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Abstract

This paper models the product cycle and explains how it relates to world
inequality. In the model, both phenomena arise because skilled people have a
comparative advantage in making high-tech products. The model can explain
up to a 10:1 income differential between people and up to a 7:1 differential
between countries. Tariff policies and intellectual-property protection have a
much larger effect here than in some other models.

1 Introduction

The “Product Cycle” is the term Vernon (1968) used to describe the tendency for
new products to be made in rich countries, and old products to be made in poor
countries. He said this was because firms in rich places sell to the world’s richest and
most demanding consumer, and because in rich places labor is the most expensive
and capital-intensive technology is more profitable there.

I argue that the product cycle arises instead because technologies are product
specific. The world economy demands many products, and so many technologies
must coexist. New products are more high tech and demand more skills to make
them. The people using the best technologies will then want to raise their skills
relative to those of other people. Thus the product cycle and inequality both have
their origins in the complementarity between technology and skill. The main results
are:

1. The calibrated version implies a 10:1 per-capita income ratio of leader and
laggard. This contrasts to Lucas (1988), e.g., where any income distribution is
an equilibrium.

∗I thank S. Braguinsky, W. Easterly, B. Hobijn, S. Kortum and C. Syverson for comments, A.
Gavazza for help with the research and the NSF for support.
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2. World inequality depends exclusively on the efficiency gap between successive
technologies. The technology frontier can grow in many little steps, or in a
few large ones. The latter case that produces more inequality, because the
technologies in use will then be more dispersed.

3. Reducing world-wide patent protection from 18 to 6 years, e.g., impoverishes
the world by a factor of 2. A 20% tariff on the import of technology reduces a
country’s output by a factor of 5.

The effects are large partly because the model assumes away some important fric-
tions in the market for technology. It assumes away all costs of switching technologies
such as costs of learning a new technology and costs of reallocating technology-specific
assets, and it takes the protection of intellectual property to be perfect. In return,
results are all derived by hand and clearly.

2 Model

A world market exists for final goods, for intermediate goods, for the research input,
and for research output, i.e., technologies.

Final-goods.–Final goods producers are competitive. The production function is

y =

µZ ∞

0

xαi di

¶1/α
,

where xi is the i’th intermediate good. Let Pi be the price of good i in units of the
final good. The final-goods producers problem is

max
(xi)

∞
0

½
y −

Z ∞

0

Pixidi

¾
with the first-order condition

y1−αxα−1i − Pi = 0. (1)

Demand is elastic and total revenue, Pixi = y1−αxαi , always rises with output.

Intermediate goods.–With his skill, s, an intermediate-goods producer can make

x = zsβ (2)

units of good z. From now on we shall refer to a good by its efficiency, z. Let p (z)
be the period license fee for making good z. This yields a profit of

Px− p (z) = y1−αzαsβα − p (z) ,

2



The objective of the intermediate-goods producers is to maximize this quantity by
selecting the technology, z, to license.
The supply of inventions.–A product’s z is constant over its lifetime. New prod-

ucts, with higher z’s are invented at a constant rate, N , to be determined later. Each
is retired at age T which, for now, is also given. The age distribution of goods is then
uniform on the interval [0, T ]. Assume that

zmax (t) = egt.

For now, g too is given. We need first the stationary distribution of product quality
conditional on g, and conditional on T . This distribution shifts over time but it always
has the same shape. We shall describe its state at t = 0. Let τ denote a technology’s
age at t = 0. Then that technology’s quality is zτ = e−gτ . Then the worst technology
in use is of quality e−gT . Each agent makes a different good. Therefore, the number
of goods equals the number of agents which we normalize to 1. That is, since the
product’s quality, z, relates to its age τ , via ln z = −gτ , we have

Lemma 1 If τ is uniform on [0, T ], then ln z is uniform on [−gT, 0] with density
1/gT . The density of z is

m(z) =

µ
1

gT

¶
1

z
, for z ∈ [e−gT , 1]. (3)

Then ln zt is uniform on [g (t− T ) , gt], and mt(z) =
³
1
gT

´
1
z
for z ∈ [eg(t−T ), egt].

This all hinges on an exogenous arrival of new products at a uniform rate and the
growth of frontier efficiency at the rate g.

2.1 The market for licenses

In contrast to Krugman (1979) all agents can make any product, and in contrast
to Eaton and Kortum (1999) technology diffusion is endogenous. It is determined
in the market for licenses. To make product z at a given date, a firm must pay its
per-period license fee p (z). Let us assume only one producer per product, derive the
prices at which all markets clear, and then verify that no one has the incentive to
enter a market as a second producer.
We start, then, with a one-to-one assignment with side payments — the “transferable-

utility” case. Taking the distributions of z and s as given, let us find the market-
clearing license-fee function pt (z).
The technology-adoption decision: We shall assume that1

α =
1

1 + β
. (4)

1This assumption gets extensive scrutiny in Section 5.
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Total Revenue = y1-α θαs

s 
smax smin 

π(s) 

Licensing 
cost

Net revenue 

0 

Figure 1: The breakdown of income into licensing fees and profits

Taking his skill-level s as given, a monopolist then solves

π(s) = max
z
{y1−αzαs1−α − p (z)}.

Thus (4) induces constant returns in (z, s). Revenue increases with output and the
firm always produces at full capacity. The first-order condition reads

α
³sy
z

´1−α
− p0 (z) = 0.

Evidently, then, for any θ > 0 which, for now, is given, the assignment

z = θs (5)

is an equilibrium if
p (z) = γ (z − zmin) , (6)

where
γ = αθα−1y1−α,

and if the appropriate market-clearing conditions, and “corner” conditions hold. The
corner condition concerns the worst product, zmin: Since old products are dropped,
p (z) = 0 for z < zmin. By continuity, p (zmin) = 0.
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Technology-market clearing.–Let n (s) be the date-zero density of s. License-
market clearing at t = 0 requires that for all z ∈

£
e−gT , 1

¤
,Z 1

z

m(v)dv =

Z 1/θ

z/θ

n(s)ds. (7)

Proposition 1 For any positive (g, T, θ), (6) and (5) constitute an assignment equi-
librium when the distributions z and s are given by (3) and (9), in which market
clearing (7) also holds.

Note some properties of this equilibrium. First, π (s) is linear in s:

π(s) = y1−αθα (αsmin + [1− α] s) . (8)

Second, output, y1−αθαs, and license fees, p (θs) = γθ (s− smin) = αθαy1−α (s− smin)
are linear in s. Figure 1 illustrates the situation.

Now, according to (5), it must be that for all z ∈
h
−T

g
, 0
i
, ln s = ln z− ln θ, which

implies the claim:

Proposition 2 If τ is uniformly distributed on [0, T ], ln s is uniformly distributed
on [−gT − ln θ,− ln θ] with density 1/gT .

The distribution of s itself is

n(s) =

µ
1

gT

¶
1

s
, for s ∈ [1

θ
e−gT ,

1

θ
]. (9)

Thus smax = θ and smin = θe−gT , as illustrated in Figure 2.

The no-switching condition.–We assumed monopoly in each product. No firm
should want to enter as a second firm in someone else’s market. Under Bertrand
competition, production will have to be at full capacity of all the firms in that market.2

Suppose firm s0 invades firm s’s market. It can do so only if it pays the license fee
p (θs). Industry output would then be z

³
sβ + sβ0

´
= θs

³
sβ + sβ0

´
, and from (1). Its

payoff from doing so must be less than its payoff in its own market:

y1−α
³
θs
h
sβ + sβ0

i´α−1
zsβ0 − p (s) ≤ π(s0). (10)

The Appendix proves

Proposition 3 (10) holds for all (s, s0) between 1
θ
eg(t−T ) and 1

θ
egt.

2I assume that all of the firms involved must stick to their equilibrium values of uI and uR. If this
is relaxed, the analysis acquires many of the intricacies of incumbent-challenger analyses of natural
monopoly.
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Figure 2: The movement of nt (s) over time

This establishes that the one-to-one assignment is indeed an equilibrium. All this
is conditional on θ, g, and T which will be determined later.
Re-shuffling of assignments.–A product has a constant z, but the skill of each

infinitely-lived agent will grow. Thus the assignment z = θs can hold at each t only if
products move down the skill distribution. When new, a product is assigned to smax.
By the time it reaches age T , it is matched with smin.

2.2 Accumulation of skill

Intermediate-goods manufacturers own their human capital and decide how to ac-
cumulate it over time. Each has a unit of time that he divides between production
(uP ), research (uR), and human-capital investment (uI):

uP + uR + uI = 1. (11)

An agent’s skill supply is
s = uPh.

Human capital investment uses only time, as in Lucas (1988):

ḣ = ηuIh. (12)

Wealth maximization: We shall now solve the accumulation problem of someone
who is forced to set uR,t = 0 for all t. The solution will be the same as for people
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who can set uR,t > 0 because the research wage per unit of of h will be the same as
the return of h in production. Let ut ≡ uP,t + uR,t. The expression in (8) pertains
to period zero, but smin grow at the rate g. An agent that at date t supplies skill
st = utht will receive an income

πt(utht) = y1−αt θα
¡
αegtsmin + (1− α)utht

¢
.

The agent solvesmax
©R∞

0
e−rtπt(uht)dt

ª
, but he cannot influence the term y1−αt θααegtsmin.

Since y grows at the rate g/α, he chooses ut to maximize (1− α) θαy1−α0

R∞
0

e−(r−(α
−1−1)g)tuthtdt,

which is equivalent to the problem

max
(ut,ht)∞0

Z ∞

0

e−(r−(α
−1−1)g)tuthtdt, s.t. ḣt = η(1− ut)ht,

with h0 given. The Hamiltonian is

H = e−(r−(α
−1−1)g)tuh+ µ̄η(1− u)h,

Let µ = e−(r−(α
−1−1)g)tµ̄ be the current value multiplier so that the current-value

Hamiltonian is just uh + µη(1− u)h. We shall only analyze constant-growth paths.
Evaluated at a point at which µ̇ = 0, the FOC’s are

1− µη = 0,

and
µη (1− u) + u = (r − (1− α) g)µ.

Since h drops out from these two conditions, the solution for u will not depend on h.
Eliminating µ we have

r = η +
¡
α−1 − 1

¢
g. (13)

This is an arbitrage condition equating the rate of interest to the rate of return to
investing in h.
Saving.–Utility is homothetic, and we need only the world per capita consump-

tion Given his wealth, the agent maximizes his lifetime utility:Z ∞

0

e−ρt
c1−σt

1− σ
dt.

If c is to grow at the rate g, we must have:

g =
r − ρ

σ
.

Together with (13) this implies that

g =
η − ρ

σ − (α−1 − 1) . (14)
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2.3 Research

The research sector is competitive. .
Number of new products.–Letting H be total human capital devoted to research,

the flow of new products is

Nt =

∙
λ

zmax (t)

¸
H.

where Ht = uR
R hmax(t)
hmin(t)

hm (h) dh. Good ideas are harder to find, and we assume that
their number is inversely proportional to zmax. Since h = s/uP , since zmax (0) = 1,

and since s = z/θ, H0 =
R 0
−T

³
uR
θuP

´
egτdτ, i.e.;

Ht

zmax (t)
=

µ
uR
gθuP

¶¡
1− e−gT

¢
.

Research wage.–The supply of human capital to research is infinitely elastic be-
cause its opportunity cost is the same for all agents; by (8) it is equal to

wt = (1− α) θαy1−αt . (15)

Thus a worker of quality h receives income wtuRh from research, and wtuPh from
production.
Free-entry condition.–The value of an invention is the discounted flow of license

fees. The period-t license fee of a quality-1 technology is, using (6),

pt(1) = γt
¡
1− egtzmin

¢
,

where γt = αθα−1y1−αt . The lifetime value of the right to license a frontier technology
is V (1) =

R T
0
e−rtpt (1) dt. The free-entry condition, stated at date zero, then is

w =

µ
λ

zmax

¶
V (1) .

Since [1 + (α−1 − 1)] g = α−1g,

V (1) = γ0

∙Z T

0

e−(r−(α
−1−1)g)tdt− zmin

Z T

0

e−(r−α
−1g)tdt

¸
= γ0

µ
1− e−ηT

η
− 1− e−(η−g)T

η − g
zmin

¶
,

because r − (α−1 − 1) g = η. Since γ0 = αθα−1y1−α0 and since zmin = e−gT , the
free-entry condition reduces to

(1− α)

α
θ = λ

µ
1− e−ηT

η
− 1− e−(η−g)T

η − g
e−gT

¶
. (16)
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Quality of ideas.–Let ∆ be the growth in frontier quality per new idea:

1

zmax

dzmax
dt

= ∆Nt.

Since zmax (0) = 1, since Nt = N , and since z must grow at the same rate as h, we
have zmax (t) = egt, where

g = ∆N, (17)

and where

N =
λ

θ

µ
uR
uP

¶ ¡
1− e−gT

¢
g

. (18)

Turnover of products.–Products turn over in exactly T periods. Since population
size is 1, the number of technologies invented over T periods must also add up to 1:

TN = 1. (19)

Stationary equilibrium.–It consists of 6 real numbers g, T , θ, uP , uR, and uI , that
solve (11), (12), (14), (16), (17), and (19).

3 Properties of the model

Output.–Let us refer to a good by its efficiency z. Then using (4), the output of
good z is

x = θ−βz1+β = θ−(1−α)/αz1/α.

Thus if θ is a constant, the output, x, of each good z is constant over its lifetime. We
then have

Proposition 4 The world output of final goods is

yt = Ae
1
α
gt, (20)

where A =
³

1
θ1−αgT

¡
1− egT

¢´1/α
.

Proof. Each x is constant; only the window [t− T, t] advances. The density of

product ages is 1/T . Then yt =
µR t

t−T

µ
egt
h
egt

θ

iβ¶α
1
T
dt

¶1/α
=
³

1
Tθαβ

R t
t−T e

gtdt
´1/α

,

because α (1 + β) = 1. Then yt =
³

1
θαβgT

egt
£
1− e−gT

¤´1/α
. Using (4) whence β =

(1− α) /α, (20) follows.
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Growth and factor shares.–By (20), y grows at the rate g/α with g given in
(14) as do the combined incomes from production of the xi’s. By (15), w grows at
(1− α) g/α, and research incomes grow at g + (1− α) g/α = g/α. The (date-zero)
income share of research is (since π(s) = y1−αθα (αsmin + [1− α] s) and since the
date-zero mean of s is s̄ ≡ 1−e−gT

θgT
, the world share of income going to R&D is

wuRHR
πt(s)m (s) ds

=
uR

uP
¡
1 + α

1−α
smin
s̄

¢ = uR

uP
³
1 + α

1−α
gTe−gT

1−e−gT

´ .
Creative destruction.–Products are phased out as in Stokey (1991) and the prod-

uct window marches to the right. Combining (17) with (19) gives a reduced-form
relation between two endogenous variables g and T ,

g =
∆

T
, (21)

which emphasizes the creative-destruction aspect of the model: Higher growth de-
mands faster replacement of products.

Pattern of trade.–The rich export new (intermediate) products and import old
(intermediate) products as in Krugman (1979).

Inequality.–By (1), income differentials between the richest and poorest agent
are

Ymax
Ymin

=
(Px)max
(Px)min

=

µ
smax
smin

¶(1+β)α
=

hmax
hmin

= egT . (22)

Moreover, the log of relative incomes should be uniformly distributed on [−gT, 0]
with density 1/gT . Thus the world distribution of logged per-capita income should
be uniform and should march forward at the rate g. From (21) we have this paper’s
main result:

Proposition 5 Inequality depends only on ∆;

Ymax
Ymin

= e∆.

That ∆ alone should determine inequality is because ∆ alone governs the dispersion
in technological quality among the measure 1 of latest vintage technologies in use at
each date. The parameter λ governs only the turnover of technologies and it has no
bearing on inequality. It has a level effect on output, however: Since λ and θ enter
(16) and (18) as a ratio, and since they are absent from the other equations,

Proposition 6 θ is proportional to λ
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Figure 3: Obsolescence of patents — pt (1)

Markups.–The markup over marginal cost is

π (s)

[w + q0 (s)] s
= 1− α+

smin
s

,

and at the baseline values of the parameters (see Table 1) it ranges from 0.19 for the
highest-skilled producer to 1.09 for the lowest skilled — a little on the high side.

Obsolescence of patents.–The flow value to a patent is pt (z) in (6). For a patent is-
sued at date zero, z = 1 and zmin = e−gT , and pt (1) = αθα−1y1−α0 e(α

−1−1)gt ¡1− eg(t−T )
¢
.

Setting αθα−1y1−α0 = 1, Figure 3 plots pt (1) at the benchmark parameter values as t
ranges from zero to T = 154.5. This is the top line in the figure. Obsolescence is far
slower than is normally assumed in the analysis of patent values.

Imperfect patent protection.–If a patent were to expire, this would allow entry
without the payment of the license fee. Condition (10) would then no longer rule out
multiple firms in some of the markets. Let us use the following shortcut: Let δ be
the random rate at which the original owner of a patent right loses it permanently.
Assume that, instead, someone else — a random person — inherits it so that license
fees must still be paid for the right to use z. Then the demand-side is unaffected, and
only the inventor suffers a loss. The bottom line in Figure 3 corresponds to a patent
value that has a constant probability δ = .056 of expiring and that therefore has an
expected lifetime of 18 years, currently the maximum patent life in the U.S. For an
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Figure 4: Average diffusion rates and the calculation of the ti

arbitrary δ, the value of the patent right to the frontier z is

V (1) =

Z T

0

e−(r+δ)tpt (1) dt

= γ0

µ
1− e−(η+δ)T

η + δ
− 1− e−(η+δ−g)T

η + δ − g
zmin

¶
.

The rise in δ has only a level effect by reducing θ. Without transitional dynamics it
cannot be given precisely, but we may conjecture that h would not grow any faster
in the transition. If so, the level effect is the effect on Azmax/hmax = θA which, in
turn, is just the change in θ2−1/α. We shall evaluate this policy change below.

4 Comparison to data

This section reports results from data on technological adoption; the data are de-
scribed in Comin and Hobijn (2004). They cover 20 advanced countries and eleven
technologies over the past two hundred years.3 Table 1 reports ti, defined as the
average of the dates that the eleven technologies spread to ten percent of country i’s
population. Ten percent is low enough that nine of eleven technologies have reached
it in all countries covered.4 Figure 4 illustrates how the ti were calculated.

3See the "Historical Cross-Country Technological Adoption: Dataset" at www.nber.org/data/
4The eleven technologies are private cars, radios, phones, television, personal computers, aviation

passengers, telegraph, newspapers, mail, mobile phones, rail, and the telegraph.
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Figure 5: Plot of (23) and the data

In (22), replacing “max” by “USA” and “min” by “i”, we have Yi
YUSA

= e−g(ti−tUSA )

from which we have
ti − tUSA = −

1

g
(lnYUS − lnYi) . (23)

A plot of the variables in the table is in Figure 5. The slope is negative and signif-
icant. The regression line should pass through the point (0, 0) which it does almost
exactly — the constant does not differ significantly from zero. If countries were ho-
mogeneous in h, the regression’s slope would, in theory, be −1

g
which, with g = .015,

would be −67. But countries are not homogeneous: Table 5 of Sala-i-Martin (forth-
coming) shows within-country inequality to be between 28% and 38% of inequality
worldwide. Therefore the slope should have been −

¡
2
3

¢
67 = −45, and it does not

differ significantly from that value.
World inequality far exceeds inequality in the C&H sample, as does T . Figure 6

reproduces’s Figure 4A of Sala-i-Martin (2002). The model suggests that we should
extrapolate the regression line as follows: Since YUSA − lnY world

min ≈ ln 30 = 3.4 while
lnYUSA − lnY C&H

min = 0.8

T̂

ˆ

=

µ
dτ

d lnY

¶
lnYUSA − lnY world

min

lnYUSA − lnY C&H
min

= (36.52)
3.4

0.8
= 154.5 (24)

This may seem large, but there are plenty of examples of old technologies still in
use. Many people in the world still have no access to electricity, a technology that
was being commercially applied 120 years ago, and many still use animal power for
plowing even though the tractor was commercialized by 1910.
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Figure 6: Sala-i-Martin’s Figure 4A

Inequality explained.–At the baseline values, the ratio in (22) of richest to poorest
is 10.2. But when we apply this to countries, we must adjust for within-country
inequality. Table 5 of Sala-i-Martin (2002) states that within-country inequality is
roughly a third of world inequality, so the model can explain per-capita-income ratios
of about 7:1

Success but partial.–The model succeeds only up to a point in explaining in-
equality — it gets perhaps 1/4 of it. It does not explain why incomes are stratified by
country. And with its prediction that log incomes are uniformly distributed, it misses
the skewness evident in Figure 6. Then there is the all-important parameter ∆ on
which it seems hard to get independent information. as follows: Combining (17) and
(20) we end up with 1

y
dy
dt
= ∆

α
Nt. Let NP

t denote U.S. patents issued at t, and let
N∗

t be the HP-filtered version of N
P
t . De-trending is needed because patents increase

over time whereas growth of y does not. Form a patent "stock" Ñ by the perpetual
inventory method: Ñt =

1−µ
1−µT−t

Pt
j=0 µ

jN∗
t . The regression ln yt+1 − ln yt = aÑt

yields an estimate for a of 63.6 with a s.e. of 15.0. This estimate is way larger than
one could ever reconcile with reasonable values of g and T via (). But the regression
is mis-specified in that the estimated relation should hold across steady states and
not in the time series; y is U.S. output and not world output, and N is U.S. patents,
not patents world wide, so that the units are wrong. Moreover, patents have risen
sharply in the ‘90s and surely are not proportional to N — if they were, g would have
exploded.
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5 Policy experiments

To evaluate a couple of policies we need as realistic a benchmark version of the model
as possible. The six endogenous variables are g, T , θ, uP , uR, and uI .5

The restriction in (4) implies that the production function in (2) has increasing
returns to scale of 1 + β = 1/α. The elasticity of demand is −1/(1− α). Thus (4)
restricts these two magnitudes. Evidence in Klette and Griliches (1996, p. 344) is
consistent with this restriction. Assume z and s are inputs that the econometrician
measures. In terms of our notation, they estimate

1.06 ≤ 1 + β ≤ 1.1 and 6 ≤ 1

1− α
≤ 12.

If we maintain (4), the first set of inequalities holds for 0.909 ≤ α ≤ 0.943, whereas
the second holds for 0.833 ≤ α ≤ 0.917. The midpoint of the region of overlap is
α = 0.913, and I shall use this value in the calibration. Returns to scale are hard to
estimate, however, and many have estimated decreasing and not increasing returns.
Such estimates are incompatible with (4) unless we assume that the econometrician
does not observe z. But when a firm faces a downward-sloping demand curve, its
output price falls as its output grows. Since firm-specific prices are usually unavail-
able, the firm’s output growth is understated, and its returns-to-scale estimates are
biased down.

Table 1 reports the baseline values of all the parameters, the endogenous variables,
and comments on why they were picked.

Parameter Reason for value chosen Endog. varbl. Reason for value chosen
ρ = 0.0295 T = 154.5 extrapolated via (24)
α = 0.913 1

α = 1.095 Gril.&Klette
σ = .6550 g = 0.015 growth of output per head
λ = 1 only ratio θ/λ matters uP = 0.5905
η = 0.038 uR = 0.0147 0.007 = R&D/Income
∆ = 2.31 Ymax/Ymin = 10 (c.f. Prop. 5) uI = 0.3948

r = 0.04

TABLE 1

5The experiments will both entail level effects on output that work through the z/s ratio θ. In
this, I shall assume that s is invariant to the policy, and that it is z that responds. This seems
reasonable in that g = ḣ/h depends on these policies only through the interest rate. The expression
for A in (20) is misleading because it takes zmax = 1 as given, in which case a rise in θ implies a
lowering of h. The experiments we are about to perform assume the opposite; for fixed s, a rise in
θ implies a higher z and higher output.
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Taxes and Tariffs.–Taxes on a measure-zero subset of agents do not affect p (z),
or the rewards to research, so that g, T , and the values of the other endogenous vari-
ables remain the same. But income taxes are neutral whereas tariffs reduce the income
of the taxed agents. (i) A proportional income tax, τ , on incomes of intermediate-
goods producers change profits to π(s) = (1− τ)maxz{y1−αzαs1−α − p (z)}, and
they do not affect the decision about z. But because costs of human-capital invest-
ment are all in the form of foregone earnings, ḣ is unaffected as well, just as in
Lucas (1988). (ii) Tariffs on the production of the final good imply no losses be-
cause profits there are zero. A proportional tax on technology, however, imply that
π(s) = maxz{y1−αzαs1−α − (1 + τ) p (z)}. The first-order condition for z now reads
α
1+τ

¡
sy
z

¢1−α − p0 (z) = 0, so that

z =
θs

(1 + τ)1/(1−α)
.

These are only level effects, however; ḣ/h stays the same. The level effects of τ plotted
above are large, owing mainly to the high baseline value of α.
Intellectual property rights.–In the model, patents are infinitely lived, but in fact

markets for technology are imperfect. Two measures of how well these markets work
are (i) Licensing revenues: Firms recover only a fraction of R&D costs by selling
or licensing their technology. As a percentage of R&D costs, royalty receipts (from
abroad) in 2001 for patents, licenses, and copyrights were 64 (U.K.), 36 (Italy), 31
(Germany), 15 (U.S.), 11 (France) and 8 (Japan) (OECD 2004, tables 69-71); (ii)
International patenting: Eaton and Kortum (Table 1) document that the U.S., the
U.K., France, Germany and Japan patent abroad only about one fifth of the patents
that they take out domestically, although it is probably those patents with the highest
value that get patented abroad, and the distribution of patent values is known to be
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Figure 7: Effect of patent protection on world output

highly skewed. It is hard to say how these numbers all translate into δ. But as δ
rises and patent lifetime falls, output can fall dramatically. Reducing lifetime from
18 years (the current U.S. length, but perhaps a lot larger than effective worldwide
protection) to 6 reduces output by a factor of 2.

6 Conclusion

Inequality arises in this model because at any time there are high-tech and low tech
products, and because high-tech products are complements with human capital. Pro-
ducers of high-tech products then invest more in human capital, and this produces
inequality. As a result, world inequality depends on the rate at which products
improve. The faster is this rate, the bigger is the technological asymmetry among
products.

The product cycle is a symptom of comparative advantage at work: A well-
functioning market for intellectual property leads to a maximum for world output
given the available supply of technologies and skills. In a world with no license fees
and patents, the model also says that inequality would not exist. But the common
level of income would be many times smaller than average world income is today.
Intellectual protection is, in fact, only partial and the model suggests that stronger
enforcement would raise world output substantially.
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7 Appendix: Proof of Proposition 2

Let us ignore the term y1−α which is common to all payoffs. Then (10) reads³
θs
h
sβ + sβ0

i´α−1
(θs) sβ0 − αθα (s− smin) ≤ θα (αsmin + [1− α] s0) ,

which reduces to
³
θs
h
sβ + sβ0

i´α−1
(θs) sβ0 ≤ αθαs+θα (1− α) s0 and then to sα

³
sβ + sβ0

´α−1
sβ0 ≤

αs + (1− α) s0. Recalling (4), we find that both sides of the above inequality are
homogeneous of degree 1 in (s, s0). This means that is if the inequality holds at date
0 for s and s0 in the interval [smin, smax], it will hold for all s and s0 in the interval
[egtsmin, e

gtsmax], and the latter is how the boundaries grow in steady state. Dividing
by s we have

sα−1
³
sβ + sβ0

´α−1
sβ0 ≤ (1− α)

s0
s
+ α, ⇐⇒∙

1 +
³s0
s

´β¸α−1 ³s0
s

´β
≤ α+ (1− α)

s0
s
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Figure 8: Two plots of the left-hand side of (25)

Because β + (1 + β) (α− 1) = 0. Moreover, this must hold for all (s, s0) between
smin and smax. Therefore it is equivalent to¡

1 + wβ
¢α−1

wβ ≤ α+ (1− α)w

for w ∈
£
e−gT , egT

¤
. But β = (1− α) /α, therefore the condition is α + (1− α)w −¡

1 + w(1−α)/α
¢α−1

w(1−α)/α ≥ 0, i.e., α + (1− α)w −
³
1+w(1−α)/α

w1/α

´α−1
≥ 0, i.e., α +

(1− α)w −
¡
w−1/α + w−1/α+(1−α)/α

¢α−1 ≥ 0, i.e.,
α+ (1− α)w −

¡
w−1/α + w−1

¢α−1 ≥ 0. (25)

Now (25) holds for all α ∈ (0, 1): At w = 1 the function reads 1−
¡
1
2

¢1−α ≥ 0. As
α→ 0 or as α→ 1, the function converges to zero from above. This is all illustrated
in Figure 8 for α ∈ (0, 1) and w ∈ (0, 10).
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