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ABSTRACT

Recent research in empirical finance has documented that expected excess returns on bonds and

stocks, real interest rates, and risk shift over time in predictable ways. Furthermore, these shifts tend

to persist over long periods of time. In this paper we propose an empirical model that is able to

capture these complex dynamics, yet is simple to apply in practice, and we explore its implications

for asset allocation. Changes in investment opportunities can alter the risk-return tradeoff of bonds,

stocks, and cash across investment horizons, thus creating a ``term structure of the risk-return

tradeoff.'' We show how to extract this term structure from our parsimonious model of return

dynamics, and illustrate our approach using data from the U.S. stock and bond markets. We find that

asset return predictability has important effects on the variance and correlation structure of returns

on stocks, bonds and T-bills across investment horizons.
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1 Introduction

Recent research in empirical finance has documented that expected excess returns on
bonds and stocks, real interest rates, and risk shift over time in predictable ways.
Furthermore, these shifts tend to persist over long periods of time. Starting at least
with the pioneering work of Samuelson (1969) and Merton (1969, 1971, 1973) on
portfolio choice, financial economists have argued that asset return predictability can
introduce a wedge between the asset allocation strategies of short- and long-term
investors.

One important implication of time variation in expected returns is that investors,
particularly aggressive investors, may want to engage in market-timing (or tactical
asset allocation) strategies aimed at maximizing short-term return, based on the pre-
dictions of their return forecasting model. However, there is considerable uncertainty
about the degree of asset return predictability and this makes it hard to identify the
optimal market-timing strategy. A second, less obvious implication of asset return
predictability is that risk–defined as the conditional variances and covariances per
period of asset returns–may be significantly different across investment horizons,
thus creating a “term structure of the risk-return tradeoff.” This tradeoff is the focus
of this paper.

This paper examines the implications for risk across investment horizons of time
variation in investment opportunities. To this end we propose an empirical model that
is able to capture the complex dynamics of expected returns and risk, yet is simple
to apply in practice. Specifically, we model interest rates and returns as a vector
autoregressive model (VAR).2 We show how one can easily extract the term structure
of risk using this parsimonious model of return dynamics, and illustrate our approach
using quarterly data from the U.S. stock, bond and T-bill markets for the postwar
period. In our empirical application we use variables that have been identified as
return predictors by past empirical research, such as the short-term interest rate, the
dividend-price ratio, and the yield spread between long-term and short-term bonds.3

2This type of specification has been used in a similar context by Kandel and Stambaugh (1987),
Campbell (1991), Hodrick (1992), Campbell and Viceira (1999), Barberis (2000), and Campbell,
Chan and Viceira (2003) among others.

3See Fama and Schwert, (1977), Campbell (1987), Glosten, Jagannathan, and Runkle (1993) for
evidende of predictability from the short-term interest rate; Campbell and Shiller (1988) and Fama
and French (1988) for the dividend-price ratio; and Shiller, Campbell, and Schoenholtz (1983), Fama
(1984), Fama and French (1989), and Campbell and Shiller (1991) for the yield spread.
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These variables enable us to capture horizon effects on stock market risk, inflation
risk, and real interest rate risk.

Campbell and Viceira (2002) have shown that empirically asset return predictabil-
ity has important effects on the variances of long-horizon returns on stocks, bonds,
and T-bills. Building on their work, we explore the correlation structure of asset
returns across investment horizons. Correlations are just as important as variances
for long-horizon investors.

We use mean-variance analysis to highlight the relevance of risk horizon effects on
asset allocation. Traditional mean-variance analysis typically focuses on short-term
expected returns and risk. We extend this analysis to a multi-horizon setting. In
the context of our model we are able to show the limitations of traditional mean-
variance analysis: It is valid only when the term structure of the risk-return tradeoff
is flat; otherwise, it describes only the short end of this curve. We use our model to
characterize the efficient mean-variance frontier at different investment horizons, by
looking at the risk and composition of the global minimum-variance portfolio and a
tangency portfolio of bonds and stocks.

In order to concentrate on risk horizon effects, we abstract from several other
considerations that may be important in practice. We ignore changes in volatil-
ity through time; such changes are typically short-lived and have only a secondary
influence on long-term risks. We consider only the first two moments of returns,
ignoring the possibility that investors care also about other properties of the return
distribution. And for simplicity, we show unconditional average portfolio allocations
rather than the full range of allocations that would be optimal under different market
conditions.

The concept of a term structure of the risk-return tradeoff is conceptually ap-
pealing but, strictly speaking, is only valid for buy-and-hold investors who make a
one-time asset allocation decision and are interested only in the assets available for
spending at the end of a particular horizon. In practice, however, few investors can
truly be characterized as buy-and-hold. Most investors, both individuals and insti-
tutions such as pension funds and endowments, can rebalance their portfolios and
have intermediate spending needs. An important open question is to what extent the
simple strategies implied by the term structure of the risk-return tradeoff are a good
approximation to more complex rebalancing strategies.

The organization of the paper is as follows. Section 2 introduces our dynamic
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model of asset returns, and explores a simple example in which all moments of interest
can be written out explicitly. Section 3 considers an empirical application with
three U.S. asset classes and three return forecasting variables. Section 4 explores
the implications of the model for risk across investment horizons. Section 5 extends
traditional short-term mean-variance analysis to a multi-horizon setting, and Section
6 concludes. Details are given in a technical appendix, “Long-Horizon Mean-Variance
Analysis: A User Guide.”

2 Risk and Return in a Vector AutoregressiveModel

2.1 Dynamics of returns and state variables

We first describe a stylized model that can capture the expected return and risk of
asset returns at different horizons. This model requires us to specify the asset classes
under consideration, plus any variables that can help us form expectations of future
returns on these asset classes–such as price-earnings ratios, interest rates, or yield
spreads. We will refer to these variables as “state variables”. Our approach allows
for any number of asset classes and state variables.

Let zt+1 denote a column vector whose elements are the returns on all asset classes
under consideration, and the values of the state variables at time (t+ 1). Because it
is convenient for our subsequent portfolio analysis, we choose to write this vector as

zt+1 ≡
⎡⎣ r0,t+1
rt+1 − r0,t+1ι

st+1

⎤⎦ ≡
⎡⎣ r0,t+1
xt+1
st+1

⎤⎦ . (1)

where r0,t+1 denotes the log (or continuously compounded) real return on the asset
that we use as a benchmark to compute excess returns on all other asset classes, xt+1 is
a vector of log excess returns on all other asset classes with respect to the benchmark,
and st+1 is a vector with the realizations of the state variables. For future reference,
we assume there are n + 1 asset classes, and m − n − 1 state variables, so that zt+1
has (m× 1) elements.
Note that all the returns included in zt+1 are continuously compounded (or log)

returns instead of gross returns. We work with log returns because it is more con-
venient from a data-modeling perspective. Of course, investors are concerned about
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gross returns rather than log returns. Thus in our portfolio analysis we reverse the
log transformation whenever it is necessary.

The choice of a benchmark asset is arbitrary; we normally choose the benchmark
to be a Treasury bill since this is the asset with the smallest short-term risk, but the
representation of returns in (1) is perfectly general. We could just as easily write the
vector in terms of real returns rather than excess returns. We show how to extract
the moments of real returns from this VAR in the appendix.

Our key assumption about the dynamics of asset returns and state variables is
that they follow a first-order vector autoregressive process, or VAR(1). Each variable
zi,t+1 included in zt+1 depends linearly on a constant, its own lagged value, the lagged
value of all other variables in zt+1, and a contemporaneous random shock vi,t+1:

zi,t+1 = φ0 + φ1z1,t + ...+ φizi,t + ...+ vi,t+1. (2)

Note that this is simply a generalization of a first-order autoregressive process–or
AR(1)–to handle multiple forecasting variables. In an AR(1), all coefficients in
equation (2) are zero, except φ0 and φi.

Stacking together all these forecasting equations, we can represent the VAR(1)
compactly as

zt+1 = Φ0 +Φ1zt + vt+1, (3)

where Φ0 is a vector of intercepts; Φ1 is a square matrix that stacks together the
slope coefficients; and vt+1 is a vector of zero-mean shocks to realizations of returns
and return forecasting variables.

We assume that the matrix of slopes Φ1 is well behaved in a statistical sense, by
requiring that its determinant is bounded between−1 and+1. This is the multivariate
equivalent of the stationarity condition in a AR(1), that requires the autoregressive
parameter to be bounded between −1 and +1. This condition ensures that, in the
absence of shocks, the variables that enter the VAR(1) converge to their long-run
means in a finite number of periods. Thus this condition excludes explosive (or
nonstationary) behavior in these variables.

Finally, to complete the description of the return dynamics we need to be more
specific about the nature of the vector of shocks to asset returns and return forecasting
variables (vt+1). In particular, we assume that the vector of shocks is normally
distributed,

vt+1
i.i.d.∼ N (0,Σv) , (4)
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whereΣv denotes the matrix of contemporaneous variances and covariances of shocks.
This matrix is not necessarily diagonal: We allow unexpected realizations of excess
returns on different asset classes to covary with each other, and with shocks to return
forecasting variables. For example, it is plausible that the excess return on domestic
equity is correlated with the excess return on foreign equity, or that unexpected
shocks to interest rates (a possible state variable) are correlated with domestic equity
returns.

For future reference, we note here that, consistent with our representation of zt+1
in (1), we can write Σv as

Σv ≡ Vart (vt+1) =
⎡⎣ σ20 σ00x σ00s
σ0x Σxx Σ0

xs

σ0s Σxs Σs

⎤⎦ ,
where the elements on the main diagonal are the variance of the real return on the
benchmark asset (σ20), the variance-covariance matrix of unexpected excess returns
(Σxx), and the variance-covariance matrix of the state variables (Σs). The off diagonal
elements are the covariances of the real return on the benchmark assets with excess
returns on all other assets and with shocks to the state variables (σ0x and σ0s), and
the covariances of excess returns with shocks to the state variables (Σxs).

To keep our exposition as simple as possible, we assume that these variances and
covariances do not vary over time–in other words, that risk does not change over
time. However, we want to emphasize here that this assumption, while perhaps not
realistic, is nevertheless not constraining from the perspective of long-term portfolio
choice. The empirical evidence available suggests that changes in risk are a short-lived
phenomenon.4 In this sense, time varying risk is unlikely to be a major concern to
long-term investors.

It is useful to note that the unconditional mean vector and variance-covariance
4Authors such as Campbell (1987), Harvey (1989, 1991), and Glosten, Jagannathan, and Runkle

(1993) have explored the ability of the state variables used here to predict risk and have found only
modest effects that seem to be dominated by the effects of the state variables on expected returns.
Chacko and Viceira (1999) show how to include changing risk in a long-term portfolio choice problem,
using a continuous-time extension of the methodology of Campbell and Viceira (1999); they find
that changes in equity risk are not persistent enough to have large effects on the intertemporal
hedging demand for equities. Aït-Sahalia and Brandt (2001) adopt a semiparametric methodology
that accommodates both changing expected returns and changing risk.
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matrix of zt+1 are given by

µz = (Im −Φ1)
−1Φ0, (5)

vec(Σzz) = (Im2 −Φ1 ⊗Φ1)
−1 vec (Σv) .

These equations clarify why we require that the determinant of the matrix of slopes
Φ1 is bounded between −1 and 1. Otherwise the unconditional mean and variance
of zt+1 would not be defined.

2.2 The VAR(1) model of return dynamics and the tradi-
tional view of the risk-return tradeoff

It is instructive to contrast the VAR(1) model with the traditional view that assets
have constant expected returns, which can be estimated from their historical means.
The traditional approach is a restricted version of the VAR(1) model in which only a
constant term is used to forecast returns.

An investor who uses the VAR(1) model to forecast returns will perceive the risk-
return tradeoff differently than an investor who uses the traditional approach. First,
the VAR(1) investor will have a different return expectation each period, based on
the changing state variables of the model. This return expectation is known as a
conditional expectation to distinguish it from the unconditional expectation used in
the traditional approach.

Second, the VAR(1) investor will measure the short-term risk of each asset by
its variance relative to its conditional expectation, rather than its unconditional ex-
pectation. Even if this conditional variance is constant over time, as we assume in
our empirical work, it differs from the unconditional variance. The VAR(1) investor
understands that some portion of the unconditional volatility of each asset return is
actually predictable time-variation in the return and thus does not count as risk. For
this reason the conditional variance is smaller than the unconditional variance.

Third, the VAR(1) investor will understand that the long-term risks of asset re-
turns may differ from their short-term risks. In the traditional approach, with con-
stant expected returns, the variance of each asset return is proportional to the horizon
over which it is held. A one-year variance is four times a one-quarter variance, and
a decadal variance is ten times larger again. Annualized variances are independent
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of the time horizon, and thus there is a single number that summarizes risks for all
holding periods. In the VAR(1) model, by contrast, annualized variances may either
increase or decline as the holding period increases. Annualized covariances may also
be sensitive to the holding period, and these effects of the investment horizon on
perceived risk are the main subject of this paper.

To illustrate these effects in an explicit but reasonably simple way, we now present
a special case of the VAR(1) model in which there is a single state variable that
predicts two different asset returns. The best forecasts of the state variable and the
asset returns are all proportional to the state variable, so the lagged asset returns do
not contribute forecasting power as they would in the general VAR(1) model. In this
special case the formulas for conditional and unconditional expectations, conditional
and unconditional short-term variances, and longer-term variances, can all be written
out so one can see how they differ.

2.3 Risk and return in a VAR(1) model: A simple example

The appendix presents detailed derivations of the formulas for conditional expecta-
tions, variances and covariances of returns across investment horizons when the dy-
namics of asset returns and state variables are described by a general VAR(1) model.
These formulas are somewhat complicated, but we can illustrate the effects of the
investment horizon on risk by restricting attention to a special case of the VAR(1)
model in which there is a single state variable that predicts two different asset returns
(equities and bonds).

In our example, the dynamics of returns and the state variable are given by

ret+1 = φesst + ve,t+1,

rbt+1 = φbsst + vb,t+1, (6)

st+1 = φssst + vs,t+1,

where ret+1 denotes the log return on equities, rbt+1 denotes the log return on bonds,
and st+1 denotes the state variable. For stationarity, the autoregressive coefficient
φss must be less than one in absolute value.

In the model (6), the predictable component of returns is given by the terms
φesst and φbsst. These terms describe the expected return on equities and bond one
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period ahead. The unpredictable or unexpected component of realized returns and
the return forecasting variable is given by ve,t+1, vb,t+1, and vs,t+1. That is, ve,t+1 =
ret+1 − Et[ret+1] and likewise vb,t+1 = rbt+1 − Et[rbt+1], and vs,t+1 = st+1 − Et[st+1].
To complete the description of return dynamics we need to be more specific about

the nature of the shocks ve,t+1, vb,t+1, and vs,t+1. We assume that these shocks are
serially uncorrelated but have a contemporaneous variance-covariance matrix

Vart

⎛⎝ ve,t+1
vb,t+1
vs,t+1

⎞⎠ =

⎡⎣ σ2e σeb σes
σeb σ2b σbs
σes σbs σ2s

⎤⎦ ≡ Σv. (7)

We now examine how asset return predictability generates horizon effects in risk,
in the context of the simple example (6). In the spirit of traditional one-period
mean-variance analysis, we define risk per period at horizon k as the conditional
variance-covariance matrix of k-period log asset returns, divided by the length of the
horizon:

1

k
Vart

Ã
re
(k)
t+k

rb
(k)
t+k

!
=
1

k

⎡⎣ Vart
³
re
(k)
t+k

´
Covt

³
re
(k)
t+k, rb

(k)
t+k

´
Covt

³
re
(k)
t+k, rb

(k)
t+k

´
Vart

³
rb
(k)
t+k

´ ⎤⎦ . (8)

Here re(k)t+1 and rb
(k)
t+1 denote the k-horizon log return on equities and bonds, respec-

tively. It is useful to note for future reference that k-period log returns are sums of
one-period log returns over k successive periods. For example,

re
(k)
t+k = ret+1 + ... + ret+k, (9)

where ret+1 ≡ re
(1)
t+1 is the one-period log return on equities.

When k = 1, equation (8) reduces to the variance-covariance matrix of one period
returns, which is the standard measure of portfolio risk in mean-variance analysis.
This variance-covariance matrix is given by:

Vart

µ
ret+1
rbt+1

¶
= Vart

µ
ve,t+1
vb,t+1

¶
=

∙
σ2e σeb
σeb σ2b

¸
. (10)

The first equality in equation (10) follows from the fact that a conditional variance
is computed over deviations of the variable of interest with respect to its conditional
mean; for next-period equity returns, this deviation is

ret+1 − Et[ret+1] = ve,t+1, (11)
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and likewise for rbt+1. The second equality in equation (10) follows directly from
equation (7).

When the investment horizon goes beyond one period, (8) does not generally
reduce to (10) except in the special but important case where returns are not pre-
dictable. This in turn implies that the risk structure of returns varies across in-
vestment horizons. To illustrate this, we explore the variances and covariances of
two-period returns in detail, and note that the results for this case extend to longer
horizons.

We start with the variance of two-period equity returns. Using (9), we can decom-
pose this variance in terms of the variances and autocovariances of one-period equity
returns as follows:

1

2
Vart

³
re
(2)
t+2

´
=

1

2
Vart (ret+1 + ret+2)

=
1

2
Vart (ret+1) +

1

2
Vart (ret+2) + Covt (ret+1, ret+2) (12)

The decomposition of the variance of two-period bond returns is identical, except that
we replace re with rb. Thus the variance per period of two-period returns depends
on the variance of one-period returns next period and two periods ahead, and on the
serial covariance of returns.

Direct examination of equation (12) for the two-period case reveals under which
conditions there are no horizon effects in risk: When the variance of single period
returns is the same at all forecasting horizons, and when returns are not autocorre-
lated. This guarantees that the variance per period of k-period returns remains the
same for all horizons.

It turns out these conditions do not hold when returns are predictable, so horizon
matters for risk. This is easy to see in the context of our simplified example (6). For
this model we have that

ret+2 − Et[ret+2] = ve,t+2 + φesvs,t+1. (13)

A similar expression obtains for bond returns. Equation (13) says that, from today’s
perspective, future unexpected returns depend not only on their own shocks, but also
on lagged shocks to the forecasting variable.

Plugging (11) and (13) into (12) and computing the moments we obtain an explicit
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expression for (12):

1

2
Vart

³
re
(2)
t+2

´
=
1

2
σ2e +

1

2

¡
σ2e + φ2esσ

2
s

¢
+ φesσes. (14)

In general, this expression does not reduce to Vart (ret+1) = σ2e unless returns are not
predictable–i.e. unless φes = 0.

The terms in equation (14) correspond one for one to those in equation (12). They
show that return predictability has two effects on the variance of multiperiod returns.
First, it increases the conditional variance of future single period returns, relative to
the variance of next period returns, because future returns depend on past shocks to
the forecasting variable. The second term of the expression captures this effect.

Second, it induces autocorrelation in single period returns, because future single
period returns depend on past shocks to the forecasting variable, which in turn are
contemporaneously correlated with returns. The third term of the equation captures
this effect. The sign of this autocorrelation is equal to the sign of the product φesσes.
For example, when st forecasts returns positively (φes > 0), and the contemporaneous
correlation between unexpected returns and the shocks to st+1 is negative (σes), return
predictability generated by st induces negative first-order autocovariance in one period
returns. This is known as “mean-reversion” in returns.

These effects are present at any horizon. Equation (14) generalizes to the k-
horizon case in the sense that the expression for Vart(re

(k)
t+k)/k is equal to σ2e plus

two terms: a term in σ2s which is always positive, and a term in φesσes which may
be positive or negative, depending on the sign of this product. It is possible to show
that the marginal contribution of these two terms to the overall variance per period
increases at rates proportional to φ2kss/k and φkss/k, respectively. Since |φss| < 1, this
marginal contribution becomes negligible at long horizons, with the contribution of
the term in σ2s becoming negligible sooner. However it is important to note that the
closer is |φss| to one, that is, the more persistent is the forecasting variable, the longer
it takes for its marginal contribution to the variance to disappear. Taken together,
all of this implies that the variance per period of multiperiod returns, when plotted
as a function of the horizon k, may be increasing, decreasing or hump-shaped at
intermediate horizons, and it eventually converges to a constant–the unconditional
variance of returns–at long enough horizons.

Similarly, we can decompose the covariance per period of two-period bond and
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equity returns as

1

2
Covt

³
re
(2)
t+2, rb

(2)
t+2

´
=

1

2
Covt (ret+1 + ret+2, rbt+1 + rbt+2)

=
1

2
Covt (ret+1, rbt+1) +

1

2
Covt (ret+2, rbt+2) (15)

+
1

2
[Covt (ret+2, rbt+1) + Covt (ret+1, rbt+2)] ,

which, for the simple example (6), specializes to

1

2
Covt

³
re
(2)
t+2, rb

(2)
t+2

´
=
1

2
σeb +

1

2

¡
σeb + φesφbsσ

2
s

¢
+
1

2
(φesσbs + φbsσes) . (16)

Equation (16) obtains after plugging (11) and (13) into (15) and computing the mo-
ments Once again, we find that the covariance per period of long-horizon returns does
not equal the covariance of one-period returns (σeb) unless returns are unpredictable–
i.e., unless φes = 0 and φbs = 0.

Asset return predictability has two effects on the covariance of multiperiod re-
turns. These effects are similar to those operating on the variance of multiperiod
returns. The first one is the effect of past shocks to the forecasting variable on the
contemporaneous covariance of future one-period stock and bond returns. This cor-
responds to the second term in (15) and (16). As equation (13) shows, a shock to st+1
feeds to future stock and bond returns through the dependence of stock and bond
returns on st+1. If st+1 forecasts future stock and bond returns with the same sign
(i.e., φesφbs > 0), a shock to st+1 implies that bond and stock returns will move in
the same direction in future periods; if st+1 forecasts future stock and bond returns
with different signs, a shock to st+1 implies that bond and stock returns will move in
opposite directions in future periods. Thus, asset return predictability implies that
Covt (ret+2, rbt+2) may be larger or smaller than Covt (ret+1, rbt+1), depending on the
sign and magnitude of φesφbsσ

2
s.

Asset return predictability also induces cross autocorrelation in returns. Future
stock (bond) returns are correlated with lagged bond (stock) returns through their
dependence on past shocks to the forecasting variable, and their contemporaneous
correlation with shocks to this variable. This effect is captured by the third term in
equations (15) and (16). For example, suppose that st+1 forecasts negatively stock
returns (i.e., φes < 0) and that realized bond returns and shocks to st+1 are nega-
tively correlated (σbs < 0). Then equity returns two period ahead will be positively
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correlated with bond returns one period ahead: A positive bond return one period
ahead will tend to coincide with a negative shock to st+1, which in turn forecasts a
positive stock return two periods ahead.

These effects are present at any horizon, and can lead to different shapes of the
covariance of multiperiod returns at intermediate horizons, as one effect reinforces
the other, or offsets it. Of course, at long enough horizons, the covariance per period
eventually converges to a constant–the unconditional covariance of returns.

2.4 Extending the basic VAR(1) model

There are several important extensions of the VAR(1) model described in Section
2.1. First, it is straightforward to allow for any number of lags of asset returns and
forecasting variables within the VAR framework. It is interesting however to note
that one can rewrite a VAR of any order in the form of a VAR(1) by adding more
state variables which are simply lagged values of the original vector of variables. Thus
all the formal results in this paper and in the companion technical document are valid
for any VAR specification, even if for convenience we write them only in terms of a
VAR(1).

An important consideration when considering additional lags is whether the para-
meters of the VAR are unknown and must be estimated from historical data. In that
case, the precision of those estimates worsens as the number of parameters increases
relative to the size of the sample. Since the number of parameters in the model in-
creases exponentially with the number of lags, adding lags can reduce significantly the
precision of the parameter estimates.5 Of course, similar concerns arise with respect
to the number of asset classes and state variables included in the VAR.

Second, some variables commonly used to forecast asset returns are highly per-
sistent and have innovations that are highly correlated with stock returns. This
implies that OLS estimates of the VAR parameters may be biased in finite samples
(Stambaugh 1999). A standard econometric procedure to correct for these biases is
bootstrapping. Bias-corrected estimates typically show that there is less predictabil-

5For example, if there are three asset classes and three state variables (as we are doing in our
empirical application), the VAR(1) specification requires estimating a total of 63 parameters–6
intercepts, 36 slope coefficients, 6 variances, and 15 covariance terms. Adding an additional lag for
all variables would increase this already fairly large number of parameters to 99 (a 57% increase).
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ity of excess stock returns than OLS estimates suggest (Hodrick, 1992; Goetzmann
and Jorion, 1993; Nelson and Kim, 1993), but greater predictability of excess bond
returns (Bekaert, Hodrick, and Marshall, 1997). The reason for the discrepancy is
that the evidence on stock market predictability comes from positive regression co-
efficients of stock returns on the dividend-price ratio, while the evidence on bond
market predictability comes from positive regression coefficients of bond returns on
yield spreads. Stambaugh (1999) shows that the small-sample bias in such regressions
has the opposite sign to the sign of the correlation between innovations in returns
and innovations in the predictive variable. In the stock market the log dividend-
price ratio is negatively correlated with returns, leading to a positive small-sample
bias which helps to explain some apparent predictability; in the bond market, on the
other hand, the yield spread is mildly positively correlated with returns, leading to
a negative small-sample bias which cannot explain the positive regression coefficient
found in the data.

It is important to note that bootstrapping methods are not a panacea when fore-
casting variables are persistent, because we do not know the true persistence of the
data generating process that is to be used for the bootstrap (Elliott and Stock, 1994,
Cavanagh, Elliott, and Stock, 1995, Campbell and Yogo, 2003). Although finite-
sample bias may well have some effect on the coefficients reported in our empirical
analysis below, we do not attempt any bias corrections in this paper. Instead, we
take the estimated VAR coefficients as given and known by investors, and explore
their implications for optimal long-term portfolios.

Third, we have assumed that the variance-covariance structure of the shocks in
the VAR is constant. However, one can allow for time variation in risk. We have
argued that this might not be too important a consideration from the perspective
of long-term asset allocation, because the empirical evidence available suggests that
changes in risk exhibit very low persistence. Nonetheless, time-varying risk can be
incorporated into the model, for example, along the lines of the models suggested by
Bollerslev (1990), Engle (2002), or Rigobon and Sack (2003).

Fourth, one might have prior views about some of the parameters of the VAR
model, particularly about the intercepts which determine the long-run expected re-
turn on each asset class, or the slope coefficients which determine the movements in
expected returns over time. Using Bayesian methods one can introduce these prior
views and combine them with estimates from the data. Hoevenaars, Molenaar, and
Steenkamp (2004) examine this extension of the model in great detail.
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3 Return Dynamics of U.S. Bills, Bonds and Eq-
uities

To illustrate our approach to the modelling of asset return dynamics, we consider
a practical application with three U.S. asset classes and three return forecasting
variables—in addition to the lagged returns on the three asset classes. The assets
are cash, equities, and Treasury bonds. The return forecasting variables are the log
short-term nominal interest rate, the log dividend yield, and the slope of the yield
curve–or yield spread. Previous empirical research has shown that these variables
have some power to forecast future excess returns on equities and bonds.

Because we do not know the parameters that govern the relation between these
variables, and we do not want to impose any prior views on these parameters, we
estimate the VAR using quarterly data from the Center for Research and Security
Prices (CRSP) of the University of Chicago for the period 1952.Q2—2002.Q4. We
choose 1952.Q2 as our starting date because it comes shortly after the Fed-Treasury
Accord that allowed short-term nominal interest rates to freely fluctuate in the mar-
ket. However, the main results shown here are robust to other sample periods that
include the pre-WWII period, or that focus only on the last 25 years.

Following standard practice, we consider cash as our benchmark asset and compute
log excess returns on equities and Treasury bonds with respect to the real return on
cash.. We proxy the real return on cash by the ex-post real return on 90-day T-bills
(i.e., the difference between the log yield on T-bills and the log inflation rate). We also
use the log yield on the 90-day T-bill as our measure of the log short-term nominal
interest rates.6 The log return on equities (including dividends) and the log dividend
yield are for a portfolio that includes all stocks traded in the NYSE, NASDAQ, and
AMEX markets. The log return on Treasury bonds is the log return on a constant
maturity 5-year Treasury bond, and the yield spread is the difference between the log
yield on a zero-coupon 5-year Treasury bond and the yield on a 90-day T-bill. This
is an updated version of the VAR estimated by Campbell, Chan and Viceira (2003).

Table 1 shows the sample mean and standard deviation of the variables included
in the VAR. Except for the log dividend yield, the sample statistics are in annualized,

6Note that by including both the real and the nominal ex-post log short-term interest rate in
the VAR we can also capture the dynamics of inflation, since log inflation is simply the difference
between the log nominal interest rate and the ex-post log real interest rate.
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percentage units. We adjust mean log returns by adding one-half their variance so
that they reflect mean gross returns. For the post-war period, Treasury bills offer a
low average real return (a mere 1.52% per year) along with low variability. Stocks
have an excess return of 6.31% per year compared to 1.37% for the 5-year bond.
Although stock return volatility is considerably higher than bond return volatility
(16.92% vs. 5.65%), the Sharpe ratio is two and a half times as high for stocks as
for bonds. The average Treasury bill rate and yield spread are 5.37% and 1.03%,
respectively.

Our estimates of the VAR, shown in Table 2, update and confirm the findings
in Campbell, Chan and Viceira (2003). Table 2 reports the estimation results for
the VAR system. The top section of the table reports coefficient estimates (with
t-statistics in parentheses) and the R2 statistic for each equation in the system. We
do not report the intercept of each equation because we estimate the VAR imposing
the restriction that the unconditional means of the variables implied by the VAR
coefficient estimates equal their full-sample arithmetic counterparts.7 The bottom
section of each panel shows the covariance structure of the innovations in the VAR
system. The entries above the main diagonal are correlation statistics, and the entries
on the main diagonal are standard deviations multiplied by 100. All variables in the
VAR are measured in natural units, so standard deviations are per quarter.

The first row of each panel corresponds to the real bill rate equation. The lagged
real bill rate and the lagged nominal bill rate have positive coefficients and highly
significant t-statistics. The yield spread also has a positive coefficient and a t-statistic
above 2.0 in the quarterly data. Thus a steepening of the yield curve forecasts an
increase in the short-term real interest rate next period. The remaining variables are
not significant in predicting real bill rates one period ahead.

The second row corresponds to the equation for the excess stock return. The
lagged nominal short-term interest rate (with a negative coefficient) and the dividend-
price ratio (with a positive coefficient) are the only variables with t-statistics above
2.0. Predicting excess stock returns is difficult: this equation has the lowest R2

(9.5%). It is important to emphasize though that this low quarterly R2 can be
misleading about the magnitude of predictability at lower frequencies (say, annual).
Campbell (2001) notes that when return forecasting variables are highly persistent
the implied annual R2 can be several times the reported quarterly R2. As we note

7Standard, unconstrained least-squares fits exactly the mean of the variables in the VAR excluding
the first observation. We use constrained least-squares to ensure that we fit the full-sample means.
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below, this is the case for the dividend yield and the short rate, the two main stock
return forecasting variables.

The third row is the equation for the excess bond return. The yield spread, with a
positive coefficient, is the only variable with a t-statistic well above 2.0. Excess stock
returns, with a negative coefficient, also help predict future excess bond returns, but
the t-statistic is only marginally significant. The R2 is only 9.7%, slightly larger
than the R2 of the excess stock return equation. Once again, the bond excess return
forecating variable is highly persistent, which implies that bond return predictability
is likely to be much larger at lower frequencies.

The last three rows report the estimation results for the remaining state variables,
each of which are fairly well described by a persistent univariate AR(1) process. The
nominal bill rate in the fourth row is predicted by the lagged nominal yield, whose
coefficient is above 0.9, implying extremely persistent dynamics. The log dividend-
price ratio in the fifth row also has persistent dynamics; the lagged dividend-price
ratio has a coefficient of 0.96. The yield spread in the sixth row also seems to follow
an AR(1) process, but it is considerably less persistent than the other variables.

The bottom section of the table describes the covariance structure of the innova-
tions in the VAR system. Unexpected log excess stock returns are positively correlated
with unexpected log excess bond returns, though this correlation is fairly low. Unex-
pected log excess stock returns are highly negatively correlated with shocks to the log
dividend-price ratio. Unexpected log excess bond returns are highly negatively cor-
related with shocks to the nominal bill rate, but positively correlated with shocks to
the ex-post short-term real interest rate, and mildly positively correlated with shocks
to the yield spread.

4 The Risk of Equities, Bonds, and Bills Across
Investment Horizons

In this section we examine in detail the implications of asset return predictability for
risk at different horizons, the term structure of the risk-return tradeoff. Figures 1
and 2 illustrate the effect of investment horizon on the annualized risks of equities,
bonds and bills. These figures are based on the VAR(1) estimates shown in Table 2,
from which we have computed the conditional variances and covariances per period of
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real returns across investment horizons. Figure 1 plots percent annualized standard
deviations (the square root of variance per quarter times 200) of real returns for
investment horizons up to 50 years, and Figure 2 plots percent correlations. Note
that we are not looking directly at the long-horizon properties of returns, but at the
long-horizon properties of returns imputed from our first-order VAR. Thus, provided
that our VAR captures adequately the dynamics of the data, we can consistently
estimate the moments of returns over any desired horizon.

These figures plot standard deviations and correlations for real returns on T-
bills, equities, constant maturity 5-year Treasury bonds, and a zero-coupon nominal
Treasury bond with k years to maturity that is held to maturity. The only uncertainty
about the k-year real return on this variable-maturity bond is inflation, since the
nominal principal is guaranteed. Thus the unexpected log real k-year return on the
variable-maturity bond is just the negative of unexpected cumulative inflation from
time t to time t+ k.

We have noted in Section 2.1 that, if returns are unpredictable, their risks per
period and correlations are the same across investment horizons. Thus in that case
we should see flat lines in Figures 1 and 2. Far from that, most lines in those figures
have slopes that change with the investment horizon, reflecting the predictability of
real returns implied by the VAR(1) system of Table 2.

Figure 1 shows that long-horizon returns on stocks are significantly less volatile
than their short-horizon returns. This strong decline in volatility is the result of mean-
reverting behavior in stock returns induced by the predictability of stock returns from
the dividend yield: The large negative correlation of shocks to the dividend yield and
unexpected stock returns, and the positive significant coefficient of the log dividend
yield in the stock return forecasting equation imply that low dividend yields tend
to coincide with high current stock returns, and forecast poor future stock returns.
Mean-reversion in stock returns cuts the annualized standard deviation of returns
from about 17% per annum to less than 8% as one moves from a one-quarter horizon
to a 25-year horizon.

The return on the 5-year bond also exhibits slight mean-reversion, with volatility
declining from about 6% per annum at a one-quarter horizon, to 4% per annum at
long horizons. This slight mean-reversion is the result of two offsetting effects. On the
one hand the yield spread forecasts bond returns positively, and its shocks exhibit low
positive correlation with unexpected bond returns. This per se causes mean-aversion
in bond returns. On the other hand the nominal T-bill yield forecasts excess bond
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returns positively, and its shocks are highly negatively correlated with unexpected
bond returns. This causes mean-reversion in bond returns. The effect of the nominal
bill yield ultimately dominates because it exhibits much more persistence, and it is
more volatile than the yield spread. Note however, that the coefficient on the nominal
rate is not statistically significant, while the coeficient on the yield spread is highly
significant.

In contrast to the mean-reversion displayed by the real returns on stocks and the
constant-maturity bond, the real returns on both T-bills and the variable-maturity
bond exhibit mean-aversion. That is, their real return volatility increases with the
investment horizon. The mean-aversion of T-bill returns is caused by persistent vari-
ation in the real interest rate in the postwar period, which amplifies the volatility of
returns when Treasury bills are reinvested over long horizons. Campbell and Viceira
(2002) have noted that mean-aversion in T-bill returns is even more dramatic in the
pre-war period, when T-bills actually become riskier than stocks at sufficiently long
investment horizons, a point emphasized by Siegel (1994).

The increase in return volatility at long horizons is particularly large for the
variable-maturity bond whose initial maturity is equal to the holding period. Since
the risk of this bond is the risk of cumulative inflation over the investment horizon,
this reflects significant persistent variation in inflation in the postwar period. A posi-
tive shock to inflation that lowers the real return on a long-term nominal bond is likely
to be followed by high inflation in subsequent periods as well, and this amplifies the
annualized volatility of a long-term nominal bond held to maturity. Thus inflation
risk makes a strategy of buying and holding long-term nominal bonds riskier than
holding shorter term nominal bonds at all horizons. At long horizons, this strategy is
even riskier than holding stocks. At horizons of up to 30 years, stocks are still riskier
than bills and bonds. However the relative magnitude of these risks changes with the
investment horizon.

Figure 2 shows that the correlation structure of real returns also exhibits interest-
ing patterns across investment horizons.8 Real returns on stocks and fixed-maturity
bonds are positively correlated at all horizons, but the magnitude of their correlation
changes dramatically across investment horizons. At short horizons of a few quarters,
correlation is about 20%, but it quickly increases to 60% at horizons of about six

8Since correlation is the ratio of covariance to the product of standard deviations, patterns in
correlations do not have to be the same as patterns in covariances. However, in this case they are,
and we report correlations instead of covariances because of their more intuitive interpretation.

18



years, and stays above 40% for horizons up to 18 years; at longer horizons, it declines
steadily to levels around 15%. Of course, it is difficult to put too much weight on the
effects predicted by the model at very long horizons, because of the size of our sample,
but the increasing correlation at the short and medium horizons is certainly striking.
Results for raw real returns not shown here also exhibit an increasing correlation
pattern at those horizons.

This striking pattern in the correlation of multiperiod returns on stocks and bonds
is the result of the interaction of two state variables that dominate at different hori-
zons. At intermediate horizons, the most important variable is the short-term nominal
interest rate, the yield on T-bills. Table 2 shows that the T-bill yield moves in a fairly
persistent fashion. It predicts low returns on stocks, and its movements are strongly
negatively correlated with bond returns. When the T-bill yield increases, bond re-
turns fall at once, while stock returns react more slowly. Thus the intermediate-term
correlation between bonds and stocks is higher than the short-term correlation be-
cause it takes time for interest-rate changes to have their full effect on stock prices.

At long horizons, the most important variable is the dividend-price ratio because
this is the most persistent variable in our empirical model. The dividend-price ratio
predicts high returns on stocks and low returns on bonds. In the very long run this
weakens the correlation between stock and bond prices, because decades with a high
dividend-price ratio will tend to have high stock returns and low bond returns, while
decades with a low dividend-price ratio will tend to have low stock returns and high
bond returns.

These two state variables also generate an interesting pattern in the correlation
of stock returns with nominal bonds held to maturity Over very short periods, stocks
are only weakly correlated with bonds held to maturity but the correlation rises to
a maximum of 62% at a horizon of 7 years. It then falls again and eventually turns
negative. Recall that the uncertainty in the returns on nominal bonds held to ma-
turity is entirely due to uncertainty about cumulative inflation to the maturity date.
Thus real stock returns are weakly negatively correlated with inflation at short hori-
zons, strongly negatively correlated at intermediate horizons, and weakly positively
correlated with inflation at very long horizons. This is consistent with evidence that
inflation creates stock market mispricing that can have large effects at intermediate
horizons, but eventually corrects itself (Modigliani and Cohn, 1979, Ritter and Warr,
2002, Campbell and Vuolteenaho, 2004). In the very long run stocks are real assets
and are able to hedge inflation risk.
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5 Mean-Variance Allocations Across Investment
Horizons

We have shown in Section 4 that asset return predictability can have dramatic ef-
fects on the variances and covariances per period of asset returns across investment
horizons. These results are directly relevant for buy-and-hold investors with fixed
investment horizons. In this section we use mean-variance analysis to highlight this
relevance since, at any given horizon, the mean-variance efficient frontier is the set
of buy-and-hold portfolios with minimum risk (or variance) per expected return.
Throughout this section we will consider the set of efficient frontiers that obtain
when we set expected returns equal to their long-term sample means, but we let the
variance-covariance of returns change across investment horizons according to the
VAR estimates reported in Table 2 and illustrated in Figures 1 and 2. The appendix
shows how we perform these computations..

Traditional mean-variance analysis (Markowitz 1952) focuses on risk at short hori-
zons between a month and a year. When the term structure of risk is flat, the efficient
frontier is the same at all horizons. Thus short-term mean-variance analysis provides
answers that are valid for all mean-variance investors, regardless of their investment
horizon. However, when expected returns are time-varying and the term structure
of risk is not flat, efficient frontiers at different horizons do not coincide. In that
case short-term mean-variance analysis can be misleading for investors with longer
investment horizons.

Mean-variance analysis shows that any efficient portfolio is a combination of any
two other efficient portfolios. It is standard practice to choose the “global minimum
variance portfolio” (GMV portfolio henceforth) as one of those portfolios. This port-
folio has intuitive appeal, since it is the portfolio with the smallest variance or risk in
the efficient set–the leftmost point in the mean-variance diagram. When a riskless
asset (an asset with zero return variance) is available, this portfolio is obviously 100%
invested in that asset. When there is no riskless asset, this portfolio is invested in the
combination of assets that minimize portfolio return variance regardless of expected
return.

Figure 3 plots the annualized standard deviation of the real return on the GMV
portfolio implied by the VAR estimates shown in Table 2. For comparison, it also
plots the annualized standard deviation of the real return on T-bills, since it is also
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standard practice of mean-variance analysis to consider T-bills as a riskless asset, and
to take their return as the riskfree rate. Figure 3 shows two results. First, the global
minimum variance portfolio is risky at all horizons; second, its risk is similar to the
risk of T-bills at short horizons, but is considerably smaller at long horizons.

Figure 4 plots the composition of the GMV portfolio at horizons of 1 quarter, and
5, 10, 25, 50 and 100 years. The results in Figure 3 imply that at long horizons the
composition of the GMV portfolio must be different from a 100% T-bill portfolio.
Figure 4 shows that the GMV portfolio is fully invested in T-bills at horizons of
up to 5 years, but the allocation to bills declines dramatically at longer horizons
while the weight of the fixed-maturity 5 year bond increases.9 Interestingly, stocks
also have a sizable weight in the GMV portfolio at intermediate and long horizons.
At horizons of 25 years, long-term bonds already represent about 20% of the GMV
portfolio, and stocks represent 12%; at the longest end of the term structure, long-
term bonds represent about 62% of the portfolio, and stocks represent 18%, with
T-bills completing the remaining 20%.

These results suggest that the standard practice of considering T-bills as the risk-
less asset works well at short horizons, but that it can be deceptive at long horizons.
At short horizons matching their maturity, T-bills carry only short-term inflation risk,
which is modest; however, at long horizons they are subject to reinvestment (or real
interest) risk, which is important. By contrast, mean-reversion in stock and bond
returns makes their volatility decrease with the investment horizon.

If T-bills are not truly riskless even at short horizons, what is the riskless asset?
For a short-horizon, buy-and-hold investor, the riskless asset would be a T-bill not
subject to inflation risk–an inflation-indexed T-bill. This asset provides a sure real
payment at the end of the investor’s horizon. By extension, the riskless asset for a
long-term, buy-and-hold investor must then be a zero-coupon inflation-indexed bond
whose maturity matches her horizon, since this type of bond provides the investor
with a sure cash inflow exactly at the moment the investor needs it. Our empirical
analysis suggest that, in the absence of inflation-indexed bonds, the best empirical
proxy for this type of bond is a portfolio primarily invested in long-term nominal
bonds, plus some stocks and T-bills.

9Figure 4 assumes that short positions are allowable, and the GMV portfolio has small short
positions in 5-year bonds and stocks for short investment horizons. If we ruled out short positions,
the short-horizon GMV portfolio would be fully invested in Treasury bills.
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To fully characterize the efficient frontiers at all horizons, we need a second mean-
variance efficient portfolio. For comparability with traditional mean-variance analy-
sis, we choose as our second portfolio the tangency portfolio of stocks and the 5-year
bond we would obtain if T-bills were truly riskless at all horizons, with a real rate
equal to the long-term average shown in Table 1. This would also be the tangency
portfolio if inflation-indexed bonds were available and offered this constant real yield.
Table 3 shows the composition and Sharpe ratio of the tangency portfolio at horizons
of 1, 10, 25 and 100 years.

Table 3 shows that the Sharpe ratio of the tangency portfolio is about 50% larger
at a 10-year horizon than at a one-year horizon, and twice as large at a 25- year
horizon. At a one-year horizon, the portfolio is invested 47% in equities, and 53%
in nominal bonds. The allocation to stocks then increases rapidly, and reaches a
maximum weight of about 145% at intermediate horizons of up 10 years. This is the
result of the rapidly declining variance of stock returns (shown in Figure 1), and the
rapidly increasing positive correlation between stocks and bonds (shown in Figure 2)
that takes place at those horizons. The increasing correlation pushes the portfolio
towards the asset with the largest Sharpe ratio, and the declining variance makes this
asset even more attractive at those horizons.

At horizons beyond 10 years the allocation to stocks declines, but it stays well
above the short-horizon allocation. At the extreme long end of the term structure,
the tangency portfolio is still invested 67% in stocks, and 33% in bonds. Once again,
Figures 1 and 2 are useful to understand this result. Figure 2 shows that the correla-
tion between stocks and bonds quickly reverts back to levels similar to the short-term
correlation for horizons beyond 10 years, but Figure 1 shows that the variance per
period of stock returns experiences further reductions. Thus at horizons beyond 10
years, mean-reversion in stock returns is solely responsible for the larger allocation to
stocks.

6 Conclusion

This paper has explored the implications for long-term investors of the empirical
evidence on the predictability of asset returns. Using a parsimonious yet powerful
model of return dynamics, it shows that return forecasting variables such as dividend
yields, interest rates, and yield spreads, have substantial effects on optimal portfolio

22



allocations among bills, stocks, and nominal and inflation-indexed bonds.

For long-horizon, buy-and-hold investors, these effects work through the effect of
asset return predictability on the volatility and correlation structure of asset returns
across investment horizons, i.e., through the term structure of the risk-return tradeoff.
Using data from the U.S. stock, bond, and T-bill markets in the postwar period, the
paper fully characterizes the term structure of risk, and shows that the variance
and correlation structure of real returns on these assets changes dramatically across
investment horizons. These effects reflect underlying changes in stock market risk,
inflation risk and real interest risk across investment horizons.

The paper finds that mean-reversion in stock returns decreases the volatility per
period of real stock returns at long horizons, while reinvestment risk increases the
volatility per period of real T-bill returns. Inflation risk increases the volatility per
period of the real return on long-term nominal bonds held to maturity. The paper
also finds that stocks and bonds exhibit relatively low positive correlation at both
ends of the term structure of risk, but they are highly positively correlated at inter-
mediate investment horizons. Inflation is negatively correlated with bond and stock
real returns at short horizons, but positively correlated at long horizons.

These patterns have important implications for the efficient mean-variance fron-
tiers that investors face at different horizons, and suggest that asset allocation rec-
ommendations based on short-term risk and return may not be adequate for long
horizon investors. For example, the composition of the global minimum variance
(GMV) portfolio changes dramatically across investment horizons. We calculate
the GMV portfolio when predictor variables are at their unconditional means, that
is when market conditions are average, and find that at short horizons it consists
almost exclusively of T-bills, but at long horizons reinvestment risk makes T-bills
risky, and long-term investors can achieve lower risk with a portfolio that consists
predominantly of long-term bonds and stocks.

The paper also finds that the tangency portfolio of bonds and stocks (calculated
under the counterfactual assumption that a riskless long-term asset exists with a
return equal to the average T-bill return) has a composition that is increasingly biased
toward stocks as the horizon increases. This is the result of the increasing positive
correlation between stocks and bonds at intermediate horizons, and the decrease of
the volatility per period of stock returns at long investment horizons.

It is important to understand that our results depend on the particular model
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of asset returns that we have estimated. We have treated the parameters of our
VAR(1) model as known, and have studied their implications for long-term portfolio
choice. In fact these parameters are highly uncertain, and investors should take this
uncertainty into account in their portfolio decisions. A formal Bayesian approach
to parameter uncertainty is possible although technically challenging (Xia 2001), but
in practice it may be more appealing to study the robustness of portfolio weights to
plausible variations in parameters and model specifications. Fortunately the main
conclusions discussed here appear to hold up well when the model is estimated over
subsamples, or is extended to allow higher-order lags.

The concept of a term structure of the risk-return tradeoff is conceptually ap-
pealing but, strictly speaking, is only valid for buy-and-hold investors who make a
one-time asset allocation decision and are interested only in the assets available for
spending at the end of a particular horizon (Barberis 2000). In practice, however,
few investors can truly be characterized as buy-and-hold. Most investors, both indi-
viduals and institutions such as pension funds and endowments, can rebalance their
portfolios, and have recurrent spending needs which they must finance (completely or
partially) off their financial portfolios. These investors may want to rebalance their
portfolios in response to changes in investment opportunities.

It is tempting to conclude from this argument that only short-term risk is relevant
to the investment decisions of long-horizon investors who can rebalance, whether the
risk-return tradeoff changes across investment horizons or not. However, Samuelson
(1969), Merton (1969, 1971, 1973) and other financial economists have shown that this
conclusion is not correct in general. If interest rates and expected asset returns change
over time, risk averse, long-term investors should also be interested in protecting (or
hedging) their long-term spending programs against an unexpected deterioration in
investment opportunities. Brennan, Schwartz and Lagnado (1997) have coined the
term “Strategic Asset Allocation” (SAA) to designate optimal asset allocation rebal-
ancing strategies in the face of changing investment opportunities. SAA portfolios
are a combination of two portfolios. The first portfolio is a short-term, mean-variance
efficient portfolio. It reflects short-term, or myopic, considerations. The second port-
folio, which Merton (1969, 1971, 1973) called the “intertemporal hedging portfolio,”
reflects long-term, dynamic hedging considerations.

Using an empirical model for investment opportunities similar to our VAR(1)
model, Campbell, Chan and Viceira (2003), Campbell and Viceira (2002) and others
have found that asset return predictability can have large effects on the asset alloca-
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tion decisions of rebalancing investors. Strategic or intertemporal hedging portfolios
tilt the total portfolio away from the short-term mean-variance frontier, as the in-
vestor sacrifices some expected portfolio return in exchange for protection from, say,
a sudden decrease in expected stock returns or real interest rates.

In contrast to the appealing simplicity of buy-and-hold, mean-variance portfolios,
strategic portfolios are in practice difficult to compute, especially as the number of
assets and state variables increase. Campbell, Chan and Viceira (2003) and Brandt,
Goyal, Santa-Clara and Stroud (2004) have proposed approximate solution methods
to compute SAA portfolios. The SAA portfolios calculated by Campbell, Chan,
and Viceira have similar qualitative properties to the long-horizon mean-variance
portfolios discussed in this paper, but it is important to compare the two approaches
more systematically and this is one subject of our ongoing research.
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8 Appendix. Long-HorizonMean-Variance Analy-
sis: A User Guide

8.1 Long-horizon moments in a VAR(1)

This section derives expressions for the conditional mean and variance-covariance ma-
trix of (zt+1 + ... + zt+k) for any horizon k, where the vector zt+1 follows the VAR(1)
process described in Section 2.10 This is important for our subsequent portfolio analy-
sis across investment horizons, because returns are a subset of the vector zt+1, and
cumulative k-period log returns are obtained by adding one-period log returns over k
successive periods.

8.1.1 Conditional k-period moments

We start by deriving a set of equations that relate future values of the vector of state
variables to its current value zt plus a weighted sum of interim shocks:

zt+1 = Φ0 + Φ1zt + vt+1

zt+2 = Φ0 + Φ1zt+1 + vt+2

= Φ0 + Φ1Φ0 + Φ1Φ1zt + Φ1vt+1 + vt+2

zt+3 = Φ0 + Φ1zt+2 + vt+3

= Φ0 + Φ1Φ0 + Φ1Φ1Φ0 + Φ1Φ1Φ1zt + Φ1Φ1vt+1 + Φ1vt+2 + vt+3

zt+k = Φ0 + Φ1Φ0 + Φ21Φ0 + ...+ Φk−1
1 Φ0 + Φk

1zt

+Φk−1
1 vt+1 + Φk−2

1 vt+2 + ... + Φ1vt+k−1 + vt+k

These expressions follow immediately from forward recursion of equation (3).

10Avramov (2002) also derives formulas for the conditional mean and variance of returns over long
horizons in a framework similar to ours.
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Adding the expressions for zt+1, zt+1, ..., and reordering terms yields:

zt+1 + ...+ zt+k = [k + (k − 1)Φ1 + (k − 2)Φ21 + ...+ Φk−1
1 ]Φ0

+(Φk
1 + Φk−1

1 + ...+ Φ1)zt

+(1 + Φ1 + ... + Φk−1
1 )vt+1

+(1 + Φ1 + ... + Φk−2
1 )vt+2

+...

+(I + Φ1)vt+k−1 + vt+k.

We can write this expression more compactly as

zt+1 + ...+ zt+k =

"
k−1X
i=0

(k − i)Φi
1

#
Φ0 +

"
kX

j=1

Φj
1

#
zt +

kX
q=1

"
k−qX
p=0

Φp
1vt+q

#
.

Now we are ready to compute conditional k-period moments of the state vector.
The conditional mean is given by

Et(zt+1 + ... + zt+k) =

"
k−1X
i=0

(k − i)Φi
1

#
Φ0 +

"
kX

j=1

Φj
i

#
zt,

since the shocks vt+q have zero mean.

The conditional variance is given by

Vart(zt+1 + ...+ zt+k) = Vart

""
k−1X
i=0

(k − i)Φi
1

#
Φ0 +

"
kX

j=1

Φj
1

#
zt +

kX
q=1

"
k−qX
p=0

Φp
1vt+q

##

= Vart

"
kX

q=1

"
k−qX
p=0

Φp
1vt+q

##
,

since all other terms are constant or known at time t. Expanding this expression we
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obtain:

Vart(zt+1 + ...+ zt+k) = Vart[
¡
I + Φ1 + ...+ Φk−1

1

¢
vt+1 +

¡
I + Φ1 + ... + Φk−2

1

¢
vt+2

+... + (I + Φ1)vt+k−1 + vt+k]

= Σv + (I + Φ1)Σv(I + Φ1)
0

+(I + Φ1 + Φ1Φ1)Σv(I + Φ1 + Φ1Φ1)
0

+...

+(I + Φ1 + ...+ Φk−1
1 )Σv(I + Φ01 + ...+ Φk−1

1 )0,

which follows from reordering terms and noting that the conditional variance-covariance
matrix of vt+i is the same (Σv) at all leads i.

8.1.2 Conditional k-period moments of returns

We are only interested in extracting conditional moments per period from the portion
of the VAR that contains returns. We can do so by using selector matrices. For
example, if we want to recover the annualized (or per period) k -period conditional
moments of the benchmark asset return and excess returns, we can use the following
matrix:

Hr =
£
I(n+1)×(n+1) 0(m−n)×(m−n)

¤
.

It is straightforward to check that this matrix selects the k -period expected return
and variance-covariance matrix of returns when applied to the expressions for the
conditional expectation and variance-covarince matrix of (zt+1 + ...+ zt+k).

Thus we can extract the vector of expected k-period returns per period as follows:

1

k

⎡⎣ Et

³
r
(k)
0,t+1

´
Et
³
r
(k)
t+1 − r

(k)
0,t+1ι

´ ⎤⎦ = 1

k
Hr Et(zt+1 + ...+ zt+k),

and the k-period return variance-covariance matrix per period as

1

k
Vart

"
r
(k)
0,t+1

r
(k)
t+1 − r

(k)
0,t+1ι

#
=
1

k

∙
σ20 (k) σ0x (k)

0

σ0x (k) Σxx (k)

¸
=
1

k
Hr Vart(zt+1 + ... + zt+k)H

0
r.
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Similarly, the following selector matrix extracts per-period, k -period conditional
moments of log real returns:

Mr =

∙
1 01×n 01×(m−n−1)

ιn×n In×n 0(m−n−1)×(m−n−1)

¸
, (17)

which implies

1

k

⎡⎣ Et ³r(k)0,t+1´
Et
³
r
(k)
t+1

´ ⎤⎦ = 1

k
Mr Et(zt+1 + ... + zt+k)

and
1

k
Vart

"
r
(k)
0,t+1

r
(k)
t+1

#
=
1

k
Σrr (k) =

1

k
Mr Vart(zt+1 + ... + zt+k)M

0
r.

8.2 One-Period Mean-Variance Analysis

This section derives the standard mean-variance for one-period log returns. The next
section extends these results to a multi-period environment. We start by noting that
the gross return on the wealth portfolio is given by

Rp,t+1 =
nX
i=1

αi,t (Ri,t+1 −R0,t+1) +R0,t+1

= α0t (Rt+1 −R0,t+1ι) +R0,t+1, (18)

where Ri is the gross return on asset i, R0 is the gross return on the benchmark asset,
and αi,t is the portfolio weight on asset i; αt is is a (n × 1) vector containing the
portfolio weights αi,t’s, and ι is a (n× 1) vector of 1’s.
The return on the portfolio in equation (18) is expressed in terms of the gross

returns on the assets. Since we are interested in working with log returns, we need to
derive an expression for the log return on the portfolio. Campbell and Viceira (1999,
2001) and Campbell, Chan and Viceira (2003) suggest the following approximation
to the log return on the portfolio:

rp,t+1 = r0,t+1 +α0t (rt+1 − r0,t+1ι) +
1

2
α0t
¡
σ2x −Σxxαt

¢
, (19)

where
Σxx ≡ Vart (rt+1 − r0,t+1ι) ,
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and
σ2x ≡ diag (Σxx) .

We now derive the one-period mean-variance frontier with and without a riskless
asset, and the weights for the “tangency portfolio,” i.e. the portfolio containing only
risky assets that also belongs simultaneously to both the mean-variance frontier of
risky assets, and the mean-variance frontier with a riskless asset.

8.2.1 One-PeriodMean-Variance Frontier with Log Returns and No Risk-
less Asset

This section derives the mean-variance frontier when none of the assets available for
investment is unconditionally riskless in real terms at a one-period horizon. This
happens, for example, when there is significant short-term inflation risk, and the only
short-term assets available for investment are nominal money market instruments,
such as nominal T-bills. In practice short-term inflation risk is small, and one can
probably ignore it. However, we still think it is worth analyzing the case with no one-
period riskless asset, to gain intuition for the subsequent results for long horizons,
where inflation risk is significant, and nominal bonds can be highly risky in real terms.

Problem We state the mean-variance portfolio optimization problem with log re-
turns as follows:

min
α

1

2
Vart (rp,t+1) , (20)

subject to

Et (rp,t+1) +
1

2
Vart (rp,t+1) = µp,

where rp,t+1 is given in equation (19). That is, we want to find the vector of portfolio
weights αt that minimizes the variance of the portfolio log return when the required
expected gross return on the portfolio is µp.

Equation (19) implies that the variance of the log portfolio return is given by

Vart (rp,t+1) = α0tΣxxαt + σ20 + 2α
0
tσ0x
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and the log expected portfolio return is given by

Et (rp,t+1)+
1

2
Vart (rp,t+1) =

µ
Et r0,t+1 +

1

2
σ20

¶
+α0t

µ
Et (rt+1 − r0,t+1ι) +

1

2
σ2x + σ0x

¶
.

(21)

It is useful to note here that the VAR(1) model for returns given in equation (3)
implies that

Et r0,t+1 = H
0
0 (Φ0 +Φ1zt)

and

Et (rt+1 − r0,t+1ι) = Et (xt+1)

= Hx (Φ0 +Φ1zt) ,

where H0
0 is a (1×m) selection vector (1, 0, ..., 0) that selects the first element of the

matrix which it multiplies, and Hx is a (n×m) selection matrix that selects rows 2
through n+ 1 of the matrix which it multiplies:

Hx =
£
0n×1 In×n 0(m−n−1)×(m−n−1)

¤
,

where In×n is an identity matrix.

The Lagrangian for this problem is

L = 1

2
Vart (rp,t+1) + λ

µ
µP −

µ
Et (rp,t+1) +

1

2
Vart (rp,t+1)

¶¶
,

where λ is the Lagrange multiplier on the expected portfolio return constraint. Note
that our definition of the portfolio return already imposes the constraint that portfolio
weights must add up to one.

Mean-variance portfolio rule The solution to the mean-variance program (20)
is

αt = λΣ−1xx

∙
Et (rt+1 − r0,t+1ι) +

1

2
σ2x + σ0x

¸
−Σ−1xxσ0x. (22)

We can rewrite αt as a portfolio combining two distinct portfolios:

αt = λΣ−1xx

∙
Et (rt+1 − r0,t+1ι) +

1

2
σ2x

¸
+ (1− λ)

¡−Σ−1xxσ0x¢ .
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The first portfolio is proportional to the expected gross excess return on all assets,
weighted by the inverse of the variance-covariance matrix of excess returns. If asset
returns are independent of each other, so Σxx is a diagonal matrix containing the
variances of asset returns, this portfolio is simply the vector of Sharpe ratios for each
asset class–each one divided by its return standard deviation.

The second portfolio, with weightsΣ−1xxσ0x, is the portfolio of assets with minimum
absolute variance, or global minimum-variance portfolio. That is, this portfolio is the
solution to:

−Σ−1xxσ0x = min
α

1

2
Vart (rp,t+1) .

In the literature on dynamic optimal portfolio choice, the mean-variance portfolio
is also known as the “myopic portfolio.” This name derives from the fact that it takes
into consideration only expected returns next period, ignoring other considerations
that might affect the portfolio decisions of risk averse investors, such as the ability
that certain asset classes might have to protect the spending needs of these investors
from a sudden deterioration in investment opportunities.

Equation for mean-variance frontier Equation (22) implies the following rela-
tion between σ2p ≡ Vart(rp,t+1) and µp:

11

σ2p =
1

A

¡
eµ2p + 2Beµp +B2

¢
+ σ20 − C, (23)

where eµp is the expected excess return on the portfolio over the benchmark asset,

eµp = µp −
µ
Et r0,t+1 +

1

2
σ20

¶
,

and

A =

µ
Et (rt+1 − r0,t+1ι) +

1

2
σ2x + σ0x

¶0
Σ−1xx

µ
Et (rt+1 − r0,t+1ι) +

1

2
σ2x + σ0x

¶
,

B = σ00xΣ
−1
xx

µ
Et (rt+1 − r0,t+1ι) +

1

2
σ2x + σ0x

¶
,

C = σ00xΣ
−1
xxσ0x.

11To get this equation, note that at the optimum either λ = 0, or µP =
¡
Et (rp,t+1) +

1
2σ

2
p

¢
.
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8.2.2 One-Period Mean-Variance Frontier with Log Returns and a Risk-
less Asset

In this section we consider mean-variance analysis with log returns when investors
have an additional asset which is truly riskless in real terms over one period. This
asset is an inflation-indexed T-Bill. We denote its return as rf . Thus the investor
has now n + 2 assets available for investment. This derivation is useful to compute
the tangency portfolio.

Problem

min
α

1

2
Vart (rp,t+1 − rf) (24)

subject to Et (rp,t+1 − rf) +
1

2
Vart (rp,t+1 − rf ) = µp − rf ,

where
rp,t+1 − rf = ω0t (rt+1 − rfι) +

1

2
ω0t
¡
σ2r −Σrrωt

¢
,

ωt is a (n+ 1)× 1 vector of portfolio weights,

Σrr ≡ Vart (rt+1 − rfι) ,

and
σ2r ≡ diag (Σrr) .

The variance of the log excess portfolio return is given by

Vart (rp,t+1 − rf) = ω0tΣrrωt (25)

and the log excess expected portfolio return is given by:

Et (rp,t+1 − rf) +
1

2
Vart (rp,t+1 − rf) = ω0t

µ
Et (rt+1 − rfι) +

1

2
σ2r

¶
. (26)

Note that:
Et (rt+1 − rfι) =Mr (Φ0 +Φ1zt)− rfι,

whereMr is the (n+ 1×m) selection matrix defined in (17).
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The Lagrangian for this problem is

L = 1

2
Vart (rp,t+1 − rf ) + λf

µ
µP − rf −

µ
Et (rp,t+1 − rf) +

1

2
Vart (rp,t+1 − rf)

¶¶
,

where λ is the Lagrange multiplier on the expected portfolio return constraint.

Mean-variance portfolio rule The solution to the mean-variance program (24)
is

ωt = λfΣ
−1
rr

∙
Et (rt+1 − rfι) +

1

2
σ2x

¸
. (27)

Equation for mean-variance frontier Equation (27) implies the following rela-
tion between σ2p ≡ (Vart rp,t+1 − rf) and µp:

σ2p =
1

A
eµ2p, (28)

where eµp is the expected excess return on the portfolio over the benchmark asset,

eµp = µp − rf

and

A =

µ
Et (rt+1 − rfι) +

1

2
σ2r

¶0
Σ−1xx

µ
Et (rt+1 − rfι) +

1

2
σ2r

¶
.

Equation (28) implies that, in a standard deviation-expected return space, the frontier
is a line that intersects the expected return axis at rf , and it has a slope equal to√
A. We show below that this slope is the Sharpe ratio of the tangency portfolio.

Tangency portfolio We can now derive the weights for the tangency portfolio be-
tween frontiers (23) and (28). This is a portfolio whose weights ωT,t satisfy ω0T,tι = 1.
That is, it is a portfolio with no loading on the risk-free asset.

We can easily solve for the weights of this portfolio by finding the Lagrange mul-
tiplier λf for which ωt in (27) satisfies the constraint ω0T,tι = 1:

1 = ω0T,tι =λf

∙
Et (rt+1 − rfι) +

1

2
σ2r

¸0 ¡
Σ−1rr

¢0
ι,

38



which implies

λf =
1£

Et (rt+1 − rfι) +
1
2
σ2r
¤0
Σ−1rr ι

.

Therefore,

ωT,t =
1£

Et (rt+1 − rfι) +
1
2
σ2r
¤0
(Σ−1rr )

0 ι
Σ−1rr

∙
Et (rt+1 − rfι) +

1

2
σ2r

¸
. (29)

It is straightforward to show that the Sharpe ratio of the tangency portfolio equals√
A, i.e., that the Sharpe ratio is the slope of the mean-standard deviation frontier

with a riskless asset. To see this, substitute (29) into equations (25) and (26) to com-
pute expressions for the variance and expected excess return on the tangency portfolio,
and compute the ratio of the expected excess return to the standard deviation.

8.3 Long-Horizon Mean-Variance Analysis

In this section we extend to a multiperiod horizon the results of Section 3 for mean-
variance efficient allocations and frontiers. We assume that the investor has an in-
vestment horizon of k periods, and that she chooses portfolio weights only every k
periods, i.e., at t, t+ k, t + 2k, .... We denote these weights as αt (k). The investor
chooses those weights that minimize the variance per period of the log portfolio return
subject to a required expected return per period on the portfolio.

To solve this problem we need to compute the log k-period portfolio return r(k)p,t+k.
One possibility is to use, for similarity with the approximation for the log 1-period
portfolio return given in (19), the following expression:

r
(k)
p,t+k = r

(k)
0,t+k +α0t (k)

³
r
(k)
t+k − r

(k)
0,t+kι

´
+
1

2
α0t (k)

¡
σ2x (k)−Σxx (k)αt (k)

¢
, (30)

where ι is a (n× 1) vector of 1’s,

Σxx (k) ≡ Vart
³
r
(k)
t+k − r

(k)
0,t+kι

´
,

σ2x (k) ≡ diag (Σxx (k)) .
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and, for any asset (or portfolio of assets) l, the cumulative k-period log return (or log
excess return) is

r
(k)
l,t+k =

kX
i=1

rl,t+i. (31)

Note that to simplify notation we are ignoring the subscript t when denoting condi-
tional variances and covariances. Our assumption that the dynamics of state variables
and returns follow a homoskedastic VAR implies that conditional variances are not a
function of time–though they are a function of k, the investment horizon.

It is also important to keep in mind that (30) is an approximation to the log
return on wealth. This accuracy of this approximation is high at short horizons, but
it deteriorates as the horizon k becomes longer.

8.3.1 K-Period Mean-Variance Frontier with Log Returns and No Risk-
less Asset

Problem The investor chooses those weights that minimize the variance per period
of the log portfolio return subject to a required expected return per period on the
portfolio. If no riskless asset over horizon k is available, the problem becomes

min
α

1

2

Vart

³
r
(k)
p,t+k

´
k

(32)

subject to
Et
³
r
(k)
p,t+k

´
+ 1

2
Vart

³
r
(k)
p,t+k

´
k

= µp,

where µp is the required portfolio portfolio return per period.

>From equation (30), the conditional variance of the cumulative log portfolio
return is given by

Vart
³
r
(k)
p,t+k

´
= α0t (k)Σxx (k)αt (k) + σ20 (k) + 2α

0
t (k)σ0x (k) ,

and the cumulative log expected portfolio return is given by

Et

³
r
(k)
p,t+k

´
+
1

2
σ2p (k) =

µ
Et r

(k)
0,t+1 +

1

2
σ20 (k)

¶
+α0t

µ
Et

³
r
(k)
t+1 − r

(k)
0,t+1ι

´
+
1

2
σ2x (k) + σ0x (k)

¶
.
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Note that we already have expressions for the moments in the RHS of these equations
based on our VAR specification.

The Lagrangian for this problem is

L = 1

2

Vart

³
r
(k)
p,t+k

´
k

+ λ

⎛⎝µP −
Et

³
r
(k)
p,t+k

´
+ 1

2
Vart

³
r
(k)
p,t+k

´
k

⎞⎠ ,

where λ is the Lagrange multiplier on the expected portfolio return constraint. Note
that we have already imposed the constraint that portfolio weights must add up to
one in the way we define the log return on the portfolio.

Myopic portfolio rule The solution to the mean-variance program (20) is

αt (k) = λΣ−1xx (k)
∙
Et
³
r
(k)
t+1 − r

(k)
0,t+1ι

´
+
1

2
σ2x (k) + σ0x (k)

¸
−Σ−1xx (k)σ0x (k) . (33)

Again, it is useful to note that we can write (33) as

αt (k) = λΣ−1xx (k)
∙
Et
³
r
(k)
t+1 − r

(k)
0,t+1ι

´
+
1

2
σ2x (k)

¸
+ (1− λ)

¡−Σ−1xx (k)σ0x (k)¢ ,
where Σ−1xx (k)σ0x (k) is the k-horizon global minimum-variance portfolio:

−Σ−1xx (k)σ0x (k) = min
α

1

2
Vart

¡
rkp,t+k

¢
.

Thus αt (k) is a linear combination of two portfolios, one of which is the global
minimum-variance portfolio.

Equation for k-period mean-variance frontier Equation (22) implies the fol-

lowing relation between σ2p (k) /k ≡ Vart
³
r
(k)
p,t+k

´
/k and µp:

σ2p (k)

k
=

1

A (k)

¡
eµ2p + 2B (k) eµp +B2 (k)

¢
+ σ20 (k)− C (k) , (34)
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where eµp is the required expected excess return per period on the portfolio over the
benchmark asset,

eµp = µp −
1

k

µ
Et r

(k)
0,t+1 +

1

2
σ20 (k)

¶
,

and

A (k) =
1

k

µ
Et

³
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0,t+1ι

´
+
1

2
σ2x (k) + σ0x (k)

¶0
×Σ−1xx (k)

µ
Et
³
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´
+
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2
σ2x (k) + σ0x (k)

¶
,

B (k) =
1

k
σ00x (k)Σ

−1
xx (k)

µ
Et
³
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(k)
t+1 − r

(k)
0,t+1ι

´
+
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2
σ2x (k) + σ0x (k)

¶
,

and
C (k) =

1

k
σ00x (k)Σ

−1
xx (k)σ0x (k) .

Unconditional mean-variance frontier The unconditional mean variance fron-
tier simply follows from taking limits in (34) as k →∞. That is, we use the uncon-
ditional variance-covariance matrix of log returns implied by the VAR.

8.3.2 K-Period Mean-Variance Frontier with Log Returns and a Riskless
Asset

In this section we consider mean-variance analysis with log returns when investors
have an aditional asset which is truly riskless in real terms over their investment
horizon. This asset is an inflation-indexed zero-coupon bond. The investor has now
n+1 assets available for investment. This derivation is useful to compute the tangency
portfolio.

>From the perspective of a k-period mean-variance investor–who is a buy-and-
hold investor–the return on the riskfree asset is the yield on this bond, which we
denote by r(k)f . We assume that r

(k)
f is continuously-compounded, in natural units per

period. Thus to compound k periods ahead we need to multiply it by k.
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Problem

min
α

1

2

Vart

³
r
(k)
p,t+k − kr

(k)
f

´
k

(35)

subject to
Et

³
r
(k)
p,t+k − r

(k)
f k

´
+ 1

2
Vart

³
r
(k)
p,t+k − kr

(k)
f

´
k

= µp − r(k)f ,

where we assume that r(k)f is given in units per period, and r
(k)
l,t+k is defined in (31).

To solve this problem we need to compute the log k-period portfolio return r(k)p,t+k.
We adopt the same convention as in the previous section, and use the k-period ahead
conditional covariances for the Jensen’s inequality correction in the approximation to
the log excess return on wealth k periods ahead:

r
(k)
p,t+k − kr

(k)
f = ω0t (k)

³
r
(k)
t+k − kr

(k)
f ι
´
+
1

2
ω0t (k)

¡
σ2r (k)−Σrr (k)ωt (k)

¢
, (36)

where
Σrr (k) ≡ Vart

³
r
(k)
t+k − r

(k)
f kι

´
,

σ2r (k) ≡ diag (Σrr (k)) .

Using equation (36), the conditional variance of the cumulative log portfolio return
is given by

Vart
³
r
(k)
p,t+k − kr

(k)
f

´
= ω0t (k)Σrr (k)ωt (k) , (37)

and the cumulative log expected excess portfolio return is given by:
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(38)
Note that we already have expressions for the moments in the RHS of these equations
based on our VAR specification.

The Lagrangian for this problem is

L = 1

2

Vart

³
r
(k)
p,t+k − kr

(k)
f

´
k

+λf

µ
µP − r

(k)
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p,t+k − r

(k)
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´
+
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2
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³
r
(k)
p,t+k − kr

(k)
f

´¶¶
,

where λf is the Lagrange multiplier on the expected portfolio return constraint. Note
that we have already imposed the constraint that portfolio weights must add up to
one in the way we define the log return on the portfolio.
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Myopic portfolio rule The solution to the mean-variance program (35) is

ωt (k) = λfΣ
−1
rr (k)

∙
Et
³
r
(k)
t+1 − r

(k)
f kι

´
+
1

2
σ2r (k)

¸
. (39)

Equation for mean-variance frontier Equation (39) implies the following rela-

tion between σ2p (k) ≡ Vart
³
r
(k)
p,t+k − r

(k)
f k

´
and µp:

σ2p (k)

k
=

1

A (k)
eµ2p, (40)

where eµp is the expected excess return on the portfolio over the riskfree asset,

eµp = µp − r
(k)
f ,

and
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.

Equation (40) implies that, in a standard deviation-expected return space, the frontier
is a line that intersects the expected return axis at r(k)f , and whose slope is the Sharpe
ratio.

Tangency portfolio We can now derive the weights for the tangency portfolio
between frontiers (34) and (40). This is a portfolio whose weights ωT,t (k) satisfy
ωT,t (k)

0 ι = 1. That is, it is a portfolio with no loading on the risk-free asset. We
can easily find the weights in this portfolio by finding the Lagrange multiplier λf for
which ωT,t (k) in (39) satisfies this constraint:

1 = ωT,t (k)
0 ι =λf

∙
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,
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so that

ωT,t (k) =
1h

Et
³
r
(k)
t+1 − r
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´
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2
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(41)

Once again, it is straightforward to show that the Sharpe ratio of the tangency
portfolio equals

p
A (k), i.e., that the Sharpe ratio is the slope of the mean-standard

deviation frontier with a riskless asset. To see this, substitute (41) into equations
(37) and (38) to compute expressions for the variance and expected excess return on
the tangency portfolio, and compute the ratio of the expected excess return to the
standard deviation.
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Table 1: Mean and standard deviation of returns and return
 forecasting variables, 1952.Q2-2002.Q4.
(All variables except the log dividend yield are in annualized percentage units.)

1 Mean 90-day T-bill real rate 1.518
2 Standard deviation of 90-day T-bill real rate 1.354

3 Mean excess return on stocks 6.311
4 Standard deviation of excess return on stocks 16.923
5 Sharpe ratio of stocks = (3)/(4) 0.373

6 Mean excess return on 5-year Treas. bonds 1.371
7 Standard deviation of excess return on 5-year Treas. bonds 5.649
8 Sharpe ratio of 5-year Treas. bonds = (6)/(7) 0.243

9 Mean 90-day T-bill nominal rate 5.372
10 Standard deviation of 90-day T-bill nominal rate 1.411

11 Mean log dividend yield -3.473
12 Standard deviation of log dividend yields 0.372
13 Mean percentage dividend yield 3.323

14 Mean yield spread† 1.027
15 Standard deviation of yield spreads† 0.517

† The yield spread is the difference between the yield on a 5-year zero-
coupon bond and the yield on a 90-day T-bill.



Table 2: VAR estimation results, 1952.Q2-2002.Q4.

A. Slopes (t-statistics in parenthesis)
R-squared

(1) (2) (3) (4) (5) (6)
(1) log real T-bill rate 0.4029 0.0009 0.0002 0.2597 -0.0013 0.3999 0.299

(5.732) (0.167) (0.008) (3.493) (-1.211) (2.254)
(2) log stock excess returns 1.0536 0.0268 0.3796 -2.1044 0.0549 -0.1348 0.095

(0.977) (0.380) (1.583) (-2.431) (3.021) (-0.056)
(3) log bond excess returns -0.1088 -0.0568 -0.0686 0.3706 -0.0039 3.1252 0.097

(-0.374) (-2.672) (-0.583) (0.944) (-0.769) (3.169)
(4) log nominal yield on T-bills -0.0023 0.0050 0.0027 0.9539 0.0003 0.0961 0.872

(-0.074) (2.315) (0.217) (22.262) (0.772) (1.084)
(5) log dividend yield -1.2428 -0.0157 -0.3753 1.3617 0.9613 -0.3787 0.951

(-1.129) (-0.217) (-1.489) (1.518) (52.792) (-0.154)
(6) log yield spread 0.0041 -0.0015 0.0029 0.0217 -0.0001 0.7596 0.561

(0.174) (-0.869) (0.378) (0.848) (-0.352) (13.160)

B. Quarterly percent standard deviations of residuals (diagonal) and cross-correlations of residuals (off-diagonal)

(1) (2) (3) (4) (5) (6)
(1) log real T-bill rate 0.567 0.221 0.357 -0.349 -0.223 0.143
(2) log stock excess returns 0.221 8.064 0.119 -0.101 -0.983 0.015
(3) log bond excess returns 0.357 0.119 2.689 -0.755 -0.141 0.147
(4) log nominal yield on T-bills -0.349 -0.101 -0.755 0.252 0.132 -0.754
(5) log dividend yield -0.223 -0.983 -0.141 0.132 8.175 -0.042
(6) log yield spread 0.143 0.015 0.147 -0.754 -0.042 0.172

Coefficients on lagged variables



Table 3: Tangency portfolio implied by VAR estimation and risk-free rate equal 
to mean real T-bill rate.

1 year 10 years 25 years 100 years
(4 quarters) (40 quarters) (100 quarters) (400 quarters)

Risk free rate 1.518% 1.518% 1.518% 1.518%
Sharpe ratio 0.201 0.303 0.407 0.443

Portfolio weights
   Stocks 47.40% 145.66% 71.76% 67.10%
   5-year bond 52.60% -45.66% 28.24% 32.90%
   Sum 100.00% 100.00% 100.00% 100.00%

Horizon



Figure 1. Annualized Percent Standard Deviations of Real Returns Implied by 
Quarterly VAR(1) Estimates (1952.Q-2002.Q4)
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Figure 2. Correlations of Real Returns Implied by Quarterly VAR(1) Estimates 
(1952.Q-2002.Q4)
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Figure 3. Risk of T-bills and Risk of the Global Minimum Variance Portfolio 
(GMV).
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Figure 4. Composition of Global Minimum Variance Portfolio
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