity assumptions I have imposed on ϕ, I know that the consumption

weights ω live on a closed domain L because we know that the consumption shares

l(ω, y)/g ≤ η̂(yn) from Lemma 3.2 and l(ω, y)/g ≥ η̂(y1). This implies that ω ∈ [
l, l

]

since g is bounded. If some agent starts with an initial weight ω0 ≥ l their consumption

weight drops below l after a finite number of steps unless there is perfect risk sharing.

Second, we establish the existence of a stationary equilibrium. Let B(L) the Borel

set of L and let P (Y ) be the power set of Y. The policy function l together with the

transition function π jointly define a Markov transition function on income shocks and

consumption weights: Q : (L× Y )× (B(L)× P (Y )) → [0, 1] where

Q(ω, y,L,Y) =
∑

,y′∈Y
ϕ(y′|y),

if lh(ω, y′)/h∗ ∈ L. Next, define an operator on the space of probability measures

Λ (L× Y )× (B(L)× P (Y )) as

T ∗Φ (L,Y) =

∫
Q(ω, y,L,Y)dΦ.

A fixed point of this operator is an invariant probability measure. Let Φ∗ denote the

invariant measure over the space (L× Y )× (B(L)× P (Y )) that satisfies invariance:

T ∗Φ∗ (L,Y) = Φ∗.

Clearly, if there is unique Φ∗, then there is a unique growth rate that clears the market:

g∗ =

∫ ∑

y′
ϕ(y′|y)lg(ω, y′)dΦ∗(dω × dy).

I can define a stationary equilibrium. A stationary equilibrium consists of cost functions

C(ω, y), Cy(y), shadow discounter Q, updating rules l(ω, y) and an invariant measure

Φ∗ such that (i) the recursive updating rule is optimal: (l(ω, y′)− ω) (C(ω, y)− Cη(y)) =

0, (ii) the market clears: g∗ = E [l(ω, y′)] and (iii) there is no arbitrage Q = g∗γ,

where the expectation is taken w.r.t. Φ∗, the stationary measure over (L× Y ) ×
(B(L)× P (Y )) induced by T ∗.

It remains to be shown that this stationary measure exists. This section follows the

strategy by Krueger (1999) on p.15 applied to a similar problem. I define an operator
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on the space of probability measures Λ (L× Y )× (B(L)× P (Y )) as

T ∗λ (L,Y) =

∫
Q ((ω, y) , (L,Y)) dλ.

A fixed point of this operator is defined to be an invariant probability measure. To show

there exists a unique fixed point of this operator, I check condition M in (Stokey, Lucas,

and Prescott (1989) p. 348). If this condition is satisfied, I can use Theorem 11.12 in

Stokey, Lucas, and Prescott (1989) p. 350. To be perfectly general, let L = [l, lmax] .

There has to be an ε > 0 and an N ≥ 1 such that for all sets L, Y

QN ((ω, y) , (L,Y)) ≥ ε and QN ((ω, y) , (L,Y)c) ≥ ε .

It is sufficient to show that there exists an ε > 0 and an N ≥ 1 such that for all (ω, y) ∈
(L, Y )) : QN ((ω, y) , (lmax, yn)) ≥ ε, but we know that Q ((ω, y) , (lmax, yn)) ≥ ϕ(yn|y).

If lmax ≥ l, then define

N = min

{
n ≥ 0 :

lmax

gn
≤ l

}
,

where N is finite unless there is perfect risk sharing. Then we know that QN ((ω, y) , (lmax, yn)) ≥
ε where

ε = ϕ(yn|y) ∗ (ϕ(yn|yn))N−1 .

If l ≥ lmax, the proof is immediate by setting ε = ϕ(yn|y). This establishes the existence

of a unique, cross-sectional distribution and a unique g∗ that clears the market.

Tg(Φ∗) =
∑

y′

∫

l(y′)
ϕ(y′|y)ωdΦ∗ +

∑

y′
l (y′)

∫ l(y′)

ϕ(y′|y)dΦ∗.

B Data Appendix

The computation of firm value returns is based on Hall (2001). The data to construct our

measure of returns on firm value were obtained from the Federal Flow of Funds 10. We use

the (seasonally not adjusted) flow tables for the non-farm, non-financial corporate sector,

in UTABS 102D. I calculate the value of all securities as the sum of financial liabilities

(144190005) plus the market value of equity (1031640030) less financial assets (144090005),

adjusted for the difference between market and book for bonds. I correct for changes in the

10at http://www.federalreserve.gov/ RELEASES/z1/current/data.htm
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market value of outstanding bonds by applying the Dow Jones Corporate Bond Index to the

level of outstanding corporate bonds at the end of the previous year.

The flow of pay-outs to securities holders is measured as dividends (10612005) plus the

interest paid on debt (from the NIPA Table on Gross Product of non-financial, corporate

business) less the increase in net financial liabilities (10419005), which includes issues of

equity (103164003). I obtain compensation of all employees (line 2,Table 1.12) , propri-

etary’s income (line 9, Table 1.12) and rental income (NIPA line 12 Table 1.12) from NIPA.

Finally, I obtain the value of residential housing wealth from the Flow of Funds Tables

(FoF-FL155035015.Q).

C Technical Appendix

This section establishes the existence of a stationary measure over consumption weights and

endowment states in the approximating equilibrium.

Let B(L) the Borel set of L and let P (Y ) be the power set of Y. The function l(·) together

with the transition function π jointly define a Markov transition function on income shocks

and “consumption weights”: Q :
(
L× Y × Zk

)× (B(L)× P (Y )× P (Zk)
) → [0, 1] where

Q
((

ω, y, zk
)
, (L,Y ,Z)

)
=

∑

,y′∈Y,z′.st zk′∈Z
π(y′, z′|y, z) if lh(ω, y′, z′; zk)/g(zk, z′) ∈ L.

= 0 elsewhere.

Next, define the operator that maps one measure into another on the space of probability

measures Λ over
(
L× Y × Zk

)× (B(L)× P (Y )× P (Zk)
)

as:

Tλ (L,Y ,Z) =

∫
Q

((
ω, y, zk

)
, (L,Y ,Z)

)
dλ.

Suppose there exists a unique, invariant measure over weights, endowments and truncated

aggregate histories, that is there is a stationary measure λ∗ on (S, S) =
(
L× Y × Zk

) ×(B(L)× P (Y )× P (Zk)
)
, such that

λ∗ = T ∗λ∗ =

∫
Q

((
ω, y, zk

)
, (L,Y ,Z)

)
dλ∗,

where Q is the transition function induced by the policy function and the Markov process.

Then the distribution over weights, endowments and histories is unique and stationary, for
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each
(
zk′, zk

) ∈ Z where zk′ = (z′, zk
k−1) :

Φzk′ =
∑

zk

π(zk′|zk)

∫
Q

((
ω, y, zk

)
, (L,Y ,Z)

)
Φzk (dω × dy) .

If I start off this economy with this measure λ∗, it keeps reproducing itself and I can de-

fine a stationary stochastic equilibrium in which the economy moves stochastically between

aggregate states and associated wealth/endowment distributions.

The optimal forecast when going from state zk to z′ is given by its unconditional average:

g∗(z′, zk) =
∑

y′

∫
l
(
ω, y′, z′; zk

)
Φ∗

zk (dω × dy) ϕ(y′|y), (44)

To check that a stationary measure exists, it is sufficient to check a mixing condition (Stokey,

Lucas, and Prescott (1989), p. 348).

Definition C.1. Condition M: There has to be an ε > 0 and an N ≥ 1 such that for all

sets L, Y, Zk

QN
(
ω, y, zk,L,Y ,Zk

) ≥ ε or QN(ω, y, zk,
(L,Y ,Zk

)c
) ≥ ε .

The standard argument can be applied. The weights live on a compact set and the upper

bound max(z′,zk)
l(yn,z′;zk)
g∗(z′,zk)

will be reached with positive probability provided that π has no

zero entries, but convergence will be slower for larger k.
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