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method for the portfolio choice between a stock index and cash when the stock returns are either iid

or predictable by the dividend yield. We then explore the problem of an investor who takes into

account the predictability of returns but is uncertain about the parameters of the data generating

process. The investor chooses the portfolio anticipating that future data realizations will contain

useful information to learn about the true parameter values.
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1 Introduction

After years of relative neglect in the academic literature, dynamic portfolio choice is again

attracting attention. The renewed interest in the topic follows the recent empirical evidence

of return predictability and is fueled by practical issues, including parameter and model

uncertainty, learning, transaction costs, taxes, and background risks. 1 Unfortunately, the

realism of portfolio choice problems considered until now has been constrained by the scarcity

of analytic results and by the limited power of existing numerical methods.

In this paper, we present a simulation-based method for solving more realistic discrete-

time portfolio choice problems involving non-standard preferences and a large number of

assets with arbitrary return distribution. The main advantage of our approach relative to

other numerical solution methods is that it can handle problems in which the conditional

return distribution depends on a large number of state variables with potentially path-

dependent or non-stationary dynamics. The method can also accommodate intermediate

consumption, portfolio constraints, parameter and model uncertainty, and learning.

The original literature on dynamic portfolio choice, pioneered by Merton (1969,1971)

and Samuelson (1969) in continuous time and by Fama (1970) in discrete time, produced

many important insights into the properties of optimal portfolio policies. Unfortunately,

closed-form solutions are available only for a few special parameterizations of the investor’s

preferences and return dynamics, as exemplified by Kim and Omberg (1996), Liu (1999a),

and Wachter (2002). The recent literature therefore uses a variety of numerical and

approximate solution methods to incorporate realistic features into the dynamic portfolio

problem. For example, Brennan, Schwartz, and Lagnado (1997) solve numerically the PDE

characterizing the solution to the dynamic optimization. Campbell and Viceira (1999) log-

linearize the first-order conditions and budget constraint to obtain approximate closed-

form solutions. Das and Sundaram (2000) and Kogan and Uppal (2001) perform different

expansions of the value function for which the problem can be solved analytically. By far

the most popular approach involves discretizing the state space, which is done by Balduzzi

and Lynch (1999), Brandt (1999), Barberis (2000), and Dammon, Spatt, and Zhang (2001),

among many others. Once the state space is discretized, the value function can be evaluated

by a choice of quadrature integration (Balduzzi and Lynch), simulations (Barberis), binomial

discretizations (Dammon, Spatt, and Zhang), or nonparametric regressions (Brandt), and

then the dynamic optimization can be solved by backward recursion.

These numerical and approximate solution methods share some important limitations.

1See Campbell and Viceira (2002) and Brandt (2003) for surveys of the dynamic portfolio choice literature.
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Except for the nonparametric approach of Brandt (1999), they assume unrealistically simple

return distributions. All of the methods rely on CRRA preferences, or its extension by

Epstein and Zin (1989), to eliminate the dependence of the portfolio policies on wealth and

thereby make the problem path-independent. Most importantly, the methods cannot handle

the large number of state variables with complicated dynamics which arise in many realistic

portfolio choice problems. A partial exception is Campbell, Chan, and Viceira (2003), who

use log-linearization to solve a problem with many state variables but linear dynamics.

Our simulation method overcomes these limitations. The first step of the method entails

simulating a large number of hypothetical sample paths of asset returns and state variables.

We simulate these paths from the known, estimated, or bootstrapped joint dynamics of

the returns and state variables. Alternatively, we simulate the sample paths from the

investor’s posterior belief about the joint distribution of the returns and state variables

to incorporate parameter and model uncertainty in a Bayesian context. The key feature of

the simulation stage is that the joint dynamics of the asset returns and state variables can

be high-dimensional, arbitrarily complicated, path-dependent, and even non-stationary.

Given the set of simulated paths of returns and state variables, we solve for the optimal

portfolio (and consumption) policies recursively in a standard dynamic programming fashion.

Starting one period before the end of the investor’s horizon, at time T− 1, we compute for

each simulated path the portfolio weights that maximize a Taylor series expansion of the

investor’s expected utility. This approximated problem has a straightforward (semi-) closed-

form solution involving conditional (on the state variables) moments of the utility function,

its derivatives, and the asset returns. We compute these conditional moments with least-

squares regressions of the realized utility, its derivatives, and the asset returns at time T on

basis functions of the realizations of the state variables at time T− 1 across the simulated

sample paths. The algorithm then proceeds recursively until time zero. Each period and for

each simulated path, we find the portfolio weights that maximize the conditional expectation

of the investor’s utility, given the optimal portfolios for all future periods until the end of

the horizon. To summarize, our method consists of simulating the asset returns and state

variables, computing a set of across-path regressions for each period, and then evaluating

the closed-form solution of the approximate portfolio problem.

Our approach is inspired by the simulation method of Longstaff and Schwartz (2001)

for pricing American-style options. Longstaff and Schwartz use regressions across simulated

sample paths to evaluate the conditional expectation of the continuation value of the option

and compare this expectation to the immediate exercise value at all future dates along each

simulated path. We adopt the idea of using across-path regressions to evaluate conditional
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expectations but take these expectations as inputs to the portfolio optimization along each

path. Our approach is also related to the “parameterized expectations” method of den

Haan and Marcet (1990) for solving dynamic macroeconomic models.2 The difference is

that we use regressions across a large number of sample paths instead of along a single

path. The across-path regressions allow us to solve finite-horizon problems, which may be

path-dependent and non-stationary, as opposed to only stationary infinite-horizon problems.

Finally, our discrete-time approach complements the simulation method of Detemple, Garcia,

and Rindisbacher (2003) for solving continuous-time portfolio choice problems in complete

markets. Although the methods are complements in their applications, they are conceptually

different. Detemple, Garcia, and Rindisbacher rely on the assumption of complete markets to

express the dynamic problem as a static one (as in Cox and Huang, 1989, and Aı̈t-Sahalia and

Brandt, 2003) and then use simulations to evaluate expectations in standard Monte-Carlo

fashion. We use regressions across simulations to solve recursively a dynamic program.

We first apply our method to the portfolio choice between a stock index and cash when

the stock returns are either iid or predictable by the dividend yield of the index. We use

this simple setup to analyze the potential sources of error in our approach. In particular,

we use the iid returns case to establish that the Taylor series expansion of the expected

utility induces only minimal approximation errors. (These results are of independent interest

for static portfolio problems with higher-order moments.) We use the predictable returns

case, which has been studied by Brennan, Schwartz, and Lagnado (1997), Balduzzi and

Lynch (1999), Brandt (1999), Campbell and Viceira (1999), and Barberis (2000), among

others, to show that our method delivers the same solution as more traditional approaches.

To further assess the numerical accuracy of our method, we also perform a Monte Carlo

experiment. We find that the simulation-induced errors of the optimal portfolio weights and

the corresponding loss in the certainty equivalent return on wealth are negligible.

As a more challenging and also economically more interesting application of our method,

we then explore the problem of an investor who takes into account the predictability of

returns but is uncertain about the parameters of the data generating process. The investor

chooses the portfolio anticipating the effect of learning about the true parameter values

from each new data realization between the initial portfolio choice and the end of the

investment horizon. Specifically, we consider the same problem as Barberis (2000) of a

Bayesian investor who faces returns which appear marginally predictable by the dividend

yield. Unlike Barberis, however, we do not assume that between the initial decision at date

2Despite the name, the innovation of that method is not to parameterize expectations but to evaluate
parameterized expectations through regressions on simulated data. The idea of parameterizing expectations
goes back to Bellman, Kalaba, and Kotkin (1963), Daniel (1976), and Williams and Wright (1984).
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0 and the terminal date T the investor’s beliefs about the parameters are unchanged and

therefore reflect only the information available at the initial decision. Instead, we allow the

investor to update these beliefs and thereby learn about the true parameter values with each

new return and dividend yield realization between dates 0 and T .

Learning in discrete time is a challenging application because it involves a large number

of state variables with non-linear and possibly non-stationary dynamics. For example, the

usual VAR model for dividend yield predictability involves seven parameters and, given

uninformative or conjugate priors, the joint posterior distribution of these parameters is

characterized by 11 state variables (the dividend yield and, in standard regression notation,

the unique elements of X ′X, X ′Y , and (Y − X(X ′X)−1X ′Y )(Y − X(X ′X)−1X ′Y )′). The

evolution of the state variables depends on the newly observed return, dividend yield, their

squares, and cross-product. It is therefore clearly non-linear. For more elaborate model

specifications, such as when the degree of return predictability is allowed to fluctuate, or

with economically motivated non-conjugate priors in the spirit of Black and Litterman (1992)

and Connor (1997) the posterior distribution of returns is characterized by even more state

variables and the dynamics of these state variables may become non-stationary.

Given the proliferation of state variables, fully incorporating learning in a discrete

time portfolio choice problem has until now been deemed computationally infeasible.

Brennan (1998) and Barberis (2000) examine the effect of learning about the unconditional

risk premium of stocks but ignore the evidence of predictability. They find that for a CRRA

investor who is more risk averse than the log utility case, learning about the unconditional risk

premium can lead to substantial negative hedging demands (i.e., deviations from the myopic

portfolio choice). A long-horizon investor who anticipates learning about the unconditional

risk premium in the future allocates substantially less wealth to equities than an investor

who is either myopic or does not learn. Xia (2001) studies the effect of learning about

predictability with a known unconditional risk premium and a known unconditional mean of

the predictive variable.3 Her results show that learning about predictability can also induce

hedging demands but that the sign and magnitude of these hedging demands depend on the

horizon and current value of the predictive variable.

Unfortunately, it is difficult, if not impossible, to infer from these existing results the

effect of simultaneously learning about the unconditional risk premium, predictability, and

the moments of the predictor. Intuitively, a new data realization provides information about

the unconditional risk premium, the difference between the conditional and unconditional

3Related work on learning about a time-varying risk premium include Detemple (1986), Dothan and
Feldman (1986), and Gennotte (1986).
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risk premium, or both. Updating on the difference between the conditional and unconditional

risk premium, in turn, can be due to learning about predictability or due to learning about

the unconditional mean of the predictive variable and hence about the difference between

the current value of the predictor and its mean (if the current value of the predictor is further

from its updated mean, the conditional risk premium is further from the unconditional risk

premium). Furthermore, since the majority of the literature on learning is set in continuous

time where second moments are typically assumed known, the effect of learning about second

moments on a discrete time portfolio choice is still unexplored. The aim of our application

is to start filling these gaps in the literature. This paper is, to our knowledge, the first

to provide a solution to a reasonably realistic discrete time portfolio choice problem with

learning about all parameters of the return generating process.

Our empirical results show that both the parameter uncertainty and the effect of learning

tend to reduce the investor’s allocation to stocks. We find that learning about the parameters

of the data generating process induces a negative hedging demand for stocks. The intuition

for this hedging demand is that a positive return innovation leads to an upward revision of the

unconditional and/or conditional expected return (depending on the value of the dividend

yield), which constitutes a subjective improvement in future investment opportunities. By

reducing the holdings of stocks, the investor can hedge this effect. In our experiment, the

negative hedging demand due to learning tends to dominate the positive hedging demand

induced by the dividend yield predictability. This shows that learning can qualitatively

change the solution of the dynamic portfolio choice problem. Our results also suggest that

partially incorporating learning is better, in terms of certainty equivalent return on wealth,

than ignoring this aspect of the portfolio choice problem.

The remainder of this paper is structured as follows. We describe the basic algorithm

in Section 2. In Section 3, we discuss some implementation issues and extensions. The

applications of the method are in Section 4. We conclude in Section 5.

2 The Method

2.1 The Investor’s Problem

Consider the portfolio choice at time t of an investor who maximizes the expected utility of

wealth at some terminal date T by trading in N risky assets and a risk-free asset (cash) at

5



times t, t + 1, . . . T− 1.4 Formally, the investor’s problem is:

Vt(Wt, Zt) = max
{xs}T−1

s=t

Et

[
u(WT )

]
, (1)

subject to the sequence of budget constraints:

Ws+1 = Ws

(
xs
′Re

s+1 + Rf
) ∀s ≥ t, (2)

where xs is a vector of portfolio weights on the risky assets chosen at time s, Re
s+1 is the

vector of excess returns on the N risky assets from time s to s+1, and Rf is the gross return

on the risk-free asset (assumed constant for simplicity).5 The function u(·) measures the

investor’s utility of terminal wealth WT and the subscript on the expectation denotes that it

is conditional on the information set Zt available at time t. For concreteness, we can think

of the information set Zt as a vector of state variables.

The intertemporal portfolio choice is a dynamic problem. At time t the investor chooses

the portfolio weights xt conditional on having wealth Wt and information Zt. In this decision,

the investor takes into account the fact that at every future date s the portfolio weights will

be optimally revised conditional on the then available wealth Ws and information Zs.
6

The function Vt(Wt, Zt) denotes the expectation at time t, conditional on the information

Zt, of the utility of terminal wealth WT generated by the current wealth Wt and the

subsequent optimal portfolio weights {x∗s}T−1
s=t . Vt(·, ·) is termed the value function. It

represents the value, in units of expected utils, of the portfolio choice problem to the investor.

Another interpretation of the value function is that it measures the investor’s investment

opportunities. If the current information suggests that investment opportunities are good,

meaning that the sequence of optimal portfolio choices is expected to generate an above

average return on wealth with below average risk, the current value of the portfolio choice

problem to the investor is high. If investment opportunities are poor, the value is low.

The dynamic nature of the portfolio choice is best understood by expressing the

multiperiod problem (1) as a single-period problem with utility Vt+1(Wt+1, Zt+1) of next

4We discuss the case of intermediate consumption in Section 3.1.
5We can relax the constant risk-free rate assumption by including Rf

t in the vector of state variables Zt.
6The information Zs contains the investor’s wealth Ws, which means that conditioning on both quantities

is technically redundant. However, the investor’s wealth is an unusual state variable because it is endogenous
to the portfolio choice. We therefore consider it separately from the exogenous information.
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period’s wealth Wt+1 and information Zt+1:

Vt(Wt, Zt) = max
{xs}T−1

s=t

Et

[
u
(
WT

)]

= max
xt

Et

[
max

{xs}T−1
s=t+1

Et+1

[
u
(
WT

)]]
(3)

= max
xt

Et

[
Vt+1

(
Wt(xt

′Re
t+1 + Rf ), Zt+1

)]
.

The second equality follows from the law of iterated expectations, and the third equality

uses the definition of the value function as well as the budget constraint. It is important to

recognize that the expectation in the third line is taken over the joint distribution of next

period’s returns Rt+1 and information Zt+1, conditional on the current information Zt.

The recursive equation (3) is the so-called Bellman equation and is the basis for any

recursive solution of the dynamic portfolio choice problem. The first-order conditions (FOCs)

for an optimum at each time are:

Et

[
∂1Vt+1

(
Wt(xt

′Re
t+1 + Rf ), Zt+1

)
Re

t+1

]
= 0, (4)

where ∂1Vt+1(·, ·) denotes the partial derivative with respect to the first argument of the

value function. These FOCs make up a system of nonlinear equations involving (possibly

high-order) integrals that can in general be solved for xt only numerically.

For illustrative purposes, consider the case of constant relative risk aversion (CRRA)

utility u(WT ) = WT
1−γ/(1−γ), where γ denotes the coefficient of relative risk aversion. The

Bellman equation then simplifies to:

Vt(Wt, Zt) = max
xt

Et

[
max

{xs}T−1
s=t+1

Et+1

[WT
1−γ

1− γ

]]

= max
xt

Et

[
max

{xs}T−1
s=t+1

Et+1

[(
Wt

∏T−1
s=t (xs

′Re
s+1 + Rf )

)1−γ

1− γ

]]
(5)

= max
xt

Et

[ (
Wt(xt

′Re
t+1 + Rf )

)1−γ

1− γ
︸ ︷︷ ︸

u
(
Wt+1

)
max

{xs}T−1
s=t+1

Et+1

[( ∏T−1
s=t+1(xs

′Re
s+1 + Rf )

)1−γ
]

︸ ︷︷ ︸
ψt+1(Zt+1)

]

With CRRA utility, the value function next period Vt+1(Wt+1, Zt+1) can be expressed as the

product of the utility of wealth u(Wt+1) and a function of the state variables ψt+1(Zt+1).

Furthermore, since the utility function is homothetic in wealth we can, without loss of
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generality, normalize Wt = 1. It follows that the value function depends only on the state

variables and that the Bellman equation is:

1

1− γ
ψt(Zt) = max

xt

Et

[
u
(
xt
′Re

t+1 + Rf
)
ψt+1

(
Zt+1

)]
. (6)

The corresponding FOCs are:

Et

[
∂u

(
xt
′Re

t+1 + Rf
)
ψt+1

(
Zt+1

)
Re

t+1

]
= 0, (7)

which, despite being simpler than the general case, can still only be solved numerically.

This CRRA utility example also helps to illustrate the difference between the dynamic

and myopic (single-period) portfolio choice. If the excess returns Re
t+1 are contemporaneously

independent of the innovations to the state variables Zt+1, the (T− t)-period portfolio choice

is identical to the single-period portfolio choice at date t because the conditional expectation

in equation (6) factors into a product of two conditional expectations. The first expectation

is of the utility of next period’s wealth u(Wt+1) and the second expectation is of the function

of the state variables ψt+1

(
Zt+1

)
. Since the latter does not depend on the portfolio weights,

the FOCs of the multiperiod problem are the same as those of the single-period problem. If,

in contrast, the excess returns are not independent of the innovations to the state variables,

the conditional expectation does not factor, the FOCs are not the same, and, as a result,

the dynamic portfolio choice may be substantially different from the single-period portfolio

choice. The differences between the dynamic and myopic policies are called hedging demands

because by deviating from the single-period portfolio choice the investor tries to hedge against

changes in the investment opportunities (or, equivalently, in the state variables).

2.2 Step 1: Expanding the Value Function

We can simplify the problem significantly by expanding the value function in a Taylor series

around the current value of wealth growing at the risk-free rate WtR
f . In the case of a
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second-order expansion, the approximated value function is:7

Vt(Wt, Zt) ≈ max
xt

Et

[
Vt+1

(
WtR

f , Zt+1

)

+ ∂1Vt+1

(
WtR

f , Zt+1

)(
Wt xt

′Re
t+1

)
(8)

+
1

2
∂2

1Vt+1

(
WtR

f , Zt+1

)(
Wt xt

′Re
t+1

)2
]
,

where ∂2
1Vt+1(·, ·) denotes the second partial derivative with respect to the first argument of

the value function. In this case, the FOCs have a closed-form solution in terms of the joint

conditional moments of the value function and the returns in the next period:

xt ≈ −
{

Et

[
∂2

1Vt+1

(
WtR

f , Zt+1

)
(Re

t+1R
e
t+1

′)
]
W 2

t

}−1

×Et

[
∂1Vt+1

(
WtR

f , Zt+1

)
Re

t+1

]
Wt (9)

≈ −
{

Et

[
Bt+1

]
Wt

}−1

× Et

[
At+1

]
.

This approximate solution for the optimal weights involves two conditional expectations. The

first expectation is the second moment matrix of returns (essentially the covariance matrix)

scaled by the second derivative of the value function next period. The second expectation

involves the risk premia of the assets scaled by the first derivative of the value function.

Unfortunately, a second-order expansion of the value function is sometimes not sufficiently

accurate, especially when the utility function departs significantly from quadratic utility or

when the returns are far from Gaussian. We therefore work with a fourth-order expansion

that includes adjustments for the skewness and kurtosis of returns and their effects on the

utility of the investor. The approximation of the value function is then:

Vt(Wt, Zt) ≈ max
xt

Et

[
Vt+1

(
WtR

f , Zt+1

)

+ ∂1Vt+1

(
WtR

f , Zt+1

)(
Wt xt

′Re
t+1

)

+
1

2
∂2

1Vt+1

(
WtR

f , Zt+1

)(
Wt xt

′Re
t+1

)2
(10)

+
1

6
∂3

1Vt+1

(
WtR

f , Zt+1

)(
Wt xt

′Re
t+1

)3

+
1

24
∂4

1Vt+1

(
WtR

f , Zt+1

)(
Wt xt

′Re
t+1

)4
]
.

7There is an extensive theoretical and empirical literature on approximating utility and value functions
with polynomial expansions, including Samuelson (1970), Hakansson (1971), Grauer (1981), Pulley (1981),
Kroll, Levy, and Markowitz (1984), Grauer and Hakansson (1993), and Zhao and Ziemba (2000).
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In this case, the FOCs define only an implicit solution for the optimal weights in terms of

moments of the value function and the returns in the next period:

xt ≈ −
{

Et

[
∂2

1Vt+1

(
WtR

f , Zt+1

)
(Re

t+1R
e
t+1

′)
]
W 2

t

}−1

×
{

Et

[
∂1Vt+1

(
WtR

f , Zt+1

)
(Re

t+1)
]
Wt

+
1

2
Et

[
∂3

1Vt+1

(
WtR

f , Zt+1

) (
xt
′Re

t+1

)2
Re

t+1

]
W 3

t (11)

+
1

6
Et

[
∂4

1Vt+1

(
WtR

f , Zt+1

) (
xt
′Re

t+1

)3
Re

t+1

]
W 4

t

}

≈ −
{

Et

[
Bt+1

]
Wt

}−1

×
{

Et

[
At+1

]
+ Et

[
Ct+1(xt)

]
W 2

t + Et

[
Dt+1(xt)

]
W 3

t

}

It is easy to solve this implicit expression for the optimal weights in practice. We start by

computing the portfolio weights for the second-order expansion of the value function and

take this to be an initial “guess” for the optimal weights, denoted xt(0). We then enter

this guess on the right-hand side of equation (11) and obtain a new solution for the optimal

weights on the left-hand-side, denoted xt(1). After a few iterations n, the guess xt(n) is very

close to the solution xt(n + 1) and we take this value to be the solution of equation (11).8

Consider again the case of CRRA utility with Vt+1(Wt+1, Zt+1) = u(Wt+1) ψt+1(Zt+1).

The solution for the second-order expansion of the value function is:

xt ≈ −
{

Et

[
∂2u

(
WtR

f
)
ψt+1

(
Zt+1)(R

e
t+1R

e
t+1

′)
]
Wt

}−1

× Et

[
∂u

(
WtR

f
)
ψt+1

(
Zt+1

)
Re

t+1

]

≈ − ∂u
(
WtR

f
)

∂2u
(
WtR

f
)
Wt

{
Et

[
ψt+1

(
Zt+1)(R

e
t+1R

e
t+1

′)
]}−1

× Et

[
ψt+1

(
Zt+1

)
Re

t+1

]
(12)

≈ 1

γ

{
Et

[
ψt+1

(
Zt+1)(R

e
t+1R

e
t+1

′)
]}−1

× Et

[
ψt+1

(
Zt+1

)
Re

t+1

]
,

where the second line follows from the fact that u(WtR
f ) and its derivatives are deterministic

and the third line uses the definition of relative risk aversion γ.

Equation (12) illustrates more clearly the relation between the dynamic and myopic

portfolio policies. If the returns are contemporaneously independent of the innovations to

the state variables, both expectations factor into two terms, with one term in common, and,

8This approximate solution is of independent interest for static portfolio choice problems when taking
into account higher order moments is deemed important.
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as a result, the portfolio weights reduce to the familiar mean-variance form:9

xt ≈ 1

γ

{
Et

[
ψt+1

(
Zt+1)

]
Et

[
(Re

t+1R
e
t+1

′)
]}−1

× Et

[
ψt+1

(
Zt+1

)]
Et

[
Re

t+1

]

(13)

≈ 1

γ

{
Et

[
(Re

t+1R
e
t+1

′)
]}−1

× Et

[
Re

t+1

]
.

Otherwise, the dynamic and myopic portfolio choices differ. The extent to which they differ

depends on the contemporaneous correlation of the excess returns, squared returns, and

cross-products of returns with the innovations to the state variables.

This first step of our method involves two choices: the order of the expansion and the

wealth level around which to expand the value function. In theory, the expansion converges

as the order increases for any feasible expansion point, suggesting that we want the order

of the expansion to be as large as possible and that the expansion point is fairly arbitrary.

However, in practice, where we face a tradeoff between the accuracy of the approximation

and the computational efficiency of our method, these two choices are intimately related.

For a low-order expansion to be relatively accurate, the expansion point should be as close

as possible to the realized wealth next period. Since little more is known about the accuracy

of low-order expansions, we have to rely on experimentation to determine whether a given

expansion order and expansion point combination is acceptable for the assumed horizon,

rebalancing frequency, return distribution, and utility function. In our experience, a fourth-

order expansion around WtR
f is very accurate for the various problems we have considered

(see Section 4). Furthermore, the method appears much more sensitive to the order of

the expansion than to the expansion point. Indeed, the results from second- and fourth-

order expansions can be quite different, whereas expanding the value function around wealth

growing at the expected return of the myopic portfolio policy gives virtually identical results

to expanding around the wealth growing at the riskfree rate.

2.3 Step 2: Simulating Sample Paths

The second step of our solution method consists of simulating forward a large number of

hypothetical sample paths of the vector Yt = [Re
t , Zt]. Each of these paths is simulated

independently from the model:

Yt+1 = f(Yt, Yt−1, . . . ; εt+1

)
, (14)

9The interpretation of the approximate solution in the mean-variance framework is unique to the second-
order approximation. Higher-order approximations, such as equation (11), involve higher-order moments.
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where εt+1 denotes a vector of innovations with conditional distribution g(εt+1|εt, εt−1, . . .).

If we assume that the investor knows the true form and parameters of the data generating

process, the model f(·; ·) is either calibrated to or estimated from the data. The innovations

εt are sampled from a known distribution (such as a multivariate log-normal distribution)

or are resampled from the data (bootstrapped). If we relax the unrealistic assumption of

a known data generating process, the Yt are simulated from the joint posterior distribution

of the returns and state variables, given the data and the investor’s prior distribution over

the model and parameter space (see Section 4.3 for detail). In either case, we enumerate

the simulated paths with m=1, 2, . . . , M and denote the realization of the returns and state

variables at time s along the mth path Ys
m =[Re

s
m, Zs

m].

2.4 Step 3: Computing Expectations through Regressions

We solve recursively for the optimal portfolio weights at each date t for each simulated sample

path m. Assume that the optimal portfolio weights from time t + 1 to T − 1 have already

been computed and are denoted by x̂s, s = t + 1, ..., T − 1. We approximate the terminal

wealth as the current wealth growing at the riskfree rate for one period [see equation (8)]

and subsequently growing at the return generated by the optimal portfolio policy to get:

ŴT = WtR
f

T−1∏
s=t+1

(
x̂′sR

e
s+1 + Rf

)
(15)

Equation (9) for the portfolio weights involves conditional expectations at time t of At+1 and

Bt+1. At+1 and Bt+1 themselves involve conditional expectations at time t + 1 as follows:

At+1 = ∂1Vt+1(WtR
f , Zt+1)R

e
t+1

= Et+1

[
∂u

(
ŴT

) T−1∏
s=t+1

(
x̂′sR

e
s+1 + Rf

) ]
Re

t+1 (16)

Bt+1 = ∂2
1Vt+1(WtR

f , Zt+1)R
e
t+1R

e
t+1

′

= Et+1

[
∂2u

(
ŴT

) T−1∏
s=t+1

(
x̂′sR

e
s+1 + Rf

)2
]
Re

t+1R
e
t+1

′ (17)

Note that the expressions inside the conditional expectation operator can be easily calculated

for each simulated path.

Consider now the problem of solving for the current portfolio weights, x̂t, given the

current wealth Wm
t and the realization of the state variables Zm

t . The portfolio weight from
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equation (9) is given by:10

xt ≈ −
{

Et

[
Bt+1

]
Wt

}−1

× Et

[
At+1

]

= −
{

Et

[
Et+1

[
∂2u

(
ŴT

) T−1∏
s=t+1

(
x̂′sR

e
s+1 + Rf

)2
]
Re

t+1R
e
t+1

′
]

Wt

}−1

×

Et

[
Et+1

[
∂u

(
ŴT

) T−1∏
s=t+1

(
x̂′sR

e
s+1 + Rf

) ]
Re

t+1

]

= −
{

Et

[
∂2u

(
ŴT

) T−1∏
s=t+1

(
x̂′sR

e
s+1 + Rf

)2
Re

t+1R
e
t+1

′
]

Wt

}−1

×

Et

[
∂u

(
ŴT

) T−1∏
s=t+1

(
x̂′sR

e
s+1 + Rf

)
Re

t+1

]

= −
{

Et

[
bt+1

]
Wt

}−1

× Et

[
at+1

]
(18)

where the second equality follows from the law of iterated expectations. In the last equality,

a and b denote the realized values that correspond to A and B. Thus, we can directly

compute the portfolio weights from conditional expectations of at+1 or bt+1, which in turn

are functions of the investor’s utility of terminal wealth, the future optimal portfolio policy,

and the return paths. In this way, we avoid writing the optimal portfolio solution as a

function of the derivatives of the value function next period. The benefit of this is that any

errors in evaluating the value function do not propagate in the backward recursions (though

there could still be errors in estimating the portfolio weights xt). The task ahead reduces

to evaluating the conditional expectations of the expressions inside the square brackets in

equation (18).

We parameterize these expectations as functions of the state variables:

Et

[
yt+1

]
= ϕ(Zt)

′θt (19)

where yt+1 stands for a generic element of at+1 or bt+1, ϕ(Zt) denotes a vector of polynomial

bases in Zt, and θt are parameters to be estimated. For simplicity, we use as bases a simple

power series in Zt:
11

ϕ(Zt)
′ =

[
1 Zt Z2

t · · · ]. (20)

10We use the second-order expansion in the description of the method for expositional ease. The approach
extends with obvious modifications to the fourth-order expansion that we actually use in section 4.

11We elaborate on the choice of polynomial bases in Section 3.3.
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The key feature of the parameterized expectation (19) is its linearity in the (nonlinear)

functions of the state variables. This linearity implies that we can evaluate the parameters θt

through a simple least squares regression of the realized values y m
t+1 at time t+1 against the

polynomial bases ϕ(Z m
t ) at time t across the simulated sample paths.12 The fitted values

of this regression, denoted ŷm
t+1, are then used to construct estimates of the conditional

expectations of At+1 | t and Bt+1 | t, denoted Âm
t+1 | t and B̂m

t+1 | t, respectively. These estimates

of the conditional expectations, in turn, yield estimates of the optimal portfolio weights at

time t for each path m:

x̂m
t = −

{
B̂m

t+1 | tW
m
t

}−1

Âm
t+1 | t. (21)

From a practical perspective, it is important to recognize that for each date t we only need

to compute the fitted values for a single set of regressions (one for each unique element of

the matrices At+1 | t and Bt+1 | t) which means not only that we can afford a large number of

simulations to control the simulation error (M = 10, 000 in our applications) but also that

we can vectorize the algorithm to avoid nested loops (in t and m).

Although it is not explicitly required to do so for the calculation of portfolio weight, we

can also evaluate the value function at date t and for all simulated paths m. Recall that the

value function at time t is the conditional expectation of the final utility of wealth under the

sequence of optimal portfolio choices at dates t, t + 1, ..., T− 1:

Vt(Wt, Zt) = Et

[
u
(
ŴT

)]
= Et

[
u
(
Wt

T−1∏
s=t

(
x̂′sR

e
s+1 + Rf

) )]
, (22)

where x̂s denotes the optimal portfolio weights at date s. We evaluate the conditional

expectation in equation (22) using across-path regressions. Specifically, we evaluate the

value function at date t by regressing the utility realized at the end of each sample path,

denoted u(Ŵm
T ), from the estimated sequence of optimal portfolio weights {x̂m

s }T−1
s=t against

the polynomial bases of the state variables ϕ(Z m
t ).

The algorithm proceeds recursively backward. A noteworthy feature of the recursions is

that the errors in the approximation of the value function propagate (and cumulate) through

the backward recursions only to the extent that the approximation errors in the portfolio

weights affect the expected utility of terminal wealth. However, it is well known that even

first-order deviations in the optimal portfolio policy have only second-order welfare effects

[Cochrane (1989)]. As a result, the propagation and accumulation of the approximation

error due to the Taylor series expansion of the value function is kept to a minimum.

12The idea of using across-path regressions to evaluate conditional expectations in a simulation setting
was introduced by Longstaff and Schwartz (2001) in the context of pricing American-style options.
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3 Extensions and Implementation Issues

3.1 Intermediate Consumption

Our simulation method extends to the case of intermediate consumption, where the investor

chooses each period the level of consumption and the asset allocation for the wealth that is

not consumed. Assuming additive time-separable preferences, the value function is:

Vt

(
Wt, Zt) = max

{xs,cs}T
s=t

Et

[ T∑
s=t

βs−t u
(
csWs

)]

(23)

= max
xt,ct

u
(
ctWt

)
+ β Et

[
Vt+1(Wt+1, Zt+1)

]
,

subject to the sequence of budget constraints:

Ws+1 = (1− cs)Ws

(
xs
′Re

s+1 + Rf
) ∀s ≥ t (24)

and the terminal condition cT = 1, where cs denotes the fraction of wealth consumed at

time s and β is a subjective discount factor.

Analogous to the case without intermediate consumption, we expand the value function at

time t+1 around a deterministic wealth of (1− c̄)WtR
f . We let c̄ be the optimal consumption

for a deterministic problem in which the investor’s wealth grows at the risk-free rate for the

remaining T− t periods (effectively setting xs = 0, for s = t, t + 1, · · · , T − 1).

A second-order expansion of the value function is:

Vt(Wt, Zt) ≈max
xt,ct

u(ctWt) + β Et

[
Vt+1

(
(1− c̄)WtR

f , Zt+1

)

+ ∂1Vt+1

(
(1− c̄)WtR

f , Zt+1

)(
(1− ct)Wt xt

′Re
t+1− (ct− c̄)WtR

f
)

(25)

+
1

2
∂2

1Vt+1

(
(1− c̄)WtR

f , Zt+1

)(
(1− ct)Wt xt

′Re
t+1− (ct− c̄)WtR

f
)2

]
.

Solving the implied FOCs for the optimal portfolio and consumption choices yields:

xt ≈
{

Et

[
∂2

1Vt+1

(
(1− c̄)WtR

f , Zt+1

)
(Re

t+1R
e
t+1

′)
]
(1− ct)Wt

}−1

×
{

Et

[
∂2

1Vt+1

(
(1− c̄)WtR

f , Zt+1

)
Re

t+1

]
(ct− c̄)WtR

f

(26)
− Et

[
∂1Vt+1

(
(1− c̄)WtR

f , Zt+1

)
Re

t+1

]}

≈
{

Et

[
Ct+1

]
(1− ct)Wt

}−1

×
{

Et

[
Bt+1

]
(ct− c̄)WtR

f − Et

[
At+1

]}
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and

ct ≈
{

Et

[
∂2

1Vt+1

(
(1− c̄)WtR

f , Zt+1

)
(xt

′Re
t+1+ Rf )2

]
Wt

}−1

×
{

Et

[
∂2

1Vt+1

(
(1− c̄)WtR

f , Zt+1

)
(xt

′Rt+1 + c̄Rf )(xt
′Re

t+1+ Rf )
]
Wt

(27)
− 1

β
∂u(ctWt) + Et

[
∂1Vt+1

(
(1− c̄)WtR

f , Zt+1

)
(xt

′Re
t+1+ Rf )

]}

≈
{

Et

[
Ft+1(xt)

]
Wt

}−1

×
{

Et

[
Dt+1(xt)Wt

]
− 1

β
∂u(ctWt) + Et

[
Et+1(xt)

]}
.

Similar expressions can be obtained for a fourth-order expansion of the value function.

Equations (26) and (27) must be solved simultaneously.13 However, in our experience, the

following iterative procedure is quite effective. Starting with an initial “guess” for ct(0), we

solve for the portfolio weights xt(1) from equation (26). We then use these portfolio weights

to solve for the consumption choice ct(1) from equation (27). After a few iterations n, the

guesses {xt(n), ct(n)} are very close to the solutions {xt(n + 1), ct(n + 1)} and we take these

values to be the solutions to the system of two equations (26) and (27).

3.2 Alternative Objective Functions and Portfolio Constraints

Except with CRRA utility, the portfolio choice depends on the investor’s current wealth.

The current wealth, in turn, depends on the sequence of past returns and past portfolio

choices, which are unknown at the current time because we solve the problem recursively

backward. To overcome this problem, we recover at each time t and for each path m the full

mapping from the current wealth Wm
t to the portfolio choice by solving the problem for a

grid of wealth levels ranging from a lower bound of Wt to an upper bound of W̄t. For each

current wealth level on this grid, we construct the realized ym
t for the across-path regressions

by interpolating the portfolio choices at all future dates s = t + 1, · · · , T − 1, which depend

on the future wealth realizations, from the sequence of mappings between the wealth and

portfolio choice recovered in the previous recursions. Notice that since the wealth resulting

from the optimal portfolio choices grows over time, the upper and lower bounds of the wealth

grid must also be changed in order to maintain a certain coverage of the wealth distribution

at each time. The best way to accomplish this depends on the application at hand.14

13A notable exception is the case of CRRA utility, for which the portfolio choice is independent of the
consumption choice. The CRRA consumption choice, however, still depends on the portfolio choice.

14Suppose each period the log returns on the optimal portfolio are approximately normally distributed
with mean µp and volatility σp. An intuitive parmeterization of the upper and lower bounds in this case is
W0 exp{µpt ± kσp

√
t} for some constant k, where, for example, k = 2.6 yields a 99 percent coverage of the

wealth distribution at time t given the initial wealth at time 0.
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Using this approach, our method can handle virtually any objective function, as long as

it is four times differentiable. This includes portfolio choice problems in which the investor

derives utility from consumption or wealth in excess of a reference level [Samuelson (1989),

Dybvig (1995), Jagannathan and Kocherlakota (1996), Schroder and Skiadas (2001)] and

problems in which the investor exhibits behavioral biases such as loss aversion, ambiguity

aversion, or disappointment aversion [Benartzi and Thaler (1995), Liu (1999b), Aı̈t-Sahalia

and Brandt (2001), Ang, Bekaert, and Liu (2002), Gomes (2002)]. Our method can also be

applied to problems of more practical interest, such as maximizing Sharpe or information

ratios, beating or tracking a benchmark, controlling draw-downs, or maintaining a certain

value-at-risk (VaR) [Roy (1952), Grossman and Vila (1989), Browne (1999), Tepla (2001),

Basak and Shapiro (2001), Alexander and Baptista (2002)].

We can also incorporate portfolio constraints, such as limits on borrowing or short-

sales. These constraints are important in practice for a variety of investors, including private

individuals, mutual funds, and pension plans. To incorporate portfolio constraints, we solve

the approximate problem at each future date along each simulated path subject to the

constraints. Since the constrained problems typically do not have a closed form solutions,

they must be solved numerically. For this, we rely on an extensive literature on effective and

fast algorithms for solving high-dimensional constrained optimization problems, including

variants of the Newton method [Conn, Gould, and Toint (1988), Moré and Toraldo (1989)],

the quasi-Newton or BFGS method [Byrd, Lu, Nocedal, and Zhu (1995)], and the sequential

quadratic programming approach [Gill, Murray, Saunders (2002)].15

3.3 Using Regressions for Conditional Expectations

Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001) provide partial convergence

results for the use of across-path regressions to value American-style options. These results

are extended by Clément, Lamberton, and Potter (2001), who show that for a fixed

order of the polynomial bases, the Longstaff-Schwartz estimator (of the option price) is

normally distributed around the true projection of the price onto the polynomial bases with

convergence rate
√

M . Their theorems can be adapted to our setting to show that the

portfolio weights from our method converge to the optimal weights of the second- or fourth-

order expansion of the investor’s utility function.

There are many basis functions we can use for evaluating the conditional expectations,

including Chebyshev, Hermite, Laguerre, and Legendre orthogonal polynomials. Longstaff

and Schwartz (2001) report numerical evidence that even a simple power series is effective

15See also the survey of constrained optimization algorithms by Conn, Gould, and Toint (1994).
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and that the order of the polynomial needs not be very high for reliable option pricing. We

present similar results in Section 4.1 for the dynamic portfolio choice problem. In any case,

increasing the order of the polynomial just increases the number of regressors, which is not

a concern because we can simultaneously increase the number of sample paths to maintain

the same level of numerical accuracy. For large numbers of state variables, we can follow

the suggestions of Judd (1999) and use complete polynomials, for which the number of basis

functions increases linearly rather than exponentially with the number of state variables.

We need to be somewhat concerned about numerical issues though. It is well understood

that OLS regressions are susceptible to outliers, and our regressions are potentially plagued

by outliers because the curvature of the utility function tends to amplify the spread of the

terminal wealth. Even sequences of relatively normal returns sometimes result in extreme

realizations of the terminal utility and its derivatives. We can address this outliers problem

either through robust regression estimators, such as an M-estimator, or through more simple

α-trimmed OLS regressions, where some fraction α of the extreme observations in both tails

are omitted from the OLS regression. It is encouraging, however, that we have encountered

serious outliers problems only at extremely long horizons (because the variance of the realized

terminal wealth grows approximately linearly with the horizon).

3.4 Computation Speed

Despite the use of simulations, our method is relatively fast. In the applications we describe

below, it takes less than a couple of minutes to solve a 40-period portfolio choice problem

with one risky asset and as many as ten state variable on a standard PC with a Pentium

1.8MHz processor and 512MB of RAM.

4 Applications

4.1 Investing in Stocks with IID Returns

We first apply our method to the static (or single-period) portfolio choice between a stock

index and cash of a CRRA investor with relative risk aversion γ ranging from five to 20 and

a holding period ranging from one month to one year. The purpose of this application is to

quantify the approximation error due to the Taylor series expansion of the value function.

We assume a constant risk-free rate of six percent per year and model the excess stock return

as iid log-normal with a mean and volatility that match the sample moments of the historical

data from January 1986 through December 1995 on the value weighted CRSP index. The
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sample moments are provided for reference in the caption of Table 1. The sample is chosen

to match the period studied by Barberis (2000) to make our results comparable to his.

Table 1 presents in the columns marked x? the exact solution of this problem. These

columns show the optimal fraction of wealth allocated to stocks obtained by solving the

investor’s first-order condition using quadrature integration.16 The columns marked x2 and

x4 show the approximate allocations from a second- and fourth-order Taylor series expansion

of the utility function. The sub-panels present results for different holding periods, and the

rows correspond to different levels of risk aversion. Finally, the numbers in parentheses are

the losses in the certainty equivalent return on wealth, quoted in annualized basis points,

due to the error in the approximation of the value function.

The results show that the magnitude and economic significance of the approximation error

depend on both the return horizon and the curvature of the utility function. Consider first

the horizon effect. The second-order approximation leads to little expected utility loss at the

monthly horizon (0.12 to 0.48 basis points) but a substantial loss at the annual horizon (as

much as 57 basis points). The intuition for this result is that the wealth distribution is more

spread out at longer horizons because the return variance increases approximately linearly

with the horizon, causing the higher-order terms of the expansion to be more important. The

effect of changing risk aversion is less straightforward. At all horizons, the expected utility

loss due to the approximation decreases with the level of risk aversion, which is counter-

intuitive considering that the curvature of the utility function increases with risk aversion.

The reason for this result is that the increase in the curvature of the utility function is only

one of two offsetting effects. The other effect is that the investor allocates substantially less

wealth to stocks as risk aversion increases (76 percent with γ = 5 versus 19 percent with

γ = 20 at the monthly horizon). This causes the wealth distribution to be less spread out

and, as a result, reduces the importance of the higher-order terms of the expansion. The

variance of wealth effect dominates the curvature of the utility function effect, causing the

accuracy of the second-order approximation to increase with the level of risk aversion.

Table 1 also shows that the fourth-order expansion of the utility function performs

substantially better than the second-order expansion. For the monthly, quarterly, and

semi-annual holding periods the difference between the exact and fourth-order approximate

allocations is less than 0.05 in magnitude (in most cases even less than 0.01), irrespective of

the level of risk aversion, and the associated expected utility loss is negligible. Even for the

16Although the returns are assumed to be iid, the optimal portfolio weights are not constant across different
holding periods. This is because we calibrate the long-horizon return distributions to the corresponding long-
horizon sample moments rather than scale the monthly sample moments using the iid assumption. With
scaled moments the horizon-irrelevance result of Merton (1969) and Samuelson (1969) holds exactly.
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annual holding period, the difference between the exact and approximate solutions is in all

cases less than 0.15 with an expected utility loss of at most twenty basis points.

We conclude from this first application that the second-order expansion of the value

function is satisfactory for short holding periods and high levels of risk aversion. The fourth-

order expansion performs uniformly better than the second expansion and, more importantly,

results in an accurate approximation of the true solution in all cases considered in this paper.

4.2 Investing in Stocks with Predictable Returns

We next consider the dynamic (or multiperiod) portfolio choice of a CRRA investor between

a stock index and cash when the stock returns are predictable by the dividend yield of the

index. This stylized asset allocation problem has received much attention recently [Brennan,

Schwartz, and Lagnado (1997), Balduzzi and Lynch (1999), Brandt (1999), Campbell and

Viceira (1999), Barberis (2000)] because it illustrates clearly the differences between the

dynamic (or multiperiod) and myopic (or single-period) portfolio choices. The main goal of

this application is to establish the properties of our solution method relative to the more

traditional approach of discretizing the state space.

We assume the following restricted VAR as the quarterly data generating process:

[
re
t+1

dt+1− pt+1

]
=




0.227
(0.95)

−0.155
(−0.79)


 +




0.060
(0.87)

0.958
(17.02)


 (dt− pt) +

[
ε1,t+1

ε2,t+1

]

(28)[
ε1,t

ε2,t

]
∼ N

([
0

0

]
,

[
0.0060 −0.0051

−0.0051 0.0049

])
,

where re
t is the log excess return on the value weighted CRSP index and dt− pt denotes the

log dividend yield of the index, computed from the sum of the past 12 monthly dividends and

the current level of the index. The VAR is estimated using quarterly data from January 1986

to December 1995, which again matches the sample of Barberis (2000). In parentheses are

Newey and West (1987) adjusted t-statistics.

The restricted VAR in equation (28) is very similar to the model used by Campbell and

Viceira (1999) and Barberis (2000). The predictability along with the extreme persistence of

the dividend yield induce slow mean-reversion in returns and thereby cause long-horizon

returns to be less variable than iid returns [Barberis (2000)]. Furthermore, the strong

negative correlation between the return and dividend yield innovations (correlation of −0.95)
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induces substantial differences between the myopic and dynamic portfolio policies (hedging

demands). The investor can hedge against changes in the dividend yield, which are associated

with changes in future expected returns, by over-allocating wealth to the stock index relative

to the myopic portfolio choice [Campbell and Viceira (1999), Barberis (2000)].

Figure 1 plots the optimal portfolio weight as a function of the investment horizon

for γ ranging from five to 20. The dashed, dotted, and solid lines represent the optimal

allocation of wealth to stocks conditional on the dividend yield being equal to one standard

deviation below, at, or one standard deviation above the historical average, respectively.17

The horizon ranges from two quarters to five years (20 quarters). The results are based on

10,000 simulated sample paths and a fourth-order expansion of the value function.

Reminiscent of the results of Barberis (2000), the allocation to stocks increases with the

horizon. The differences between the quarterly and long-horizon allocations represent the

hedging demand, or the excess demand for stocks to hedge against unexpected changes in

the dividend yield and (through the dividend yield) in future expected returns. The fraction

of wealth invested in stocks reaches a steady-state level at a horizon of five to ten years. This

steady-state solution corresponds to an infinitely-lived investor and is therefore comparable

to the results of Campbell and Viceira (1999). The allocation to stocks decreases both with

increasing risk aversion and with decreasing values of the dividend yield.

Table 2 examines in more detail the optimal portfolio choice in the case of γ = 10. The

table describes three competing portfolio policies: ‘U’ denotes the unconditional policy,

where the fraction of wealth invested in stocks is chosen according to the unconditional

return distribution; ‘M’ is the myopic policy, where each period the allocation is conditioned

on the dividend yield assuming only a single-period horizon; and ‘D’ denotes the optimal

dynamic portfolio policy. For each policy, the table reports the fraction of wealth allocated to

stocks and the certainty equivalent return on wealth from following that policy.18 To assess

the numerical accuracy of our solution, we repeat the algorithm 1,000 times using different

sets of simulations. We report in parentheses the standard deviations of the portfolio weights

and the certainty equivalents of wealth across these repetitions.

Relative to the unconditional portfolio policy, the myopic policy allocates less (more)

17The historical average (3.00%) dividend yield is higher than the unconditional average (2.38%) implied
by VAR coefficients. We chose to condition on historical averages to be consistent with Barberis (2000).

18We also calculate the certainty equivalent return on wealth from following the policy in an independent
set of simulations or “out-of-sample”. To apply the portfolio policy out-of-sample, we first linearize it by
regressing the portfolio weights on the state variables across the sample paths. The certainty equivalent
expected utility gain computed with the independent set of simulations is within a few basis points of the
in-sample expected utility gain. These results are available upon request.
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wealth to stocks when the dividend yield is below (above) its historical mean.19 Conditioning

the investment decision on the dividend yield generates an impressive gain in expected utility.

For a five-year horizon, the gain is as much as an annualized 2.6 percent difference in the

certainty equivalent return on wealth or an overall 13.69 percent difference in the certainty

equivalent of wealth over the five-year horizon. Furthermore, conditioning on the dividend

yield in a dynamic instead of myopic fashion produces substantial differences in the portfolio

weights. For instance, at the five-year horizon the difference between the dynamic and myopic

stock holdings is almost 40 percent. The expected utility gain from investing optimally versus

myopically is of the same order of magnitude as the gain from the myopic conditional versus

unconditional portfolio choice. For a five-year horizon, the certainty equivalent return on

wealth increases by as much as 0.7 percent per year, which translates into an overall 3.55

percent difference in the certainty equivalent of wealth over the five-year horizon.

Table 2 also provides evidence on the precision of our numerical solution method. The

standard errors on the portfolio weights computed from the Monte Carlo experiment are

always less than 1.67 percent in magnitude, and represent no more than 1/15th of the

portfolio weight. The standard errors on the certainty equivalent of wealth are negligible

with the maximum loss in wealth being only 10 basis points.

Table 3 provides a direct comparison of our solution method to the more traditional

dynamic programming approach of discretizing the state space used by Barberis (2000)

among others. We discretize the unconditional distribution of the dividend yield into 25

equally-spaced values in the interval E[dt− pt]± 3 Std[dt− pt] and solve the dynamic problem

recursively backwards on this grid. For each future date and every point in the discretized

state space, we evaluate the conditional expectation in equation (6) with 10,000 one-step

ahead simulations of the stock return and dividend yield from the VAR, and we interpolate

the value function whenever the future realization of the dividend yield does not coincide with

one of the grid points. The table reports for both solution methods the optimal allocation

to stocks for the case of γ = 10 when the dividend yield is equal to one standard deviation

below, at, or one standard deviation above the historical average at horizons ranging from

two quarters to five years (20 quarters).

The table shows that the two numerical solution methods yield very similar portfolio

weights, with most of the differences between the stock allocations being less than one

percent in magnitude.20 The associated differences in expected utility are negligible (and

19The difference between the two policies when the dividend yield is equal to its historical mean is due to
the fact that the unconditional variance of stock returns is greater than the conditional variance.

20The portfolio weights obtained with our simulation method are always somewhat higher than those from
the discretized state space approach. It is unclear which method is biased.
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are therefore not reported in the table). An important practical difference between the two

methods, which is not apparent in the table, is that our simulation method is much faster

(by a factor of almost ten) than the discretized state space approach.

The results in tables 2 and 3 and in Figure 1 are obtained with a linear specification

of the conditional expectations of At+1, Bt+1, Ct+1(xt), and Dt+1(xt) in equation (11).

Although linear expectations do not correspond to a linear value function, since we project

the derivatives of the value function on the basis function, it is important to understand how

sensitive the solution is to this linearity assumption. In Table 4 we compare the portfolio

policies obtained with linear basis functions (which we copy for reference from Table 2) to

policies with quadratic basis functions. At short horizons of up to two years, the stock

holdings and the annualized in- and out-of-sample certainty equivalent returns on wealth are

virtually identical across the two sets of basis functions. At longer horizons of five to ten

years, there are small differences in the portfolio weights (as much as one percent). However,

the expected utility from implementing the portfolio policy actually deteriorates slightly

when we add quadratic regressors. This is probably because the regressions with quadratic

basis functions are more sensitive to outliers than with linear basis functions.21 Both the

differences in the computed portfolio weights and the certainty equivalent of wealth are of

the order of magnitude of the standard errors on these quantities computed from the Monte

Carlo experiment. This suggests that the differences are insignificant so that there is no

apparent advantage to increasing the order of the basis functions.

Finally, to assess the magnitude of simulation error in our solution method, we investigate

further the role of the number of simulated paths used in the algorithm. Table 5 shows

standard errors of the portfolio weights and certainty equivalent return on wealth as we vary

the number of simulated paths from 1,000 to 10,000. The standard errors are computed

from 1,000 replications of the algorithm. The results confirm the intuition that the standard

errors of both the portfolio weights and the certainty equivalent return on wealth decline

with the number of simulations. As few as 10,000 simulation paths are sufficient to reduce

the standard errors to negligible levels. For instance, the maximum standard error on the

certainty equivalent return on wealth is only 10 basis points for a 5 year horizon.

4.3 Investing in Stocks While Learning About the Return Model

Having established the properties of our method for a relatively simple portfolio problem, we

turn to a more challenging and economically more interesting application. We consider the

21Further experimentation reveals that, consistent with this explanation, the expected utility increases
when we truncate outliers and deteriorates further when we add cubic terms without truncation.
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problem of an investor who takes into account the predictability of returns but is uncertain

about the parameters of the return model given by equation (28). The Bayesian portfolio

choice literature, pioneered by Zellner and Chetty (1965), Klein and Bawa (1976), and

Brown (1978), argues that in the presence of parameter uncertainty the unknown objective

return distribution in the expected utility maximization (1) should be replaced with the

investor’s subjective posterior return distribution reflecting the information contained in the

historical data and the investor’s prior beliefs about the parameters. In the case of the

restricted VAR in equation (28), this idea has been implemented in a single-period portfolio

problem by Kandel and Stambaugh (1996) and partially implemented in a multiperiod

problem by Barberis (2000). Both studies demonstrate that parameter uncertainty is an

important dimension of risk which can substantially lower the optimal allocation to stocks.

Fully incorporating parameter uncertainty in a multiperiod portfolio problem is more

complicated than in an otherwise identical single-period problem. The reason is that

the multiperiod solution should take into account the fact that the posterior distribution

changes each period as the investor incorporates the information contained in the new

data realizations into the posterior beliefs. This learning process increases dramatically

the dimensionality of the state space (from one to 11 state variables in the restricted VAR

example shown below) and has not been studied before for computational reasons. There

are a few exceptions in the literature which deal with learning about individual elements

of the parameter vector, including Brennan (1998), an example in Barberis (2000), and Xia

(2001). However, due to the limited scope of learning considered, these studies are much more

informative about the overall importance of learning in the multiperiod portfolio choice than

about the sign and magnitude of the effects in a more realistic setting in which the investor

is uncertain about all the parameters of the model. More specifically, there is no study of

the effect of simultaneously learning about the unconditional risk premium, predictability,

mean of the predictor, and second moments of the predictor and return. The proliferation

of state variables and the documented economic importance of learning in the mutiperiod

portfolio choice make the problem of learning about the entire return generating process an

ideal application of our numerical solution method.

To formalize the setup of this application, we express the restricted VAR in equation (28)

generically as:

Yt+1 = BXt + εt+1 with εt+1 ∼ N[0, Σ], (29)

where Yt+1 ≡ [re
t+1, dt+1 − pt+1]

′, Xt ≡ [1, dt − pt]
′, and εt+1 = [ε1,t+1, ε2,t+1]. Assuming the
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investor has standard non-informative prior beliefs about the parameters [B, Σ] given by:

p(B, Σ) ∝ |Σ|3/2, (30)

the posterior beliefs about the parameters, denoted p(B, Σ|Y, X), are characterized by:

p(Σ−1|Y, X) ∼ Wishart
(
T − 3, S−1

)

p(vec(B)
∣∣Σ, Y, X) ∼ N

[
vec(B̂), Σ⊗ (X ′X)−1

] (31)

with S ≡ (Y −XB̂)′(Y −XB̂) and B̂ ≡ (X ′X)−1(X ′Y ) [Zellner (1977)]. Finally, we obtain

the investor’s posterior distribution of the data next period by integrating the conditional

(on the dividend yield and unknown parameters) distribution implied by the model (29)

against the posterior distribution of the parameters in equation (31).

If we ignore learning, as in Barberis (2000), the Bayesian multiperiod portfolio choice

problem is essentially the same as when the investor knows the return generating process.

There is one state variable, the current dividend yield, which fully characterizes the

conditional distribution of returns. The only difference is that each period the conditional

expectation is evaluated with respect to the investor’s posterior distribution of returns

(conditional on dt− pt), which turns out to be a student-t distribution with a variance

somewhat larger than the sample variance of returns to reflect the parameter uncertainty.

With learning, however, the conditional posterior distribution of returns changes from one

period to the next as new information is incorporated into the investor’s beliefs each period.

The posterior distribution therefore becomes part of the state space describing the conditional

distribution of returns. Specifically, the posterior distributions in equation (31) are fully

characterized by the matrices X ′X, X ′Y and S. Sufficient state variables for the investor’s

multiperiod problem are therefore the unique elements of these matrices along with the

current dividend yield, for a total of 11 state variables. This proliferation of state variables

explains why fully incorporating parameter uncertainty with learning into the multiperiod

portfolio choice has until now been deemed computationally infeasible.

Solving this problem with our simulation based method is as straightforward as in the

previous two applications. Along each simulated path, we update the posterior distributions

of the parameters given the previously simulated return and dividend yield and then simulate

the next return and dividend yield from the updated posterior predictive distributions. The

way the posterior distributions evolve along each path emulates the investor’s learning about

the return generating process. We then solve the dynamic optimization problem backward as

usual, using as state variables in the across-path regressions the realizations of the dividend
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yield and the realizations of the unique elements of X ′X, X ′Y and S in each future period.

To get a better sense of the role of learning in the dynamic portfolio choice, we compare

three different portfolio problems corresponding to three different subjective data generating

processes. The results labeled ‘C’ are for an investor who takes the parameters as constant

at the point estimates given in equation (28), as in the previous application. ‘N’ denotes the

case in which the investor takes into account parameter uncertainty but does not learn from

new data realizations. This is the case examined by Barberis (2000). Finally, the results

labeled ‘L’ are for an investor who learns about the return generating process.

With learning, the conditional moments of the stock return and dividend yield vary along

each simulated sample path. The way the first moments change is highly correlated with

the new data realizations (discussed further below) but does not exhibit any systematic

pattern across horizons. The second moments, in contrast, are highly horizon-dependent.

Figure 2 illustrates this horizon pattern by plotting the conditional second moments of the

excess stock return and changes in the dividend yield as functions of the horizon for the three

assumptions about parameter uncertainty and learning. For each horizon, we plot the average

conditional standard deviations (annualized) across the 10,000 simulated sample path. The

dashed, dotted, and solid lines correspond to the cases ‘C’, ‘N’, and ‘L’, respectively.

Parameter uncertainty with and without learning (‘N’ and ‘L’) causes the conditional

second moments to be initially higher than in the constant parameter case (‘C’). At the one-

quarter horizon, parameter uncertainty adds about 0.5 percent to the annualized volatility

of stock returns. As Barberis (2000) explains, without learning the role of parameter

uncertainty increases with the horizon because along each sample path the randomness in the

parameters is perfectly positively correlated. With learning, in contrast, the role of parameter

uncertainty diminishes gradually as the investor learns about the return generating process.

In particular, after 10 years of learning the effect of parameter uncertainty has vanished, so

the posterior volatility of stock returns (dividend yield) is equal to the volatility of stock

returns (dividend yield) under the assumption of constant parameters.

Table 6 examines the dynamic portfolio choice for an investor with γ = 10. For each

assumption about parameter uncertainty and learning, the table reports the fraction of

wealth allocated to stocks in Panel A. The results are reported for three different starting

values of dividend yield: equal to, one standard deviation below, and one standard deviation

above the historical average. The remaining ten state variables are fixed at values at the

end of the sample period in 1995. Panel B reports the annualized certainty equivalent return

on wealth from following that policy. We evaluate all three portfolio policies under the
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assumption of learning (i.e., using the simulations for the ‘L’ case).22 Therefore, we address

the question of how much better off is an investor who ends up learning about the return

generating process by explicitly incorporating parameter uncertainty and learning in the

dynamic portfolio optimization. This is the relevant question because it is always optimal

for the investor to learn and committing not to do so is time-inconsistent.

Relative to the constant parameter case in the previous application, the portfolio policies

which incorporate parameter uncertainty invest substantially less in stocks. For instance,

at the ten-year horizon, the ‘N’ policy invests almost 20 percent less in stocks than the

‘C’ policy. As Barberis (2000) explains, this result is attributable to the increased posterior

variance of returns due to parameter uncertainty. Incorporating the effect of learning further

reduces the allocation to stocks. For a ten-year horizon with the initial dividend yield at

its historical average, the allocation to stocks with learning is only 20.3 percent, almost 35

percent lower than the allocation in the case of parameter uncertainty without learning and

almost one-fourth of the allocation in the constant parameter case.

Table 6 also shows that the magnitude of the difference in the stock allocation increases

both with the horizon and with the current value of the dividend yield. For instance, the

difference between the ‘C’ and ‘L’ policies is only six percent at the one-year horizon but

a substantial 35 percent at the five-year horizon. As we discuss below, this pattern in the

results is mostly due to hedging demands induced by learning.

The benefits of incorporating learning are apparent from the certainty equivalent returns

on wealth in Panel B. The greater stock holdings in the constant parameter and parameter

uncertainty without learning cases leads to substantial welfare losses relative to the learning

case. Furthermore, the expected utility gains from investing optimally versus ignoring

parameter uncertainty or ignoring learning are of the same order of magnitude. For a 10-

year horizon, the certainty equivalent return on wealth of the ‘L’ policy is 5.8 percent per

year higher than for the ‘C’ policy and 5.5 percent higher than for the ‘N’ policy. Over the

10-year period, these gains translate into a more than 70 percent difference in the certainty

equivalent of wealth. The certainty equivalent gains increase both with the horizon and with

the current value of the dividend yield, which is consistent with the finding above that the

differences between the optimal portfolio weights increase in the same dimensions.

Optimal portfolio choice in the case of parameter uncertainty with learning is likely

to be different from the case of parameter uncertainty without learning. The revisions in

22We compute the certainty equivalents for the ‘C’ and ‘N’ policies by first linearly interpolating the
portfolio policy around the dividend yield in own set of simulations. Using cubic splines has no material
impact on our results. This portfolio policy “function” is then evaluated at the dividend yield in the ‘L’ case
and then used for generating wealth for the returns under the ‘L’ scenario.
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the beliefs about the return generating process, which determines the future investment

opportunities, are strongly correlated with returns, inducing additional hedging demands.

Table 7 quantifies these effects. Panel A shows the differences between the dynamic and

myopic allocations. Panel B presents the associated differences in the certainty equivalent

return on wealth, evaluated again under the assumption of learning.

Consistent with the prior literature, the hedging demands increase with the horizon for

both the ‘C’ and ‘N’ policies. This pattern in the optimal allocations is due to the strong

negative correlation between the return and dividend yield innovations. As demonstrated

originally by Barberis (2000), parameter uncertainty lowers the hedging demand. The reason

is that parameter uncertainty lowers the investor’s overall exposure to stocks and therefore

limits the need to hedge against changes in the conditional return distribution.

In the case of learning (‘L’), the gain in the certainty equivalent return on wealth from

investing optimally as opposed to myopically is about one percent for a 10-year horizon as

shown in Panel B. Ironically, for an investor who ignores learning (‘C’ or ‘N’), investing

in a dynamically “optimal” way as opposed to myopically actually results in a certainty

equivalent loss in utility. The magnitude of this loss increases with the horizon and is of

the order of two to three percent for a 10-year horizon. The reason for this utility loss is

clear. The dynamic policy without learning allocates more wealth to stocks, especially at

long horizons, than the corresponding myopic policy. The myopic policy without learning,

in turn, is much more similar to the optimal policy with learning. Therefore, the myopic

policy without learning dominates its dynamic counterpart. This result again illustrates the

importance of incorporating learning into the dynamic portfolio choice.

The most striking result in Table 7 is that, in the case of parameter uncertainty with

learning, the hedging demands are negative and even further decreasing with the horizon.

This pattern in the optimal allocation is attributable to learning about model parameters.

We can break up the set of model parameters into three sets: one related to the intercept and

slope of the return predictability equation, the second related to the mean of the dividend

yield, and the third related to second moments.

Consider first the impact of learning about the slope and the intercept of the predictability

equation. The effects of learning about these two parameters have previously been studied

in isolation by Brennan (1998) and Xia (2001). Brennan shows that a higher than

expected return realization leads to upward assessment of unconditional mean return, which

constitutes a subjective improvement in future investment opportunities. Conversely, a

low return has two negative effects on the investor, a decrease in wealth and a perceived

deterioration of future investment opportunities. Since stocks are therefore a poor hedge

28



against changes in investment opportunities, the investor chooses to allocate less wealth to

stocks than in the myopic case or in the case without learning. Xia, in contrast to Brennan,

assumes that the unconditional mean return (intercept) is known but there is uncertainty

about predictability (slope). She finds that the hedging demand due to learning depends on

where the current dividend yield is relative to its long-term mean, (dt − pt) − (d̄ − p̄). She

shows that when (dt − pt) > (d̄ − p̄), a higher than expected return realization leads to an

upward assessment of the slope, leading to an upward assessment of the conditional mean,

and thereby a negative hedging demand. On the other hand, there is a positive hedging

demand due to learning about predictability when (dt − pt) < (d̄ − p̄). The asymmetry in

learning about the slope can be understood by plotting a regression line through a scatter

plot. When a point is added above the previously fitted line, the slope changes, but the

change depends on whether the x-coordinate is higher or lower than the mean, the “pivotal”

point of the regression.23 As we discuss below, our results are consistent with both the

Brennan and the Xia effects.

Figure 3 illustrates the relative importance of the positive hedging demand due to the

negative correlation of changes in the dividend yield with returns, and the negative hedging

demand due to the positive correlation of changes in the model parameters with returns. The

first column isolates the dividend yield effect. It shows the average correlation at different

horizons across the simulated sample paths between changes in the conditional mean return

and the realized return, holding constant the parameters of the model between dates t and

t + 1 but allowing the dividend yield to change. Formally, we compute:

Corr
[
re
t+1,

(
B̂11,t + B̂12,t(dt+1 − pt+1)

)− (
B̂11,t + B̂12,t(dt − pt)

)]
, (32)

where B̂ij,t denotes the {i, j} element of the posterior mean B̂ at date t of the VAR coefficient

matrix B. Since this expression reduces to the correlation between excess returns and

changes in the dividend yield, it is negative and large in magnitude, consistent with the

negative posterior correlation between the VAR residuals in equation (28).24 This negative

correlation implies that, holding the parameters of the return model constant, stocks are

a good hedge against changes in the conditional mean return, inducing the usual positive

hedging demand.

However, the conditional mean return also changes with the investor’s posterior beliefs

about the VAR coefficients. The second column of Figure 3 isolates this learning effect. It

23See also Chapter 5 of Campbell and Viceira (2002) for a detailed discussion of these learning effects.
24The correlation between returns and changes in the dividend yield is less negative than the correlation

between the return and dividend-yield innovations due to the mean reversion in the dividend yield.
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shows the same correlation between the conditional mean return and realized return, except

now holding constant the dividend yield and allowing the model parameters to change:

Corr
[
re
t+1,

(
B̂11,t+1 + B̂12,t+1(dt − pt)

)− (
B̂11,t + B̂12,t(dt − pt)

)]
. (33)

Consistent with the intuition that a positive return innovation leads to an upward revision

of the unconditional/conditional mean return, this correlation is large and positive (almost

perfect at short horizons). Holding constant the dividend yield, returns are then actually a

poor hedge against changes in the (subjective) conditional mean return, which means that

the learning effect leads to negative hedging demands.

The third column of the figure combines the two effects by showing the average correlation

between the conditional mean return and return realization with both the parameters and

dividend yield changing. For our sample period, the aggregate correlation is positive but

relatively small at short horizons (except when the dividend yield is at its historical average),

and it turns negative at horizons of more than five years. This column shows the net impact

of the Brennan and Xia effects. However, it is important to note that since Xia’s results are

state dependent and Brennan’s result are not, it is not entirely obvious a priori which effect

will dominate when the effects are of opposite sign. Furthermore, one learns much slower in

discrete time and can hedge much less optimally than in continuous time. Therefore, one

cannot directly take Brennan and Xia’s continuous time portfolio weights and welfare gains

and assume similar results are obtained in discrete time. Our paper is the first to quantify

the effect first illustrated by Brennan and Xia in discrete time.

Now consider the impact of learning about the mean of dividend yield, which has not

been studied so far.25 Learning about the mean of the dividend yield induces a positive

hedging demand. The intuition is as follows. A positive return innovation is associated

with a negative innovation to the dividend yield because of the negative contemporaneous

correlation between the two. This leads to a downward assessment of the mean of the

dividend yield which in turn reduces the unconditional mean of returns. This worsening of

the investment opportunity set when returns are high (and vice versa) creates a positive

hedging demand for stocks. Thus, the negative effect of learning studied by Brennan (1998)

and Xia (2001) is partially offset when one also takes into account learning about the mean

of the predictor variable.

Finally, the effects of learning about second moments have also not been studied in the

25Xia (2001) considers the case when both the unconditional mean of stock return and the dividend yield
are known. Her predictive regressions are, therefore, expressed in demeaned form and the question of learning
about the mean of dividend yield is moot. Demeaning regressions in our setup is not enough because the
“mean” of dividend yield changes over time with learning.
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extant literature.26 Consider first the impact of learning about the correlation between

returns and dividend yield. A positive return innovation is contemporaneously related to a

negative dividend yield innovation. However, a high positive return innovation has the effect

of reducing this correlation, making it less negative. A less negative correlation implies that

the investor is less able to hedge changes in the investment opportunity set, making the

investor worse off. This gives rise to positive hedging demand, which again partially offsets

the usual negative hedging demands from learning. Consider now the impact of learning

about the return variance. A low absolute return reduces the assessment of variance while

a high absolute return raises the variance. Thus, both high positive and high negative

returns are associated with bad news about future investment opportunities, while both low

positive and low negative returns are associated with good news about future investment

opportunities. The net effect on hedging demand is unclear. Similarly, learning about the

variance of the dividend yield innovations has an ambiguous impact on portfolio choice.

We analyze the impact of learning about all the different parameters in Table 8. The

table compares the portfolio policy with learning from the previous tables, labelled ‘L3’

here, to two alternative policies for which the investor only conditions on subsets of the 11

state variables. For policy ‘L1’ the investor conditions on the coefficients in the first row

of B̂ = (X ′X)−1(X ′Y ) which determine the conditional mean of the stock return (3 state

variables including the dividend yield). For policy ‘L2’ the investor conditions also on the

second row of B̂ and therefore also on the conditional means of the dividend yield (5 state

variables including the dividend yield). ‘L3’ essentially adds the conditional second moments.

In all three cases, we assume the investor learns about the entire data generating process.

The impact of learning about the conditional means of the dividend yield is demonstrated

through policies ‘L1’ and ‘L2’. Consistent with our intuition about positive hedging demand

due to learning about the mean of dividend yield, we find that policy ‘L2’ leads to a higher

stock allocation than policy ‘L1’. The impact of learning about the elements of the covariance

matrix is shown through policies ‘L2’ and ‘L3’. We find that policy ‘L3’ (that learns about

second moments) sometimes allocates more and sometimes less than policy ‘L2’ (that does

not learn about second moments) which is consistent with our discussion above.

Panel B of Table 8 shows that the utility gains from learning about the mean of dividend

yield are of the order of 15 to 20 basis points per year. This effect is substantial especially

if we take into account that this calculation understates the true benefit since the data

26Both Brennan (1998) and Xia (2001) treat the elements of covariance matrix as known constants. Chacko
and Viceira (2003) study the optimal portfolio choice of an investor faced with time-varying volatility but
there is no learning involved. In the continuous-time framework used in these papers, volatility can be
exactly measured due to the continuous-record asymptotic argument of Merton (1980).

31



generating process is for the full learning case. This panel also shows that the economic

benefits from learning about second moments of the order of 12 to 56 basis points a year.

These findings also illustrate the economic value of our solution method. Without it,

solving a portfolio problem with such high-dimensional state space would still be deemed

computationally infeasible.

5 Conclusion

We presented a simulation-based method for solving dynamic portfolio choice problems

involving non-standard preferences and a large number of assets with arbitrary return

distribution. The main advantage of our approach relative to other numerical solution

methods is that our method can handle problems in which the conditional return distribution

depends on a large number of state variables with potentially path-dependent or even

non-stationary dynamics. The method can also accommodate intermediate consumption,

portfolio constraints, parameter and model uncertainty, and learning. Most importantly,

our method is easy to implement and works efficiently for large-scale problems.

We first apply the method to the stylized portfolio choice between the stock market and

cash when stock returns are either iid or predictable by the dividend yield. We show that our

approach replicates the results obtained by previous researchers using alternative numerical

methods, giving us confidence in the properties of our method. We then apply our method

to the portfolio choice of an investor who realizes that there is some predictability in stock

returns but is uncertain about the parameters of the return generating process. The investor

learns about the parameters from the realizations of returns and dividend yield and takes

into account the effect of learning from these future data in the optimal portfolio choice. We

find that there is a negative hedging demand due to learning that reduces the allocation to

stocks beyond the already smaller weight due to the parameter uncertainty. We document

substantial welfare gains from conditioning on all the state variables required to learn about

the distribution of returns.
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Table 1: Error due to the Expansion of the Value Function

This table describes the approximation error due to the Taylor series expansion of the utility function for a
single-period portfolio choice between a stock index and cash. We consider a CRRA investor with relative
risk aversion γ and a monthly, quarterly, semi-annual, or annual holding period. The risk-free rate is constant
at six percent per year and the excess stock returns iid log-normally distributed with mean and volatility:

Monthly Quarterly Semi-Annual Annual
Mean 0.73% 2.22% 4.43% 8.70%
StdDev 4.42% 7.91% 11.03% 13.55%

x? denotes the exact fraction of wealth allocated to stocks obtained by solving the investor’s first-order
condition using quadrature integration. x2 and x4 denote the approximate solutions from second- and
fourth-order expansions of the utility function, respectively. In parentheses is the loss in the certainty
equivalent return on wealth due to the approximation, quoted in annualized basis points.

γ x? x2 x4 x? x2 x4

Monthly Quarterly
5 0.7592 0.7303 0.7580 0.7484 0.6693 0.7378

(0.48) (0.00) (3.56) (0.06)
10 0.3795 0.3651 0.3791 0.3738 0.3347 0.3701

(0.23) (0.00) (1.74) (0.02)
20 0.1897 0.1826 0.1895 0.1867 0.1673 0.1852

(0.12) (0.00) (0.85) (0.01)

Semi-Annual Annual
5 0.8059 0.6461 0.7575 1.0000 0.7112 0.8726

(13.15) (1.21) (56.55) (18.14)
10 0.4024 0.3231 0.3843 0.5734 0.3556 0.4556

(6.41) (0.33) (31.30) (9.13)
20 0.2008 0.1615 0.1933 0.2859 0.1778 0.2329

(3.13) (0.12) (15.35) (3.66)
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Table 2: Dynamic Portfolio Policies with Dividend Yield Predictability

This table analyses the portfolio choice between a stock index and cash of a CRRA investor with relative risk
aversion γ = 10 when the stock returns are predictable by the dividend yield of the index. The portfolios are
rebalanced quarterly and the investment horizon T− t ranges from two quarters to ten years. The risk-free
rate is constant at six percent per year and the excess stock returns and log dividend yield evolve as a
first-order VAR with parameters given in equation (28). We present results for three current realizations of
the dividend yield one standard deviation below, at, one standard deviation above the historical average.
For each dividend yield and horizon, we evaluate three policies. ‘U’ is the unconditional policy, ‘M’ is the
myopic conditional policy, and ‘D’ is the dynamic conditional policy. The first row in each block is the
average across 1,000 Monte Carlo replications. The second row is the standard deviation of across all the
Monte-Carlo iterations. Panel A is for the portfolio weight in the stock index. Panel B is for the certainty
equivalent return on wealth (annualized) from following the portfolio policy in-sample. The results are based
on 10,000 simulated sample paths and a fourth-order expansion of the value function.

Panel A: Portfolio Weights

-1 standard deviation Mean +1 standard deviation
T − t U M D U M D U M D

2 0.0847 0.1627 0.1746 0.0847 0.3578 0.3812 0.0847 0.5444 0.5761
(0.0000) (0.0025) (0.0041) (0.0000) (0.0065) (0.0090) (0.0000) (0.0100) (0.0130)

4 0.0847 0.1627 0.2011 0.0847 0.3578 0.4310 0.0847 0.5444 0.6405
(0.0000) (0.0025) (0.0055) (0.0000) (0.0065) (0.0108) (0.0000) (0.0100) (0.0149)

8 0.0847 0.1627 0.2549 0.0847 0.3578 0.5161 0.0847 0.5444 0.7385
(0.0000) (0.0025) (0.0075) (0.0000) (0.0065) (0.0133) (0.0000) (0.0100) (0.0167)

20 0.0847 0.1627 0.4128 0.0847 0.3578 0.7213 0.0847 0.5444 0.9136
(0.0000) (0.0025) (0.0114) (0.0000) (0.0065) (0.0152) (0.0000) (0.0100) (0.0156)

40 0.0847 0.1627 0.5862 0.0847 0.3578 0.8544 0.0847 0.5444 0.9692
(0.0000) (0.0025) (0.0117) (0.0000) (0.0065) (0.0131) (0.0000) (0.0100) (0.0139)

Panel B: Certainty Equivalent Return on Wealth

-1 standard deviation Mean +1 standard deviation
T − t U M D U M D U M D

2 6.37% 6.47% 6.47% 6.72% 7.49% 7.48% 7.08% 9.26% 9.25%
(0.00%) (0.02%) (0.02%) (0.00%) (0.04%) (0.03%) (0.00%) (0.07%) (0.07%)

4 6.37% 6.55% 6.55% 6.71% 7.59% 7.59% 7.05% 9.39% 9.39%
(0.00%) (0.02%) (0.02%) (0.00%) (0.04%) (0.04%) (0.00%) (0.07%) (0.07%)

8 6.37% 6.68% 6.69% 6.69% 7.76% 7.79% 7.00% 9.55% 9.66%
(0.00%) (0.02%) (0.03%) (0.00%) (0.04%) (0.05%) (0.00%) (0.07%) (0.09%)

20 6.37% 6.95% 7.12% 6.62% 7.96% 8.36% 6.87% 9.52% 10.25%
(0.00%) (0.02%) (0.04%) (0.00%) (0.03%) (0.08%) (0.00%) (0.04%) (0.10%)

40 6.36% 7.08% 7.61% 6.53% 7.84% 8.68% 6.71% 8.94% 10.01%
(0.00%) (0.01%) (0.04%) (0.00%) (0.01%) (0.05%) (0.00%) (0.02%) (0.05%)
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Table 3: Simulation Method versus Discretized State Space Approach

This table compares the portfolio policy of a CRRA investor with relative risk aversion γ = 10 obtained
with the simulation method using 10,000 simulated sample paths and a fourth-order expansion of the value
function to the solution obtained by discretizing the state space and evaluating the conditional expectations
at each point in the state space with 10,000 simulations. The portfolios are rebalanced quarterly and the
investment horizon T− t ranges from two quarters to five years. The risk-free rate is constant at six percent
per year and the excess stock returns and log dividend yield evolve as a first-order VAR with parameters
given in equation (28). For both solution methods, the table shows the optimal fraction of wealth invested
in stocks when the dividend yield is equal to its unconditional 25th, 50th, and 75th percentile.

Simulation Discretized State Space
T − t -1sd Mean +1sd -1sd Mean +1sd

2 0.1733 0.3806 0.5764 0.1608 0.3447 0.5294

4 0.1969 0.4272 0.6365 0.1765 0.3767 0.5781

8 0.2454 0.5062 0.7284 0.2121 0.4436 0.6727

20 0.4034 0.7176 0.9157 0.3374 0.6349 0.8933
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Table 4: Linear versus Quadratic Polynomial Expectations

This table compares the dynamic portfolio policy of a CRRA investor with relative risk aversion γ = 10
obtained with regressions on linear versus quadratic polynomials of the dividend yield. The portfolios are
rebalanced quarterly and the investment horizon T− t ranges from two quarters to ten years. The risk-free
rate is constant at six percent per year and the excess stock returns and log dividend yield evolve as a
first-order VAR with parameters given in equation (28). The first row in each block is the average across
1,000 Monte Carlo replications. The second row is the standard deviation of across all the Monte Carlo
replications. Panel A is for the portfolio weight in the stock index. Panel B is for the certainty equivalent
return on wealth (annualized) from following the portfolio policy in-sample. The results are based on 10,000
simulated sample paths, a fourth-order expansion of the value function.

Panel A: Portfolio Weights

-1 standard deviation Mean +1 standard deviation

T− t Linear Quadratic Linear Quadratic Linear Quadratic

2 0.1746 0.1746 0.3812 0.3812 0.5761 0.5760
(0.0041) (0.0041) (0.0090) (0.0090) (0.0130) (0.0130)

4 0.2011 0.2008 0.4310 0.4301 0.6405 0.6384
(0.0055) (0.0055) (0.0108) (0.0109) (0.0149) (0.0150)

8 0.2549 0.2523 0.5161 0.5090 0.7385 0.7262
(0.0075) (0.0073) (0.0133) (0.0131) (0.0167) (0.0166)

20 0.4128 0.3911 0.7213 0.6811 0.9136 0.8731
(0.0114) (0.0105) (0.0152) (0.0157) (0.0156) (0.0169)

40 0.5862 0.5498 0.8544 0.8140 0.9692 0.9521
(0.0117) (0.0129) (0.0131) (0.0159) (0.0139) (0.0160)

Panel B: Certainty Equivalent Return on Wealth

-1 standard deviation Mean +1 standard deviation

T− t Linear Quadratic Linear Quadratic Linear Quadratic

2 6.47% 6.47% 7.48% 7.48% 9.25% 9.25%
(0.02%) (0.02%) (0.03%) (0.04%) (0.07%) (0.07%)

4 6.55% 6.55% 7.59% 7.59% 9.39% 9.39%
(0.02%) (0.02%) (0.04%) (0.04%) (0.07%) (0.07%)

8 6.69% 6.69% 7.79% 7.79% 9.66% 9.64%
(0.03%) (0.03%) (0.05%) (0.05%) (0.09%) (0.08%)

20 7.12% 7.10% 8.36% 8.30% 10.25% 10.11%
(0.04%) (0.03%) (0.08%) (0.06%) (0.10%) (0.08%)

40 7.61% 7.56% 8.68% 8.63% 10.01% 10.09%
(0.04%) (0.04%) (0.05%) (0.06%) (0.05%) (0.08%)
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Table 5: Number of Simulation Paths

This table illustrates the Monte Carlo experiment of the number of simulation paths in the regression used
to approximate conditional expectations in the dynamic portfolio policy of a CRRA investor with relative
risk aversion γ = 10. The portfolios are rebalanced quarterly and the investment horizon T− t ranges from
two quarters to ten years. The risk-free rate is constant at six percent per year and the excess stock returns
and log dividend yield evolve as a first-order VAR with parameters given in equation (28). The first row in
each block is the average across 1,000 Monte Carlo replications. The second row is the standard deviation of
across all the Monte Carlo replications. The results are based fourth-order expansion of the value function
and 1,000 Monte Carlo replications.

Panel A: Portfolio Weights

-1 standard deviation Mean +1 standard deviation
T − t 1,000 5,000 10,000 1,000 5,000 10,000 1,000 5,000 10,000

2 0.1753 0.1748 0.1746 0.3816 0.3816 0.3812 0.5767 0.5767 0.5761
(0.0132) (0.0059) (0.0041) (0.0277) (0.0128) (0.0090) (0.0395) (0.0185) (0.0130)

4 0.2021 0.2015 0.2011 0.4303 0.4312 0.4310 0.6389 0.6406 0.6405
(0.0181) (0.0079) (0.0055) (0.0351) (0.0156) (0.0108) (0.0474) (0.0213) (0.0149)

8 0.2563 0.2552 0.2549 0.5163 0.5166 0.5161 0.7376 0.7392 0.7385
(0.0238) (0.0102) (0.0075) (0.0418) (0.0180) (0.0133) (0.0520) (0.0225) (0.0167)

20 0.4111 0.4121 0.4128 0.7168 0.7204 0.7213 0.9079 0.9128 0.9136
(0.0314) (0.0156) (0.0114) (0.0440) (0.0208) (0.0152) (0.0452) (0.0215) (0.0156)

40 0.5804 0.5851 0.5862 0.8502 0.8541 0.8544 0.9570 0.9671 0.9692
(0.0353) (0.0162) (0.0117) (0.0412) (0.0180) (0.0131) (0.0361) (0.0184) (0.0139)

Panel B: Certainty Equivalent Return on Wealth

-1 standard deviation Mean +1 standard deviation
T − t 1,000 5,000 10,000 1,000 5,000 10,000 1,000 5,000 10,000

2 6.49% 6.47% 6.47% 7.51% 7.49% 7.48% 9.28% 9.25% 9.25%
(0.07%) (0.03%) (0.02%) (0.12%) (0.05%) (0.03%) (0.21%) (0.10%) (0.07%)

4 6.57% 6.55% 6.55% 7.62% 7.59% 7.59% 9.43% 9.40% 9.39%
(0.08%) (0.03%) (0.02%) (0.14%) (0.06%) (0.04%) (0.24%) (0.11%) (0.07%)

8 6.73% 6.70% 6.69% 7.85% 7.80% 7.79% 9.74% 9.67% 9.66%
(0.09%) (0.04%) (0.03%) (0.16%) (0.07%) (0.05%) (0.27%) (0.13%) (0.09%)

20 7.19% 7.13% 7.12% 8.46% 8.38% 8.36% 10.34% 10.26% 10.25%
(0.10%) (0.05%) (0.04%) (0.16%) (0.10%) (0.08%) (0.22%) (0.13%) (0.10%)

40 7.66% 7.62% 7.61% 8.74% 8.69% 8.68% 10.04% 10.01% 10.01%
(0.07%) (0.05%) (0.04%) (0.09%) (0.06%) (0.05%) (0.11%) (0.06%) (0.05%)
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Table 6: Dynamic Policies with Learning

This table presents summary statistics for the dynamic conditional policy under three different assumptions
about parameter uncertainty and learning. ‘C’ corresponds to constant parameters, ‘N’ is for parameter
uncertainty without learning, and ‘L’ corresponds to parameter uncertainty with learning. The portfolios
are rebalanced quarterly and the investment horizon T − t ranges from two quarters to five years. The
risk-free rate is constant at six percent per year. The investor has CRRA preferences with relative risk
aversion γ = 10. Panel A gives the portfolio weights in the stock index. Panel B gives the annualized
certainty equivalent return on wealth. Certainty equivalents for ‘C’ and ‘N’ policies are evaluated under the
‘L’ assumption. The results are based on 10,000 simulated sample paths and a fourth-order expansion of the
value function.

Panel A: Portfolio Weights

-1 standard deviation Mean +1 standard deviation
T − t C N L C N L C N L

2 0.1421 0.1324 0.1214 0.3138 0.2978 0.2876 0.4873 0.4516 0.4241

4 0.1612 0.1470 0.1162 0.3493 0.3216 0.2905 0.5353 0.4781 0.4023

8 0.2026 0.1744 0.1121 0.4212 0.3655 0.2918 0.6224 0.5311 0.3775

20 0.3397 0.2380 0.0860 0.6057 0.4532 0.2454 0.7804 0.6143 0.3127

40 0.5419 0.3288 0.0518 0.7635 0.5450 0.2030 0.8323 0.6925 0.2696

Panel B: Certainty Equivalent Return on Wealth

-1 standard deviation Mean +1 standard deviation
T − t C N L C N L C N L

2 6.45% 6.46% 6.49% 7.36% 7.37% 7.37% 8.59% 8.67% 8.69%

4 6.47% 6.47% 6.54% 7.29% 7.32% 7.35% 8.02% 8.23% 8.44%

8 6.46% 6.49% 6.61% 6.87% 7.03% 7.26% 6.08% 6.94% 8.11%

20 4.93% 6.05% 6.12% 2.74% 4.37% 6.82% 0.68% 2.23% 7.48%

40 2.13% 2.56% 5.35% 0.99% 1.28% 6.77% 0.15% 0.31% 7.13%
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Table 7: Hedging Demands with Learning

This table presents summary statistics for the hedging demands under three different assumptions about
parameter uncertainty and learning. ‘C’ corresponds to constant parameters, ‘N’ is for parameter uncertainty
without learning, and ‘L’ corresponds to parameter uncertainty with learning. The portfolios are rebalanced
quarterly and the investment horizon T − t ranges from two quarters to five years. The risk-free rate is
constant at six percent per year. The investor has CRRA preferences with relative risk aversion γ = 10.
Panel A gives the hedging demand in the stock index. Panel B gives the annualized gain in certainty
equivalent return on wealth from following the dynamic policy over a myopic policy. Certainty equivalent
for ‘C’ and ‘N’ policies are evaluated under the ‘L’ assumption. The results are based on 10,000 simulated
sample paths and a fourth-order expansion of the value function.

Panel A: Hedging Demand

-1 standard deviation Mean +1 standard deviation
T − t C N L C N L C N L

2 0.0105 0.0063 -0.0048 0.0205 0.0129 0.0026 0.0296 0.0184 -0.0091

4 0.0295 0.0209 -0.0099 0.0559 0.0367 0.0055 0.0775 0.0449 -0.0309

8 0.0710 0.0483 -0.0140 0.1279 0.0806 0.0069 0.1646 0.0979 -0.0557

20 0.2080 0.1119 -0.0401 0.3123 0.1682 -0.0395 0.3226 0.1811 -0.1205

40 0.4102 0.2027 -0.0743 0.4701 0.2601 -0.0820 0.3746 0.2593 -0.1635

Panel B: Gain in Certainty Equivalent Return on Wealth

-1 standard deviation Mean +1 standard deviation
T − t C N L C N L C N L

2 -0.00% -0.00% -0.00% -0.01% -0.00% -0.00% -0.03% -0.01% 0.00%

4 -0.01% -0.01% 0.00% -0.03% -0.01% 0.00% -0.13% -0.04% 0.03%

8 -0.04% -0.02% 0.01% -0.21% -0.09% 0.01% -0.68% -0.26% 0.05%

20 -1.39% -0.37% 0.03% -2.28% -1.28% 0.30% -1.97% -1.36% 0.14%

40 -2.80% -3.00% 0.86% -2.00% -2.28% 1.34% -1.27% -1.71% 0.31%
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Table 8: Dynamic Policies with Partial Conditioning

This table presents summary statistics for the dynamic conditional portfolio policies for three different
conditioning information sets. Policy ‘L1’ is conditional on the regression coefficients of the return
predictability equation only, policy ‘L2’ is conditional on the regression coefficients of both the return and
dividend yield predictability equations, and policy ‘L3’ is conditional on all of the state variables (policy
‘L3’ is the same as policy ‘L’ in Tables 6 and 7). The portfolios are rebalanced quarterly and the investment
horizon T− t ranges from two quarters to five years. The risk-free rate is constant at six percent per year.
The investor has CRRA preferences with relative risk aversion γ = 10. Panel A gives the portfolio weights in
the stock index. Panel B gives the annualized certainty equivalent return on wealth. The results are based
on 10,000 simulated sample paths and a fourth-order expansion of the value function.

Panel A: Portfolio Weights

-1 standard deviation Mean +1 standard deviation
T − t L1 L2 L3 L1 L2 L3 L1 L2 L3

2 0.1216 0.1217 0.1214 0.2882 0.2887 0.2876 0.4272 0.4270 0.4241

4 0.1166 0.1166 0.1162 0.2911 0.2917 0.2905 0.4046 0.4047 0.4023

8 0.1099 0.1108 0.1121 0.2927 0.2941 0.2918 0.3745 0.3776 0.3775

20 0.0808 0.0854 0.0860 0.2462 0.2538 0.2454 0.2995 0.3111 0.3127

40 0.0416 0.0529 0.0518 0.1699 0.1958 0.2030 0.2339 0.2599 0.2696

Panel B: Certainty Equivalent Return on Wealth

-1 standard deviation Mean +1 standard deviation
T − t L1 L2 L3 L1 L2 L3 L1 L2 L3

2 6.49% 6.49% 6.49% 7.38% 7.39% 7.37% 8.73% 8.73% 8.69%

4 6.54% 6.55% 6.54% 7.36% 7.37% 7.35% 8.47% 8.47% 8.44%

8 6.62% 6.62% 6.61% 7.24% 7.25% 7.26% 8.05% 8.09% 8.11%

20 6.19% 6.26% 6.12% 6.48% 6.65% 6.82% 7.25% 7.40% 7.48%

40 4.59% 4.79% 5.35% 6.33% 6.52% 6.77% 6.85% 7.01% 7.13%
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Figure 1: Horizon Effect

This figure presents the portfolio choices between a stock index and cash of a CRRA investor with relative
risk aversion γ ranging from five to 20 as a function of the investment horizon. The portfolios are rebalanced
quarterly and the investment horizon T − t ranges from two quarters to five years. The risk-free rate is
constant at six percent per year and the excess stock returns and log dividend yield evolve as a first-order
VAR with parameters given in equation (28). The dashed, dotted, and solid lines represent the optimal
allocation of wealth to stocks conditional on the dividend yield being equal to one standard deviation below,
at, one standard deviation above the historical average.
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Figure 2: Conditional Standard Deviation of the Return and Dividend Yield

This figure shows the average conditional annualized standard deviation in percent of the return and dividend
yield across the simulated sample paths for three assumptions about parameter uncertainty and learning.
The dashed, dotted, and solid lines correspond to constant parameters (‘C’), parameter uncertainty without
learning (‘N’), and parameter uncertainty with learning (‘L’), respectively. The three rows are for moments
conditional on the dividend yield being equal to one standard deviation below, at, one standard deviation
above the historical average, respectively.
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Figure 3: Correlation of Conditional Mean Return with Realized Return

This figure shows the average correlation across simulated sample paths of three aspects of the conditional
mean return with the realized return across simulated sample paths. The columns correspond to the
correlations of realized returns from date t to t + 1 with:

Parameters Constant :
(
B11,t + B12,t(dt+1 − pt+1)

)− (
B11,t + B12,t(dt − pt)

)

Dividend Yield Constant :
(
B11,t+1 + B12,t+1(dt − pt)

)− (
B11,t + B12,t(dt − pt)

)

Both Changing :
(
B11,t+1 + B12,t+1(dt+1 − pt+1)

)− (
B11,t + B12,t(dt − pt)

)
.

The three rows are for correlations conditional on the dividend yield being equal to one standard deviation
below, at, one standard deviation above the historical average, respectively.
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