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INTRODUCTION 

 Using historical data from a number of developing and developed countries, Kuznets (1955, 

1963) argued that income inequality first rises and then falls during a transitional development 

period. Post-Kuznets studies fall into two main groups. The first re-tested his hypothesis against data 

from many other countries.1 The second dealt with the development–inequality nexus theoretically as 

a causal relation going from either growth to inequality or vice versa.2  Both sets of studies offered 

conflicting conclusions about the competing theoretical and empirical hypotheses. 

One issue that was hardly addressed so far is the relevance of relative fertility choices of 

different income groups for understanding the evolution of income inequalities over all phases of 

economic development, including the comparative levels of income inequality across less-developed, 

stagnant economies and highly developed, persistently growing ones. The relevance of fertility and 

related population trends to income distributions is two-fold: measures of the “size distribution of 

income”, such as the shares of specific income brackets in total income, or the Gini coefficient are 

weighted by the population shares of different income brackets, which reflect underlying fertility 

differences across these brackets. But even individual- or family-based income inequality measures 

are indirectly affected by parental choices concerning fertility and investment in human capital of 

offspring. This is especially important over the transitional development period, which typically 

involves a “demographic transition” as well.  

 We tackle this issue by developing an overlapping-generations endogenous-growth model 

with heterogeneous families, where human capital is the engine of growth and parents determine 

fertility and educational investments in offspring. Our deterministic model offers a dynamic 

extension of Becker’s (1967) model of income distribution, as well as a generalization of more recent 

work by Ehrlich and Lui (1991), Zhong (1998), and Ehrlich and Yuen (2000). We show that the 
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behavior of income inequality over the transitional development phase can vary in different countries, 

depending on the factors triggering economic takeoff and their impact on fertility and investment 

behavior of different family groups.  

 Our model suggests that the relationship between income growth and income inequality is 

associative, not causal. Three main forces influence this association: a. interactions between 

overlapping generations within families; b. heterogeneities in endowments and investment 

efficiencies across families; and c. social interactions across families. 3  The model consists of 

finitely-lived individuals. Parents optimize on investments in the quantity and quality of children (in 

an extended version outlined in Appendix A, on savings as well). Persistent heterogeneities and social 

interactions across families enable us to derive equilibrium paths of income, schooling, and fertility 

distributions over three phases: a stagnant steady state, characterizing economies in a pre-takeoff 

stage, a perpetual-growth steady state, more related to economies in a highly developed stage, and a 

transition phase linking the two. 

By this approach we are also able to provide new insights about the “Kuznets hypothesis.” 

The association between income growth and inequality is influenced partly by the parameters 

determining the inequality levels at the growth vs. stagnant steady state. The association is in a state 

of flux during the transitional development phase. Specifically, we show that over this phase the paths 

of alternative income inequality measures can assume a U shape, an inverted-U shape, or 

combinations of the two, with the inequality level ultimately falling, rising, or staying the same, 

depending on the way heterogeneity sources are correlated across families, how relative fertility and 

population shares are affected across groups, and the inequality measure used. We derive three such 

measures as endogenous variables: family-income inequality, income-group inequality, and the Gini 

coefficient. A distinct implication of our model is that regardless of the specific shape of the income 
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inequality path over the transitional development phase, fertility inequality can be expected to assume 

an inverted-U shape, with both tails converging on virtual equality.  

 Section I introduces the model. In section II we derive equilibrium regimes and comparative 

dynamic implications, and in section III we present simulated dynamic paths of our basic inequality 

measures. Section IV presents supportive evidence on the dynamic evolution of fertility, schooling, 

and income inequality based on international panel data from 1950-98.  

I. THE MODEL AND EQUILIBRIUM SOLUTIONS 

A. The Economic Environment 

 To derive income and fertility inequality paths over the entire development process, we 

extend the deterministic representative-family, OLG model of endogenous growth in Ehrlich and Lui 

[EL] (1991) to a heterogeneous-family case that recognizes inter-family interactions as well. 

The Economy:  The economy is comprised of heterogeneous family groups of varying income levels. 

For simplicity we illustrate the model by recognizing just two family groups indexed by i =1,2: a 

leading (1) and a following group (2), which in principle could switch places over the process of 

development. We implicitly rely on positive assortative mating within groups to maintain their 

separate identity in any stable steady state, because if inter-group mating is allowed, and children 

inherit the average characteristics of their parents, human capital attainments and income would 

eventually converge in all families, given our deterministic setup.4 In the benchmark model agents 

live over two periods: childhood, t-1, when human capital is formed through parental investments, 

and parenthood, t (but see Appendix A). All family-based decisions are made by working parents.  

Similarly to Becker (1967), we focus on three objective sources of inherited heterogeneity: a. 

differences in learning or production abilities (Ai); b. differences in income-yielding “endowments” 

( H i), stemming from inherited social status, political power, or other personal assets; c. differences 
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in education-financing costs (θi). We abstract from differences in preferences or external production 

technologies, since these need not be related to idiosyncratic personal differences. 

Goods Production and Income: The economy is competitive and human capital is the sole asset. 

Production or earning capacity of a parent in group i, ( H i+Hi
t), is composed of a fixed, inherited 

income-producing endowment ( H i) measured in units of human capital, and a stock of human 

capital, (Hi
t), attained through parental inputs. Labor supply is assumed fixed. For convenience, we 

also assume that consumer goods, including educational services, can be purchased. Under a linear 

and strongly additive production technology for all goods, aggregate earnings (Y) equals aggregate 

production capacities in each period (L), and firms’ zero-profit condition, π=Y-ϖL=0, yields a 

time-invariant real rental rate per unit of production capacity, ϖ =1, which also guarantees full 

employment. We initially ignore savings, so earnings are identical to income. In Appendix A, we 

allow for savings and thereby for an old-age period of life for retired parents, and show that our 

inferences concerning earnings inequality hold for income inequality as well. 

Human-capital production: The human-capital formation rule is given by: 

(1) Hi
t+1 = Aihi

t( H i+Hi
t)1-γ[( H 1+H1

t)(N1
t/Ni

t)]γ  ≡ Aihi
t ( H i+Hi

t)(Si
t)γ,   

where hi
t is the share of earning capacity ( H i+Hi

t) a parent from family-group i (i = 1, 2) invests in 

educating each child, H i and Hi
t are the parent’s endowed and attained human capital stocks, 

respectively, and N1
t/Ni

t is the ratio of the population shares of parents in family groups 1 and i. Si
t 

denotes an inter-family, “social interaction” factor, which we define below. Note that for the top 

income group i=1, equation (1) becomes H1
t+1 = A1h1

t ( H 1+H1
t). 

 Equation (1) captures two types of interactions in human capital production within and across 

families: a. Persistent human capital formation can be sustained over time only if parents invest in 

their children’s knowledge; b. Knowledge attained by agents with the higher earning capacity 
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augments the attained production capacity of, and thus has a spillover effect on, agents with lower 

capacity (see below). Human capital formation is thus a social, as well as a private, process.  

 The intergenerational interaction is captured by the relationship between Hi
t+1 and Hi

t in 

equation (1). The inter-family interaction is defined by the term (Si
t)γ in equation (1), where S2

t ≡ 

[( H 1+H1
t)/( H 2+H2

t)][N1
t/N2

t] ≡ E2
tP2

t. The ratios E2
t and P2

t reflect the relative earning capacities 

and family-group sizes of agents in group 1 relative to 2 in generation t, and γ<1 is a 

spillover-intensity parameter. This specification is designed to capture social-interaction as a 

knowledge spillover effect by which agents with lower earning capacity, or effective knowledge 

(group 2), benefit from interactions with leaders in knowledge (group 1) in various contexts.5 

The relevance of E2
t is straightforward: the greater the disparity in knowledge, the greater the 

potential learning benefit to members of group 2 from knowledge-transfer from members of group 1, 

given their own knowledge. P2
t≡ N1

t/N2
t captures the determinant of effective interaction between 

individual members of groups 1 and 2, which is simply the conventional “teacher-student ratio”.6  

Preferences and Motivating Forces:  For the sake of parsimony, we take parental altruism to be the 

sole force motivating parents’ demand for children. The utility function of agent i at period t is: 

(2) U(Ci
1,t, Wi

t+1) =  [1/(1-σ)][Ci
1,t

1-σ −1] + δ[1/(1-σ)][Wi
t+1

1-σ −1], 

where δ denotes the inverse intertemporal discount factor, and σ the inverse intertemporal elasticity 

of substitution in consumption. In equation (2), Ci
1,t denotes consumption of parents: 

(3) Ci
1,t = ( H i+Hi

t)[1 − vini
t − θihi

tni
t]. 

The variable ni
t represents the number of children per parent, treated as a continuous and certain 

variable. The endogenous size of group i thus evolves over time as Ni
t+1=Ni

tni
t. The parameters vi and 

θi are fixed unit costs, as fractions of earning capacity, of raising a child and financing educational 

investments per child, respectively. The latter may vary significantly across family groups because of 
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capital-market imperfections.  The last term in equation (2),  

(4) Wi
t+1 ≡ B(ni

t)βHi
t+1

α , with α=1 and  β>1, 

represents a parental altruism function in an OLG context, borrowed from EL (1991), which reflects 

psychic rewards parents obtain vicariously from children’s number and attained human capital.7  The 

restrictions on α and β are necessary to obtain interior solutions for both hi
t and ni

t. To ensure the 

concavity of equation (2) we must further restrict α(1-σ)<1 (or, σ>0) and β(1-σ)<1.  

B. Basic Solutions 

 The objective function (2) is maximized by choosing ni
t, and hi

t, subject to (1), (3), and (4), 

taking {Hi
t, H1

t, Ni
t, N1

t} as given. The first-order conditions for optimal ni
t and hi

t are:  

(5) 0 = − Ci
1,t

-σ (vi + θihi
t) ( H i+Hi

t) + δ Wi
t+1

-σ β B(ni
t)β-1Hi

t+1
α, for ni

t ≥ 0, and 

(6) 0 = − Ci
1,t

-σ θini
t ( H i+Hi

t) + δ Wi
t+1

-σ α B(ni
t)β Hi

t+1
α-1 Ai( H i+Hi

t)(Si
t)γ, for hi

t ≥ 0. 

 Equations (5) and (6) confirm that in order for interior solutions for ni
t and hi

t to co-exist over 

all development phases, we must restrict β>α, and α=1 (note that a growth equilibrium cannot be 

sustained if α>1).  The optimal solutions for hi
t and ni

t are then found to be: 

(7) hi
t = [(vi/θi)(β−1)], or θihi

t = vi/(β−1) <1 

(8) [1−βvini
t/(β−1)]–σ = δ [B(Ai/θi)(Si

t)γ]1–σ [vi/(β−1)]-σ (ni
t)β(1-σ)-1. 

Note that in equation (8), the left-hand and right-hand sides represent convex, monotonically rising 

and falling marginal cost and benefits schedules of ni
t, respectively. Their intersection thus offers 

unique solutions for hi
t and ni

t (the latter having an upper limit of ni = [(β-1)/(βvi)]).    

By equation (7), the equilibrium value of hi
t is independent of the level of human capital, 

essentially because for altruistic parents a change in H raises proportionally both the marginal 

benefits and costs of investment H. An interesting feature of equation (8) is that ability, Ai, and unit 

financing cost of education, θi, exert opposite effects on nt
i. In fact, the solution depends on the ratio 

 6



ei ≡ Ai/θi, or families’ relative “investment efficiencies”. Equation (8) indicates that equilibrium 

fertility, ni
t = n(·) = n(vi, B, β, ei, δ, Si

t), falls with vi and rises with the other parameters entering n(·).  

C. Income Inequality Measures 

 Three income inequality indices become endogenous functions of our model’s state variables: 

a. E2
t ≡ ( H 1+H1

t)/( H 2+H2
t) is a family-income inequality index: the ratio of the (full) incomes of 

individual families in family-group 1 relative to family-group 2. An inequality measure directly 

related to E2
t in our model is inequality in attained human capital stocks, H1

t/H2
t, which may be 

captured by the standard deviation of schooling attainments. 

b. S2
t ≡ [( H 1+H1

t)/( H 2+H2
t)][N1

t/N2
t] ≡ E2

tP2
t is our income-group, or income-bracket inequality 

index − a product of relative income levels and group sizes of family-group 1 relative to 2− which is 

also a component of the social interaction term in equation (1). It measures the fraction of aggregate 

income going to the top income bracket (above a given dollar value), relative to lower bracket. Note 

that P2
t≡N2

t/N2
t is a related inequality measure – an income-group-size inequality index. It measures 

the proportion of families in the top income bracket relative to those in the lower bracket, or the 

relative population shares of families in the two income brackets. The latter is not independent of S2
t 

and E2
t since, by definition, P2

t≡S2
t/E2

t.   

c. The Gini coefficient, Gt ≡ (S2
t − P2

t)/[(1+ S2
t)(1+ P2

t)], turns out to be a non-linear function of S2
t 

and P2
t. Specifically, it is an increasing function of S2

t, but a decreasing function of P2
t. 

 An immediate insight from all of these income inequality measures is their inherent 

dependence on the population shares of different family groups, resulting from their fertility choices. 

II. EQUILIBRIUM REGIMES AND COMPARATIVE DYNAMICS  

 Equations (7) and (8) represent a recursive model, since the leading group 1 arrives at all of its 

choices independently as a function of its own parameters, while the following group 2’s fertility 
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choices are affected by those of family 1 through the social interaction term, (S2
t)γ. From equations 

(1) and (7), we derive an explicit, linear law of motion of human capital in group 1: 

(9) H1
t+1 = [v1(A1/θ1)/ (β−1)] H1

t + [v1(A1/θ1)/ (β−1)] H 1. 

Since the economy is dictated by family 1, the equation of motion (9) indicates the existence of two 

equilibrium regimes, depending on the magnitudes of the model’s basic parameters: If the slope 

dH1
t+1/dH1

t =v1(A1/θ1)/ (β−1) = A1h1
t , exceeds 1, H1

t grows exponentially without bound and the 

economy is in a persistent growth equilibrium regime. If the slope is below 1, H1
t becomes constant 

and a stagnant-equilibrium regime ensues. The transitional development phase connecting the 

regimes’ steady states is supported by the same parameter set that sustains the growth regime.  

For equilibrium steady states to exist, however, certain outcomes must hold: 

Proposition 1.  Both fertility rates and marginal rates of change of human capital stocks in different 

family groups must converge at any stable equilibrium steady state. Formally, we can show that:  

(10) n1
t = n2

t, and a1
t ≡ (dH1

t+1/dH1
t) = A1h1

t
 = a2

t ≡ (dH2
t+1/dH2

t) = A2h2
t(S2

t)γ. 

Proof:  In any equilibrium steady state which preserves the heterogeneous family groups, their 

relative population shares, P2
t ≡ N1

t/N2
t must be constant over time, requiring fertility rates to equalize 

across families.8 Suppose there is an exogenous shock which initially lowers n2 below n1.  This will 

increase P2
t and the social interaction term S2

t in equation (8), raising the marginal benefit from 

children in family 2 but not in family 1, which is unaffected by S2
t. The rise in n2

t subsequently 

depresses P2
t and S2

t, and these adjustments continue until desired fertility rates equalize (although 

not necessarily actual rates if the latter were subject to purely stochastic deviations from desired 

fertility rates; see footnote 4). This result is consistent with optimal fertility choices, since in a stable 

steady state, the impact of lower income is offset by a proportionally lower shadow price of fertility.9 

 Similarly, in a balanced growth steady state, H1
t/H2

t, e.g., must be constant over time. This requires 
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the growth rate of human capital, which is the same as the latter’s marginal rate of change or total 

derivative (dHi
t+1/dHi

t) at the growth steady state, to equalize across groups. This result will be shown 

to apply in a stagnant steady state as well (see section II.A).  

Given our assumed uniformity of preferences and external production parameters, M ≡ {B, β, 

γ, δ, σ}, dynamic stability also requires a parameter restriction: the unit cost of raising a child as a 

fraction of earning capacity must be identical across families, or v1=v2. Put differently, only initial 

endowments ( H i), abilities (Ai), and unit investment-financing costs (θi) are allowed to vary across 

families. This heterogeneity restriction necessarily holds in the log utility case.10 More generally, 

suppose that v1 > v2. Equation (7) implies that the income share invested in educating a child would 

then be higher in family 1 relative to 2, θ1h1
t > θ2h2

t. By proposition 1 the rate of growth of human 

capital must be identical across families in a stable growth steady state, A1h1=A2h2 (S2
t)γ. These 

equations imply that (A1/θ2) < (A2/θ2)(S2
t)γ, i.e., family 2’s marginal cost of fertility schedule would 

locate below that of family 1, while its marginal benefit schedule would locate above 1’s. Optimal 

fertility would then be strictly higher in family 2 relative to 1, negating a stable equilibrium. To assure 

consistent parameter restrictions we must v1=v2=v in all development phases. 

A. Stagnant Equilibrium Steady State (s)   

 In a stagnant equilibrium (SE) steady state, the control and state variables and all inequality 

measures are constant over time, given the parameters affecting the rate of return on human capital, 

Ai/θi and v. If the latter are sufficiently low, so (dH1
t+1/dH1

t) = A1h1
t = v(A1/θ1)/(β−1) <1 in equation 

(9), equation (1) for agent 1 would necessarily converge on SE from any arbitrary value of H1
0. Local 

stability conditions for agent 1 require, in addition, that dn1
t/dN1

t <1. For agent 2, and thus the full 

system, the necessary and sufficient conditions for local stability can be shown to require that the 

elasticity of fertility n2(s) with respect to the social-interaction term S2(s) would lie within the 
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following range: 0<e(s)<2{1–[γK/(K+1)]}, where e(s) is the elasticity of n2(s) with respect to the 

social-interaction term S2(s), or e(s) ≡ ∂ln[n2(s)]/ ∂ln[S2(s)], and K ≡ {H2(s)/[ H 2+H2(s)]} <1.  In our 

numerical simulations using the baseline parameters of Table 1 part 1, this condition is satisfied for 

any permissible values of the social-interaction intensity 0≤γ≤1 (see Appendix B.1).  

Proposition 2.  In a stable stagnant-equilibrium steady state, family-income inequality, E2(s), and 

families’ relative human capital attainments equal their relative inherited income endowments: 

(11) E2(s) = [H1
t/H2

t](s)= H 1/ H 2. 

Proof: Equation (11) is obtained utilizing equation (1), the stagnancy of human capital attainments in 

the SE, and the expectation that a1(s)≡A1h1(s)=a2(s)≡A2h2(s)[S2(s)]γ (proposition 1). Indeed, the latter 

must hold in the SE as well as the GE: By the heterogeneity condition v1=v2, equation (7) implies that 

(12) θ1h1(s) = θ2h2(s). 

Inserting the condition a1(s)=a2(s) in equation (8) is thus seen necessary to guarantees that n1(s)=n2(s).  

Proposition 2 implies that status differences are the key factor determining family income 

inequality in economies that are stagnant over long periods, an inference which seems compatible 

with historical evidence, such as pre-industrial revolution Europe. Equation (11) is also dynamically 

stable: suppose we start from a stable SE. If a parameter shock lowers a2, raising H1
t/H2

t above 

H 1/ H 2, then E2
t and S2

t would also rise initially. This would raise n2
t and depress P2

t and S2
t, which 

in turn would increase a2
t and lower H1

t/H2
t until the initial equilibrium is restored. 

Note that by equations (10) and (12), the income shares spent on both raising (vn) and 

educating (θh) children equalize across families. Combining these with equation (8) allows us to 

derive the stagnant-equilibrium value of our income-group inequality measure: 

(13) S2(s) ≡ E2(s) P2(s) = [(A1/θ1)/(A2/θ2)](1/γ) ≡ (e1/e2)(1/γ). 

Proposition 3.  In a stagnant steady state the shares of earning capacity devoted to human capital 
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investments per child, θihi(s) are equalized across all family groups, and income-group inequality, 

S2(s) depends strictly on the relative “investment efficiencies” of family 1 relative to 2, (e1/e2)(1/γ). 

Unlike S2(s), however, the size distribution of families across income brackets P2(s) and the Gini 

coefficient G(s) depend on both relative family endowments and investment efficiencies. 

 Equation (13) has an intuitive interpretation: The only way the social interaction term S2(s) ≡ 

E2(s)P2(s) can adjust to satisfy equation (10) is through adjustments in fertility choices and their 

impact on P2(s). Fertility choices are strictly a function of relative investment efficiencies (equation 

8). Therefore, adjustments in S2(s) must be a function of relative investment efficiencies as well.    

This analysis yields a set of comparative-dynamic implications in the SE steady state. By 

Proposition 2, family-income inequality, E2(s), is strictly a function of families’ relative endowments. 

By proposition 3, any changes in relative income-group inequality, S2(s)≡E2(s)P2(s), thus occur via 

the groups’ relative population shares, P2(s)=[N1/N2](s). For example, an increase in group 1’s 

relative investment efficiency e1/e2 would increase S2(s) by increasing its population share, P2(s). A 

higher intensity of knowledge spillover, γ, leaves family choices intact but lowers P2(s) hence, S2(s). 

Changes in other common parameters can affect, ni(s), and hi(s), but not any income inequality 

measures: by equations (7) and (8), higher fertility unit costs (v) increase hi and lower ni, while 

stronger altruistic preferences (B) raise ni in all families (See Table 1 part 1.)  

 Does income inequality change systematically at different income levels? Note that while 

income levels are stagnant in a SE, they can vary with parameter shifts: A skill-biased technological 

advance raising family 1’s relative investment efficiency, e1/e2, ultimately raises income levels in all 

families. By proposition 2, however, family-income inequality, E2(s), remains unchanged, while by 

proposition 3, income-group inequality, S2(s), rises because the wealth effect generated by a higher 

e1 temporarily increases group 1’s relative fertility, and ultimately its population share P2(s). The 

 11



impact on Gini is ambiguous, since G(s) rises with S2(s), but falls with P2(s).11 The association 

between income levels and inequality at the SE thus depends on the inequality measure used.  

B. Growth Equilibrium Steady State (g)   

 In a steady state of a balanced-growth-equilibrium (GE), human capital stocks Hi
t grow 

exponentially without bound, while the long-run values of ni(g), hi(g), and all inequality measures are 

constant. Since the relative impact of the endowments, H i, vanishes, proposition 1 implies that the 

long-run growth rate of human capital in all groups converges on its marginal value in family group 

1, limt→∞ (Hi
t+1/Hi

t) ≡ a1(g)=A1h1(g) = ai(g) =Aihi(g)Si(g)γ. Local stability for group 1 is assured if 

a1(g)>1, or v(A1/θ1) > (β−1), since dh1
t/dH1

t=0 and dn1
t/dN1

t ≤ 0 as in the SE. The necessary and 

sufficient conditions for the local stability of the full system, which guaranties a unique solution for 

income-group inequality, S2(g)=E2(g)P2(g) but not for its component parts (see the discussion below), 

are shown in Appendix B.2 to require that {– γ < e(g) < 2– γ}, where e(g) is the elasticity of n2(g) with 

respect to S2(g). Again, our numerical illustration using the baseline parameters in Table 1, part 2 

indicate that this condition is satisfied for all permissible values of 0≤γ≤1 (see Appendix B.2). 

Proposition 4.  Proposition 3 remains valid at the growth equilibrium steady state as well. 

Moreover, if the relative distribution of the heterogeneous parameters Ai and θi remains the same in 

the SE and GE, income-group inequality S2 would converge on the same level in both steady states: 

(14) S2(g) ≡ E2(g)P2(g) = [(A1/θ1)/(A2/θ2)](1/γ) ≡ (e1/e2)(1/γ) = S2(s).  

 The proof is the same as for proposition 3. The comparative-dynamic implications of equation 

(14) are also similar to those of equation (13): S2(g) rises with the relative investment efficiency 

(e1/e2) and falls with the spillover coefficient γ, as is the case in the SE steady state. No unique 

solutions exist, however, for the growth-equilibrium values of E2(g) or P2(g) (see Appendix B.2). 

Unlike the stagnant steady-state case, where family-income inequality E2(s) was determined strictly 

 12



by the relative family endowments, the endowments’ influence vanishes with persistent growth. The 

comparative values of E2 in the GE vs. SE steady states thus depend on the evolution of E2
t along the 

transitional phase. The same holds for the income-group-size inequality index, P2
t.  

 Comparative-dynamics effects of parameter shifts on inequalities in family-income, E2(g), 

and income-group-size, P2(g), are thus ambiguous. A skill-biased technological or institutional 

advance favoring the leading family, which by proposition 4 unambiguously raises S2(g)≡E2(g)P2(g), 

must raise either E2(g), or P2(g), or both. E2(g) necessarily rises if the upward shift in A1 raises the 

growth rate of human capital and income in family 1, A1h1
t, above that in family 2 over the entire 

transitional-adjustment path. As in the SE case, fertility rises as well, as shown by our simulations in 

Table 1 part 2, because an increase in A1 generates a wealth effect, which favors fertility over 

educational investment. Over the transitional dynamics adjustment, family 1’s higher income growth 

rate ultimately lifts the income growth rate and fertility in family 2 as well, due to the rising social 

interaction effect (S2
t)γ. Thus, unlike the SE case, both family-income inequality E2(g) and 

income-group-size inequality P2(g) rise while fertility inequality increases over the initial part of the 

adjustment period, but ultimately falls and vanishes at a new GE steady state. The change in Gini is 

ambiguous, since G rises with S2 and falls with P2, but our simulations indicate that G(g) rises as well, 

as S2(g) rises more sharply.  

These results appear to be consistent with the US experience following the “Information 

Technology revolution”: empirical studies have shown that the Gini coefficient rose in the 1980s 

(e.g., Katz and Murphy, 1992; Acemoglu, 2002). As we predict, Census data also show that over the 

same period total fertility levels reversed a historic downward trend since the baby boom and started 

rising from 1.74 in 1977 to a peak of 2.08 in 1990, remaining stable thereafter at about 2.02, while the 

coefficient of variation of fertility rose from 0.619 in 1983 to 0.710 in 1994, but with the rate of 
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increase diminishing since then (see Figure A).12   

 Table 1, part 2 also confirms the implications of equations (7) and (8) that a rise in v lowers 

ni(g) and raises hi(g), thus the growth rate, while a rise in B raises only ni(g). Neither affects any 

income inequality measure. This is in contrast to a skill-biased technical advance, which raises all 

income inequality measures and the growth rate as well. The association between income growth rate 

and income inequality thus depends on the parameter changes responsible for their co-movements.  

C. Takeoff Triggers.  

 As equation (9) predicts, starting at a stagnant equilibrium, an upward shock in investment 

efficiency, Ai/θi, or in the common unit cost of raising children, v, even one affecting just group 1, can 

generate a takeoff and a transitional development phase for all groups. Under the altruistic 

specification of our model, the “demographic transition” typically accompanying a takeoff, whereby 

fertility generally declines, can be generated by a sufficient upward shift in the unit cost share of 

raising children, v, but not by a technological advance: the latter generates a higher growth rate and 

thus a wealth effect favoring fertility (see Table 1 part 3).13 By propositions 3 and 4, however, shifts 

in v, thus in fertility levels have no bearing on the dynamic evolution of our income inequality 

measures over the transitional development phase. Also, the shapes of the evolution paths of all our 

income inequality measures, i.e., whether income inequality is monotonically rising or falling or has 

a U-shape, or an inverted U-shape, or any combinations therein, is dictated just by shifts in the 

parameters affecting investment efficiency (Ai and θi). The paths of income inequality we derive 

below are thus independent of the evolution of fertility levels, but are affected by the evolution of 

relative fertility levels across groups and their relative population shares, P2
t, as our analysis in the 

following section demonstrates.  

III. INEQUALITY PATHS OVER THE TRANSITIONAL DEVELOPMENT PHASE 
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A. Paths of Income Inequality Measures 

 The preceding analysis indicates that the behavior of inequalities over the development phase 

partly depends on the type of shock that produces a takeoff. An equally important issue is how fast 

any given shock reaches different family groups: a skill-biased technological advance, e.g., is likely 

to first reach the group with the highest investment efficiency, or affect it proportionally more than 

others. While this group need not necessarily be the one with the highest income − this depends on the 

correlation between ability and initial endowments across family groups − a positive correlation is 

likely (see Becker, 1967). To contain the possible scenarios we focus on three that are neither 

exhaustive nor necessarily of equal empirical plausibility:  

a. Synchronous and uniform shocks: These shocks affect all takeoff-triggering parameters (Ai/θi, 

v) simultaneously and by the same proportion. This case can be dubbed “the neutral equilibrium 

path”; we can show that over the transitional phase: 

(15) S2
t = S2(s) = S2(g) = [(A1/θ1)/(A2/θ2)](1/γ), and E2

t = E2(s) = E2(g) = H 1/ H 2. 

Put differently, our basic earnings inequality measures chart a horizontal path all along the 

development process. This is because a uniform proportional increase in a takeoff-triggering 

parameter affects all optimality conditions symmetrically, leaving constant the spillover effect. Since 

the Gini coefficient is a function of S2 and P2, it also exhibits a flat transition path. 

b. Shocks favorable to family 1: Such a shock affects family 1 proportionally more than, or ahead 

of, family 2. An example would be a technical advance or a market reform that enhances just the 

productivity of especially skilled workers (A1), such as a shift from a command to a market economy, 

or one that ultimately enhances the productivity of all agents proportionally but is first integrated by 

family 1, such as the IT revolution. We implicitly assume a positive correlation between 

income-generating endowments and efficiency at human capital investments, or COV( H i, Ai/θi) > 0, 
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so the higher-income family 1 is a leading group at both the stagnant and growth steady states. 

 If family 1 is affected ahead of family 2, the transitional development phase would be 

characterized by the co-existence of family groups in different stages of transition: Family 1 would 

initially become a “growth family” while the other remains a “stagnant family”. But the persistent 

growth in family 1’s income ultimately produces a takeoff for all, and by proposition 1 all will 

eventually grow at an equal rate. The time paths of all income inequality measures (S2, E2, and G) will 

exhibit an inverted-U shape, consistent with the “Kuznets hypothesis” (see Figure 1).  

The shapes of the income inequality paths in all scenarios, including the comparative income 

inequality levels in the growth, relative to the stagnant steady states, depend strictly on whether the 

technology shift ultimately affects all families “uniformly”, i.e., equi-proportionally, or 

non-uniformly. If a skill-biased technology shift ultimately becomes uniform, it does not affect the 

GE income-class inequality S2≡E2P2 by equation (14), but it lowers the GE family-income inequality 

E2(g), because the wealth effect triggered by the jump in A1 initially raises the relative fertility level 

of group 1, and ultimately its relative population share, P2(g). If the shock raises A1 proportionally 

more for family 1, income inequality would then be monotonically increasing over the development 

phase for all our three income inequality measures.  

c. Shocks favorable to family 2: A family-2 friendly shock could occur, e.g., when a less segmented 

capital market lowers the education financing cost to all families, but especially to family 2, thus 

lowering (e1/e2), or when the shock first benefits family 2, which could not initially finance private 

schooling. In this case, the takeoff-triggering shocks will produce transition paths just opposite to 

those in case b. The time paths of all inequality measures will assume a U shape if family 2 

experiences a takeoff shock ahead of family 1 (see Figure 2). Whether the inequality level rises or 

falls at the GE, relative to the SE steady state depends on whether the non-synchronized shock 
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ultimately becomes equi-proportional, in which case the income-bracket inequality, S2, is constant 

and P2(g) falls, so family-income inequality, E2(g), rises. If investment efficiency rises proportionally 

more for family 2, all income inequality levels would be monotonously decreasing, or family 2 may 

overtake family 1.14  Our simulations of cases b and c also reveal negative associations between 

income growth rate and income inequality over the transitional development phase. In case b, 

income inequality and per-capita income growth rate are negatively associated at an early stage of the 

transition but become positively associated at a more advanced stage, as Barro (2000) finds, while in 

case c they are negatively associated, which is what Forbes (2000) finds. Our analysis thus shows that 

the dynamic association between income growth and income inequality can vary by the specific 

takeoff triggers, or at different stages of the transitional development phase. 

 Regardless of the way a takeoff-generating shock affects different families, a fundamental 

implication of our model is that the shape of the family-income inequality path over the transitional 

development period, E2
t ≡ ( H 1+H1

t)/( H 2+H2
t), would always be congruent to that of human capital 

attainments, H1
t/H2

t, regardless of the specific shape of the paths. Our simulations indicate that this 

result applies to our other measures of income inequality as well.  

B. Paths of Inequality in Fertility and Human Capital Investment 

Since by proposition 1, desired fertility is equalized across families in the SE and GE steady 

states, while generally deviating across families over the transitional phase linking the two, we have: 

Proposition 5.  Except in the “neutral equilibrium” case, the inequality path of desired fertility will 

exhibit an inverted-U shape, but tend toward equality in the two steady states framing the 

transitional phase (see Figures 1d and 2d).  In the neutral-equilibrium case, inequality in desired 

fertility assumes a flat time path.  

 If income inequality measures assume an inverted-U shape due to a skill-oriented technology 
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advance, as in case b of the preceding section, family 1’s relative fertility will initially rise above that 

of family 2 and fall below it in subsequent periods, but ultimately result in a higher population share 

of group 1, P2(g). This pattern of evolution in relative fertility and income inequality, would not be 

altered at all if the technology shock is followed by a rise in the cost of housing or opportunity costs 

of female’s time, which raises the unit cost-share of bearing and raising children, v, and generates a 

demographic transition for both families. This association between fertility rankings and income 

inequality is consistent with the findings in Kremer and Chen (2002) and De la Croix and Doepke 

(2003). If the income inequality path assumes a U shape as a result of lower financing costs benefiting 

lower-income groups, as in case c of the preceding section, family 1’s fertility will initially fall short 

of, but then exceed, that of family 2 during the transition phase. Again, this shape of the income 

inequality path would not be altered if a subsequent shock in v generates a demographic transition 

with family 2’s fertility level falling ahead of 1’s. In our GE framework, however, such associations 

do not indicate causality, nor can they persist, as desired fertility differences ultimately vanish in a 

steady state. 

IV. EMPIRICAL ANALYSIS 

A. Basic Tests 

We test empirically two basic implications of the model: a. By Proposition 5, we expect 

fertility inequality to display an inverted-U shape with flat tails over the development phase; b. Since 

schooling levels may approximate human capital attainments, we can test another basic prediction: 

We expect the shapes of schooling and family-income inequality paths to be similar over the 

transition phase.15 By our simulation analysis, this expectation applies to all our income-inequality 

measures as well. To test these propositions we use panel data from different countries over periods 

of varying length. Since all countries in our sample exhibit positive growth rates over the period, they 
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represent economies in transition toward a steady state of growth. 

B. Data and Variables Used 

a. Completed fertility. Data on the distribution of surviving children per woman are available from the 

World Fertility Surveys and the Demographic and Health Surveys. Our sample is based on 72 surveys 

of 29 developing countries in various years between 1974 and 2000.  From the individual-level data 

in each survey, we derive the distribution of surviving children of women age 40 an over. We make 

this restriction to insure that our measures relate to women who completed childbearing. We then use 

the standard deviation of the distribution of surviving children per woman age 40 and over 

[SD-FERT] as our fertility inequality measure. But since the [SD-FERT] is subject to a secular drift, 

we enter the average level of completed fertility as a control variable, [AV-FERT].  

b. Human capital. Our data are taken from Barro and Lee (2000).16 We use the average number of 

years of schooling in the population age 15 and over as a proxy for human capital stock. As a measure 

of inequality in educational attainments we use the standard deviation of the distribution of schooling 

years [SD-SCHYR] in the population age 15 and over. As in the fertility inequality regressions, we 

also add the mean schooling years as a control variable [AV-SCHYR].  

c. Income inequality. The data are taken from Dollar and Kraay (2001). These data cover 86 countries 

over the period 1950-1998. No data are available about income-group relative inequality, Si. We 

proxy our family-income relative inequality measure, Ei, however, by an inter-quintile income 

inequality ratio [QUINT] (each ‘quintile’ representing, by definition, equal number of households), 

and Gini (G) by the conventional Gini coefficient [GINI]. To be consistent with our model, we use 

only observations that are calculated from household income data, excluding observations based on 

personal income and expenditure data.  

d. Regressors. We use real per capita GDP level [RGDPn], reported in Heston, Summers, and Aten 
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[HSA] (2001) as a measure of the economy’s development level. Note that since RGDPn is an 

endogenous variable in our model, its level summarizes the impact of the model’s basic parameters 

which affect our dependent variables as well. We use government’s share of GDP [GOV] as an 

additional regressor, however, as a proxy for government re-distributional policies which may have 

an exogenous effect on our inequality measures. As a robustness check, we also enter the time trend 

as (T) to account for other possible missing trended indicators of the development phase. Summary 

statistics for all variables are given in Appendix C.  

C. Regression Models 

Our basic regression specification links our inequality measures as dependent variables with 

regressors introduced in the preceding paragraph plus AV-FERT and AV-SCHYR in the fertility and 

schooling inequality regressions, all in linear form, but RGDPn is entered in cubic or higher-order 

polynomial forms. This is because we predict the flattening of the income inequality, educational 

attainments and fertility paths as the economy converges on a growth steady state.  

Our regression specification is not intended to identify a causal effect going from RGDPn to 

the inequality measures, as these variables are simultaneously determined by our model. However, 

the use of RGDPn as an indicator of an economy’s stage of development is likely to expose the 

estimated regression coefficients, which we use to depict the shape of the inequality paths over the 

development process, to simultaneity biases. To derive unbiased and consistent estimated regression 

coefficients, we use a 2SLS method where RGDPn is treated as an endogenous variable. As 

instrumental variables (IVs) we include in the first-stage regression the inflation rate in log form 

ln(INFLA) and one-year-lagged RGDPn. INFLA is used to capture the impact of inflation on the real 

economy, which is shown to affect RGDPn adversely in the first stage regression. Alternatively, we 

also estimated the structural 2SLS regression equation using 2-year-lagged or 3-year-lagged RGDPn, 
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as well as all three lagged RGDPn variables jointly as IV’s, which produced very similar coefficient 

estimates. Basmann’s test indicates that INFLA and each of the lagged RGDPn variables can serve as 

an IV in the first-stage regression, and when introduced as additional regressors in the second stage, 

each of these variables had insignificant and inconsistent effects, validating their use as IVs.  

As robustness tests, models 1-3 in Tables 2-5 present OLS regression results based on a few 

model modifications. In model 1 we enter only the basic regressors accounting for behavior of the 

relative inequality measures over the development phase. Model 2 allows for fixed country effects, 

which capture just within-country variability in all variables, and in model 3 we add also GOV and 

T as regressors. Models 4-6 in Tables 2-5 repeat the specification of models 1-3 using the 2SLS 

method, which we use to derive Figure 3. In the fertility regressions of Table 2, we employ 

country-specific random-effects, instead of fixed-effects, models to increase the regressions’ 

degrees of freedom, because the number of observations per country is small (2.6 on average). To test 

for serial correlation, we applied an AR(1) specification using models 2 and 5 of each table. The 

Durbin-Watson test cannot reject the null hypothesis of no autocorrelation in all cases.  

D. Results 

 The fertility results are reported in Table 2. All models in the table produce an 

inverted-U-shaped association between fertility inequality and real income. The estimated regression 

line we chose to depict in Figure 3a is based on the 2SLS results from model 4 (with no random 

effects), because this allows for regression estimates based on variability in regressors both within 

and across the countries in our relatively small sample. The shape of the inequality path remains 

virtually the same, however, if we base it on model 5 (with random effects). Note that the sample is 

dominated by developing countries (In Figure 3a, fertility inequality peaks at an RGDPn level of 

$3,354 which means that 67% of the observations lie below this real GDP level). Therefore, if we 
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extrapolate the regression line to RGDPn typical of developed economies, fertility inequality would 

drop sharply, as we predict theoretically. As for the effects of other regressors, the standard deviation 

of the fertility distribution is monotonically related to the distribution’s mean, as one would expect for 

any distribution. GOV has a negative but insignificant estimated coefficient in the fertility regression 

(it has, however, a significant effect in the Gini regressions). The time-trend regressor is related 

inversely to fertility inequality, but directly to educational attainments inequality. 

 Table 3 reports the results concerning inequality in educational attainments. Regression 

results without fixed effects indicate an inverted-U-shaped association between income and 

educational-attainment inequality, as depicted in Figure 3b that is based on model 4. Results with 

fixed effects show a slightly different pattern (U shape at lower RGDPn values and inverted-U shape 

at higher values), essentially because schooling attainments have much lower variability among 

developed countries: The association between income and educational-attainment inequality is 

literally the same with or without allowance for fixed effects when only non-OECD-country data are 

used. Mean schooling expectedly raises the SD of schooling.   

 Tables 4 and 5 present the regression results concerning the income inequality paths of G 

(Gini) and QUINT (a proxy for Ei
t), respectively.  All model specifications indicate an 

inverted-U-shaped association between income inequality and income level. In models 4-6 of both 

tables we derive this association based on the subset of countries for which both income and 

educational attainments data are available. We do so because our model and simulation results imply 

that inequality paths of family-income (Ei
t) and human capital attainments would exhibit an 

increasingly similar shape as the economy converges on a GE steady state. This prediction is borne 

out in Figures 3c and 3d, based on model 4 in each table.17 In fact, the simple correlation coefficient 

of the predicted values shown in Figures 3b and 3d is .999 and the correlation coefficient of indicator 
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variables of the predicted paths in these figures (indicator variable takes the value of 1 if the slope of 

the path at each RGDPn value is nonnegative and 0 otherwise) is .992. This lends support to our 

human capital approach to income distribution. In both figures, income inequality at the highest 

RGDPn level in our sample is lower than the extrapolated value of income inequality at RGDPn=0, 

which is consistent with the path derived in case a of our simulations, whereby the income inequality 

measures E and GINI are lower at the growth steady state than at the stagnant steady state. 

 Since the estimated regression lines linking both educational attainments and income 

inequality measures with income levels exhibit an inverted-U shape, the results militate in favor of 

the Kuznets hypothesis. Note, however, that these results cannot be taken to support the Kuznets 

hypothesis as a general “law”: our analysis indicates that the observed association can be affected by 

the specific composition of countries in our sample and their development stage, as well as by the 

specific takeoff triggers operating in different countries.   

 Our results concerning the dynamic behavior of income inequality can be compared to those 

of Deininger and Squire [DS] (1998). Although DS use the same data, they employ a different 

fixed-effects regression format with RGDPn and 1/RGDPn entered as regressors. When we add a 

cubic or higher-order form of RGDPn to the DS specification, however, the plotted relationships 

between GINI or QUINT and RGDPn exhibit inverted-U shapes in this specification as well, similar 

to those depicted in Figures 3c and 3d.  

CONCLUDING REMARKS 

Our deterministic model offers two main messages. The first is that income distribution in the 

population is linked fundamentally to the corresponding distribution of human capital attainments, 

not just under static conditions, as in Becker’s 1967 paper, but under dynamic conditions as well. 

Contrary to inferences reached in earlier dynamic models (see footnote 3), neither inequality 
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disappears at an advanced level of development, let alone at a low and stagnant level of development 

– a conclusion justified by the observed systematic linkage between inequalities in income and 

educational attainments even in highly developed economies. In this context, our propositions 

concerning the behavior of income inequality over the entire development process follow from the 

diverging trends in educational attainments across different income groups as well as the social 

interaction forces which bind them. The second, and more novel, message is that the dynamic 

evolution of the level and distribution of income over the entire development process cannot be fully 

understood without recognizing their linkage to the evolution of the relative fertility rates and 

population shares of different income classes. Our model shows how income and fertility 

distributions evolve conjointly over the transitional development phase. It also enables us to derive 

inferences about the comparative income inequality levels in the growth, relative to the stagnant 

equilibrium steady states, which frame the transition phase. 

Regardless of the dynamic pattern of any of our income inequality measures, a distinct 

implication of our model is that the time path of fertility inequality will generally exhibit an 

inverted-U shape with attenuated tails over the transitional development phase. This prediction is 

supported by our empirical investigation, based on a sample of countries in different stages of 

development. It is also consistent with historical evidence indicating that the association between 

relative variances in fertility and income levels across Western European regions exhibited an 

inverted-U shape between the mid-19th century and 1970, with fertility variances being quite low in 

the pre-demographic transition phase (see Coale and Treadway, 1986).  

Concerning the shape of the dynamic association between income growth and inequality, no 

“general law” applies. We offer, however, several new insights. First, the shape can vary depending 

on the parameter(s) that trigger the takeoff and the manner in which they reach different family 
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groups. In ex-command economies, e.g., where the opening of markets benefits more those with 

greater ability to acquire new knowledge, it is likely that case (b) illustrated in Figure 1 emerges, with 

income inequality measures (initially) rising. If the takeoff-trigger reflects largely government 

subsidization of education, case (c) illustrated in Figure 2 may be more likely to occur.  Second, the 

shape depends on whether the economy is in a stagnant or growth steady state, or in a transitional 

development phase where it becomes sensitive to the specific mix of countries in the sample. This 

may partly explain why different studies reach different conclusions about it. Third, the shape partly 

depends on the inequality measure used. We derive three such measures as endogenous variables: 

family-income inequality (E2
t); income-group inequality (S2

t=E2
t P2

t), which also depends on the 

distribution of families across income brackets (P2
t); and the Gini coefficient (Gt), which is increasing 

in S2
t but decreasing in P2

t. Our model offers some strong predictions concerning the dynamic 

behavior of these measures. 

For example, under given preferences and external production technologies, and a stable 

distribution of investment efficiencies, we expect the income-group inequality measure, S2
t=E2

tP2
t, to 

converge on equal levels in stagnant and growth steady states, or S2(s) = S2(g). The comparative 

levels of this measure’s components, E2
t and P2

t, and therefore the Gini coefficient, in contrast, may 

vary across the two steady states. We expect family-income inequality in a stagnant steady state, 

E2(s), to be strictly a function of inequality in inherited family-specific endowments such as social or 

legal status. No clear-cut predictions can be made, however, about the shape of the family-income 

inequality path (E2
t) over the transition phase: An inverted-U-shaped path is likely to emerge as a 

result of a uniform, skill-biased technological advance, which first reaches the top-skilled family 

group. The relative population share of that group (P2) would then rise at the growth, compared to the 

stagnant, steady state, and in this scenario, family-income inequality would ultimately fall at the 
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highest development level, compared to the lowest, as figure 3d illustrates. No government 

re-distribution policies are required to achieve such outcome. In contrast, a U-shaped family-income 

inequality path with P2 falling and family-income inequality turning higher at advanced, relative to 

pre-takeoff, development phases, can emerge as a result of educational subsidies which lower the 

financing-cost disadvantage of especially lower-income families.  

The link between income and fertility choices also sheds light on the behavior of income and 

fertility distributions at the stagnant- and growth-equilibrium steady states. In the SE, a skill-biased 

technology advance raises the steady state income and fertility levels as well as fertility inequality 

and two income inequality measures - S2(s) and G(s). In the GE, a similar advance raises income 

growth and all inequality measures, as well as fertility level and inequality. This prediction is borne 

out by the evidence we presented for the US following the IT revolution in the 1980s.  

Although our analysis is based on a deterministic model of heterogeneous family groups with 

inherited differences in endowments and investment efficiencies, it allows for a degree of social 

mobility, especially in the case where leadership in human capital formation can switch from the 

group with initially highest earning capacity to the initially followers’ group over the transitional 

development phase. Moreover, our key implications hold if we allow also for stochastic variations in 

ability within groups (see fn. 4). And although our basic model relates to inequality in earning 

capacity, the propositions we derive may apply to total income as well (see Appendix A).  

A critical implication of our model is that the dynamic path of family-income inequality, 

regardless of its shape, should mirror that of educational attainments, both having flat tails. This is 

what we find empirically. This finding supports the basic premise of our model, that family-income 

growth and distribution are directly linked to human capital formation and distribution. 
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APPENDICES 
 
A. The Model with Savings  

Although our model abstracts from capital markets, we can incorporate returns on savings as 
an outcome of “home production” in which old parents’ human capital serves as an input, and the 
yield is subject to diminishing returns. This is a natural assumption in the context of our 
closed-economy framework. The extension allows us to recognize inequalities in labor earnings as 
well as in total income, incorporating both earnings and property income. 
 Formally, we now assume that each agent lives through three periods: childhood, young 
adulthood, and old age. Total savings is defined by Kt≡( H i+Hi

t)si
t, where si

t is the fraction of 
productive capacity saved at adulthood, and Kt is assumed to fully depreciate within one generation. 
Income from savings is generated when old parents combine their accumulated assets, Kt, with their 
human capital inputs via the production function, F= D( H i+H −κ[(i

t)1 H i+Hi
t ]κ, 0<κ<1. The relevant 

objective is to maximize: 
)si

t

(2′) U(Ci
1,t, Ci

2,t+1, Wi
t+1) =  [1/(1-σ)][Ci

1,t
1-σ −1] + δ[1/(1-σ)]{[Ci

2,t+1
1-σ −1] + [Wi

t+1
1-σ −1]}, 

where the consumption flows at adulthood and old age are given by 
Ci

1,t = ( H i+Hi
t)[1 − vni

t − θihi
tni

t − si
t],  

Ci
2,t+1 = D( H i+Hi

t)1−κ[( H i+Hi
t)si

t]κ, 
and the altruism function Wi

t+1 is defined as in equation (4). 
The first order optimality conditions for ni

t and si
t are thus given by, 

(A1) 0 = − Ci
1,t

-σ (v + θihi
t) ( H i+Hi

t) + δ Wi
t+1

-σ β B(ni
t)β-1Hi

t+1
α, for ni

t ≥ 0, and 
(A2) 0 = − Ci

1,t
-σ ( H i+Hi

t) + δ Ci
2,t+1

-σ κD( H i+Hi
t) (si

t)κ-1, for si
t ≥ 0. 

Combining these two equations, we can show that ni
t and si

t are inversely related as follows: 
1−βvni

t/(β−1) = si
t + [δ D1–σ κ]-1/σ (si

t)[1-(1-σ)κ]/σ. It is easy to show that the optimal solution for hi
t 

remains the same as in equation (7). 
 We can now distinguish income inequality from earnings inequality. The measures of the 
pooled income of a family head – earnings as well as property income from savings – can be defined 
parallel to our earnings-inequality measures in section I.C. For example, TS2

t below corresponds to 
the ratio of total income-group inequality (wage earnings of adult parents plus non-wage income of 
old parents) of group 1 relative to group 2, and the same holds for family income inequality, TE2

t, and 
the Gini coefficient, TGt: 
TS2

t ≡ [N1
t ( H 1+H1

t) + N1
t-1 D( H 1+H1

t-1)(s1
t-1)κ]/ [N2

t ( H 2+H2
t) + N2

t-1 D( H 2+H2
t-1)(s2

t-1)κ], 
TE2

t ≡ TS2
t / TP2

t;  TP2
t ≡ [(N1

t + N1
t-1)/ (N2

t + N2
t-1)], and 

TGt ≡ [TS2
t − (N1

t + N1
t-1)/(N2

t + N2
t-1)] /(1+ TS2

t)/[1+(N1
t + N1

t-1)/(N2
t + N2

t-1)]. 
Under our heterogeneity restriction, we can show that in any steady state, the optimal savings 

rates (si) and shares of income spent on raising and educating a child, (vni) and (θihi), are identical in 
all family groups, since the first-order optimality conditions governing these control variables 
become identical for all family groups in all stable steady states. Our total income inequality 
measures are therefore identical to the corresponding earnings-inequality measure at both the 
stagnant- and growth-equilibrium steady states. Moreover, we can show that the relative inequality in 
earnings, and hence in total income in this extended model is the same as that derived in our 
benchmark model sans savings, as given by equations (11), (13) and (14). All our propositions in 
sections II and III are also maintained in this extended model, as are the qualitative results of the 
comparative dynamics reported in Table 1 for both the SE and GE steady states. The time paths of the 
inequality measures derived in section III are also shown to have the same shape as in the extended 
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model with savings.  
Over the transitional development phase, however, the savings rate may differ across families. 

For example, when a takeoff occurs as a result of a skilled-bias technological advance reaching 
initially the higher-income family group 1, our income inequality measures assume an inverted-U 
shape, and the savings rate of family 1 initially falls below that of (stagnant) family 2. In the following 
stage, however, as family group 2 experiences a takeoff because of the social-interaction effects 
coming from family-group 1, its savings rate falls below that of family 1. The aggregate savings rate 
then starts rising while income inequality is falling. The resulting association between income 
inequality and the aggregate savings rate does not indicate causality, however (as in Keynes, 1920, 
or Kaldor, 1957).  
 What would be the effect of changes in D or κ on our income inequality measures? As long 
as these changes are common to all families, they will affect only the composition of family income, 
but not the total income inequality measures, as our simulations confirm.  
 
B. Local Stability Conditions in the Steady States 
 1.  The stagnant equilibrium 
 At the stagnant equilibrium, the dynamic system is given by 
(B1)   P2

t+1 = n1/[n2(S2
t)] P2

t 
(B2)   H2

t+1 = A2 h2( H 2 + H2
t) (S2

t)γ    
To check for local stability, we first fully differentiate equations (B1) and (B2). Following some 
algebraic manipulations and omitting the superscript 2, the linearized system becomes:  
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tX̂  = d ln(Xt) denote percentage deviations from steady state values of X = H or P,  
K ≡ {H(s)/ [ H +H(s)]}, and e ≡ [∂n(s)/∂S(s)]/[n(s)/S(s)].    
The characteristic polynomial of M or det(M-XI), is then given by  
F(X) = X2 + [e – (1–γ) K – 1]X + [ (1-e)(1–γ) K – γeK].   
The necessary and sufficient condition for general stability (covering both oscillatory and non-oscillatory 
equilibrium scenarios) requires the two roots of the characteristic equation to be smaller than one in 
modulus. These conditions are summarized by 
(B4) 0 < e < 2 {1– [γK/(K+1)]}           
 

2. The growth equilibrium 
In the growth equilibrium, the relative effect of H i is negligible since Hi

t is increasing without 
bound.  Thus we can suppress H i to examine the growth equilibrium dynamics.  We can then express 
the system of growth equilibrium in terms of E2

t and P2
t as follows: 
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Taking the total differentials of (B5) and (B6) around the growth steady state, the linearized system 
can be shown equal to: 
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where e(g) ≡ [∂n2(g)/∂S2(g)]/[n2(g)/S2(g)].    
The characteristic polynomial of M is thus given by   
F(X) = X2 + [γ + e(g) – 2]X + [1 – e(g) –γ],  
and the roots of the polynomial equation F(X) are 1 and [1 – e(g) –γ].   

The unit root indicates that we do not have a unique equilibrium steady state values of E2(g) 
and P2(g), as we note in the text. However we do have a unique equilibrium solution for S2(g). Since 
S2

t = E2
tP2

t, we obtain by adding the solutions for the rates of change in E2
t and P2

t in equation (B7) 
around the growth steady: 

1t1t P̂Ê ++ +  = [1 – e(g) –γ] ( )tt P̂Ê +  or  = [1 – e(g) –γ] . 1tŜ + tŜ
Hence, we have stable and unique equilibrium for St as long as -1<[1 – e(g) –γ]<1, or 
(B8)   –γ < e(g) <2 – γ. 
 
 3. Numerical sensitivity analysis of the conditions for local stability 

To perform sensitivity analyses of our local stability conditions, we evaluate the elasticity e(s) 
by totally differentiating equation (B4), and then applying the baseline parameters used to derive the 
SE as well as the GE in Table 1, parts 1 and 2. Equations (B4) and (B8) are found to be satisfied for 
all values of γ ∈ (0,1). 
 
C. Variables used in the regressions and summary statistics 
Variable Description Mean [Std. Dev.] 
   
SD-FERT Standard deviation of the distribution of surviving children 

per female ≥ 40 
2.520 

[0.306] 
AV-FERT Average of the distribution of surviving children per female 

≥ 40 
4.179 

[1.161] 
SD-SCHYR Standard deviation of the distribution of schooling years in 

the population ≥ 15  
3.684 

[0.806] 
AV-SCHYR Average of the distribution of schooling years in the 

population ≥ 15   
4.888 

[2.755] 
GINI* Gini coefficient  37.76 

[7.948] 
QUINT* Share of total income received by the top relative to the 

bottom quintile of families in the population  
8.826 

[5.259] 
RGDPn Real per-capita income 6340 

[5960] 
GOV GDP shares of government spending  19.53 

[8.821] 
INFLA Annual inflation rate in GDP deflator (percent) 56.39 

[587.1] 
* We calculate GINI and QUINT exclusively based on household income data reported in Dollar and Kraay (2001), 
excluding observations based on personal income, personal expenditures, or household expenditure data. 
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ENDNOTES 
  

1 Some studies favor the Kuznets hypothesis: e.g., Lindert and Williamson (1985) and Barro (2000). 
Others reject it, or find no systematic relation, e.g., Anand and Kanbur (1993), Fields (1990), Fields and 
Jakubson (1994), and Deininger and Squire (1998). Studies of the way income growth rate relate to 
income inequality also report mixed results: Persson and Tabellini (1994), Alesina and Rodrik (1994), 
and Deininger and Squire (1998) find a negative relation; Forbes (2000) finds a positive one; Barro 
(2000) finds that higher inequality lowers the growth rate in poor countries but raise it in rich ones, while 
Banerjee and Duflo (2000) find an inverted-U relation between the two. 
 
2 Models supporting Kuznets’ direction of causality rely, e.g., on structural shifts in a two-sector 
model (Kuznets 1955, 1963, Anand and Kanbur 1993); skill-biased technical progress (Eicher 1996, 
Aghion et al. 1999); and organizational changes (Kremer and Maskin 1996, Lindbeck and Snower 
1997, Acemoglu 1999). Models favoring causality going from inequality to growth rely, e.g., on 
credit market imperfections (Loury 1981, Galor and Zeira 1993, Banerjee and Newman 1993, 
Durlauf 1996, and Galor and Moav 2004); political economy changes (Venieris and Gupta 1986, 
Alesina and Perotti 1996, Benhabib and Rustichini 1996); and fertility changes by income (Kremer 
and Chen 2002, and De la Croix and Doepke 2003). 
 
3 Lucas (1988) also considers spillover effects in goods production, stemming from the average human 
capital level in a representative-agent model. Tamura (1991) applies a similar spillover effect in human 
capital production, which results in full income-convergence. De la Croix and Doepke (2003) also use 
the Lucas-type spillover effect and consider fertility as well as income inequality but reach the same 
income-convergence result as Tamura. They focus on growth effects stemming from assumed initial 
inequality in human capital, however, rather than on the joint dynamic evolution of inequalities in 
education, income, and fertility over the entire development process. Zhong (1998), and Ehrlich and 
Yuen (2000) develop prototype frameworks similar to ours, but ignore the role of fertility.  

4 Becker (1973) and Burdett & Coles (1997) offer evidence supporting positive assortative mating by 
intelligence and education. Our assumed fixed distribution of family types still allows for 
family-group mobility over time, since family group 2 may move closer to, or even overtake, group 
1 over the transitional phase (see fn. 14). Alternatively, we can allow for individual mobility as well 
by allowing for stochastic deviations in ability within initial k subgroups of family type i (=1,2), using 
a stochastic specification similar to that of Becker and Tomes (1979): Ak,i

t+1 = φAk,i
t + (1-φ)Ai + εk,i

t+1, 
where Ak,i

t+1 is the ability level of generation (t+1) in subgroup k, Ai is the mean ability level of group 
i, (0 < φ <1) is a weight, and εk,i

t+1 is a stochastic variable, iid, with zero mean and constant variance. 
It is reasonable to assume that: (a) εk,i

t+1 is revealed a-posteriori; i.e., after parental decisions on 
quantity and quality of children are made; and (b) social interaction is determined by the average 
earning capacity and family-group size in group 1 relative to 2 in generation t. Allowing for positive 
assortative mating within each subgroup we now obtain regression towards the mean ability level Ai 
inside group i in any steady state. Overall income inequality in a steady state will be larger now than 
in our deterministic model due to the influence of εk,i

t+1. Inequalities in fertility and educational 
investments, however, will be the same as in the deterministic case, unless we also allow for a 
stochastic component distinguishing desired and realized fertility. The steady-state 
comparative-dynamic results of our model hold in this stochastic specification as well.  
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5 Knowledge transmission is thus modeled as an exogenous process, assuming that spillover effects 
cannot be internalized a priori. We also disallow strategic group behavior aimed at benefitting from 
spillover effects. 
 
6 The leader-follower specification can be generalized under additional assumptions to a J-group 
specification (i=1,…J): let the homogeneous members of group 1 be the exclusive source of 
knowledge transfer, and assume that successful knowledge transfer from a member of group 1 to a 
member of group i>1 requires pair-wise interactions, such as random pairings of agents forming a 
work team and sharing a school desk or a two-seat assignment on a commuter plane, which allow for 
intensive knowledge transfer.  The odds that the member of i>1 is paired with a member of any other 
group j≠i, is (N−Ni)/Ni, where N is the total population. Effective interaction requires, however, that 
the paired member of group j would be a member of group 1, the conditional probability of which is 
(N−Ni)/Ni. The odds of exclusive interaction between members from groups 1 and i is thus the 
product of the two [(N−Ni)/Ni][(N−Ni)/Ni] = Pi = N1/Ni. This restrictive specification of social 
interaction yields all the propositions derived in this paper. 
 
7 This specification of altruism or “companionship”, relating parents’ utility to children’s human 
capital rather than earning capacity, has the advantage of allowing for interior solutions for all our 
control and “state” variables, which permits the derivation of all inequality measures as endogenous 
variables all along the development process, including both the stagnant and growth steady states. 
    
8 If we allow for differences in survival probabilities from childhood to adulthood, πi, the necessary 
stability condition would be equality of the expected numbers of surviving children: π1n1=π2n2. 
  
9 As propositions 2 and 3 below indicate, in any stable equilibrium steady state, all families spend the 
same proportion of their potential income on quantity (vn) and quality (θh) of children. Thus all wind 
up with the same desired fertility level despite their different income levels, because in equilibrium, 
a lower income (Yi

t= H i+Hi
t) would be offset by a proportionately lower shadow price of fertility 

([vi+θihi
t]Yi

t), and the demand for children’s quantity ni is then a function of the ratio of the two. 
 
10 In the log utility case, we have an explicit solution for fertility: ni

t = [δ(β-1)]/[vi(1+δβ)].  Thus, 
for n1 to be equal to n2,  v1 = v2. 
 
11  More specifically, ∂G/∂x=(1−1/E2)(1−P2S2)∂S2/∂x+S2(P2+1/E2)2∂E2/∂x in any equilibrium 
position, where x is one of our parameters. In a stagnant state, a rise in (e1/e2) unambiguously raises 
S2(s), while not affecting E2(s). Thus G(s) will rise or fall depending on whether P2(s)⋅S2(s) is smaller 
or bigger than 1. An increase in H 1/ H

  

2 will not affect S2(s) but will raise unambiguously E2(s) and 
G(s). In a growth steady state, we cannot make symmetrical predictions because an increase in (e1/e2), 
for example, may also affect E2(g), as our analysis in section II.B indicates. 
 
12 Although the fertility level of Hispanic female immigrants is higher than that of the US female 
population, the rise in the US TFR during the 1980s cannot be entirely attributed to the rise in the share 
of Hispanic immigrants in the female population (age 15-49) from 2.37 to 4.63% in the 1980s. As US 
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Census data show, although 93% of Hispanic immigrants report themselves as whites, the rise in the 
TFR among whites is approximately the same as that of nonwhites, and the TFR of blacks also 
significantly rose from 2.17 in 1980 to 2.48 in 1990.  
 
13 Major technological advances raising investment efficiency typically generate structural shifts in 
the economy favoring employment opportunities for women as well as a rise in housing costs due to 
urbanization, and are thus accompanied by an increase the unit (opportunity) costs of bearing and 
raising children (v). Technological advances can thus generate a demographic transition indirectly by 
our preset model. In EL(1991), where parents are motivated by old-age support from educated 
children as well as by pure altruism, technological advances can generate a demographic transition 
directly.  
 
14 There also is the possibility of mixed cases. For example, a technological shock reaches first family 
1 (case b), but government subsidization of education targets family 2 (case c). Alternatively, if a 
reduction in θ2 affects family 2 many periods ahead of family 1, or by a sufficiently greater proportion, 
so that e1/e2 actually falls, family 2 can overtake family 1, and become the “leading family” in terms 
of income-generating capacity. Income inequality will then reach a minimum at the point of 
overtaking, but will rise afterwards until it converges on its GE steady-state level. In this case the time 
path of income inequality will assume an S shape. 
 
15 Our family-income inequality measure, E2, converges on a steady state level, H1(g)/H2(g), at the 
growth-equilibrium steady state. De Gregorio and Lee (2002) provide independent support. They 
estimate a positive relationship between inequality in educational attainments and income inequality.  
 
16 The Barro-Lee study reports average schooling years for four schooling levels in the population 
age 15 and up (zero, primary, secondary, and higher) and their population shares. We calculate the 
mean and standard deviation of this distribution for each country in all sample years.  
 
17 Also, regression results obtained when using a polynomial of RGDPn of the 4th, 5th, and 6th order 
showed the same pattern as in all panels of Figure 3. 
 



Table 1: Simulating Comparative Dynamic Effects of Parameter Changes in a Two-agent Economy 

Part 1. Stagnant Equilibrium 
A1/θ1 A2/θ2 H 1 v1(v2) γ B1(B2) n1(n2) Y1= H 1+H1 Y2= H 2+H2 E S P=N1/N2 Gini 
2/1 1/1.01 50 .01 .4 .1 8.053 55.555 1.111 50 5.799 .116 .749 
3/1 1/1.01 50 .01 .4 .1 8.243 58.824 1.176 50 15.981 .320 .699 
3/1 1.5/1.01 50 .01 .4 .1 8.243 58.824 1.176 50 5.799 .116 .749 
2/1 1.5/1.01 50 .01 .4 .1 8.053 55.555 1.111 50 2.105 .042 .637 
2/1 1/1.01 60 .01 .4 .1 8.053 66.666 1.111 60 5.799 .097 .765 
2/1 1/1.01 50 .015 .4 .1 5.344 58.824 1.176 50 5.799 .116 .749 
2/1 1/1.01 50 .01 .45 .1 8.053 55.555 1.111 50 4.770 .095 .740 
2/1 1/1.01 50 .01 .4 .15 8.243 55.555 1.111 50 5.799 .116 .749 

Part 2. Growth Equilibrium 
A1/θ1 A2/θ2 v1(v2) γ B1(B2) n1(n2) h1 h2 a1=A1h1 E S P=N1/N2 Gini 
40/1 20/1.01 .01 .4 .1 9.448 .05 .0495 2 50 5.799 .116 .749 
50/1 20/1.01 .01 .4 .1 9.551 .05 .0495 2.5 85.138 10.131 .119 .804 
50/1 25/1.01 .01 .4 .1 9.551 .05 .0495 2.5 50 5.799 .116 .749 
40/1 25/1.01 .01 .4 .1 9.448 .05 .0495 2 29.368 3.320 .113 .667 
40/1 20/1.01 .015 .4 .1 6.274 .075 .0743 3 50 5.799 .116 .749 
40/1 20/1.01 .01 .45 .1 9.448 .05 .0495 2 41.502 4.770 .115 .724 
40/1 20/1.01 .01 .4 .15 9.634 .05 .0495 2 50 5.799 .116 .749 

Part 3. Takeoff Triggers 
 A1 A2 θ1 θ2 v1(v2) n1(n2) h1 h2 E S P=N1/N2 Gini 

SE 2 1 1 1.01 .01 8.053 .05 .0495 50 5.799 .116 .749 
             
GE 40 20 1 1.01 .01 9.448 .05 .0495 50 5.799 .116 .749 
GE 40 1 1 1.01 .01 9.448 .05 .0495 38643 10374 .268 .788 
GE 2 1 1/15 1.01/15 .01 9.316 .75 .743 50 5.799 .116 .749 
GE 2 1 1/15 1/15 .01 9.316 .75 .743 48.857 5.657 .116 .746 
GE 2 1 1 1.01 .11 .712 .55 .545 50 5.799 .116 .749 

Note:  Parameters values that deviate from our benchmark values are presented in bold print.  
Part 1. Comparative dynamics in the stagnant steady state are simulated by changing A1/θ1, A2/θ2, H 1, v1(=v2), γ, or B1(=B2), holding constant all other parameters: H 2 = 1, σ = 0.9, δ = 0.9, and 
β = 1.2. Columns for h1 and h2 are suppressed, but the corresponding solutions are: .05, .0495 for all rows except row 6; and .075, .0743 for row 6. 
Part 2. Comparative dynamics in the growth steady state are simulated by changing A1/θ1, A2/θ2, v1(=v2), γ, or B1(=B2), holding constant  σ = 0.9, δ = 0.9, and β = 1.2. 
Part 3. Simulations show the impact of uniform (proportionate) and non-uniform changes in Ai and θi, as well as in the common level of v1=vi that generate a takeoff from the SE to GE steady 
state, holding constant: H 1 = 50, H 2 = 1, σ = 0.9, δ = 0.9, γ = 0.4, β = 1.2, and B1 =B2 = 0.1.  



 
Table 2:  Fertility Inequality Regressions 

 
Dependent Variable: SD_FERT 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 OLS OLS with 
random effects 

OLS with 
random effects 

2SLS 2SLS with 
random effects 

2SLS with 
random effects 

       
Intercept 1.776852 2.087804 2.181626 1.733183 1.985153 2.157891 
 7.45 10.54 10.53 7.34 9.81 10.34 

RGDPn 0.000410 0.000249 0.000270 0.000397 0.000310 0.000288 
 2.23 1.59 1.83 2.55 2.19 2.21 

RGDPn2 -8.49E-08 -5.75E-08 -5.59E-08 -8.56E-08 -7.27E-08 -6.17E-08 
 -1.90 -1.60 -1.66 -2.29 -2.33 -2.14 

RGDPn3 5.08E-12 3.40E-12 3.25E-12 5.25E-12 4.34E-12 3.64E-12 
 1.64 1.44 1.47 2.10 2.24 2.02 

AV_FERT 0.056786 0.042325 0.134551 0.071700 0.051122 0.146717 
 1.88 2.14 4.18 2.38 2.71 4.90 

GOV   -0.004215   -0.005876 
   -0.87   -1.28 

T   -0.013374   -0.013659 
   -3.46   -3.78 

       
Adj. R2 0.0854 0.1637 0.2824 0.1004 0.2340 0.3852 
N 72 72 72 70 70 70 
Notes: The dependent variable is the standard deviation of the distribution of surviving children per woman age 40 and over, but we also add the mean fertility 
levels as a control variable (see text). Data sources are the World Fertility Surveys and the Demographic and Health Surveys (various years). Rows show the 
estimated coefficients (β) and their z-statistics (β/Sβ).  This table’s regressions employ a random effects specification to account for missing idiosyncratic 
variables, because the number of observations per country is small. The Durbin-Watson test cannot reject the null hypothesis of no serial correlation in Models 2 
and 5. The 2SLS model accounts for endogeneity of RGDPn. Instrumental variables include, in addition to exogenous structural regressors, ln(INFLA) and one-
year-lagged RGDPn. 
# The Intercept coefficients represent the mean values of all intercept terms. 
 



 
Table 3:  Educational Attainments Inequality Regressions 

 
Dependent Variable: SD_SCHYR 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 OLS OLS with 
fixed effects 

OLS with 
fixed effects 

2SLS 2SLS with 
fixed effects 

2SLS with 
fixed effects 

       
Intercept 2.634408 2.074857# 2.512515# 2.720585 2.227975# 2.560042# 
 37.43   34.86   

RGDPn 9.29E-05 -3.79E-05 -4.36E-05 1.27E-04 -7.17E-06 -1.10E-06 
 2.71 -1.02 -1.32 3.60 -0.14 -0.02 

RGDPn2 -1.20E-08 4.29E-09 2.75E-09 -1.51E-08 2.68E-09 2.35E-11 
 -3.79 1.48 1.07 -4.74 0.79 0.01 

RGDPn3 3.03E-13 -1.59E-13 -1.19E-13 3.81E-13 -1.21E-13 -5.98E-14 
 3.48 -2.21 -1.87 4.42 -1.52 -0.85 

AV_SCHYR 0.205215 0.351542 0.111584 0.189881 0.302893 0.051998 
 11.97 18.40 4.50 10.26 11.64 1.79 

GOV   0.000617   0.002328 
   0.25   0.60 

T   0.029080   0.032278 
   12.92   12.38 

       
Adj. R2 0.3320 0.4891 0.6022 0.3170 0.4262 0.5746 
N 721 721 721 575 575 571 
Notes: The dependent variable is the standard deviation in the distribution of schooling years attained in the population age 15 and over, but we also add the 
mean fertility levels as a control variable (see text). The data source is Barro and Lee (2000). Rows show the estimated coefficients (β) and their z-statistics 
(β/Sβ).  Data on the dependent variable are available every five years. The Durbin-Watson test cannot reject the null hypothesis of no serial correlation in Models 
2 and 5. The 2SLS model accounts for endogeneity of RGDPn. Instrumental variables include, in addition to exogenous structural regressors, ln(INFLA) and 
one-year-lagged RGDPn. 
# The Intercept coefficients represent the mean values of all intercept terms. 



 
Table 4:  Income Inequality Regressions: GINI Coefficient (G) 

 
Dependent Variable: GINI 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 OLS OLS with 
fixed effects 

OLS with 
fixed effects 

2SLS 2SLS with 
fixed effects 

2SLS with 
fixed effects 

       
Intercept 41.948920 35.729530# 39.392580# 41.489030 34.189310# 41.346450# 
 26.34   24.10   

RGDPn 0.001583 0.001095 0.001081 0.001925 0.001367 0.000853 
 2.94 2.62 2.03 3.45 2.37 1.17 

RGDPn2 -2.45E-07 -1.08E-07 -1.04E-07 -2.71E-07 -1.20E-07 -8.36E-08 
 -5.22 -3.54 -3.00 -5.75 -3.03 -1.88 

RGDPn3 7.04E-12 2.81E-12 2.70E-12 7.55E-12 2.93E-12 2.10E-12 
 5.96 3.99 3.43 6.51 3.38 2.18 

GOV   -0.170141   -0.297255 
   -2.00   -2.48 

T   -0.027090   0.003112 
   -0.66   0.05 

       
Adj. R2 0.4108 0.0691 0.0932 0.4891 0.0578 0.0882 
N 318 318 310 263 263 263 
Notes: The dependent variable is the GINI coefficient, based on household income data. The data source is Dollar and Kraay (2001). Rows show the estimated 
coefficients (β) and their z-statistics (β/Sβ). The Durbin-Watson test cannot reject the null hypothesis of no serial correlation in Models 2 and 5. We derive the 
2SLS regressions in models 4-6, which account for endogeneity of RGDPn, from the subset of countries for which both income and educational attainments data 
are available, in order to see if income and educational inequality paths exhibit a similar shape. Instrumental variables include, in addition to exogenous structural 
regressors, ln(INFLA) and one-year-lagged RGDPn. 
# The Intercept coefficients represent the mean values of all intercept terms. 
 
 



 
Table 5:  Income Inequality Regressions: Inter-Quintile Ratio (E) 

 
Dependent Variable: QUINT 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 OLS OLS with 
fixed effects 

OLS with 
fixed effects 

2SLS 2SLS with 
fixed effects 

2SLS with 
fixed effects 

       
Intercept 9.110258 4.513832# 2.290842# 9.194144 7.860770# 9.954935# 
 7.52   6.35   

RGDPn 0.001440 0.001294 0.001478 0.001622 0.000626 0.000485 
 3.47 3.82 3.37 3.40 1.47 0.87 

RGDPn2 -1.80E-07 -1.00E-07 -1.15E-07 -1.98E-07 -6.36E-08 -5.25E-08 
 -4.92 -3.98 -3.95 -4.87 -2.14 -1.53 

RGDPn3 4.97E-12 2.32E-12 2.69E-12 5.37E-12 1.66E-12 1.41E-12 
 5.34 3.96 4.02 5.34 2.53 1.87 

GOV   0.103520   -0.086037 
   1.50   -0.95 

T   -0.005237   -0.005231 
   -0.16   -0.12 

       
Adj. R2 0.2498 0.0663 0.0788 0.2908 0.0447 0.0505 
N 289 289 281 240 240 240 
Notes: The dependent variable is the share of total income received by the top, relative to the bottom, quintile of families in the population. The data source is Dollar 
and Kraay (2001), and only household income data are used. Rows show the estimated coefficients (β) and their z-statistics (β/Sβ).  The Durbin-Watson test cannot 
reject the null hypothesis of no serial correlation in Models 2 and 5. We derive the 2SLS regressions in models 4-6, which account for endogeneity of RGDPn, 
from the subset of countries for which both income and educational attainments data are available, in order to see if income and educational inequality paths 
exhibit a similar shape. Instrumental variables include, in addition to exogenous structural regressors, ln(INFLA) and one-year-lagged RGDPn. 
# The Intercept coefficients represent the mean values of all intercept terms. 
 
 
 



Figure A:  Changes in the Dynamic Patterns of the Gini Coefficient, Total Fertility Rate, and 

Coefficient of Variation of the Fertility Distribution in the U.S. in Recent Decades 
 

a. Gini Coefficient 
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b. Total Fertility Rate and Coefficient of Variation of Fertility Distribution 
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Note: Figure b shows the coefficient of variation of the distribution of surviving children per woman age 40-44.  
 



 
Figure 1:  Simulated Time Paths of the Evolution of Key Endogenous Variables over the Process of 

Development: A Uniform Productivity Shock Affecting Family 1 Ahead of Family 2 
 

a. Family-Income Inequality (E) b. Income-Group Inequality (S)  
 

  
c. Gini Coefficient (G) d. Inequality in Fertility  

 

  
 
Note: Parameter values used in these simulations are: θ1=1, θ2=1.01, H1

0=50, H2
0 = 1, B1=B2=0.1, v1=v2=0.01, γ = 0.4, σ = 0.9, δ = 0.9, and β 

= 1.2. Prior to period 1, the economy is in a stable SE steady state, with A1=2 and A2=1. In period 1, family 1 alone experiences a once-and-
for-all increase in A1 to 40. In period 2, also family 2 experiences the same proportional increase in A2 to 20.  
 



Figure 2:  Simulated Time Paths of the Evolution of Key Endogenous Variables over the Process of 
Development: A Uniform Productivity Shock Affecting Family 2 Ahead of Family 1 

 
a. Family-Income Inequality (E) b. Income-Group Inequality (S)  

 

  
c. Gini Coefficient (G) d. Inequality in Fertility  

 

  
 
Note: Parameter values used in the simulations for Figure 2: A1=2, A2=1, H1

0=50, H2
0 = 1, B1=B2=0.1, v1=v2=0.01, γ = 0.4, σ = 0.9, δ = 0.9, 

and β = 1.2. Prior to period 1, the economy is in a stable SE steady state with θ1=1 and θ2=1.01. In period 1, family 2 alone experiences a 
once-and-for-all reduction in θ2 to 1.01/20. In period 2, also family 1 experiences the same proportional decrease in θ1 to 1/20.  
 
 



Figure 3:  Fitted Regression Lines Linking the Evolution of Key Inequality Measures and Per-

Capital Income Levels within and across Countries, based on 2SLS Panel Regression Results 
 

a. Mean-adjusted Fertility Inequality (SD-FERT) b. Mean-adjusted Educational Attainment Inequality  
(SD-SCHYR) 

  
c. Gini Coefficient (GINI) d. Inter-Quintile Ratio (QUINT) 

  
 
Note: Panels a, b, c, and d are based on the regression results of Model 4 in Tables 2 - 5, respectively. The RGDPn values on 
the x-axes of all panels cover 90% of the observations on RGDPn used in our regressions.   
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