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ABSTRACT

I introduce bankruptcy into a complete markets model with a continuum of ex ante identical agents

who have power utility. Shares in a Lucas tree serve as collateral. The model yields a large equity

premium, a low risk-free rate and a time-varying market price of risk for reasonable risk aversion.

Bankruptcy gives rise to a second risk factor in addition to aggregate consumption growth risk. This

liquidity risk is created by binding solvency constraints. The risk is measured by one moment of the

wealth distribution, which multiplies the standard Breeden-Lucas stochastic discount factor. This

captures the aggregate shadow cost of the solvency constraints. The economy is said to experience

a negative liquidity shock when this growth rate is high and a large fraction of agents faces severely

binding solvency constraints. These shocks occur in recessions. The average investor wants a high

excess return on stocks to compensate for the extra liquidity risk, because of low stock returns in

recessions. In that sense stocks are "bad collateral". The adjustment to the Breeden-Lucas stochastic

discount factor raises the unconditional risk premium and induces time variation in conditional risk

premia.
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I. Introduction

I develop a model of an exchange economy with a continuum of agents, complete markets,
but imperfect enforcement of contracts. Because households can declare themselves bankrupt
and escape their debts, they face endogenous solvency constraints that restrain their resort to
the bankruptcy option. In the benchmark calibration, the risk associated with these solvency
constraints delivers an equity premium of 6 percent, a risk-free rate of one percent and substantial
variation in the Sharpe ratio over the business cycle. This variation is driven by shocks to the
wealth distribution induced by these solvency constraints.

This paper follows He and Pearson (1991) and Luttmer (1992) in exploring solvency con-
straints as a device for understanding asset pricing anomalies. I motivate these constraints by
the introduction of bankruptcy. The possibility of bankruptcy constrains the price of an individ-
ual’s consumption claim to exceed the shadow price of a claim to his labor income in all states
of the world. The fraction of the economy’s endowment yielded by the Lucas tree plays a key
role in my economy. If the labor share of aggregate income is one, all wealth is human wealth,
the solvency constraints always bind and there can be no risk sharing. As the fraction of wealth
contributed by the Lucas tree increases, risk sharing is facilitated.

An economy that is physically identical but with perfect enforcement of contracts forms a
natural benchmark with which to compare my model. Because assets only reflect aggregate con-
sumption growth risk in this benchmark representative agent model (Lucas (1978) and Breeden
(1979)), two quantitative asset pricing puzzles arise. These puzzles follow from the fact that
aggregate consumption growth in the US is approximately i.i.d. and not volatile. First, risk pre-
mia are small for plausible levels of risk aversion (Hansen and Singleton (1982) and Mehra and
Prescott (1985)), and second, risk premia do not vary much while they do in the data (see e.g.
Campbell and Cochrane (1999)). My model produces an additional risk factor that addresses
these puzzles.

Beyond risk in the aggregate endowment process, the bankruptcy technology contributes
a second source of risk, the risk associated with binding solvency constraints. I call this liq-
uidity risk. In the simplest case all households have power utility with an identical coefficient
of risk aversion γ. In the model without solvency constraints households consume a constant
share of the aggregate endowment, governed by fixed Pareto-Negishi weights. In the case of
limited commitment these weights increase each time the solvency constraint binds. The aver-
age of these increases across households contributes a multiplicative adjustment to the standard
Lucas-Breeden SDF (stochastic discount factor): the growth rate of the γ−1-th moment of the
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distribution of stochastic Pareto-Negishi weights. This component reflects the aggregate shadow
cost of the solvency constraints. If this growth rate is high, a large fraction of agents is con-
strained and the economy is said to be hit by a negative liquidity shock. Beyond this “average
weight” growth rate, all other features of the wealth distribution are irrelevant for asset prices.

I propose “endogenous” collateral constraints that bound the household’s net wealth in each
state tomorrow. In the same environment, an “exogenous” constraint on expected net wealth
tomorrow contributes a liquidity factor to the Lucas-Breeden SDF that does not depend on
the aggregate shock in the next period; the aggregate cost of this type of constraint raises the
market price of consumption by the same amount in all states of the world tomorrow. This
liquidity factor lowers the risk-free rate, but the risk premia are virtually identical to those in
the representative agent economy and they do not vary over time. The state-contingent nature
of the collateral constraints is central to my results, not the tightness of the constraints: there
is a lot of equilibrium risk sharing.

The wealth distribution dynamics increase the unconditional volatility of the SDF if negative
liquidity shocks occur when aggregate consumption growth is low (recessions). Liquidity shocks
in recessions emerge from the properties of the labor income process. If the dispersion of id-
iosyncratic labor income shocks increases in recessions, households would like to borrow against
their income in the “high idiosyncratic states” to smooth consumption but they are not allowed
to, because they would walk away in the good state. The labor risk channel has support in the
data. Storesletten, Telmer, and Yaron (2004) argue that the conditional standard deviation of
labor income shocks more than triples in recessions.

Leading asset pricing models cannot generate enough variation in the Sharpe ratio. Lettau
and Ludvigson (2003) call this the Sharpe ratio volatility puzzle. The wealth distribution dy-
namics of my model endogenously generate more time-variation in the conditional volatility of
the SDF than competing equilibrium models (Whitelaw (1994), Campbell and Cochrane (1999),
and Barberis, Huang, and Santos (2001)). The liquidity shocks are largest when a recession
hits after a long expansion. In long expansions, there is a buildup of households in the left tail
of the wealth distribution: more agents do not encounter states with binding constraints and
they deplete their financial assets because interest rates are lower than in the representative
agent economy. When the recession sets in, those low-wealth agents with high income draws
encounter severely binding constraints and the left tail of the wealth distribution is erased. After
the recession, the conditional market price of risk decreases sharply. If another recession follows
shortly thereafter, the mass of households close to the lower bound on wealth is much smaller
and so are the liquidity shocks. This lowers the conditional market price of risk sharply after a
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low aggregate consumption growth shock. This pattern is broadly consistent with the empirical
evidence on the cyclicality of the Sharpe ratio.

Zhang (1997a) first endogenized borrowing constraints in a class of incomplete markets mod-
els, extending the work of Aiyagari and Gertler (1991), Telmer (1993), Lucas (1994) and Heaton
and Lucas (1996). These incomplete market models introduce history dependence in alloca-
tions by restricting the menu of traded assets: all of these papers rule out trade in claims that
are contingent on labor income realizations. When ruling out trade in these labor-contingent
assets in my model, I show the equilibrium SDF to be the highest expected IMRS across all
households, obtained by integrating the IMRS for each household over idiosyncratic outcomes
tomorrow, while, in the absence of this ban, the SDF is the highest IMRS across all households,
in any idiosyncratic state tomorrow. Not surprisingly, the latter tends to be more volatile, even
if the actual IMRS are less so, because the effect of the idiosyncratic shock is not averaged out.
Instead of taking the largest realized marginal utility growth as the state price of consumption,
incomplete market models force it to be the largest expected marginal utility growth. Reducing
the span of traded assets is commonly thought to increase the volatility of the SDF; that logic
completely breaks down in this environment with endogenous borrowing constraints.

I follow a different route that does not involve exogenous restrictions on this menu of traded
assets, but instead it focuses on the restrictions imposed by the lack of commitment. Alvarez
and Jermann (2000) decentralize constrained efficient allocations using solvency constraints and
make contact with the literature on risk sharing with limited commitment. My model fits in this
tradition, but it brings out the importance of collateralizable wealth. Part of the endowment
of my economy is yielded by a tradable Lucas tree; the rest of the endowment is labor income.
Instead of sending agents into autarky upon default, as Alvarez and Jermann do, I allow agents to
file for bankruptcy (Lustig (2000)). When agents declare bankruptcy, they lose their holdings of
the Lucas tree, but all of their current and prospective labor income is protected from creditors.
Shares in the Lucas tree serve as collateral.1

The continuum of agents in my model contributes important differences vis-à-vis the two-
agent model of Alvarez and Jermann (2001). In their model, liquidity shocks are larger but much
less frequent. To generate a liquidity shock, one of the agents has to switch from a “low” to a
“high” state. The persistence of labor income makes these switches rare. Between these switches
this economy looks like the benchmark representative agent economy: households consume a

1My model outperforms the representative agent asset pricing model only if the collateralizable wealth ratio
is small enough. If this ratio exceeds fifteen percent, perfect risk sharing obtains. If this ratio is lower than five
percent, the autarkic outcome obtains. My results are for collateralizable wealth ratios within this window.
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constant share of the aggregate endowment and the conditional risk premia are constant. In
addition, the correlation between the liquidity shocks and stock returns is small and the high
volatility of the SDF does not translate into high excess returns. In the benchmark calibration
Alvarez and Jermann (2001) report an equity premium of 3.2 percent, while the market price of
risk is close to 1. The economy with a continuum is an average of two-agent economies in each
period; the liquidity shocks are more frequent and more tightly correlated with the business
cycle. My model delivers an equity premium of 6.1 percent in the benchmark calibration at
a lower market price of risk of .45. The aggregate cost of the solvency constraints can vary
substantially without excessive consumption volatility at the household level in a model with a
continuum of agents, but it cannot in a model with two agents.

There is a large literature on heterogeneity and asset pricing, but most authors conclude
that heterogeneity contributes little beyond the standard, representative agent model, except
for the work by Constantinides and Duffie (1996). They use an insight from Mankiw (1986)
to show how a systematic increase in idiosyncratic risk during recessions can deliver a high
equity premium. In most models on asset pricing and heterogeneity, assets are essentially being
priced off individual consumption processes. In Constantinides and Duffie’s model, any agent’s
intertemporal marginal rate of substitution (IMRS) is a valid SDF for all payoffs in the next
state. Similarly, in models with exogenous borrowing constraints, (e.g. He and Modest (1995))
the individual IMRS is a valid SDF for excess returns in all states. So is the cross-sectional
average of these individual intertemporal marginal rates of substitution. In the continuous time
limit the difference between the average marginal utility and the marginal utility of average
consumption is absorbed into the drift (Grossman and Shiller (1982)) and the assets can be
priced using the Breeden-Lucas SDF. Campbell (2000) concludes this “limits the effects of
consumption heterogeneity on asset pricing”.

Not so with endogenous solvency constraints: the individual IMRS is a valid SDF for payoffs
only in those states in which he is unconstrained (Alvarez and Jermann (2000)). Assets can no
longer be priced off individual consumption processes and the Lucas-Breeden discounter does
not reappear in the continuous-time limit.

To deal with a continuum of consumers and aggregate uncertainty, I extend the methods
developed by Atkeson and Lucas (1992,1995) and Krueger (1999). Atkeson and Lucas show
how to compute constrained efficient allocations in dynamic economies with private information
problems. Krueger computes the equilibrium allocations in a limited commitment economy
without aggregate uncertainty, in which households are permanently excluded upon default.
These methods cannot handle aggregate uncertainty.
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The use of stochastic Pareto-Negishi weights (Marcet and Marimon (1999)) allows me to
state an exact aggregation result in the spirit of Luttmer (1992): equilibrium prices depend
only on the γ−1-th moment of the distribution of weights and I extend this result to the case of
recursive utility. This reduces the problem of forecasting the multiplier distribution -the state
of the economy- to one of forecasting a single moment. The exact forecast requires the entire
aggregate history or the distribution of weights. I approximate the actual equilibrium by a
stationary, truncated-history equilibrium. The state space is reduced to include only the k most
recent aggregate events. The allocation errors -the differences between aggregate consumption
and the endowment- are equal to the forecast errors. In the simulation results these errors are
very small overall when k is 5.

This paper is organized as follows. The second section of the paper describes the environment.
The third section discusses the equilibrium allocations prices, using stochastic Pareto-Negishi
weights. This section can be skipped by those not interested in the mechanics of the model. The
fourth section discusses the calibration and the computation; the fifth section shows the results.
All the technical results, including the propositions and the proofs, are in the appendix.

II. Environment and Equilibrium

A. Uncertainty

The events s = (y, z) take on values on a discrete grid S = Y × Z where Y = {y1, y2, . . . , yn}
and Z = {z1, z2, . . . , zm} . y is household specific and z is an aggregate event. Let st = (yt, zt)
denote an event history up until period t. This event history includes an individual event history
yt and an aggregate event history zt. I will use sτ ≥ st to denote all the continuation histories
of st. s follows a Markov process such that:

π(z′|z) =
∑

y′∈Y

π(y′, z′|y, z) for all z ∈ Z, y ∈ Y.

I assume a law of large numbers holds such that the transition probabilities can be interpreted as
fractions of agents making the transition from one state to another. In addition, I assume there
is a unique invariant distribution πz(y) in each state z : by the law of large numbers πz(y) is also
the fraction of agents drawing y when the aggregate event is z. (S∞,F , P ) is a probability space
where S∞ is the set of all possible histories and P is the corresponding probability measure
induced by π.
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B. Preferences and Endowments

There is a continuum of consumers of measure 1. There is a single consumption good and it is
non-storable. The consumers rank consumption streams {ct} according to the following utility
function:

U(c)(s0) =
∞∑

t=0

∑

st≥s0

βtπ(st|s0)
ct(st)
1− γ

1−γ

, (1)

where γ is the coefficient of relative risk aversion.
The economy’s aggregate endowment process {et} depends only on the aggregate event

history: et(zt) is the realization at aggregate node zt. Each agent draws a labor income share
η̂(yt, zt) as a fraction of the aggregate endowment in each period. Her labor income share only
depends on the current individual and aggregate event. {ηt} denotes the individual labor income
process ηt(st) = η̂(y, z)et(zt),with st = (st−1, y, z). I assume η̂(yt, zt) >> 0 in all states of the
world.

There is a Lucas (1978) tree that yields a non-negative dividend process {xt} . The dividends
are not storable but the tree itself is perfectly durable. The Lucas tree yields a constant share
α of the total endowment, the remaining fraction is the labor income share. By definition, the
labor share of the aggregate endowment equals the aggregated labor income shares:

∑

y′∈Y

πz(y′)η̂(y′, z′) = (1− α), (2)

for all z′. An increase in α translates into proportionally lower η̂(y, z) for all (y, z).
Agents are endowed with initial non-labor wealth (net of endowment) θ0. This represents

the value of this agent’s share of the Lucas tree producing the dividend flow in units of time 0
consumption. Θ0 denotes the initial distribution of wealth and endowments (θ0, y0).

C. Market Arrangements

Claims to one’s entire labor income process {ηt} cannot be traded directly while shares in the
Lucas tree can be traded. Households can write borrowing and lending contracts based on
individual labor income realizations. I use φt(st) to denote an agent’s holdings of shares in
the Lucas tree. In each period households go to securities markets to trade φt(st) shares in
the tree at a price pe

t (z
t) and a complete set of one-period ahead contingent claims at(st, s′)

at prices qt(st, s′). at(st, s′) is a security that pays off one unit of the consumption good if the
household draws private shock y′ and the aggregate shock z′ in the next period with s′ = (y′, z′).
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qt(st, s′) is today’s price of that security. In this environment the payoffs are conditional on an
individual event history and the aggregate event history rather than just the aggregate state of
the economy.

An agent starting period t with initial wealth θt(st) buys consumption commodities in the
spot market and trades securities subject to the usual budget constraint:

ct(st) + pe
t (z

t)φt(s
t) +

∑

s′
at+1(st, s′)qt(st, s′) ≤ θt. (3)

If the next period’s state is st+1 = (st, s′), her wealth is given by her labor income, the value of
her stock holdings -including the dividends issued at the start of the period- less whatever she
promised to pay in that state:

θt+1(st+1) = η̂(yt+1, zt+1)et+1(zt+1)︸ ︷︷ ︸ +
[
pe

t+1(z
t+1) + αet+1(zt+1)

]
φt(s

t)︸ ︷︷ ︸ + at+1(st+1)︸ ︷︷ ︸ .

labor income value of tree holdings contingent payoff

Incomplete Markets Net financial wealth
[
pe

t+1(z
t+1) + αet+1(zt+1)

]
+ at+1(st+1) depends

on the realization of yt+1. In much of the literature on asset pricing with heterogenous agents
(e.g. Telmer (1993), Lucas (1994) and Heaton and Lucas (1996) and Zhang (1997b)), this is
ruled out ex ante, and agents can only trade claims contingent on the aggregate state tomorrow
{at(st, z′)}. In our simple economy, this trading setup is equivalent to trading shares in the
Lucas tree and bonds.

D. Enforcement Technology

In this literature, it has been common to assume that households are excluded from financial
markets forever when they default, following Kehoe and Levine (1993) and Kocherlakota (1996).
I allow agents to file for bankruptcy. When a household files for bankruptcy, it loses all of its
asset but its labor income cannot be seized by creditors and it cannot be denied access to
financial markets (see Lustig (2000) for a complete discussion).

Bankruptcy imposes borrowing constraints on households, one for each state:

[
pe

t+1(z
t+1) + αet+1(zt+1)

]
φt(s

t) ≥ −at+1(st, s′) for all s′ ∈ S,

where st+1 = (st, s′). (4)

These borrowing constraints follow endogenously from the enforcement technology if we rule out
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borrowing constraints that are too tight (see Alvarez and Jermann (2000)); these constraints
only bind when the participation constraint binds. If the agent chooses to default, her assets
and that period’s dividends are seized and transferred to the lender. Her new wealth level is
that period’s labor income:

θt+1(st+1) = η̂(yt+1, zt+1)et+1(zt+1).

If the next period’s state is st+1 = (st, s′) and the agent decides not to default, her wealth is
given by her labor income, the value of her tree holdings less whatever she promised to pay in
that state:

θt+1(st+1) = η̂(yt+1, zt+1)et+1(zt+1) +
[
pe

t+1(z
t+1) + αet+1(zt+1)

]
φt(s

t) + at+1(st+1).

This default technology effectively provides the agent with a call option on non-labor wealth at
a zero strike price. Lenders keep track of the borrower’s asset holdings and they do not buy
contingent claims when the agent selling these claims has no incentive to deliver the goods. The
constraints in (4) just state that an agent cannot promise to deliver more than the value of his
Lucas tree holdings in any state s′.

Bankruptcy and Permanent Exclusion Two key differences between bankruptcy and per-
manent exclusion deserve mention. First, the bankruptcy constraints in (4) only require infor-
mation about the household’s assets and liabilities. To determine the appropriate borrowing
constraints in the case of permanent exclusion, the lender needs to know the borrower’s endow-
ment process and her preferences (Alvarez and Jermann (2000)). This type of information is
not readily available and costly to acquire. Moreover, the borrower has an incentive to hide
his private information. Second, in the case of bankruptcy it is immaterial whether or not the
household actually defaults when the constraint binds. The lender is paid back anyhow and
the borrower is indifferent as well. Households could randomize between defaulting and not
defaulting when the constraint binds.

These collateral constraints are much tighter than the ones that decentralize the constrained
efficient allocations when agents can be excluded from trading (see Section A in the Appendix)
and they support less risk sharing as a result.
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Exogenous Constraints The state-contingent nature of the constraints is central to my
results. A simple example of an “exogenous” solvency constraint would be:

pe
t (z

t)φt(s
t) +

∑

s′
at+1(st, s′)qt(st, s′) ≥ 0. (5)

This constraint checks that the agent’s consumption promises tomorrow are covered by his
collateral in expectation only, but not necessarily state by state, i.e. for each s′. This constraint
is simply derived by summing the endogenous collateral constraints across states of the world
(weighted by the state price). These constraints obtain in an environment where agents decide
today whether to default tomorrow, regardless of the state of the world. Since the price of any
excess return tomorrow is zero today, any household can buy a claim to excess returns tomorrow
without violating these exogenous constraints. In this environment, any household’s IMRS is a
valid SDF, and so is the average IMRS as a result. This implies that household consumption
growth is conditionally perfectly correlated, as pointed out Luttmer (1992). Later in the paper,
I show, not surprisingly, that these constraints fail to deliver interesting asset pricing results.

Equilibrium Default These constraints do not mean I rule out equilibrium default on some
traded securities. I only record what the household will actually deliver in each state instead of
what it promises to deliver. The borrowing constraints are a simple way of relabelling promises
as “sure things” in all states. I can still price defaultable securities -i.e. a collection of promises
in different states. What distinguishes this setup from Geanakoplos and Zame (1998) is the
fact that only outright default on all financial obligations is allowed, not default on individual
obligations. Kubler and Schmedders (2003) introduce collateral constraints in an incomplete
markets setting.

E. Sequential Equilibrium

The definition of equilibrium is standard. Each household is assigned a label that consists
of its initial financial wealth θ0 and its initial state s0. A household of type (θ0, s

0) chooses
consumption

{
ct(θ0, s

t)
}
, trades claims

{
at(s′; θ0, s

t)
}

and shares
{
φt(θ0, s

t)
}

to maximize her
expected utility:

max
{c},{φ}{a}s′

∞∑

t=0

∑

st≥s0

βtπ(st|s0)
ct(st)
1− γ

1−γ
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subject to the usual budget constraint:

ct(θ0, s
t) + pe

t (z
t)φt(θ0, s

t) +
∑

s′
at(s′; θ0, s

t)qt(st, s′) ≤ θt, (6)

and a collection of collateral constraints, one for each state:

[
pe

t+1(z
t+1) + αet+1(zt+1)

]
φt(θ0, s

t) ≥ −at(s′; θ0, s
t) for all s′ ∈ S,

where st+1 = (st, s′). (7)

The definition of a competitive equilibrium is straightforward.

Definition 1. A competitive equilibrium with solvency constraints for initial distribution Θ0

over (θ0, y0) consists of trading strategies
{
at(s′; θ0, s

t)
}

,
{
ct(θ0, s

t)
}

and
{
φt(θ0, s

t)
}

and prices{
qt(st, s′

}
and

{
pe

t (z
t)

}
such that (1) these solve the household problem (2) the markets clear

∫ ∑

yt

π(yt, zt|y0, z0)
π(zt|z0)


∑

y′
at(y′, z′; θ0, y

t, zt)


 dΘ0 = 0 for all zt

∫ ∑

yt

π(yt, zt|y0, z0)
π(zt|z0)

φt(θ0, s
t)dΘ0 = 1 for all zt

To prevent arbitrage opportunities in my economy for unconstrained agents in some state
tomorrow, the SDF is set equal to the highest IMRS across all agents:

mt+1 = max
(θ0,st)

u′(ct+1(θ0, y
t+1, zt+1))

u′(ct(θ0, yt, zt))
.

This follows immediately from the household’s first order condition and the observation that
same households with positive measure are unconstrained in each node zt+1.

Incomplete Markets Suppose we ban trade in claims contingent on yt+1 and only allow
trade in claims on aggregate states zt+1, but we keep all other features of the sequential trading
setup. Now, the equilibrium SDF is the highest average IMRS across all agents, integrated over
all of tomorrow’s idiosyncratic states yt+1:

mINC
t+1 = max

(θ0,st)
E

(
u′(ct+1(θ0, y

t+1, zt+1))
u′(ct(θ0, yt, zt))

)|zt+1, zt; θ0, s
t

)
,
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because we only have to rule out arbitrage opportunities in trades for claims whose payoffs are
contingent on aggregate states, not for those that pay off in idiosyncratic states.2

If recessions mainly cause an increase in the cross-sectional standard deviation of consump-
tion growth, it is clear that consumption needs to be more volatile in the incomplete markets
economy, if it is to match the volatility of the SDF in the complete markets economy: the effect
of labor income risk is partly averaged out. 3 So, (1) it is not the case that restricting the
span produces more volatile equilibrium SDF’s in my environment and (2) there is no direct link
between the volatility of the SDF and the amount of risk sharing. 4

The next section considers a more convenient but perhaps less appealing trading arrangement
with markets opening only once.

III. Characterizing Equilibrium Prices and Allocations

To facilitate the analysis, I restate the household problem in a time zero trading environment and
I define the analogue to Kehoe and Levine (1993) and Krueger (1999)’s equilibrium concept.
Pareto-Negishi weights summarize a household’s history of shocks. The stochastic discount
factor depends on the growth rate of the 1 \ γ-th moment of the weight distribution.

This section can be skipped by the reader who wants to get to the asset pricing results.

A. Solvency Constraints

The collateral constraints in the sequential formulation can be restated as restrictions on the
price of two claims. Πzt [{d}] denotes the price at node zt in units of zt consumption of a claim

2This follows immediately from the first order condition for consumption and the observation that some
households with positive measure need to be unconstrained.

3This argument is carefully developed in Krueger and Lustig (2004). They develop the following example.
Suppose the constraints are tightened enough to prevent any risk-sharing, and the equilibrium, autarchic SDF is
given by:

mINC
t+1 = β

(
et+1

et

)−γ

max
yt

E

((
η̂t+1(yt+1, zt+1)

η̂t(yt, zt)

)−γ

|zt+1, zt; yt

)
,

while its autarchic counterpart in the complete markets case is:

mt+1 = β

(
et+1

et

)−γ (
η̂t+1(y1, zt+1)

η̂t(yn, zt)

)−γ

.

If the cross-sectional dispersion of labor income shocks is larger in recessions zre, the complete markets SDF is
much more volatile than its incomplete markets counterpart.

4The complete market model does produce more risk sharing by construction, but not necessarily more volatile
SDF’s
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on
{
dt(st)

}∞
t=0

. The collateral constraints are equivalent to the following restriction on the price
of two claims, one on consumption and one on labor income:

Πst [{c}] ≥ Πst [{η}] , for each st. (8)

These solvency constraints keep net wealth non-negative in all states of the world. If these
constraints are satisfied in all states, households do not wish to exercise their option to default.
This is shown in section A in the appendix.

The amount of collateralizable wealth plays a key role. When there is no collateralizable
wealth, the solvency constraints bind for all agents in all states of the world and households are
in autarky. If the constraint did not bind for one set of households with positive measure, it
would be have to be violated for another one with positive measure. Section B in the appendix
derives this result.

If there is sufficient collateralizable wealth, then the solvency constraint is satisfied for each
(y, z) at perfect-insurance (Breeden-Lucas) prices

Π∗z [{e}] ≥ Π∗y,z [{η}] for all (y, z),

and perfect risk sharing is attainable. If this condition is satisfied, each household can sell a
security that replicates its labor income and buy an equivalent claim to the aggregate dividends
stream that fully hedges the household.

B. Kehoe-Levine Equilibrium

This section sets up the household’s primal problem and defines an equilibrium, when all trad-
ing occurs at time zero. Taking prices

{
pt(st|s0)

}
as given, the household purchases history-

contingent consumption claims subject to a standard budget constraint and a sequence of sol-
vency constraints, one for each history:

Primal Problem (PP)

sup
{c}

u(c0(θ0, s
0)) +

∑

t=1

∑

st≥s0

βtπ(st|s0)u(ct(θ0, s
t)),

∑

t≥0

∑

st≥s0

pt(st|s0)
[
ct(θ0, s

t)− ηt(s
t)

] ≤ θ0,

Πst

[{
c
(
θ0, y

t, zt
)}] ≥ Πst [{η}] , for all st ∈ St, t ≥ 0.
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The solvency constraints keep the households from defaulting. The following definition of
equilibrium is in the spirit of Kehoe and Levine (1993) and in particular Krueger (1999).

Definition 2. For given initial state z0 and for given distribution Θ0, an equilibrium consists
of prices

{
pt(st|s0)

}
and allocations

{
ct(θ0, s

t)
}

such that

• for given prices
{
pt(st|s0)

}
, the allocations solve the household’s problem PP (except

possibly on a set of measure zero),

• markets clear for all t, zt :

∑

yt

∫
ct(θ0, y

t, zt)dΘ0
π(yt, zt|y0, z0)

π(zt|z0)
= et(zt). (9)

In equilibrium households solve their optimization problem subject to the participation con-
straints and the markets clear.

If interest rates are high enough, the economy with sequential trading is equivalent to an
economy in which all trading occurs at time zero subject to these solvency constraints. Alvarez
and Jermann (2000) derive the exact condition on interest rates in an economy with finitely
many agents and Krueger (1999) adjusts it to an economy with a continuum of agents.

C. Equilibrium Prices

The liquidity risk induced by the wealth distribution shocks interacts with aggregate consump-
tion growth risk to modify the SDF’s properties in the right direction. These dynamics are key
to understanding the SDF in this model:

mt+1 = β

(
et+1

et

)−γ (
ht+1

ht

)γ

. (10)

The first part is the Breeden-Lucas SDF that emerges in a representative agent economy. The
second part is the multiplicative adjustment of the SDF that summarizes the shocks to the
wealth distribution induced by the solvency constraints; it is the aggregate shadow cost of the
solvency constraints.

The next subsection makes use of Pareto-Negishi weights as a device for characterizing
equilibrium allocations and prices. These weights encode the wealth distribution dynamics that
are central to my results. I am not solving a planner’s resource allocation problem, but I
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characterize equilibrium allocations and prices from the household’s first order conditions. The
details are in the appendix in section C.

D. Solvency Constraints and Stochastic Pareto-Negishi Weights

These solvency constraints introduce a stochastic element in the consumption share of each
household. The household’s wealth at time 0, θ0, determines its initial Pareto-Negishi weight
µ0. This weight µ0 governs the share of aggregate consumption allocated to this household in all
future states of the world st. Φ0 is the joint measure over initial states and multipliers (µ0, s0).
When there are no solvency constraints, this share is fixed:

ct

(
µ0, s

t
)

=
µ

1/γ
0

Eµ
1/γ
0

et(zt) where st = (yt, zt), (11)

where the constant Eµ
1/γ
0 =

∫
µ

1/γ
0 dΦ0 guarantees market clearing after each aggregate history.

In the presence of solvency constraints, the Pareto-Negishi weights are no longer fixed. I use
ζt(µ0, s

t) to denote the weight of a household with initial weight µ0 in state st.
{
ζt(µ0, s

t)
}

is
a non-decreasing stochastic process. These weights are constant, unless the household switches
to a state with a binding solvency constraint. In these instances the weight increases such that
the solvency constraint in (8) is satisfied with equality. Typically, these are states with high
labor income realizations. These weights record the sum of all solvency constraint multipliers in
history st. Section C in the appendix discusses these weight processes in detail.

Consumption is characterized by the same linear risk sharing rule:

ct(µ0, s
t) =

ζ
1/γ
t (µ0, s

t)

E
[
ζ
1/γ
t (µ0, s

t)
]et(zt), (12)

but each household’s consumption share is stochastic. Let ht(zt) denote this cross-sectional
multiplier moment:

ht(zt) = E
[
ζ
1/γ
t (µ0, s

t)
]
.

The average weight process
{
ht(zt)

}
is a non-decreasing (over time) stochastic process that

is adapted to the aggregate history zt. This process experiences a high growth rate when a
large fraction of agents find themselves switching to states with binding constraints. It can be
interpreted as the aggregate shadow cost of the solvency constraints.

The risk sharing rule implies that, as long as agents do not switch to a state with a binding
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solvency constraint, their consumption share drifts downward. When they switch to a state with
a binding constraint, their consumption share increases. The rate of decrease is driven by the
growth rate of

{
ht(zt)

}
and this growth rate is governed by the wealth distribution dynamics.

In each aggregate state zt+1 payoffs are priced off the IMRS of unconstrained agents, whose
Pareto-Negishi weight did not change between t and t+1. The risk sharing rule for consumption
directly implies that his or her IMRS equals the SDF expression in equation (10). The liquidity
shocks induced by the solvency constraints are bounded between one and the lowest labor
endowment growth rate:

1 ≤ gt+1(zt+1) ≤ η̂(yn,zt)
η̂(y1,zt+1)

When all households are constrained, the SDF equals the autarchic IMRS of the household
switching from the highest to the lowest income state (see section D in the appendix). When
none of the households are constrained, their Pareto-Negishi weights are constant. In equi-
librium, these liquidity shocks will vary between these bounds depending on the history of
aggregate shocks. Obviously, some dispersion in income shares is needed for the liquidity shocks
to contribute significant volatility to the SDF.

E. Approximation

A household’s Pareto-Negishi weight summarizes its history of private shocks, but obviously not
the history of aggregate shocks. In fact, the liquidity shocks depend on the entire history of
aggregate shocks.

To compute equilibrium prices and allocations, I propose to keep track of only a truncated
version of the aggregate history. This approach is motivated by the limited memory of these
economies, if there is sufficient growth in the aggregate weight process. This is borne out by the
computations.

Consumption Weights and Cutoff Rule First, I introduce consumption weights as sta-
tionary state variables to replace the Pareto-Negishi weights, and, second, I describe the cutoff
rule property that characterizes these weights. gt(zt) denotes the growth rate of the aggregate
weight process ht/ht−1. For the sake of convenience I renormalize the weights into consumption
shares:

ωt =
ζ1/γ(µ0, s

t)
gt(zt)

,
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at the end of each period and store this as this household’s state variable. These consumption
shares integrate to one by construction and they evolve according to a simple cutoff rule. If
the share of a household going into a period is larger than the cutoff value ω(y′, zt), it remains
unchanged, else it is increased to its cutoff value:

ω′(y′, zt; ω) = ω if ω > ω(y′, zt)

= ω(y′, zt) elsewhere (13)

I use Φzt to denote the joint measure over (y, ω) in state zt. Making use of the cutoff rule, the
liquidity shock gt+1 can be stated as follows:

gt(z′, zt−1) =
∑

y′

∫ ∞

ω(y′,zt)
ωdΦzt−1 (dy × dω)

π(y′, z′|y, z)
π(z′|z)

+ (14)

∑

y′
ω(y′, zt)

∫ ω(y′,zt)

0
dΦzt−1 (dy × dω)

π(y′, z′|y, z)
π(z′|z)

. (15)

It immediately follows that g ≥ 1. The size of the shock is determined by the mass of households
in the left tail.

Using these consumption weights I construct an approximate equilibrium in which agents
use only the last k aggregate shocks to forecast g.

Stationary approximating equilibrium. In a stationary equilibrium, there is no proba-
bility mass on weights above the highest reservation level. Let L denote the domain for the
consumption weights ω. l(ω, y′, z′; zk) : L×Y ×Z×Zk → R, one for each (y′, z′) ∈ Y ×Z, gives
the new consumption weight for a household entering the period with weight ω, having drawn
private shock y′ and aggregate shock z′. Its new consumption share is given by:

c(ω, y′, z′; zk) =
l(ω, y′, z′; zk)

g∗(z′, zk)
,

where g∗(z′, zk) is the forecast of the liquidity shock. This consumption share will be stored as
the new state variable for this household at the end of the period. The reservation weight policy
function ω(y′, z′; zk) : Z×Zk → R and the average weight forecasting function g∗(z′, zk) : Zk →
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R induce the consumption share policy function:

l(ω, y′, z′; zk) = ω if ω > ω(y′, z′; zk)

= ω(y′, z′; zk) elsewhere. (16)

The reservation weights are determined such that the solvency constraints bind exactly. The
cost functions C

(
ω, y′, z′; zk

)
and Cy

(
y′, z′; zk

)
record the price in units of today’s consump-

tion of claim to the consumption stream and the labor income stream respectively, scaled by
the aggregate endowment today, to keep them stationary. The reservation weights satisfy this
functional equation:

C
(
ω(y′, z′; zk) , y′, z′; zk

)
= Cy

(
y′, z′; zk

)
for all

(
y′, z′; zk

)

The optimal forecast when going from state zk to z′ is given by its average for that truncated
history:

g∗(z′, zk) = Ez∞⊂zkg(z′, z∞), (17)

where the actual liquidity shock is given by:

g(z′, z∞) =
∑

y′

∫
l
(
ω, y′, z′; zk

)
Φz∞ (dω × dy)

π(y′, z′|y, z)
π(z′|z)

for each pair (z′, zk). E denotes the expectation operator over all possible histories z∞ consistent
with zk. The actual measure Φz∞ depends -possibly- on the entire history of shocks z∞. The
state prices are set using the forecast of the liquidity shock:

m(z′, zk) = βg∗(z′, zk)γλ(z′)−γ .

Households do not make Euler equation errors, but the markets do not clear exactly. That is
the sense in which this equilibrium is approximate. The percentage allocation error is simply
the percentage forecast error: g(z′,z∞)−g(z′,zk)

g(z′,zk)
. These will turn out to be very small. As k →∞,

the errors tend to zero.

Definition 3. An approximate stationary equilibrium is fully characterized by a list of func-
tions l

(
ω, y′, z′; zk

)
, C

(
ω, y′, z′; zk

)
, Cy

(
y′, z′; zk

)
and g(z′, zk) such that (i) g(z′, zk) equals

the average liquidity shock in zk and (ii) l
(
ω, y′, z′; zk

)
satisfies the optimal policy rule.
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The optimal household consumption policy functions and equilibrium prices are embedded
in this information through the risk sharing rule and the expression for the SDF.

Computational Algorithm The algorithm iterates on liquidity shock forecasts:

• The algorithm starts with the perfect insurance growth function ĝ1(zk, z′) = 1 for all(
zk, z′

)
.5

• Conditional on this function, I compute the cost functions C1

(
ω, y′, z′; zk

)
, Cy

1

(
y′, z′; zk

)

and the policy function l1
(
ω, y′, z′; zk

)
. To do so, I simply determine the cutoff level at

which the value of the consumption stream equals the value of the endowment stream:
C0

(
ω, y′, z′; zk

)
= Cy

0

(
y′, z′; zk

)
for each (y′, z′; zk).

• Next, I simulate a T -period aggregate history
{
zt

}∞
t=0

for a cross-section of N agents. I use
T = 10.000 and N = 5000. For each

(
zk, z′

)
, I compute the average growth rate ĝa

1(zk, z′)
implied by the policy function. This provides a new guess ĝ2(zk, z′) for the weight growth
functions.

• Finally, I iterate on the liquidity shock forecasts until
{
ĝn(zk, z′)

}
convergence to ĝ∗(zk, z′).

The policy functions and the average weight growth functions characterize a stationary,
stochastic equilibrium. The household Euler equations are satisfied exactly by construc-
tion. The sup prediction error is exactly the sup percentage allocation error:

εk = sup
∣∣∣∣
ga(zk, z′)− g∗(zk, z′)

g∗(zk, z′)

∣∣∣∣ = sup
∣∣∣ca(zk, z′)− 1

∣∣∣ .

The allocation error decreases as k is increased.

IV. Calibration and Computation

The first section explains the calibration of the collateralizable wealth fraction and the labor
income share dynamics. The second section defines an approximation of the actual equilibrium
that can be computed.

5This algorithm can be shown to converge as k →∞. The proof is available upon request.
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A. Calibration

The collateralizable wealth share governs the average size of the liquidity shocks, while the labor
income dynamics control the time-variation in the size of these shocks.

Collateralizable Wealth The scarcity of collateral is key to generating large and time-varying
risk premia in my model. In the next section, I provide a sensitivity analysis by reporting results
for α = 5%, α = 10% and α = 15%.

How do these numbers relate to the US data? The size of the Lucas tree dividend as a
share of the total endowment, α, can be matched to the “traded” part of the capital share of
net national income. The average labor share of national income in the US between 1946 and
1999 is 70 percent (source, NIPA). An additional 11 percent is proprietor’s income derived from
farms and partnerships, mainly doctors and lawyers. This should be treated as labor income
for the purposes of this exercise. This brings the total labor share to 81 percent. There are two
factors that reduce the actual supply of collateralizable wealth. First, a substantial share of the
remaining 18 percent are profits from privately held firms. Moskowitz and Vissing-Jorgensen
(2002) report that the value of private exceeded the value of public equity in the US until 1995
and part of these profits consists of remuneration for labor services provided by the entrepreneur.
In addition, these assets are highly illiquid. Second, bankruptcy exemptions effectively reduce
the supply of collateral in the economy.

Aggregate and Idiosyncratic Endowment Risk My calibration is for annual data. The
strategy follows Alvarez and Jermann (2001). The moments to be matched are listed in Table I.
The first four calibrate the aggregate endowment process. The last six calibrate the labor income
process. The standard deviation of the log income shares is .4. The key thing to note is that
the cross-sectional dispersion of labor income increases in recessions. This mechanism delivers
countercyclical liquidity shocks and Storesletten, Telmer, and Yaron (2004) provide quite some
empirical evidence in support of it.

The next subsection discusses the computational details. This can be skipped without loss
of continuity.

B. Approximation

To approximate the consumption cost function C
(
ω, y′, z′; zk

)
, I use a Tchebychev polynomial

approximation in the consumption weight ω (Judd (1998)). The polynomial is of order 7 and I use
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Table I
Alvarez and Jermann Calibration

The first four moments of the four-state Markov process describe US consumption growth dynamics in the 20-th century
and are based on Mehra and Prescott (1985). The last six moments in the right panel describe the dynamics of the labor
income share process. These combine information from estimation results in Heaton and Lucas (1996) and Storesletten,
Telmer and Yaron (2004).

Panel A: Transition matrix
states (y, z) l, r l, e h, r h, e

l, r 0.1710 0.8186 0.0040 0.0063
l, e 0.3020 0.5757 0.0172 0.1051
h, r 0.0040 0.0063 0.1710 0.8186
h, e 0.0172 0.1051 0.3020 0.5757

Panel B: Income Shares
η̂l,r η̂l,e η̂h,r η̂h,e

0.2048 0.3422 0.7952 0.6578

30 nodes. Table XII in the appendix lists the percentage allocation errors. The approximation
works well. The mean of the allocation errors is close to .05 percent for all computations,
while the standard deviation is roughly the same size. The low standard deviation of the errors
indicates that the errors are tightly distributed around zero. The sup norm is around 2 percent.

V. Asset Pricing Results

This section reports all the asset pricing results. I start with the unconditional moments in
the first part; time-variation and predictability in the second part. In the fourth section, I
briefly discuss the recursive utility extension. The final part examines the wealth distribution
mechanism up close.

Stochastic Discount Factor Absent any arbitrage opportunities, payoffs in state zt+1 are
priced off the IMRS of the households that are unconstrained in that state. Their consumption
share decreases at a rate gt+1 − 1 between t and t + 1. This produces the following SDF:

mt+1 = β

(
et+1

et

)−γ

gγ
t+1 (18)

This adjustment of the Breeden-Lucas SDF is the aggregate shadow cost of the solvency con-
straints in that state tomorrow, expressed in units of today’s consumption (see section D in the
appendix for a derivation). If perfect insurance is feasible, no agent faces a binding solvency
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constraint and the multiplicative adjustment is 1 exactly. It is always weakly larger than 1
because

{
ht(zt)

}
is a non-decreasing stochastic process and this implies that the market SDF

is always weakly larger than the representative agent’s valuation of consumption. When the
growth rate of the aggregate weight process is larger than average, a large fraction of agents are
severely constrained. The multiplicative adjustment of the SDF raises the price of consumption
in those states.

The second part gt+1 is a function of the entire aggregate history zt+1, including the shock
at t + 1. In the case of exogenous solvency constraints on expected net wealth (see equation 5),
a similar aggregation result obtains, but the second part is a function only of zt (see Luttmer
(1992)). In the latter case, each household’s IMRS is a valid SDF for excess returns, because
these cannot violate the constraints on expected net wealth. The liquidity constraints push
up the price of consumption in all states tomorrow. This lowers the risk-free rate, but hardly
changes risk premia relative to the full insurance benchmark.

Perfect Insurance Benchmark The model without solvency constraints provides a natural
benchmark. Since the consumption shares are constant, the individual intertemporal marginal
rates of substitution equal this “aggregate” IMRS. This model is at odds with the data for three
main reasons: (1) the model-implied market price of risk is too low relative to observed Sharpe
ratios over short holding periods, (2) it is close to constant while the data suggests it should
be time-varying and (3) it is even lower relative to Sharpe ratios over longer holding periods.
All three failures follow from the properties of aggregate consumption growth. Aggregate con-
sumption growth is not volatile and roughly i.i.d. over time. In addition, the model implies an
implausibly large risk-free rate.

A. Results: Equity premium and Risk-free rate

Table VI compares the moments of the data, the representative agent model and the collateral
model. My benchmark calibration sets the time discount factor β equal to .95 and γ to 5/7.
Equity is a (levered) claim to the aggregate endowment process. The excess return on equity
is denoted Rl,e, while Rc,e denotes the excess return on a non-levered claim to the aggregate
endowment process. The leverage parameter chosen is four to match the standard deviation
of dividend growth of twelve percent. The asset pricing statistics were generated by drawing
10.000 realizations from the model.

The benchmark perfect insurance economy produces a risk-free rate of thirteen percent and
an equity premium of three percent, one percent for the non-levered claim to consumption. The
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Table II
Benchmark Calibration Results.

Rl,e is the return on a leveraged claim to aggregate consumption with a leverage of 4; Rc,e is the excess return on a claim
to aggregate consumption. The first panel shows moments for the data, the second panel considers the representative agent
model and the third panel the collateral model. These moments were generated by averaging 10.000 draws from an economy
with 5000 agents. α is 5 percent and β is .95. The CRSP-VW index was used to compute the market return, while the
Fama-Bliss risk-free rate was used to compute excess returns.

E(Rl,e) E(Rc,e) E(rf ) σ(Rl,e) σ(Rc,e) σ(rf )
E(Rl,e)

σ(Rl,e)

E(Rc,e)
σ(Rc,e)

Sample US Data
25− 03 0.078 0.01 0.21 0.04 0.38
45− 03 0.084 0.01 0.18 0.03 0.44

γ Representative Agent Economy
5 0.03 0.01 0.13 0.17 0.06 0.03 0.19 0.20
7 0.05 0.02 0.15 0.18 0.07 0.05 0.28 0.27
γ Collateral Economy
5 0.06 0.04 0.03 0.22 0.14 0.10 0.29 0.28
7 0.09 0.06 0.01 0.24 0.15 0.12 0.40 0.39

collateral economy matches the observed US equity premium and misses the risk-free rate by
200 basis points when the fraction of collateralizable wealth is five percent. The liquidity risk
induced by the solvency constraints delivers a low risk-free rate of three percent and a high
equity premium of about six percent. The compensation per unit of risk is large as well; the
Sharpe ratio on the non-levered claim is around thirty-five percent. Increasing the coefficient of
risk aversion to seven lowers the risk-free rate to its historical average of around zero percent
and increase the Sharpe ratio to thirty-eight percent. The model overstates the volatility of the
risk-free rate by a factor of three. This defect will be addressed in section D

Liquidity Shocks To understand these results, we need to understand the effect of these
liquidity shocks. First, the liquidity shocks increase the demand for insurance and lower the
risk-free rate. This is obvious from the SDF in (18), because gt > 1. The solvency constraints
keep the agents from borrowing against their future labor income and the liquidity risk also
induces them to save more as a precautionary device.

Second, the liquidity shocks increase the volatility of the SDF if the shocks are negatively
correlated with the aggregate consumption growth process. This pattern emerges in equilibrium
when a larger fraction of agents is constrained in states with low aggregate consumption growth
realization. In general, this need not be the case. In fact, when aggregate consumption growth is
i.i.d. and the Markov process for y does not depend on z then the liquidity shocks are constant
in the stationary equilibrium. This result is derived in the appendix in proposition 14.
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Figure 1. Liquidity Shocks, Market Price of Risk and Aggregate Consumption
Growth The upper panel plots the conditional market price of risk and the lower panel plots the liquidity shocks. The
shaded area indicates low aggregate consumption growth states. β is .95, γ is 5 and α is .05.

In my calibration liquidity shocks are larger in low aggregate consumption growth states,
as shown in the bottom panel of Figure 1, because the increase in the cross-sectional variation
of idiosyncratic income shocks increases the size of the consumption increase for households
that switch to the high state. During a long series of high aggregate consumption growth
realizations, there is a build-up of low wealth households in the left tail of the wealth distribution.
Mechanically, this means the mass of agents with weights below the cutoff value is large:

∑

y′

∫ ω(y′,zt)

0
dΦzt−1 (dy × dω)

π(y′, z′|y, z)
π(z′|z)

(19)

These households have been running down their asset levels as long as they are in low idiosyn-
cratic income states. Their Pareto-Negishi weights remain unchanged throughout. This implies
their consumption shares were drifting downwards. When a low aggregate consumption growth
state is realized, a larger fraction of households draws a high income state with a high cutoff
value ω(y′, zt). This translates into a large liquidity shock as their consumption shares jump up
from very low levels (see the definition of the liquidity shock in eq. 15).

Liquidity Premium The increased volatility raises risk premia because returns are low in
the low aggregate consumption growth states, when the liquidity shocks are large. I use Ri

to denote the return on some risky security. Under joint lognormality of ∆ log(et+1/ht+1) and
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Table III
Summary Statistics for Deterministic Collateral Economy

Rl,e is the return on a leveraged claim to aggregate consumption with a leverage of 4; Rc,e is the excess return on a claim to
aggregate consumption. Aggregate consumption growth in the SDF is deterministic at its mean. The collateralizable share
of income α is 5 percent. These moments were generated by averaging 10.000 draws from an economy with 5000 agents .

γ E(Rl,e) E(rf ) σ(Rl,e) σ(rf )
σ(m)
E(m)

E(Rc,e)
σ(Rc,e)

5 0.02 0.06 0.20 0.06 0.13 0.08
7 0.03 0.06 0.23 0.10 0.20 0.11

log(Ri
t+1) the expected return on asset i is given by:

Et log Ri
t+1 − log rf

t = γcovt(∆ log(et+1), Ri
t+1)− γcovt(log(gt+1), Ri

t+1)

The first part is the standard compensation for consumption growth risk. The second part is
the compensation for liquidity risk. This liquidity part accounts for over two thirds of the equity
premium in my benchmark calibration.

Deterministic Consumption Growth To highlight the importance of the liquidity shocks,
Table III shows the asset pricing moments for an economy without consumption growth un-
certainty. Equity is still a claim to the same stochastic aggregate consumption growth process
described in the calibration, but the IMRS depends only on the (non-random) average consump-
tion growth rate. Even without consumption growth shocks to the SDF, the equity premium
ranges from 2 to 3 percent and the risk-free rate is around 6 percent. This is low considering
that we have killed the precautionary effect of aggregate consumption growth risk.

B. Sensitivity Analysis

This section gives on overview of how the asset pricing moments depend on the time discount
factor β, the coefficient of risk aversion γ, the collateral share α and the cyclicality of labor income
risk. Finally, I briefly contrast these results with those that obtain in different incarnations of
my model: a two-agent economy and one with exogenous or non-state-contingent constraints.

Discount Rate Sofar I have kept the annual discount factor β constant at .95. Table IV
explores different values of the time discount factor. Lowering the discount rate puts more
weight on today’s income realization and makes the solvency constraints more binding as a
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Table IV
Discount Rate and Risk Aversion

Rl,e is the return on a leveraged claim to aggregate consumption with a leverage of 4; Rc,e is the excess return on a claim to
aggregate consumption. The collateralizable share of income α is .05. These moments were generated by averaging 10.000
draws from an economy with 5000 agents .

γ β E(Rl,e) E(Rc,e) E(rf ) σ(Rl,e) σ(Rc,e) σ(rf )
E(Rl,e)

σ(Rl,e)

E(Rc,e)
σ(Rc,e)

Panel I: Discount Rate
5 .85 0.10 0.07 0.05 0.28 0.20 0.17 0.35 0.35

.90 0.08 0.05 0.04 0.25 0.17 0.13 0.31 0.31

.95 0.06 0.04 0.03 0.22 0.14 0.10 0.29 0.28
7 .85 0.16 0.13 −0.02 0.33 0.26 0.24 0.49 0.48

.90 0.13 0.10 −0.00 0.30 0.22 0.19 0.42 0.44

.95 0.09 0.06 0.01 0.24 0.15 0.12 0.40 0.39
Panel II: Risk Aversion

3 .95 0.03 0.01 0.05 0.18 0.09 0.05 0.16 0.15
4 0.04 0.02 0.04 0.20 0.11 0.08 0.22 0.22
5 0.06 0.04 0.03 0.22 0.14 0.10 0.29 0.28
6 0.08 0.05 0.02 0.24 0.16 0.12 0.35 0.33
7 0.09 0.06 0.01 0.24 0.15 0.12 0.40 0.39
8 0.12 0.09 −0.00 0.27 0.19 0.16 0.46 0.45

result. This increases the size of the liquidity shocks considerably. The net effect on the risk-free
rate of lowering β is ambiguous, but lower β’s always increase the risk premium and the Sharpe
ratio at the cost of increasing individual household consumption volatility to less plausible levels.
For example, when γ is five and β is .85, the equity premium is 10 percent, but the volatility of
household consumption growth is an order of magnitude larger than in my benchmark model.
Alvarez and Jermann (2001) choose β equal to .65 in their two-agent model with permanent
exclusion from trading.

Risk Aversion Increasing risk aversion lowers the risk-free rate, because the demand for
insurance increases and this more than offsets the decreased willingness to substitute intertem-
porally, as is apparent from Table IV. The market price of liquidity risk increases, raising the
risk premium. Returns are more volatile as well, but so is the risk-free rate.

Collateral Share The risk-free rate is highly sensitive to α, the share of collateral, but the
risk premia are not, at least not in the zero to 10 percent range. Collateral shares beyond 10
percent produce perfect risk sharing. Table V lists the same moments of returns for different
values of the collateralizable share.

Consider the case of γ equal to 5. Increasing α from five to ten percent reduces the equity
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Table V
Collateral Share

Rl,e is the return on a leveraged claim to aggregate consumption with a leverage of 4; Rc,e is the excess return on a claim to
aggregate consumption. The subpanels each show the results for different values of the collateralizable share of income α.
The coefficient of relative risk aversion γ is 5. These moments were generated by averaging 10.000 draws from an economy
with 5000 agents .

γ α E(Rl,e) E(Rc,e) E(rf ) σ(Rl,e) σ(Rc,e) σ(rf )
E(Rl,e)

σ(Rl,e)

E(Rc,e)
σ(Rc,e)

5 .15 0.03 0.01 0.12 0.17 0.06 0.04 0.21 0.20
.10 0.05 0.02 0.09 0.19 0.09 0.06 0.24 0.24
.05 0.06 0.04 0.03 0.22 0.14 0.10 0.29 0.28

7 .15 0.06 0.03 0.11 0.19 0.09 0.07 0.31 0.330
.10 0.09 0.05 0.03 0.23 0.15 0.11 0.37 0.38
.05 0.09 0.06 0.00 0.24 0.16 0.12 0.39 0.40

premium somewhat, but it mainly increases the risk-free rate to five percent. As α increases to
fifteen percent, the solvency constraints bind only infrequently and the asset pricing moments
resemble those of the perfect insurance economy. At higher collateral levels, perfect risk sharing
obtains in equilibrium.

Cyclicality of Labor Income Risk Table VI reports the results for the calibration with-
out the increase in cross-sectional dispersion of labor income risk in low aggregate consumption
growth states: the risk premium is about the same as in the economy without solvency con-
straints, but the risk-free rate is much lower.

Exogenous Collateral Constraints. The same table also reports the results for the collateral
economy with the exogenous constraints of equation 5. As expected, the risk-free rate is even
lower than in the collateral economy with endogenous constraints, but the risk premium is about
the same as in same economy without solvency constraints.

Two Agent Economy In the two-agent version of this economy, the compensation per unit of
risk received by investors is much smaller, because the liquidity shocks are not highly correlated
with aggregate consumption growth. Instead, these are driven by the dynamics of the labor
income process in a two-agent economy. For example, in the benchmark calibration, for γ is 5
and α is 5 percent, the two agent model delivers a market price of risk of .28 and a Sharpe ratio
on a claim to aggregate consumption of only .13. In the continuum economy, the risk price is .32
and the Sharpe ratio is .28. The equity premium on a consumption claim is 3.5 percent and the
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Table VI
Labor Income and Collateral Constraints.

Rl,e is the return on a leveraged claim to aggregate consumption with a leverage of 4; Rc,e is the excess return on a claim
to aggregate consumption. These moments were generated by averaging 10.000 draws from an economy with 5000 agents.
α is 5 percent and β is .95.

E(Rl,e) E(Rc,e) E(rf ) σ(Rl,e) σ(Rc,e) σ(rf )
E(Rl,e)

σ(Rl,e)

E(Rc,e)
σ(Rc,e)

Representative Agent Economy
5 0.03 0.01 0.13 0.16 0.058 0.033 0.188 0.196
7 0.05 0.02 0.15 0.18 0.070 0.049 0.277 0.275

Benchmark Collateral Economy
5 0.06 0.04 0.03 0.22 0.14 0.10 0.29 0.28
7 0.09 0.06 0.00 0.24 0.15 0.11 0.39 0.40

A-cyclical Labor Income Risk Collateral Economy
5 0.03 0.02 0.01 0.15 0.06 0.03 0.22 0.22
7 rf too low

Exogenous Constraints Collateral Economy
5 .03 0.02 0.00 0.15 0.063 0.041 0.18 0.20
7 .04 0.02 0.01 0.15 0.07 0.05 0.26 0.28

risk-free rate is 6 percent, compared to 6 and 3 percent respectively in the continuum economy.

C. Time Variation in Risk Premia

The liquidity shocks introduce time-variation in the conditional volatility of the SDF. The quasi-
i.i.d. aggregate consumption growth process endogenously generates a heteroscedastic liquidity
shock process. The size of the liquidity shock depends on the history of aggregate shocks, as
Figure 1 shows. The liquidity shock is largest when a bad aggregate shock is realized, after a
long series of positive aggregate consumption growth shocks. A larger fraction of agents has
decumulated its assets and ends up in the left tail of the wealth distribution. This feature
generates a substantial amount of time variation in the conditional market price of risk. Under
lognormality the conditional market price of risk can be approximated by γσt∆log(et+1/ht+1),
and the market price of risk tracks the conditional volatility of the liquidity shocks. As a result,
the conditional volatility of the SDF increases after a long series of high aggregate consumption
growth shocks. Once the economy experiences a low growth shock, the conditional volatility of
the SDF falls to its lowest level. The left tail of the weight distribution in (19) has been erased.

Figure 1 plots the conditional market price of risk and the liquidity shocks for the benchmark
calibration economy. The conditional variance of the liquidity shocks σt log(gt+1) -and the
conditional market price of risk- peak at the end of long expansions. On the other hand, after
a series of low aggregate consumption growth realizations, the conditional market price of risk
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reaches its lowest point. When another bad aggregate growth shock arrives, few households are
severely constrained. The left tail of the wealth distribution is completely “erased” and a new
low aggregate consumption growth shock does not cause a significant liquidity shock. As a result
the conditional market price of risk drops by 50 percent after a string of large liquidity shocks.

Lettau and Ludvigson (2003) argue that leading asset pricing models leave a Sharpe ratio
“volatility puzzle ” . I propose a novel mechanism that produces considerable variation in the
conditional Sharpe ratio for equity - a claim to aggregate consumption- at moderate levels of risk
aversion. The conditional Sharpe ratio is plotted in Figure (2) for the benchmark calibration
with γ equal to five and it varies between .4 and .1 For γ equal to eight, the range widens
to between .65 and .18. The implied standard deviation of the Sharpe ratio is .075 and .12
respectively.
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Figure 2. Liquidity Shocks and Conditional Sharpe Ratio The upper panel plots the conditional
Sharpe ratio on a levered claim to aggregate consumption and the lower panel plots the liquidity shocks. The leverage
parameter is four. The shaded area indicates low aggregate consumption growth states. β is .95, γ is 5 and α is .05.

The Sharpe ratio in my model rises in response to a sequence of high aggregate consumption
growth shocks, in anticipation of the liquidity shocks in a recession. A sequence of low aggregate
consumption growth shocks pushes the conditional Sharpe ratio to its lowest level. Is this timing
consistent with the empirical evidence? The empirical Sharpe ratio estimated by Lettau and
Ludvigson (2003) seems to peak around the quarters identified by the NBER as the start of
recessions and it drops sharply after the start of the recession (see Figure 3 in Lettau and
Ludvigson (2003)). This is broadly consistent with the annual pattern in my model. Recessions
are clearly turning points in the data.

Table VII shows regressions of one-year ahead returns on (lagged) consumption growth and
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Table VII
Excess returns and lagged consumption growth

The first panel shows the results of regressing log one-year excess return re
t,t+1 on the log price/dividend ratio at t and

(lagged) consumption growth. The second panel shows the results of regressing the average monthly standard deviation of
the market return in t + 1 on the log price/dividend ratio at t and (lagged) consumption growth. The t-stats in brackets
are computed using the Newel West var/covar matrix with 1 lag. The returns are one-year cum-dividend returns on the
VW-CRSP index. The risk-free rate is the average 3-month yield (CRSP’s Fama-Bliss risk-free rates). The sample is
1930-2003. Annual data.

Horizon α0 αpdt αct αct−1 αct−2 R2

Panel I: Excess Returns
1 0.07 1.82 −1.76 0.40 0.08

[1.96] [2.28] [−1.15] [0.57]
1 0.54 −0.15 1.96 −1.47 0.52 0.15

[3.00] [−2.63] [2.59] [−0.98] [0.90]
Panel II: Volatility of Excess Returns

1 0.05 −0.32 0.02 0.02 0.10
[6.07] [−1.76] [0.11] [0.13]

1 0.06 −0.00 −0.32 0.02 0.52 0.10
[2.28] [−0.30] [−1.76] [0.13] [0.90]

the price/dividend ratio. In the US data, expected excess returns over a one-year horizon
increase in response to a positive consumption growth shock. This effect is significant and
remains so when the price/dividend ratio is included in the regressions. At longer horizons the
sign switches as it does in the model (not shown in the table). The conditional volatility of excess
returns, proxied by the average standard deviation of market returns, decreases in response to
a positive aggregate consumption growth shock. Both results are consistent with an increase in
the conditional Sharpe ratio after a positive aggregate consumption growth shock, as predicted
by the model.

Predictability The time-varying risk premia impute quite some predictability to returns.
Table VIII lists the R-squared and the slope coefficients of Fama-French regressions of log excess
returns on log price/dividend ratios. By contrast, there is no predictability in the representative
agent economy (not shown in the table). The same pattern was found in the data by numerous
authors (see Campbell (2000), p. 1522 for an overview. Table XIII in the appendix shows the
same regression results for US postwar data.) When α is fixed, as is the case in the benchmark
model, the price/dividend ratio and the consumption/wealth ratio are identical. In other words,
regressing returns on consumption/wealth ratios would produce identical results (see Lettau and
Ludvigson (2001) for evidence on predictability of returns using the consumption-wealth ratio).
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Table VIII
Predictability regressions for Collateral Economy: Excess Returns

Results of regressing log k-horizon returns on the log risk-free rate and the log price/dividend ratio. A simulated sample of
50.000 observations was used. The first panel reports the results for the returns on a claim to aggregate consumption; the
second panel reports the results for a levered claim to aggregate consumption. Leverage was set to 4.

α0 α1 R2 α0 α1 R2

Risk Aversion 5 Risk Aversion 8
Horizon Panel A: Risk-free Rate

1 1.07 0.24 0.01 0.07 −0.21 0.02
2 0.11 −1.02 0.17 0.13 −0.36 0.04
3 0.15 −1.33 0.16 0.20 −0.46 0.05
4 0.20 −1.53 0.12 0.25 −0.43 0.03
5 0.22 −1.63 0.11 0.31 −0.42 0.03
6 0.26 −1.68 0.09 0.36 −0.42 0.03

Horizon Panel B: Price/dividend Ratio
1 1.92 −0.62 0.15 1.82 −0.61 0.23
2 2.68 −0.86 0.19 2.56 −0.84 0.29
3 3.07 −0.97 0.17 2.95 −0.96 0.29
4 3.27 −1.02 0.14 3.14 −1.00 0.23
5 3.29 −1.01 0.13 3.16 −0.99 0.23
6 3.35 −1.02 0.12 3.22 −0.99 0.23

Long-Run Risk The liquidity shocks impute enough persistence to the stochastic discount
factor to have the Sharpe ratios on equity rise substantially over longer holding periods, thought
not quite as fast as in the data. Table IX reports the simulation results over longer holding
periods. The Sharpe ratios on equity rise from .56 to .76 when γ is eight. In the US data, the
Sharpe ratio rises from .54 at two years to 1 at eight years see Table XIV in the appendix).

D. Recursive Utility and Long Run Risk

The variation in the conditional volatility of the liquidity shocks imputes too much volatility to
the risk-free rate. The mechanism responsible for the time-variation in risk premia also lowers
the risk-free rate at the end of a long series of high aggregate consumption growth realizations,
in anticipation of a large liquidity shock. This can be mitigated by allowing the intertemporal
elasticity of substitution (IES) to differ from γ−1. In this case the market SDF is not necessarily
larger than the representative agent’s shadow price for consumption in that state. A version of
Luttmer’s aggregation result extends to the case of recursive utility:

mt+1 = ma
t+1 (gt+1)

ρ , (20)
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Table IX
Long Horizon Excess Returns

The first panel reports the results for the returns on a levered claim to aggregate consumption in excess of the return on
rolling over one-period zero coupons. The leverage parameter is 4. A simulated sample of 50.000 observations was used.

E(Rl,e) σ(Rl,e)
E(Rl,e)

σ(Rl,e)
E(Rl,e) σ(Rl,e)

E(Rl,e)

σ(Rl,e)

Risk Aversion 5 Risk Aversion 8
Horizon Collateral Economy

2 0.08 0.22 0.36 0.17 0.31 0.56
3 0.12 0.30 0.39 0.25 0.41 0.61
4 0.16 0.40 0.40 0.33 0.52 0.63
5 0.19 0.45 0.42 0.40 0.59 0.67
6 0.22 0.51 0.43 0.47 0.66 0.71
7 0.25 0.57 0.44 0.54 0.72 0.74
8 0.28 0.62 0.45 0.61 0.79 0.76

Horizon Representative Agent Economy
2 0.06 0.19 0.32 0.03 0.18 0.19
3 0.06 0.26 0.22 0.02 0.23 0.12
4 0.02 0.34 0.08 0.00 0.29 0.01
5 −0.03 0.41 −0.09 −0.04 0.34 −0.11
6 −0.14 0.49 −0.29 −0.10 0.40 −0.26
7 −0.30 0.58 −0.52 −0.20 0.47 −0.43
8 −0.51 0.67 −0.75 −0.33 0.53 −0.62

where ma
t+1 is the representative agent’s SDF derived by Epstein and Zin (1989) and ρ is the

inverse IES (see section F in the appendix). In this case gt+1 is the growth rate of a moment
of the distribution of scaled Pareto-Negishi weights, and these scaled weights change even when
the solvency constraints do not bind. They can decrease, and this modifies the properties of the
SDF in important ways. In particular, gt+1 < 1 is possible now. It reduces the volatility of the
risk-free rate and it introduces long-run liquidity risk in the SDF.

Results The added flexibility helps to match the moments in the data. Table X summarizes
the results. For ρ equal to 3 and γ equal to 6 the model delivers a five percent equity premium on
claim to consumption, eight percent on a levered claim. The standard deviation of the risk-free
rate has dropped from twelve percent, in the case of additive utility, to eight percent, while the
returns and the excess returns are still quite volatile.

Recursive utility obviously creates a role for long-run risk. Bansal and Yaron (2002) rely on
a small long-run predictable component in consumption growth that varies over time. My model
introduces a role for long-run risk through the solvency constraints. Households are concerned
about the risk of depleting their financial wealth in the future.
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Table X
Summary Statistics for Collateral Economy with Recursive Utility.

Rl,e is the return on a leveraged claim to aggregate consumption with a leverage of 4; Rc,e is the excess return on a claim
to aggregate consumption. The different panels show the results for different coefficients of relative risk aversion γ. The
first column is the inverse of the intertemporal elasticity of substitution ρ. The collateralizable share α is five percent.These
moments were generated by averaging 10.000 draws from an economy with 5000 agents.

γ ρ E(Rl,e) E(Rc,e) E(rf ) σ(Rl,e) σ(Rc,e) σ(rf )
E(Rl,e)

σ(Rl,e)

E(Rc,e)
σ(Rc,e)

Panel I: Additive Utility
6 0.08 0.05 0.02 0.24 0.16 0.12 0.35 0.33
7 0.09 0.06 0.01 0.24 0.15 0.12 0.40 0.39
8 0.12 0.09 −0.00 0.27 0.19 0.16 0.46 0.45

Panel II: Recursive utility
6 3 0.06 0.03 0.01 0.19 0.11 0.08 0.29 0.30
7 4 0.07 0.04 0.00 0.21 0.13 0.09 0.35 0.33
8 5 0.08 0.05 0.01 0.22 0.13 0.10 0.38 0.38

E. Wealth Distribution and Consumption Share Dynamics

The wealth distribution dynamics in this class of models feature limited memory w.r.t. aggregate
shocks provided that the solvency constraints bind often.

Consumption Dynamics If the Markov process for y satisfies a standard monotonicity con-
dition (see Stokey, Lucas, and Prescott (1989), p. 267), then the cutoff rules for the consumption
weights can be ranked, for each zt:

η̂(y1, z) ≤ ω(y1, z
t)

gt(zt)
≤ . . . ≤ ω(yn, zt)

gt(zt)
≤ η̂(yn, z).

The consumption share cutoff always exceeds the lowest income share realization and it never
exceeds the highest income share realization. The cutoff values increase monotonically in the
value of the income share realization. The appendix contains a proof of these claims in section
C. Figure 3 plots the consumption share of a single household against its labor income share.
The consumption shares fluctuate between the highest and the lowest income shares. In low
income states, the household’s consumption share decreases as the household runs down its
assets. The largest consumption share increases occur when the household switches from the
low state to the high state after a large string of adverse idiosyncratic shocks. In the favorable
income states, its consumption share increases somewhat when it switches to the highest states.
These consumption share increases are larger in recessions (period 45 and 80 in the plot) and
produce large liquidity shocks when aggregated across consumers. Recessions are periods when
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the aggregate show cost of the solvency constraint increases.
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Figure 3. Consumption The full line is the consumption share of a household plotted against the labor income
share (dotted line) over a period of 100 years. γ is 5 and β is .95. The y-axis on the left hand side shows the consumption
shares; on the right hand side is the labor income share.
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Figure 4. Net Wealth The full line is net wealth of a household scaled by its aggregate endowment, plotted
against its labor endowment share (dotted line) over a period of 100 years. γ is 5 and β is .95. The y-axis on the left hand
side shows net wealth scaled by the aggregate endowment; on the right hand side is the consumption scale.

Figure (4) plots the consumption share of a single household against its net wealth (net of
human wealth) scaled by the aggregate endowment for the same history of shocks. Each time
the household switches to a state with a binding solvency constraint, its net wealth position
hits zero. This is a feature of complete markets. Net wealth is obviously much more volatile
than the consumption. The household’s portfolio realizes high returns when bad income shocks
arrive and low returns when good income shocks arrive, but the hedge is incomplete because of
the collateral constraints.

These dynamics have important ramifications for the distribution of wealth across agents.
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Consider a wealthy household with a consumption share ω0 > η̂(yn, z). Its solvency constraint
does not bind “today” as long as it stays in the region above the largest income share, but its
consumption share is drifting downwards at a rate gt(zt). When risk sharing is incomplete and
g > 1, this wealthy household’s consumption share will drop below the highest income share in
a finite number of steps. In a “stationary” equilibrium, the consumption shares will fluctuate
between the highest and the lowest income shares. Wealthy households chose to run down their
assets because interest rates are low. This is the signature of complete markets. It would be
inefficient to have some households hold too much financial wealth when collateral is scarce.

As a result, in a stationary equilibrium, all households face at least one binding solvency
constraint, the one for the highest income share tomorrow, because their consumption share is
-weakly- smaller than ω(yn, zt). This explains how this model reconciles fairly smooth individual
consumption processes with highly volatile SDF’s. This points to a crucial distinction between
this model and ex ante incomplete market models (see e.g. Heaton and Lucas (1996) ). In these
models wealthy agents do not run down their financial wealth holdings, and as a result, may not
face any binding solvency constraints at all. In some sense, the stock of scarce collateral is not
being used as efficiently in those equilibria.

This feature of a stationary equilibrium also limits the memory of these equilibria. All
households face a positive probability of switching to a state with a binding solvency constraint
tomorrow. Once they switch, their entire history summarized by the Pareto-Negishi weight is
wiped out and reset to a value that depends only on the aggregate history of the economy and
that period’s private income share draw. The computations will exploit this limited memory
feature of the equilibria. To match the empirical wealth distribution, the model obviously needs
ex ante heterogeneity in the labor income processes. The homogeneity in my setup allows me to
introduce ex ante labor income heterogeneity by scaling up the labor income processes without
changing any of the asset pricing results.

The aggregate consumption growth shocks are close to white noise but the wealth dynamics
induced by these shocks are not. Figure (5) plots a simulation of the fraction of agents in states
with binding constraints and the corresponding liquidity shocks. Both time series peak in the
low aggregate consumption growth states. On average the fraction increases to forty-five percent
in low aggregate consumption growth states. This is the mechanism that generates high risk
premia.

Risk Sharing This economy still manages to sustain a lot of risk sharing. In the benchmark
calibration the standard deviation of consumption share growth for households is 4.3 percent, less
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Figure 5. Fraction of Agents in States with Binding Constraints. Results shown for the economy with
5 percent collateralizable income share. This is the low volatility of labor income calibration. γ is 5 and β is .95.

Table XI
Risk Sharing in Collateral Economy

The table lists the standard deviation of household consumption share and endowment share growth. α is .05, γ is 5 and
β is .95. These moments were generated by averaging 10.000 draws.

α .05 .10 .15
σ(∆(log(c))) 0.0434 .0264 0.0041
σ(∆(log(η))) 0.334 .334 0.334

than twice the standard deviation of aggregate consumption growth, while the standard deviation
of endowment share growth is thirty-three percent (see Table XI). These allocations are by no
means close to autarky. Not all agents in states with binding solvency constraints experience
large shocks to their consumption shares. In the truncated history with the largest liquidity
shock, forty-nine percent experience a four percent consumption share drop, thirty-six percent
experience an eight percent increase and six percent experience an eleven percent increase. In
the history with the smallest liquidity shock (four consecutive low aggregate consumption growth
shocks) almost all households have roughly constant consumption shares.

The cyclicality of these liquidity shocks is central to my results. Is there any empirical
evidence to support these cyclical shocks to the wealth distribution? Little is known about how
the distribution of total wealth, including human wealth, evolves over the business cycle, but
my mechanism can also be detected in the consumption growth distribution.

The model predicts that the standard deviation and the skewness of consumption growth
covary strongly with the returns on stocks. In particular, the standard deviation increases
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while the skewness decreases sharply in case of a large liquidity shock. 6 Fig. (6) plots the
skewness and the standard deviation of the consumption growth distribution. Most households
experience small consumption share decreases. All the households switching to states with
binding solvency constraints experience consumption share increases. When the fraction of
households switching to these states increases, the skewness (to the left) decreases. The skewness
varies from 1 in a recession preceded by a series of expansions to 30 after a series of recessions.
The standard deviation ranges respectively from .01 to .09 respectively. The standard deviation
of consumption growth across households is perfectly positively correlated and the skewness is
perfectly negatively correlated with the liquidity shocks gt+1.
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Figure 6. The Distribution of Consumption Growth. The upper panel plots the skewness of the cross-
sectional distribution of consumption growth and the lower panel plots the standard deviation. The shaded areas indicate
low aggregate consumption growth states. Results for the collateral economy with 5 percent collateralizable income share.
γ is 5 and β is .95.

Empirical Evidence Cogley (2002) finds evidence that the cross-sectional dispersion of US
household non-durable consumption growth increases when the returns on equity are low, but he
argues the covariance is too small to explain the size of the risk premia. Brav, Constantinides,
and Gezcy (2002) use the distribution of US household non-durable consumption growth to
explain asset returns and argue that the skewness of the consumption growth distribution, in

6The centered moments depend only on the size of the left tail of the wealth/consumption-share distribution.
The (centered) n-th moment of the consumption growth distribution is:

gt(z
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addition to the standard deviation, help in explaining asset returns. They envision an incomplete
markets model in which the average IMRS is a valid SDF and use a Taylor expansion to derive an
expression for the SDF in terms of the mean, variance and the skewness. Brav, Constantinides,
and Gezcy (2002) argue that this SDF can explain the equity premium at smaller levels of risk
aversion as the sample is tightened to include only wealthier households. Without the skewness
term the Euler equation errors are much larger. In more recent work Kocherlakota and Pistaferri
(2004) derive a SDF that shares some features with that in my paper in an environment with
private information and use household consumption data to argue that this SDF -the growth
rate of the γ-th moment of the consumption distribution- performs at least as well empirically
because the consumption distribution has the right cyclical properties.

This paper presents an alternative explanation of why these moments of the consumption
growth distribution help explain asset prices and also provides a theory of variation in the
skewness and standard deviation over the business cycle. Since the standard deviation and
the skewness of consumption growth are perfectly correlated with the liquidity shocks, these
moments of the consumption growth distribution can be used as risk factors. In my model
individual IMRS are not valid SDF’s, while in Brav, Constantinides, and Gezcy (2002) assets
could be priced off any individual household’s IMRS. There does not seem to be not enough
volatility in household consumption growth, even when the sample is confined to stockholders.

VI. Conclusion

Most authors have concluded that heterogeneity cannot help to address the main asset pricing
anomalies. This paper offers a dissenting view. While Constantinides and Duffie (1996) had
already demonstrated that the right dynamics for the cross-sectional distribution of household
consumption risk can generate large risk premia for plausible levels of risk aversion, my model
generates this feature endogenously and still allows for considerable risk sharing at the household
level, in line with the evidence on household consumption. In my model highly volatile SDF’s
are consistent with fairly smooth household consumption growth, because the model has a large
number of agents and because the solvency constraints are dated t + 1 instead of t.

The time variation in the distribution of liquidity shocks endogenously delivers more variation
in risk premia over the business cycle than competing equilibrium asset pricing models. These
risk premia are driven by the co-movement of the aggregate shadow cost of these solvency
constraints with the returns on risky assets. Incomplete market models with solvency constraints
(e.g. Telmer (1993), Lucas (1994) and Heaton and Lucas (1996)) impose additional measurability
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constraints on household net wealth across different states of the world and these average out
the effect of idiosyncratic risk on the state price of consumption. That explains why, surprisingly
perhaps, the risk premia are much smaller in this class of incomplete market models, in spite of
the fact these offer less scope for risk sharing than my model.
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VII. Tables and Figures

Table XII
Approximation Errors.

The mean, standard deviation and the supremum of the distribution of approximation errors were generated by simulating
10.000 draws from an economy with 5000 agents. The errors are reported in basis points. β is .95

Collateral : 5 percent Collateral : 10 percent Collateral : 15 percent

Risk Aversion Ê (x) std (x) sup|x| Ê (x) std (x) sup|x| Ê (x) std (x) sup|x|
3 -.0048 .0033 .012 .0009 .0009 .0047 .0008 .0058 .032
4 -.0002 .0024 .012 .0054 .0088 .0306 .0012 .010 .055
5 .0000 .0026 .015 -.0020 .0031 .0157 .0016 .0124 .073
6 .0005 .0023 .006 -.0009 .0017 .0099 .0018 .0143 .084
7 -.0036 .0037 .011 -.0008 .0017 .0057 .0026 .0151 .080
8 -.0012 .0033 .019 -.0006 .0020 .009 .0022 .0158 .089
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Table XIII
Predictability regressions for US excess returns

Results of regressing k-horizon excess returns on the log real risk-free rate and the log price/dividend ratio. The t-stats in
brackets are computed using the Newey West var/covar matrix with k lags. The returns are cum-dividend returns on the
VW-CRSP index. The risk-free rate is the average 3-month yield (CRSP’s Fama-Bliss risk-free rates). Annual data.

Risk-free rate Price/dividend ratio
α0 α1 R2 α0 α1 R2

Horizon 1945:2003
1 0.08 0.89 0.03 0.61 −0.16 0.13

[3.14] [1.86] [3.23] [−2.71]
2 0.16 0.83 0.02 0.88 −0.21 0.11

[4.48] [1.70] [3.42] [−2.63]
3 0.26 0.26 0.00 1.50 −0.38 0.16

[4.37] [0.32] [3.62] [−2.83]
4 0.39 −1.21 0.01 2.26 −0.57 0.19

[4.36] [−0.94] [3.26] [−2.59]
5 0.52 −2.13 0.03 3.35 −0.87 0.28

[4.25] [−1.56] [3.37] [−2.72]
6 0.66 −2.03 0.02 4.50 −1.19 0.29

[4.10] [−1.57] [3.60] [−2.92]

Table XIV
Long Horizon Excess Returns in US Data

The first panel reports the results for the returns on a levered claim to aggregate consumption in excess of the return on
rolling over one-period zero coupons. The CRSP-VW index was used and the 3-month average yield on a zero-coupon
(Fama risk-free rates). The sample is 1925-2003.

Horizon 2 3 4 5 6 7 8

E(RV W,e) 0.173 0.270 0.375 0.490 0.622 0.778 0.957
σ(RV W,e) 0.318 0.402 0.500 0.580 0.669 0.785 0.933

E(RV W,e)/σ(RV W,e) 0.543 0.671 0.750 0.845 0.930 0.991 1.026
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A. Technical Appendix

This appendix is self-contained. The first section (A) starts by deriving the solvency constraints from the participation

constraints in an environment where agents cannot be excluded from trading. The second section (B) characterizes the

regions of the parameter space where risk sharing can be sustained. In the third section (C), I use stochastic Pareto-Negishi

weights to characterize equilibrium prices and allocations. The fourth section (D) examines the properties of the SDF. The

final section (E) briefly extends some of my results to the case of recursive utility.

A. Solvency Constraints

First, I show that imposing these solvency constraints is equivalent to imposing participation constraints that prevent

default in an environment where agents can default without being excluded from trading. In other words, these solvency

constraints are not too tight.

Bankruptcy technology Let Π denote a pricing functional and let Πst [{d}] denote the price of a sequence of

consumption claims {d} starting in history st in units of st consumption:

Πst [{d}] =
∑

τ≥t

∑

sτ≥st

pτ (sτ |st)dτ (sτ ).

This includes the value of today’s dividend. Let κt(st) be the continuation utility associated with bankruptcy, conditional

on a pricing functional Π :

κt(s
t) = max

{c′}
U(c)(st) s.t. Πst

[{
c′

}] ≤ Πst [{η}] ,

and such that the participation constraints are satisfied in all following histories sτ ≥ st. Let U({c})(st) denote the

continuation utility from an allocation at st. An allocation is immune to bankruptcy if the household cannot increase its

continuation utility by resorting to bankruptcy at any node.

Definition 4. For given Π, an allocation is said to be immune to bankruptcy if

U(
{
c
(
θ0, yt, zt

)}
)(st) ≥ κt(s

t) for all st. (21)

These participation constraints can be recast as solvency constraints. I choose solvency constraints that only bind when

the participation constraints bind, and hence they are not too tight, in the sense of Alvarez and Jermann (2000). These put

a lower bound on the value of the household’s consumption claim.

Proposition 5. For given Π, an allocation is said to be immune to bankruptcy iff:

Πst

[{
c
(
θ0, yt, zt

)}] ≥ Πst [{η}] , for all st ∈ St, t ≥ 0. (22)

Proof of Proposition 5: First, I show that the solvency constraints imply that the participation constraints are satisfied:

U(
{
c
(
θ0, yt, zt

)}
)(st) ≥ κt(s

t),

and U(
{
c
(
θ0, yt, zt

)}
)(st) = κt(s

t) ⇐⇒ Πst [{η}] = Πst

[{
c
(
θ0, yt, zt

)}]

and that the participation constraints bind only if the solvency constraints bind. This follows directly from the definition
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of κt(st). If Πst

[{
c
(
θ0, yt, zt

)}] ≥ Πst [{η}] , then U(
{
c
(
θ0, yt, zt

)}
)(st) ≥ κt(st) because

U(
{
c
(
θ0, yt, zt

)}
)(st) = max

{c′}
U(c)(st), (23)

such that the budget constraint is satisfied Πst [{c′}] ≤ Πst

[{
c
(
θ0, yt, zt

)}]
and such that the solvency constraints are

satisfied in all following histories:

U(c)(sτ ) ≥ κτ (sτ ) for all sτ ≥ st.

The rest of the proof follows from the definition of κt(st) :

κt(s
t) = max

{c′}
U(c)(st), (24)

such that the budget constraint is satisfied Πst [{c′}] ≤ Πst [{η}] and the solvency constraints are satisfied in all following his-

tories: U(c)(sτ ) ≥ κτ (sτ ) for all sτ ≥ st. This shows that the solvency constraints ensure that the participation constraints

are satisfied. In addition, the same argument implies that, if the solvency constraints bind, then the participation constraints

bind. The solvency constraint is not too tight. Second, the participation constraints imply that the solvency constraints

are satisfied. If U(
{
c
(
θ0, yt, zt

)}
)(st) ≥ κt(st), then from (23) and (24), it follows that Πst [{η}] ≤ Πst

[{
c
(
θ0, yt, zt

)}]
.

The second part is obvious.

Sequential Equilibrium and K-L Equilibrium In the text I define a sequential trading equilibrium

with collateral constraints. This equilibrium is equivalent with an equilibrium in which all trading occurs at time zero,

subject to these solvency constraints.

We assume that interest rates are high enough:

Πs0 [{η}] < ∞ and Πz0 [{e}] < ∞. (25)

In the case of a continuum of consumers, it is not sufficient to restrict the value of the aggregate endowment to be finite

(as in Alvarez and Jermann (2000)). It is also necessary to restrict the value of labor income to be finite. If the value of the

aggregate endowment is finite, then all θ0 will be finite as well, since these are claims to the aggregate endowment. From

the time 0 budget constraint, I know that Πs0
[{

c
(
µ0, st

)}]
< ∞. This means I can apply Proposition 4.6 in Alvarez and

Jermann (2000) which demonstrates the equivalence between the Arrow-Debreu economy and the economy with sequential

trading, provided that there is a ξ such that

c
(
µ0, st

)1−γ

1− γ
≤ ξ

ct
(
µ0, st

)−γ

1
ct

(
µ0, st

)
,

which is automatically satisfied for power utility.

B. Risk Sharing

This section uses the solvency constraints to characterize the regions of the parameter space where (no) risk sharing can be

sustained.

No Collateral If there is no collateral, no risk sharing can be sustained.

Proposition 6. If there is no outside wealth (α = 0), then there can be no risk sharing in equilibrium.
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Proof of Proposition 6: Summing across all of the individual participation constraints at some node zt:

∫ ∑

yt

[
Πst

[{
c
(
µ0, yt, zt

)}]

−Πst [{η}])

]
dΦ0

π(yt, zt|y0, z0)

π(zt|z0)
≥ 0. (26)

Using p(st|s0) = Q(zt|z0)
π(yt,zt|y0,z0)

π(zt|z0)
-this is w.l.o.g.-, this can be rewritten as:

∑

zτºzt

Q(zτ |zt)




∫ ∑

yτ

[
c (µ0, yτ , zτ )

−η̂τ (yτ , zτ )eτ (zτ )

]
dΦ0

π(yτ , zτ |y0, z0)

π(zτ |z0)


 , (27)

with (zτ , yτ ) º st. To justify the interchange of limits and expectations, I appeal to the monotone convergence theorem.

Let Πn
st

[{
c
(
µ0, yt, zt

)}]
be the value of the claim to the consumption stream until t + n and let Πn

st [{η}] be similarly

defined. Then the monotone convergence theorem can be applied for both sequences because for all n : 0 ≤ Xn ≤ Xn+1.

Let X = limn Xn. Then EXn ↗ X as n → ∞ (where EX is possibly infinite). This justifies the interchange of limit and

the expectation (SLP, 1989, p.187).

The Law of Large Numbers and the definition of the labor share of the aggregate endowment imply that the average

labor endowment share equals the labor share:

∫ ∑

yt

η̂t(yt, zt)
π(yt, zt|y0, z0)

π(zt|z0)
dΦ0 =

∑

y′
πzt (yt)η̂t(yt, zt) = (1− α), (28)

and the market clearing condition implies that:

∫ ∑

yt

c
(
µ0, yt, zt

) π(yt, zt|y0, z0)

π(zt|z0)
dΦ0 = et(z

t). (29)

Plugging eqs. (28) and (29) back into eq. (27) implies the following inequality must hold at all nodes zt: αΠzt

[{
et(zt)

}] ≥ 0.

If there is no outside wealth (α = 0) in the economy, then the expression is zero at all nodes zt and eq. (26) holds with

equality at all nodes zt. This implies that each individual constraint binds for all st and there can be no risk sharing. Why?

Suppose there are some households
(
µ0, yt, zt

) ∈ A at node zt where A has non-zero measure:

∑ ∫

A
dΦ0

π(yt, zt|y0, z0)

π(zt|z0)
> 0,

and their constraint is slack: Πst

[{
c
(
µ0, yt, zt

)}]
> Πst [{η}] . Given that eq. (26) holds with equality at all nodes zt with

α = 0, there are some households
(
µ′0, yt, zt

)
at node zt ∈ B for which

∑ ∫

B
dΦ0

π(yt, zt|y0, z0)

π(zt|z0)
> 0,

which have constraints that are violated: Πst

[{
c
(
µ′0, yt, zt

)}]
< Πst [{η}] . If not, (26) would be violated. But this violates

the participation constraints for these agents. So, for α = 0, for all households with positive measure:

Πst

[{
c
(
µ0, yt, zt

)}]
= Πst [{η}] for all yt at zt.
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The same argument can be repeated for all zt. This implies that the following equality holds for all st and for all households

with positive measure:

Πst

[{
c
(
µ0, yt, zt

)}]
= Πst [{η}] for all st,

and there can be no risk sharing: c
(
µ0, yt, zt

)
= ηt(s

t) for all st and µ0

Perfect Risk Sharing If there is enough collateral, agents may be able to share risks perfectly. Let Π∗ denote

the pricing functional defined by the perfect insurance, Lucas-Breeden SDF.

Proposition 7. If the value of the aggregate endowment exceeds the value of the private endowment at all nodes, perfect

risk sharing is feasible:

Π∗st [{e}] ≥ Π∗st [{η}] for all st.

Proof of Proposition 7: If this condition is satisfied: Π∗
st [{e}] ≥ Π∗

st [{η}] for all st, where Π∗
st is the complete insurance

pricing functional, then each household can get a constant and equal share of the aggregate endowment at all future nodes.

Perfect risk sharing is possible. (q.e.d.)

Permanent Exclusion How does this relate to the Kehoe-Levine-Kocherlakota setup with permanent exclusion?

The solvency constraints are tighter in the case of bankruptcy than under permanent exclusion, simply because one could

always default and replicate autarky in the economy with bankruptcy by eating one’s endowment forever after. The reverse

is clearly not true. Let U({η})(st) denote the continuation utility from autarky.

Proposition 8. In the economy with permanent exclusion, the participation constraints can be written as solvency con-

straints as follows:

Πst [{c}] ≥ Πst [{η}] ≥ Baut
st [{η}] ,

where U({η})(st) = sup{c′}U(c′)(st) s.t. Πst [{c′}] ≤ Baut
st [{η}] and s.t. the participation constraint is satisfied at all

future nodes .

Proof of Proposition 8: The value of the outside option at each node st is simply the value of autarky: U(η)(st). The

value of bankruptcy has to exceed the value of autarky for any pricing functional, since continuation values are monotonic

in wealth:

Πst [{c}] ≥ Πst [{η}] ≥ Baut
st [{η}] ,

where Ut(Baut
st [{η}] , st, c) = U({η})(st).(q.e.d.)

Because this inequality holds for any pricing functional, if perfect risk sharing is feasible in the economy with bankruptcy,

it is feasible in the economy with permanent exclusion. Loosely speaking, the Pareto frontier shifts down as one moves from

permanent exclusion to bankruptcy (also see Lustig, 2000).

C. Stochastic Pareto-Negishi Weights

This section first describes the household’s problem in a time zero trading environment and then defines an equilibrium. In

a second step, I characterize these equilibria using stochastic Pareto-Negishi weights.

Taking prices
{
pt(st|s0)

}
as given, the household purchases history-contingent consumption claims subject to a standard

budget constraint and a sequence of solvency constraints, one for each history:

Primal Problem (PP)

sup
{c}

u(c0(θ0, s0)) +
∑

t=1

∑

st≥s0

βtπ(st|s0)u(ct(θ0, st)),

47



∑

t≥0

∑

st≥s0

pt(s
t|s0)

[
ct(θ0, st)− ηt(s

t)
] ≤ θ0,

Πst

[{
c
(
θ0, yt, zt

)}] ≥ Πst [{η}] , for all st ∈ St, t ≥ 0.

The solvency constraints keep the households from defaulting. The following definition of equilibrium is in the spirit

of Kehoe and Levine (1993) and in particular Krueger (1999). The definition of equilibrium is in the text. The next section

develops an algorithm to solve for equilibrium allocations and prices using stochastic Pareto-Negishi weights.

Solvency Constraints and Stochastic Pareto-Negishi Weights In the complete insurance

benchmark model households are assigned Pareto-Negishi weights at time 0 by a social planner and these weights stay

fixed throughout. Associated with the equilibrium of my limited commitment economy is a set of Pareto-Negishi weights

that are non-decreasing stochastic processes. These keep track of an agent’s history. In effect, the Pareto-Negishi weights

adjust the value of a household’s wealth just enough to prevent it from exercising the bankruptcy option.

I relabel households with initial promised utilities w0 instead of initial wealth θ0. The dual program consists of

minimizing the resources spent by a consumer who starts out with “promised” utility w0:

Dual Problem (DP)

C∗(w0, s0) = inf
{c}

c0(w0, s0) +
∑

t=1

∑

st≥s0

pt(s
t|s0)ct(w0, st),

∑

t≥0

∑

st≥s0

βtπ(st|s0)u(ct(w0, st)) = w0, (30)

Πst

[{
c
(
w0, yt, zt

)}] ≥ Πst [{η}] , for all st ∈ St, t ≥ 0. (31)

The convexity of the constraint set implies that the minimizer of DP and the maximizer of PP (the primal problem)

coincide for initial wealth θ0 = C∗(w0, s0)−Πs0 [{η}].(see Luenberger (1969), p. 201.)

To solve for the equilibrium allocations, I make the dual problem recursive. To do so, I borrow and extend some tools re-

cently developed to solve recursive contracting problems by Marcet and Marimon (1999). Let mt(st|s0) = pt(st|s0)/πt(st|s0),

i.e. the state price deflator for payoffs conditional on event history st. τ t(st) is the multiplier on the solvency constraint

at node st. I can transform the original dual program into a recursive saddle point problem for household (w0, s0) by

introducing a cumulative multiplier:

χt(w0, st) = χt−1(w0, st−1)− τ t(w0, st), χ0 = 1. (32)

Let µ0 denotes the Lagrangian multiplier on the initial promised utility constraint in (30). I will use these to index the

households with, instead of promised utilities. It is the initial value of the household’s Pareto-Negishi weights. After history

st, the Pareto-Negishi weight is given by ζt(µ0, st) = µ0/χt(µ0, st). If a constraint binds
(
τ t(st) > 0

)
, the weight ζ goes

up, if not, it stays the same. These weight adjustments prevent the value of the consumption claim from dropping below

the value of the labor income claim at any node.

Formally, following Marcet and Marimon (1999), I can transform the original dual program into a recursive saddle

point problem for household (w0, s0) by introducing a cumulative multiplier:

D(c, χ; w0, s0) =
∑

t≥0

∑

st

{
βtπ(st|s0)mt(s

t|s0)

[
χt(s

t|s0)ct(w0, st)

+τ t(st)Πst [{η}]

]}
, (33)

where χt(s
t) = χt−1(st−1) − τ t(st), χ0 = 1. Then the recursive dual saddle point problem facing the household of type
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(w0, s0) is given by:

inf
{c}

sup
{χ}

D(c, χ; w0, s0), (RSDP)

such that ∑

t≥0

∑

st

βtπ(st|s0)u(ct(w0, st)) = w0.

Let µ0 denotes the Lagrangian multiplier on the promise keeping constraint.

The next step is to use those Pareto-Negishi weights and exploit the homogeneity of the utility function to construct

a linear consumption sharing rule, as in the benchmark model. Luttmer (1991) derived a similar aggregation result for

economies with exogenous wealth constraints and a finite number of agents, without actually solving the model. This allows

me to recover allocations and prices from the equilibrium sequence of multipliers
{
ζt(µ0, st)

}
.

First, consider 2 households having experienced the same history st. We know from the first order conditions of the

recursive dual saddle point problem for two different households
(
µ′0, y0

)
and

(
µ′′0 , y0

)
that the ratio of marginal utilities

has to equal the inverse of the weight ratio:

[
ct(µ′0, st))

ct(µ′′0 , st))

]−γ

=
ζt(µ

′′
0 , st)

ζt(µ
′
0, st)

. (34)

If the constraints never bind, ζt = µ0 at all nodes and the condition in (34) reduces to condition that characterizes perfect

risk sharing.

Second, the resource constraint implies that for all aggregate states of the world zt consumption adds up to the total

endowment: ∑

yt

∫
ct(µ0, yt, zt)dΦ0

π(yt, zt|y0, z0)

π(zt|z0)
= et(z

t), (35)

(34) and (35) completely characterize the equilibrium consumption allocation for a given sequence of multipliers. The

objective is to find the risk sharing rule that satisfies these conditions:

ct(µ0, st) =
ζ
1/γ
t (µ0, st)

E
[
ζ
1/γ
t (µ0, st)

] et(z
t). (36)

This rule satisfies the condition on the ratio of marginal utilities (34) and it clears the market in each aggregate history zt.

This can be verified by taking cross-sectional averages of the individual consumption rule.

The average weight in the denominator is a non-decreasing stochastic process that is adapted w.r.t. the aggregate

history. Let ht(zt) denote this cross-sectional multiplier moment: ht(zt) = E
[
ζ
1/γ
t (µ0, st)

]
. I will refer to this simply as

the average weight process.

Cutoff Rule This section characterizes the optimal weight policy and then shows that these weights fully characterize

an equilibrium.

First, I will transform this growth economy into a stationary economy with stochastic discount rates (Alvarez and

Jermann (2001)) . The aggregate growth rate is a function λ(zt). Let utility over consumption streams be defined as

follows:

U(ĉ)(st) =
ĉt(st)

1− γ

1−γ

+ β̂(zt)
∑

st+1

U(ĉ)(st+1)π̂(st+1|st),
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where ĉ represents the consumption share of the total endowment and let the transformed transition matrix be given by:

π̂(zt+1|zt) =
π(zt+1|zt)λ(zt+1)1−γ

∑
zt+1

π(zt+1|zt)λ(zt+1)1−γ
and β̂(zt) = β

∑
zt+1

π(zt+1|zt)λ(zt+1)
1−γ . (37)

The (cum dividend) price-dividend ratio of a dividend stream can be written recursively as:

Π̂st

[{
d̂
}]

= d̂t(s
t) + β̂(zt)

∑

st+1

Π̂st+1

[{
d̂
}] (

ht+1(zt+1)

ht(zt)

)γ

π̂(st+1|st), (38)

and let Vst

[{
d̂
}]

denote the ex-dividend price-dividend ratio (i.e. the previous expression less today’s dividend). The

equilibrium consumption shares in the stationary economy can simply be scaled up to obtain the allocations in the growth

economy. The prices of claims to a dividend stream in the stationary economy are the price-dividend ratio’s in the growth

economy.

The optimal policy rule has a simple recursive structure. Let C
(
µ0, st; ζ

)
denote the continuation cost of a consumption

claim derived from a weight policy
{
ζt(µ0, st)

}
:

C
(
µ0, st; ζ

)
= Πst [{cτ (ζτ (µ0, sτ ))}] ,

where consumption at each node is given by the risk sharing rule in (36):

ct(ζt(µ0, st)) =
ζ
1/γ
t (µ0, st)

ht(zt)
e(zt),

and prices of contingent claims are given by the standard expression p(st|s0) = π(st|s0)Q̂t(zt). The optimal weight updating

rule has a simple structure. I will let lt(y, zt) denote the weight such that a household starting with that weight has a

continuation cost that exactly equals the price of a claim to labor income:

C
(
µ0, st; ζ

)
= Πst [{η}] with ζt(µ0, st) = lt(y, zt).

A household compares its weight ζt−1(µ0, st−1) going into period t at node st to its cutoff weight and adjusts its weight

only if it is lower than the cutoff.

Lemma 9. The optimal weight updating policy consists of a cutoff rule
{
lt(y, zt)

}
where ζ0(µ0, s0) = µ0 and for all t ≥ 1

if ζt−1(µ0, st−1) > lt(y, zt)

ζt(µ0, st) = ζt−1(µ0, st−1) ,

else ζt(µ0, st) = lt(y, zt).

Proof of Lemma 9: The sequence of implied weights
{
ζt(µ0, st)

}
satisfies the necessary Kuhn-Tucker conditions for

optimality: [
ζt(µ0, st)− ζt−1(µ0, st−1)

]
(C

(
µ0, st; l

)−Πst [{η}]) = 0,

and C
(
µ0, st; l

) ≥ Πst [{η}] for all st. The last inequality follows from the fact that C(·) is non-decreasing in µ0. It is easy

to verify that there exist no other weight policy rules that satisfy these necessary conditions. Since the optimal policy is to

compare the current weight ζ to the cutoff rule lt(y, zt), the continuation cost can be stated as a function of the current

weight, the current idiosyncratic state and the aggregate history: C
(
µ0, st; l

)
= Ct(ζ, y, zt).
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The household’s policy rule
{
ζt(µ0, st)

}
can be written recursively as

{
lt(l, y, zt)

}
where l0 = µ0 and lt(lt−1, y, zt) =

lt−1 if lt−1 > lt(y, zt) and lt(lt−1, y, zt) = lt(y, zt) elsewhere. The reason is simple. If the constraint does not bind, the

weight is left unchanged. If it does bind, it is set to its cutoff value. (q.e.d.)

The following theorem states that an equilibrium is fully characterized by these household weight processes.

Theorem 10. An allocation
{
ζt(µ0, st)

}
for all (µ0, st), state price deflators

{
Qt(zt)

}
and forecasts

{
ht(zt|z0)

}
define

an equilibrium if (i)
{
ζt(µ0, st)

}∞
t=0

solves (DP) and (ii) the market clears for all zt:

ht(z
t) =

∑

yt

∫
ζ
1/γ
t (µ0, yt, zt)dΦ0

π(yt, zt|y0, z0)

π(zt|z0)

and (iii) there are no arbitrage opportunities :

Q(zt) = βt

(
et(zt)

e0(z0)

)−γ (
ht(zt)

h0(z0)

)γ

Proof of Theorem 10:
{
ζt(µ0, st)

}∞
t=0

and
{
ht(zt)

}
define an allocation

{
ct(µ0, st)

}
through the risk sharing rule

ct(µ0, st) =
ζ
1/γ
t (µ0, st)

ht(zt)
et(z

t).

The sequence of Lagrangian multipliers
{
ζt(µ0, st)− ζt−1(µ0, st−1)

}
satisfy the Kuhn-Tucker conditions for a saddle point.

The consumption allocations satisfy the first order conditions for optimality (see derivation of risk sharing rule ). Market

clearing is satisfied because E
[
ζ
1/γ
t (µ0, yt, zt)

]
= ht(zt) implies that E

[
ct(µ0, yt, zt)

]
= et(zt). Now, let θ0 = C(µ0, s0; l)−

Πs0 [{η}] . The prices implied by
{
mt(zt|z0)

}
are equilibrium prices by construction and rule out arbitrage opportunities.

So, now I can relabel the households as
(
θ0(µ0), s0

)
and I have recovered the equilibrium allocations

{
ct(θ0, st)

}
and the

prices
{
pt(st|s0)

}
.(q.e.d.)

Useful Properties of the Cutoff Rule I will list two useful properties of these cutoff rules. First, the cutoff

rules for the consumption shares are weakly lower than the endowment share. The intuition is simple: the agent consumes

less today in exchange for the promise of higher consumption tomorrow.

Lemma 11. The consumption shares at the cutoff do not exceed the labor endowment shares:

l
1/γ
t (zt, y)

ht(zt)
≤ η̂(y, z) for all (zt, y) (39)

Proof of Lemma 11: This follows directly from the definition of the cutoff level:

C
(
µ0, st; l

)
= η̂(y, z) + β̂(zt)

∑

z′

(
ht+1(zt,z′)

ht(zt)

)γ

π̂(z′|z)
∑

y′
Π̂zt+1,y′ [{η̂}] π̂(y′, y|z′),

where lt(µ0, st) = lt(z
t, y). Now since, C

(
µ0, st+1; l

) ≥ Π̂zt+1,y′ [{η̂}] for all (yt+1, zt+1), this equality implies that

l
1/γ
t (zt,y)

ht(zt)
≤ η̂(y, z) for all (y, z).(q.e.d.)

Of course, as the collateralizable share of income decreases, the cutoff consumption shares approach the labor endow-

ment shares; when α = 0, equation (39) holds with equality at all nodes.

Second, if the transition matrix satisfies monotonicity, the cutoffs can be ranked and the consumption share in the

lowest income state equals the labor endowment share.
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Lemma 12. If the transition matrix satisfies monotonicity, then the cutoff rules can be ranked:

lt(z
t, yn) ≥ lt(z

t, yn−1) ≥ lt(z
t, yn−2) ≥ . . . ≥ lt(z

t, y1)

and
l
1/γ
t (zt,y1)

ht(zt)
= η̂(y1, z) for all zt.

Proof of Lemma 12: First, I define monotonicity. A transition matrix T is monotone if for any non-decreasing function

f on Y × Z, Tf is also non-decreasing. If this condition is satisfied, then I can rank the all of the cutoff weights. Assume

the transition matrix of conditional probabilities
π̂(y′,z′|y,z)

π̂(z′|z)
satisfies this condition for all (z′, z). Then my claim is that

value of the endowment claims can be ranked such that:

Π̂zt,yn
[{η̂}] ≥ Π̂zt,yn−1

[{η̂}] ≥ . . . ≥ Π̂zt,y1
[{η̂}] , (40)

for all zt. To show this, I start with a truncated version of this economy at T − 1 I use Π̃ to denote the claims in the

truncated version of this economy. By definition, for all zT−1 :

Π̃zT−1,y [{η̂}] = η̂(y, zT−1) + β̂(zT−1)
∑

z′

(
hT (zT−1,z′)
hT−1(zT−1)

)γ

π̂(z′|z)
∑

y′
η(y′, z′)

π̂(y′, z′|y, z)

π̂(z′|z)
,

and verify that these objects can be ranked:

Π̃zT−1,yn
[{η̂}] ≥ Π̃zT−1,yn−1

[{η̂}] ≥ Π̃zT−1,y1
[{η̂}] ,

because
∑

y′ η(y′, z′)π̂(y′, y|z′) is non-decreasing in y. This follows immediately from the definition of monotonicity of

π̂(y′, y|z′). Next, I roll the truncated economy back one more period:

Π̃zT−2,y [{η̂}] = η̂(y, zT−2) + β̂(zT−2)
∑

z′

(
hT (zT−2,z′)
hT−1(zT−2)

)γ
π̂(z′|z)

∑

y′
Π̃zt+1,y′ [{η̂}]

π̂(y′, z′|y, z)

π̂(z′|z)
,

and using the result for T − 1, one obtains the following ranking:

Π̃zT−2,yn
[{η̂}] ≥ Π̃zT−2,yn−1

[{η̂}] ≥ . . . ≥ Π̃zT−2,y1
[{η̂}] .

By backward induction, for any zt, the claims in the truncated economy can be ranked such that:

Π̃zt,yn
≥ Π̃zt,yn−1

≥ . . . ≥ Π̃zt,y1
.

Next, I note that the price of a claim in the infinite horizon economy can be stated as:

Π̂zt,yt
= Π̂zt,yt

+ Ẽtβ
T−t

(
hT

ht

)γ

Π̂zT ,yT
,

and that limT→∞Ẽtβ
T−t hT

ht
Π̂zT ,yT

is independent of yt and converges to some finite x that does not depend on yt : the

transition matrix has no absorbing states, all states y′ will be visited infinitely often in the limit and the limit cannot

depend on yt. The limit is finite by assumption. Hence, the results for the truncated economy are valid for the infinite

horizon economy. This shows equation (40) holds. Finally, I need to show that this implies a similar ranking for the cutoff
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weights. When ζt(µ0, st) = lt(z
t, y), by definition,the following holds:

C
(
µ0, st; l

)
= η̂(y, z) + β̂(zt)

∑

z′

(
ht+1(zt,z′)

ht(zt)

)γ

π̂(z′|z)


∑

y′
Π̂zt+1,y′ [{η̂}]

π̂(y′, z′|y, z)

π̂(z′|z)


 .

Since C is monotonically increasing in ζ, I know that for all y′ and zt :

lt(z
t, yn) ≥ lt(z

t, yn−1) ≥ . . . ≥ lt(z
t, y1).

This result, combined with Lemma 11, implies directly that the consumption share in the lowest state equals the endowment

share:
lt(z

t,y1)

ht(zt)
= η̂(y1, zt) for all zt.(q.e.d.)

I will assume monotonocity is satisfied throughout the rest of the paper.(See Stokey, Lucas, and Prescott (1989) (p.

220, 1986) for the definition of monotonicity.) Naturally, a wealthy household that starts off with an initial weight above

the highest cutoff will end up hitting that bound in finite time, unless there is perfect risk sharing. This random stopping

time is defined as:

τ = inf

{
t ≥ 0 :

µ0

ht(zt)
≤ η̂(yn, z)

}

The less risk sharing, the smaller τ in expectation for a given µ0. I will assume this economy has been running long enough

such that the agents with weights higher than the highest reservation weight have measure zero:

∑

yt

∫

l
1/γ
t (zt,yn)

dΦ0
π(yt, zt|y0, z0)

π(zt|z0)
= 0 for all zt.

After some finite τ , all of the consumption shares ω(µ0, st) are fluctuating between the highest and the lowest endowment

shares

η̂(y1, z) ≤ ω(µ0, st) < η̂(y1, z) for all (µ0, st) and t ≥ τ .

This follows directly Lemma (12) and (11). All households face at least one binding solvency constraint -in the highest

state tomorrow.

D. Risk Premia

This section first derives an expression for the stochastic discount factor and goes on to derive some properties of the average

weight shock.

Stochastic Discount Factor Consider the necessary f.o.c. for optimality in (RSDP):

χt(µ
′
0, st)p(st|s0) = µ0uc(ct(µ

′
0, st))βtπ(st|s0).

To economize on notation, let ζt(µ0, st) = µ0/χt(µ0, st). Consider the ratio of first order conditions for an individual of

type (µ0, s0) at 2 consecutive nodes (st+1, st):

p(st+1|s0)

p(st|s0)
= βπ(st+1|st)

ζt+1(µ0, st+1)

ζt(µ0, st)

[
ct+1(µ0, st+1))

ct(µ0, st))

]−γ

,
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and substitute for the optimal risk sharing rule, noting that the unconstrained investor’s weight ζt+1 does not change. Then

the following expression for the ratio of prices obtains:

p(st+1|s0)

p(st|s0)
= βπ(st+1|st)

(
et+1(zt+1)

et(zt)

)−γ (
ht+1(zt+1)

ht(zt)

)γ

.

Properties of Liquidity Shock The theory puts upper and lower bounds on the size of these weight shocks

that depend only on the primitives of this economy. In the perfect insurance equilibrium, the average weights do not grow.

In the autarchic equilibrium, the weights grow at a rate that equals the ratio of the largest and the smallest endowment

shares.

Lemma 13. The equilibrium average weight growth is bounded between the perfect insurance and autarchy values:

1 ≤ ht(zt+1)

ht(zt)
≤ η̂(yn, zt)

η̂(y1, zt+1)
for all

(
zt, z

)

Proof of Lemma 13: First, I prove that ht+1(zt+1)/ht(zt) ≥ 1. The definition of ht implies that:

ht(z
′, zt−1) =

∑

yt

∫ ∞

l(y′,zt)
ζ
1/γ
t−1dΦzt−1 (dy × dζ)

π(y′, z′|y, z)

π(z′|z)
+

(
l(y′, zt)

)1/γ
∑

yt

∫ l(y′,zt)

0
dΦzt−1 (dy × dζ)

π(y′, z′|y, z)

π(z′|z)
,

which is obviously larger than:

ht−1(z
t−1) =

∑

yt

∫ ∞

0
ζ
1/γ
t−1dΦzt−1 (dy × dζ)

π(y′, z′|y, z)

π(z′|z)
.

Second, I prove that the following inequality holds: ht+1(zt+1)/ht(zt) ≤ η̂(yn,zt)
η̂(y1,zt+1)

. If not, this would imply that the

highest IMRS satisfies:

max

(
ct+1(yt+1, zt+1, µ0)

ct(yt, zt, µ0)
/

et+1(zt+1)

et(zt)

)−γ

>

(
η̂(yn, zt)

η̂(y1, zt+1)

)γ

,

which implies that the unconstrained agent is consuming less than her endowment at zt and more than her endowment at

zt+1, but that can be ruled out on the basis of Lemma (11).(q.e.d.)

In an economy with limited income share dispersion, the liquidity shocks cannot be large. This multiplicative adjustment

to the SDF will contribute important changes relative to its Breeden-Lucas counterpart.

IID Aggregate Uncertainty In the i.i.d. case, the liquidity shock is constant.

Proposition 14. : If aggregate uncertainty is i.i.d. and π(y′|y) is independent of the aggregate state, then there is a

stationary equilibrium in which g∗ is constant.

Proof of Proposition 14: If aggregate uncertainty is i.i.d., the discount rate in the transformed stationary economy is

constant:

β̂ = β
∑
zt+1

π(zt+1|zt)λ(zt+1)
1−γ .

(see Alvarez and Jermann (2001)). I introduce some notation. I will use ω to denote the consumption share of an agent at

the end of the previous period. Let C(ω, y) denote the cost of the consumption stream for a household in state y. Similarly,

54



I use Cy(y) to denote the cost of the labor endowment stream. Finally, l(ω, y) denotes the policy rule for the consumption

weights. ω′ = l(ω, y′)/g is the new consumption share. The cutoff rule l(y′) depends only on y because the value of the

labor income claim Cη(y) does not depend on zt. The distribution is rescaled at the end of each period (after the cutoff

rule is applied) such that growth is eliminated from the consumption weights:
∫

ωΦ∗ (dω × dy) = 1. This is done simply

by dividing all the weights by the growth rate g. The policy rules induce the following growth rate for the average weight:

g∗ =
∫

l (ω, y′) Φ∗ (dω × dy) . This establishes the equivalence of the economy with i.i.d. aggregate uncertainty and the

one without aggregate uncertainty and a twisted transition probability matrix. Given the monotonicity assumptions I have

imposed on π̂, I know that the consumption weights ω live on a closed domain L because we know that the consumption

shares l(ω, y)/g ≤ η̂(yn) from Lemma 11 and l(ω, y)/g ≥ η̂(y1). This implies that ω ∈
[
l, l

]
since g is bounded. If some

agent starts with an initial weight ω0 ≥ l their consumption weight drops below l after a finite number of steps unless there

is perfect risk sharing.

Let B(L) the Borel set of L and let P (Y ) be the power set of Y. The policy function l together with the transition function

π jointly define a Markov transition function on income shocks and consumption weights: Q : (L× Y )× (B(L)× P (Y )) →
[0, 1] where

Q(ω, y,L,Y) =
∑

,y′∈Y
π(y′|y),

if lh(ω, y′)/h∗ ∈ L. Next, define an operator on the space of probability measures Λ (L× Y )× (B(L)× P (Y )) as

T ∗Φ(L,Y) =

∫
Q(ω, y,L,Y)dΦ.

A fixed point of this operator is an invariant probability measure. Let Φ∗ denote the invariant measure over the space

(L× Y )× (B(L)× P (Y )) that satisfies invariance:

T ∗Φ∗ (L,Y) = Φ∗.

Clearly, if there is unique Φ∗, then there is a unique growth rate that clears the market:

g∗ =

∫ ∑

y′
π̂(y′|y)lg(ω, y′)dΦ∗(dω × dy).

I can define a stationary equilibrium. A stationary equilibrium consists of cost functions C(ω, y), Cy(y), shadow discounter

Q, updating rules l(ω, y) and an invariant measure Φ∗ such that (i) the recursive updating rule is optimal: (l(ω, y′)− ω)

(C(ω, y)− Cη(y)) = 0, (ii) the market clears: g∗ = E [l(ω, y′)] and (iii) there is no arbitrage Q = g∗γ , where the expectation

is taken w.r.t. Φ∗, the stationary measure over (L× Y )× (B(L)× P (Y )) induced by T ∗.
It remains to be shown that this stationary measure exists. This section follows the strategy by Krueger (1999) on

p.15 applied to a similar problem. I define an operator on the space of probability measures Λ (L× Y )× (B(L)× P (Y )) as

T ∗λ (L,Y) =

∫
Q ((ω, y) , (L,Y)) dλ.

A fixed point of this operator is defined to be an invariant probability measure. To show there exists a unique fixed point

of this operator, I check condition M in (Stokey, Lucas, and Prescott (1989) p. 348). If this condition is satisfied, I can use

Theorem 11.12 in Stokey, Lucas, and Prescott (1989) p. 350. To be perfectly general, let L = [l, lmax] . There has to be an

ε > 0 and an N ≥ 1 such that for all sets L, Y

QN ((ω, y) , (L,Y)) ≥ ε and QN ((ω, y) , (L,Y)c) ≥ ε .
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It is sufficient to show that there exists an ε > 0 and an N ≥ 1 such that for all (ω, y) ∈ (L, Y )) : QN ((ω, y) , (lmax, yn)) ≥ ε,

but we know that Q ((ω, y) , (lmax, yn)) ≥ π(yn|y). If lmax ≥ l, then define

N = min

{
n ≥ 0 :

lmax

gn
≤ l

}
,

where N is finite unless there is perfect risk sharing. Then we know that QN ((ω, y) , (lmax, yn)) ≥ ε where

ε = π(yn|y) ∗ (π(yn|yn))N−1 .

If l ≥ lmax, the proof is immediate by setting ε = π(yn|y). This establishes the existence of a unique, cross-sectional

distribution and a unique g∗ that clears the market.

Tg(Φ∗) =
∑

y′

∫

l(y′)
π(y′|y)ωdΦ∗ +

∑

y′
l
(
y′

) ∫ l(y′)
π(y′|y)dΦ∗.

(q.e.d.)

E. Approximation

This section establishes the existence of a stationary measure over consumption weights and endowment states in the

approximating equilibrium.

Let B(L) the Borel set of L and let P (Y ) be the power set of Y. The function l(·) together with the transition

function π jointly define a Markov transition function on income shocks and “consumption weights”: Q :
(
L× Y × Zk

)×(B(L)× P (Y )× P (Zk)
) → [0, 1] where

Q
((

ω, y, zk
)

, (L,Y,Z)
)

=
∑

,y′∈Y,z′.st zk′∈Z
π(y′, z′|y, z) if lh(ω, y′, z′; zk)/g(zk, z′) ∈ L.

= 0 elsewhere.

Next, define the operator that maps one measure into another on the space of probability measures Λ over
(
L× Y × Zk

)×(B(L)× P (Y )× P (Zk)
)

as:

Tλ (L,Y,Z) =

∫
Q

((
ω, y, zk

)
, (L,Y,Z)

)
dλ.

Suppose there exists a unique, invariant measure over weights, endowments and truncated aggregate histories, that is there

is a stationary measure λ∗ on (S, S) =
(
L× Y × Zk

)× (B(L)× P (Y )× P (Zk)
)
, such that

λ∗ = T ∗λ∗ =

∫
Q

((
ω, y, zk

)
, (L,Y,Z)

)
dλ∗,

where Q is the transition function induced by the policy function and the Markov process. Then the distribution over

weights, endowments and histories is unique and stationary, for each
(
zk′, zk

) ∈ Z where zk′ = (z′, zk
k−1) :

Φzk′ =
∑

zk

π(zk′|zk)

∫
Q

((
ω, y, zk

)
, (L,Y,Z)

)
Φzk (dω × dy) .

If I start off this economy with this measure λ∗, it keeps reproducing itself and I can define a stationary stochastic equilibrium
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in which the economy moves stochastically between aggregate states and associated wealth/endowment distributions.

The optimal forecast when going from state zk to z′ is given by its unconditional average:

g∗(z′, zk) =
∑

y′

∫
l
(
ω, y′, z′; zk

)
Φ∗

zk (dω × dy)
π(y′, z′|y, z)

π(z′|z)
, (41)

To check that a stationary measure exists, it is sufficient to check a mixing condition (Stokey, Lucas, and Prescott (1989),

p. 348).

Definition 15. Condition M: There has to be an ε > 0 and an N ≥ 1 such that for all sets L, Y, Zk

QN
(
ω, y, zk,L,Y,Zk

)
≥ ε or QN (ω, y, zk,

(
L,Y,Zk

)c
) ≥ ε .

The standard argument can be applied. The weights live on a compact set and the upper bound max(z′,zk)
l(yn,z′;zk)

g∗(z′,zk)

will be reached with positive probability provided that π has no zero entries, but convergence will be slower for larger k.

F. Recursive Utility

I will adopt some methods developed by Anderson (1998) to compute Pareto-efficient allocations for recursive utility agents.

The main difference with the solution for additive utility specifications is that the Pareto-Negishi weights are stochastic

even if the constraints never bind.

I consider the recursive utility formulation due to Kreps and Porteus (1978). The agent’s utility at time t is given by

a composite index of his utility derived from current consumption and his expected future utility:

Vt =
[
(1− β)c1−ρ

t + β (RtVt+1)
1−ρ

]1/(1−ρ)
, (42)

where Vt is a continuation utility index and his expected future utility is given by:

RtVt+1 =
(
E [Vt+1]

1−γ
)1/(1−γ)

.

Let the utility gradient from a time 0 perspective M0,t(µ′0, st) be defined as
∏

sτ≤st

Mτ (µ′0, sτ ), where the one-period-ahead

gradient is given by: Mt(µ′0, st) =
(

Vt(µ0,st)
Rt−1Vt

)ρ−γ
. As before, assume that the optimal sequence of multipliers for each

type is known:
{
ζt(µ0, st)

}
. I consider 2 households having experienced the same history st. I will resort to the dual

formulation. This dual formulation is identical to the one in (DP), except for the initial promise keeping constraint:

U
{
(ct(w0, st))

}
= w0, (43)

where U is defined by the recursion in (42). I consider two households (µ′0, st) and (µ′′0 , st). First, it is easy to verify that the

ratio of marginal utilities has to satisfy this condition. This follows from the necessary first order condition for optimality

in the dual recursive saddle point problem:

χt(µ
′
0, st)p(st|s0) = µ0(ct(µ

′
0, st))−ρM0,t(µ

′
0, st).

(
ct(µ′0, st)

ct(µ′′0 , st)

)−ρ M0,t(µ′0, st)

M0,t(µ′′0 , st)
=

ζt(µ
′′
0 , st)

ζt(µ
′
0, st)

. (44)
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Let the stochastic Pareto-Negishi weight be defined as before, ζt(µ0, st) = µ0/χt(µ0, st). Next, I define the scaled weights,

using the utility gradient: ζ̃t(µ0, st) = ζt(µ0, st) M0,t(µ0, st). This implies that the scaled weights have a simple recursive

structure:

ζ̃t(µ0, st) =
ζt(µ0, st)

ζt−1(µ0, st−1)
ζ̃t−1(µ0, st−1)Mt(µ

′
0, st). (45)

While {ζ} is a non-decreasing stochastic process,
{

ζ̃
}

is not. These scaled Pareto-Negishi weights are stochastic even if the

borrowing constraints never bind (ζt = ζt−1 = µ0). Only when γ = ρ are the scaled weights are constant if the constraints

do not bind. That is the standard power utility case. The average scaled weight is defined as ht(zt) = E

[
ζ̃

1
ρ
t (zt)

]
. The

consumption rule for an agent µ0 in state st is identical to the rule in (36), but as a function of the scaled Pareto-Negishi

weights:

ct(µ0, yt, zt) =
ζ̃

1
ρ
t (µ0, yt, zt)

ht(zt)
et(zt).

The stochastic discount factor is given by:

mt,t+1 = β

(
et+1(zt+1)

et(zt)

)−ρ (
ht+1(zt+1)

ht(zt)

)ρ

.

In the benchmark case of perfect risk sharing at all nodes zt, it is easy to verify that the weight growth reduces to:

(
ht+1(zt+1)

ht(zt)

)ρ

=

(
Ve,t+1(µ0, st)

RtVe,t+1

)ρ−γ

,

where the last term denotes the utility gradient of a stand-in household that consumes the aggregate endowment.

Computation In the case of recursive utility, the consumption share policy function is modified as follows:

l(ω, y′, z′; zk) = ωM
1
ρ (ω, y′, z′; zk) if ω > ω(y′, z′; zk)

= ω(y′, z′; zk) elsewhere,

The SDF is given by m(z′, zk) = βg∗(z′, zk)ρλ(z′)−ρ. M(ω, y′, z′; zk) needs to be included in the list of functions to be

computed to characterize the approximate equilibrium. Everything else is identical to the additive utility case.
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