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ABSTRACT

Most affine models of the term structure with stochastic volatility (SV) predict that the variance of

the short rate is simultaneously a linear combination of yields and the quadratic variation of the spot

rate. However, we find empirically that the A1(3) SV model generates a time series for the variance

state variable that is strongly negatively correlated with a GARCH estimate of the quadratic

variation of the spot rate process. We then investigate affine models that exhibit ‘unspanned

stochastic volatility (USV).’ Of the models tested, only the A1(4) USV model is found to generate

both realistic volatility estimates and a good cross-sectional fit. Our findings suggests that interest

rate volatility cannot be extracted from the cross-section of bond prices. Separately, we propose an

alternative to the canonical representation of affine models introduced by Dai and Singleton (2001).

This representation has several advantages, including: (I) the state variables have simple physical

interpretations such as level, slope and curvature, (ii) their dynamics remain affine and tractable, (iii)

the model is econometrically identifiable, (iv) model-insensitive estimates of the state vector process

implied from the term structure are readily available, and (v) it isolates those parameters which are

not identifiable from bond prices alone if the model is specified to exhibit USV.
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1 Introduction

The affine class of term structure models as characterized by Duffie and Kan (DK, 1996) has be-

come the dominant class of models because of its analytical tractability.1 In particular, the affine

class possesses closed-form solutions for both bond and bond-option prices (Duffie, Pan, and Single-

ton (2000)), efficient approximation methods for pricing swaptions (Collin-Dufresne and Goldstein

(2002b), Singleton and Umantsev (2002)), and closed-form moment conditions for empirical anal-

ysis (Singleton (2001), Pan (2002)). As such, it has generated much attention both theoretically and

empirically.2

However, recent papers have reported that standard affine models have trouble simultaneously

fitting some cross-sectional and time-series properties of the yield curve (Duffee (2002), Dai and

Singleton (2002b)). For example, Duffee (2002) reports that standard three-factor affine models

cannot match the observed relationship between expected returns on bonds and the slope of the term

structure. Duffee improves on this shortcoming by proposing a more flexible ‘essentially affine’

specification of the risk-premia. This added flexibility significantly reduces the tension between

fitting expected returns, which are tied to physical measure dynamics, and fitting the cross-section

of bonds, which are determined by the risk-neutral distribution.3 However, both Duffee and Duarte

(2003) find that three factor affine models, even with generalized risk premia, cannot simultaneously

capture both the time-variation in conditional variances and the forecasting power of the slope of

the term-structure. Further, Duffee reports that adding a fourth factor would make his investigation

impractical.

In this paper we report another trade-off between capturing cross-sectional and time-series prop-

erties of the term structure. Here, however, the trade-off involves second-order moments.4 Specif-

ically, most affine models with stochastic volatility predict that the variance of the short rate is si-

multaneously a linear combination of yieldsandthe quadratic variation of the spot rate. The former

property implies that it should be possible to extract spot rate volatility solely from the cross-section

of bond prices, independent of any time-series information. Yet, when we estimate the unrestricted

essentially affineA1(3) model of the term structure, we obtain the ‘self-inconsistent’ result that

the factors that explain the term structure are essentially unrelated to actual term structure volatil-

ity. In particular, the volatility factor extracted from this model (i.e., the ‘term structure-implied

volatility’) using maximum likelihood estimation is stronglynegativelycorrelated with volatilities

estimated using standard GARCH or EGARCH models applied to the time series of the 6-month

rate.

We interpret these findings as evidence that theA1(3) model cannot simultaneously describe the

1The affine class essentially includes all multi-factor extensions of the models of Vasicek (1977), and Cox, Ingersoll
and Ross (1985).

2See the recent survey by Dai and Singleton (2003) and the references therein.
3See also Chacko (1997).
4Note that since the volatility structure is invariant under transformation from the historical measure to the risk-neutral

measure, proposing a more general risk-premia specification will not overcome this problem as it did in Duffee (2002).
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yield curve’s level, slope, curvature, and volatility. That is, volatility is unable to play the dual role

that theA1(3) model predicts it does. The estimation of such a model therefore presents a tradeoff

between choosing volatility dynamics that are more consistent with one role or the other. For the

data set we investigate, and with no parameter restrictions imposed, that tradeoff is heavily tilted

towards explaining the cross section.

We emphasize that our findings may have implications beyond the affine class of models. In-

deed, using model-insensitive proxies for interest rate level (Y3Y ), slope (Y10Y − Y3Y ), curvature

(Y10Y − 2Y3Y + Y6M ) and a GARCH estimate for volatility, we find that these four series are (un-

conditionally, anyway) weakly correlated, suggesting that there may be no three-factor model that

can simultaneously capture these four features of the term structure.5

Given that standard affine models fail at producing a time series for the variance state variable

that even roughly coincides with the quadratic variation of the spot rate, we also empirically in-

vestigate three and four-factor models that exhibit unspanned stochastic volatility, as defined by

Collin-Dufresne and Goldstein (CDG 2002). These models are constructed to break the tension

between the time series and cross sectional features that most stochastic volatility affine models

possess. In particular, these models impose parameter constraints so that the variance cannot be

determined from a linear combination of yields. We find that of the models investigated, only the

A1(4) USV model is able to generate both good cross sectional and time series fits of yields. An im-

plication of our findings is that any strategy that attempts to hedge the volatility risk inherent in fixed

income derivatives (if feasible at all) must be substantially more complex than the convexity-based

‘butterfly’ positions discussed by Litterman, Scheinkman, and Weiss (1993). Indeed, our results

suggest that implied spot rate volatility measures extracted from the cross-section of the yield curve

are likely to be bad estimates of actual volatility.6 Further, given the sensitivity of option prices to

the specification of volatility dynamics, realistically captured only by the USV models, we speculate

that explicitly imposing USV conditions may be useful for pricing such derivatives.

In order to facilitate empirical estimation of these models, we identify a transformation of the

‘canonical representation’ of Dai and Singleton (DS 2000) that we find to be very useful. Recall

that the affine framework is defined by a finite set of N latent state variables{Xi(t)} possessing

joint Markov dynamics such that the spot rate, the risk-neutral drift, and the covariance matrix are

all affine functions of the state vector. Here, the state variables{Xi} are referred to as ‘latent’ in

that their physical meaning is inherently tied to the parameter values of the model. That is, the

physical definition of these latent state variables changes each time a new trial parameter vector

is considered. This poses both theoretical and practical econometric problems. For example, as

5We note that Brandt and Chapman (2004) report an estimate of a three-factor quadratic Gaussian model that performs
very well with respect to the moments they choose to capture. However, they do not attempt to match, for example, the
correlation between variance and curvature.

6This contrasts with results from the equity literature which show that implied volatility estimates backed out from a
cross-section of option prices are in general good predictors of spot volatility. We speculate that the difference is due to
the difference between bond and option payoffs. The latter are more non-linear.
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stressed by DS, an important econometric issue in dealing with latent variables is that some of the

model’s parameters may not be identifiable. Indeed, DS identify a set of transformations which

can be performed on either the state vector, or its dynamics, that leave security prices unchanged.7

DS define a model to be ‘maximal’ if it has the maximum number of identifiable parameters and

if it generates well-defined (i.e., admissible) dynamics for the latent state vector. Given a specific

risk-premium specification, DS identify a ‘canonical representation’ for maximal affine models in

terms of the physical measure dynamics of a latent state vector.

In contrast to the ‘invariant transformation’ approach of DS, we identify below a set of rota-

tions which allows us to transform an underidentified affine model with latent state variables into

an affine model with observable state variables (i.e., state variables that have physical meaning in-

dependent of the parameter values of the model). Specifically, we rotate the state vector so that it

is composed of two types of variables: (i) the first few components in the Taylor series expansion

of the yield curve which have physical interpretations such as level, slope and curvature, and (ii)

their quadratic covariation. This representation has several advantages over those previously pro-

posed in the literature. First, since under this rotation the state variables have a physical meaning

independent of the model, their time series estimates are readily comparable across models. This

contrasts with latent variable representation. (For example, when going from a two-factor latent

variable model(X1, X2) to a three-factor model(X1, X2, X3), the latent variablesX1 andX2 are

not readily comparable across models.)

Second, this representation allows us to demonstrate that the issue of identification rests mainly

with the specification of the risk-neutral dynamics and is mostly independent of the risk premia

specification. Indeed, while DS identify a maximal model when the risk premia structure is re-

stricted to the ‘completely affine’ structure, the models of Duffee (2002) and Cheredito et al. (2004)

show that there are additional parameters that can be identified even though the model remains

affine under both theP andQ measures. Moreover, as shown in Duarte (2003), models can be em-

pirically tractable even if theirP -dynamics are non-affine, so long as theirQ-dynamics are affine.

Below, we show how our rotation naturally generates aQ-maximal representation: it identifies the

maximum number of risk-neutral parameters that can be estimated for a given class of affine mod-

els. Intuitively, the problem of parameter identification in traditional affine models is due to the

state vector being latent. Instead, if the state vector is chosen to be a set of observable quantities,

then financial contracts can be written on future values of these observable variables, in turn per-

mitting the risk-neutral parameters to be identified. Furthermore, given a time-series of the state

vector, the historical-measure parameters can be identified via vector autoregression. Hence, the

issue of identification becomes moot once the state vector is written in terms of observables. We

note that Duffie and Kan (1996) were the first to suggest rotating the state vector from a set of latent

variables to a set of observable yields. Unfortunately, their rotation to a state vector of yields of

7DS identify three such types of ‘invariant transformations’: (i) rotation of the state vectorTA , (ii) Diffusion rescaling
TD , (iii) Brownian motion rotationTO .
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finite maturity is difficult to implement. We circumvent this obstacle by effectively choosing yields

(and derivatives thereof) withinfinitesimalmaturities, which in turn generates a tractable affine ob-

servable state vector. Below, we use the DK framework to (i) clearly demonstrate why there is an

identification problem when the state vector is latent, (ii) show that the issue basically only affects

the risk-neutral specification, and (iii) show why the finite-maturity rotation suggested by DK is not

tractable, while our rotation to infinitesimal-maturity yields (and their covariations) do provide a

tractable framework.

Finally, this representation is very helpful in identifying and estimating maximal models that

exhibit USV. As demonstrated by CDG, if a model displays USV, then there are parameters that

are not identifiable from bond prices alone, even if the model is maximal in the sense of DS 2000.

The intuition for this result is as follows: For a given state vectorX, bond prices satisfy the partial

differential equation

rP = Pt +
N∑

i=1

PXi
µQ

Xi
+

1
2

N∑

i,j=1

PXiXj
σXi Xj

.

Hence, if bond prices do not span the fixed income market, that is, if they are independent of some

state variableXj so thatPXj
= 0 andPXj Xi

= 0 ∀i, then the risk-neutral parameters contained

in µQ
Xj

andσXi Xj
∀i do not show up in the PDE and hence cannot affect bond prices. This in

turn implies that these parameters cannot be determined from the cross section of bond prices.8

However, they can be identified from the prices of other fixed income securities. This example

emphasizes that the notion of maximality introduced by DS implicitly assumes that, in addition to

bonds, other fixed income derivatives are observed.9 Because our representation rotates the state

vector to include the ‘unspanned stochastic variance’ state variable, it isolates those parameters

which cannot be identified from bond prices alone. Furthermore, this representation simplifies the

form of the parameter constraints imposed by USV, in turn facilitating empirical investigation.

Below we provide a full characterization of theQ-maximalA1(3) andA1(4) models exhibit-

ing USV. In addition, we propose an empirical approach for estimating USV models. Note that

an immediate consequence of these models is that the one-to-one mapping assumed by DK (1996)

between yields and factors does not hold. This in turn implies that standard estimation techniques,

which rely on the ‘invertibility’ of the term structure with respect to the latent factors, cannot be im-

plemented. Instead, we use a simulated likelihood-based approach based on the importance sampler

of Richard and Zhang (1996, 1997).

The rest of the paper is as follows. In Section 2 we provide a general approach for deriving

maximal affine models with observable state variables. In Section 3 we characterize the maximal
8If the risk premia specification is somewhat restricted, some of these parameters might be identifiable from time-

series information.
9Effectively, the invariant transformations that DS identify are those that leave the characteristic function of the state

vector unchanged. However, there are many other invariant transformations that leave bond prices unchanged if the model
displays USV. For example, arbitrary scaling of the volatility process parameters will not affect bond prices in the USV
case.

4



A1(3) andA1(4) models exhibiting USV. In Section 4 we describe the estimation technique used to

account for USV, while Section 5 includes all empirical results. We conclude in Section 5.

2 Identifying Maximal Affine Models with Observable State Vectors

Mostly following the notation of Duffie and Kan (DK 1996), and Dai and Singleton (DS 2000), the

risk-neutral dynamics of a Markov state vectorX within an affine framework can be specified by

as:

dX(t) = KQ
(
θ

Q −X(t)
)

dt + Σ
√

S(t) dZ
Q
(t) , (1)

whereZ
Q

is a vector ofN independent Brownian Motions,KQ
andΣ are(N ×N) matrices, and

S is a diagonal matrix with components

Sii(t) = αi + β>
i

X(t) . (2)

The spot rate is an affine function ofX:

r(t) = δ0 + δ>
x

X(t) , (3)

whereδx is anN dimensional vector. Assuming the system is admissible (i.e., that the stochastic

differential equation admits a unique strong solution10), then bond prices take the form:

P (t, τ) = eA(τ)−B(τ)>X(t), (4)

whereτ ≡ T − t and whereA(τ) andB(τ) satisfy the ODEs:

dA(τ)
dτ

= −θQ>KQ>B(τ) +
1
2

N∑

i=1

[
Σ>B(τ)

]2

i

αi − δ0 (5)

dB(τ)
dτ

= −KQ>B(τ)− 1
2

N∑

i=1

[
Σ>B(τ)

]2

i

βi + δx , (6)

and the initial conditions:

A(0) = 0, B(0) = 0. (7)

Defining bond yieldsY (t, τ) via P (t, τ) = e−τY (t,τ), we see from equation (4) that yields are affine

in the state variables:

Y (t, τ) = −A(τ)
τ

+
B(τ)>

τ
X(t). (8)

DK used this observation to suggest the possibility of rotating the system from a latent state

vector X to observable yieldsY . While such a rotation is not tractable in general for reasons

we discuss below, it does provide important insights into the issue of parameter identification. In

particular, note that by inverting equation (8) we may express the latent state variableXi as a linear

10Sufficient conditions are given in Duffie and Kan (1996).
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combination of yields.11 The relative weightings of these yields depend on the functionsA(τ) and

B(τ), which in turn are functions of the risk-neutral parameters. Hence, each time a new trial

parameter vector is considered, the physical definition of the latent variables change in that the

relative weights of the observable yields change. That is, the latent state vectorX does not have

a physical definition independent of the values of the parameter vector! In contrast, yields can be

extracted from market prices, and hence have a physical meaning independent of the parameter

vector. Below, we will show that the problem of model identification stems from writing the system

in terms of latent state variables, and that this issue vanishes when we rotate to a state vector which

is observable.

While (8) provides a complete description of the relation between yields and state variables, a

characterization that is more useful for our purposes may be obtained from Taylor series expansions

of both the yield curve and the time-dependent coefficientsA(τ) andB(τ). To simplify notations

we define∂n
τ=c

f(t, τ) := ∂n

∂τn f(t, τ)
∣∣
τ=c

. Performing these expansions atτ = 0, we find:

Y (t, τ) = Y (t, 0) + τ ∂τ=0 Y (t, τ) +
(

τ2

2!

)
∂2

τ=0
Y (t, τ) + . . . (9)

A(τ) = A(0) + τ ∂τ=0 A(τ) +
(

τ2

2!

)
∂2

τ=0
A(τ) + . . . (10)

B(τ) = B(0) + τ ∂τ=0 B(τ) +
(

τ2

2!

)
∂2

τ=0
B(τ) + . . . . (11)

Using the initial conditions in equation (7), and collecting terms of the same orderτ , we find from

equation (8) the following relation between the terms of the expansions:

Yn(t) ≡ ∂n
τ=0

Y (t, τ)

=
1

n + 1

(
−∂n+1

τ=0
A(τ) +

N∑

i=1

∂n+1
τ=0

Bi(τ)Xi(t)

)
∀n = 0, 1, 2 . . . (12)

Equation (12) implies that the{Yn} variables, representing the derivatives of the yield curve at

τ = 0, are linear in the original latent state vectorX and hence can be chosen to be the state vector.

That is, equation (12) implies that we can transform the original model, which is written in terms of

latent variablesX, into a model whose state vector is composed of some subset of the Taylor series

componentsY = {Y0 , Y1 , . . .} of the (observable) yield curve, which are therefore observable as

well. As is well-known, any linear rotation of an affine model will generate a model that maintains

the affine structure, implying that the instantaneous covariance matrix of the dynamics of the state

vector will be affine in the{Yn}. As such, in those cases where the covariance matrix is not constant,

it will sometimes be convenient to further rotate the state vector to include some subset of the

quadratic (co-)variations of elements ofY, which we callV.

We emphasize that the state variables{Y0 , Y1 , Y2} of the representation have natural, physical

interpretations as level, slope, and curvature. Furthermore, by successive differentiation of the

11Here we ignore the USV issue of non-invertiblity.
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system of ODE’s given in equations (5) and (6), and making use of the boundary conditions in

equation (7), we can explicitly solve for the loadings in the definition of{Y0 , Y1 , Y2}:

∂τ=0A(τ) = −δ0 (13)

∂τ=0B(τ) = δx (14)

∂2
τ=0

A(τ) = −θQ>KQ>δx (15)

∂2
τ=0

B(τ) = −KQ>δx (16)

∂3
τ=0

A(τ) = θQ>KQ>KQ>δx +
N∑

i=1

[Σ>δx ]2
i
αi (17)

∂3
τ=0

B(τ) = KQ>KQ>δx −
N∑

i=1

[Σ>δx ]2
i
βi . (18)

Plugging these into equation 12 and identifying the terms we find:

Y0(t) = δ0 + δ>
x

X(t)

≡ r(t) (19)

Y1(t) =
1
2
δ>

x
KQ

(
θ

Q −X(t)
)

=
1

2 dt
E

Q

t

[
dr(t)

]

≡ 1
2
µQ(t) (20)

Y2(t) =
1
3

(
−δ>

x
KQKQ

(θ
Q −X(t))−

N∑

i=1

[Σ>δx ]2
i
(αi + β>

i
X(t))

)

=
1

3 dt

(
E

Q

t

[
dµQ(t)

]− (dr(t))2
)

≡ 1
3

(
1
dt

E
Q

t
[dµQ(t)]− V (t)

)
. (21)

Hence, the level (Y (t, 0)), slope (∂τ=0Y (t, τ)), and curvature (∂2
τ=0

Y (t, τ)) are intimately related

to the short rate, its risk-neutral drift, and the expected change in the drift minus the short rate’s

variance. In Appendix A1, we show that this relationship holds even outside of the affine framework.

The above discussion suggests an alternative to the canonical representation of DS (2000). To

that effect let us define the following.
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Definition 1 A CanonicalQ-Representationis an invariant transformation12 of the latent state vec-

tor X given in equation (1) to aN -dimensional state vectorH ≡ [Ŷ, V̂] that combines elements of

Y andV such thatH (i) containsY0 and (ii) has jointly Markov dynamics under the risk-neutral

measure.

Let us note a few characteristics of our canonicalQ-representation:

• By definition of the vectorsY andV, the state variables in this representation are observable

in that they have physical interpretations independent of the choice of the parameter vector.

• SinceY0(t) ≡ r(t), this definition insures that this system of observable state variables cap-

tures the dynamics of the entire term structure as well as fixed-income derivatives.13

• SinceH is an invariant transformation ofX it has jointly Markov affine dynamics:

dH(t) = µ(t)dt + Σ(t) dZQ(t) (22)

with

µi = mi
0 + mi

Y Ŷ + mi
V V̂ ∀i ∈ (1, N) (23)

{Σ>Σ}ij = sij
0 + sij

V V̂ ∀i, j ∈ (1, N) (24)

wheremi
0, s

ij
0 are constants andmi

Y , mi
V , sij

V are vectors of parameters.14

To illustrate our proposed representation, consider theA0(3) sub-family of models. Note that

the covariance matrix of state vector dynamics is constant for this family. As such, all the state

variables of our proposed representation must come fromY (i.e., from the Taylor series expansion

of the yield curve) and not fromV. An appropriate state vector for this class of models would

thus consist of(Y0(t), Y1(t), Y2(t)), or equivalently,H(t) = (r(t), µQ(t), θQ(t)), whereθQ(t) ≡
EQ[dµQ(t)]/dt is the expected change in the drift of the short rate. The equivalence between the

two representations follows from the definitions ofY0(t), Y1(t), Y2(t) given in (19)-(21) above and

the fact thatV (t) is constant in Gaussian models. We consider another Gaussian case in more detail

in section 2.1 below.

As an alternative example, consider theA1(3) sub-family of models, where one state variable

drivesV (t) = 1
dt(dY0(t))

2 ≡ 1
dt(dr(t))2. For that case, it may be convenient to rotate the state

vector toH = (r, µQ , V ) as we show in section 3.1 below. Note that the variance state variable

is observable as well in that it has a physical interpretation independent of the model’s parameter

values, and, in theory, can be inferred perfectly form the quadratic variation of the short rate.

12The notion of invariant transformation is defined in DS (2000). See also footnote 7.
13Knowledge of the risk-neutral short rate process is sufficient to describe prices of all fixed-income derivatives (e.g.,

Glasserman and Jin (2001)).
14We emphasize that the rotation itself may naturally ‘restrict’ the parameters (to be consistent with the definition of

the state variables). For example, supposeH1 = Y0 ≡ r andH2 = Y1 ≡ 1
2
µQ . Then the rotation implies thatm1

0 = 0
andm1

Y = {0, 2, 0 . . .}, andm1
V = 0.
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The main property of our proposed canonicalQ-representation isQ-maximality, defined as

follows:

Definition 2 AnAm(n) model isQ-maximalif (i) all the parameters of itsQ-transition density can

be identified solely from the cross-sectional information in bond and fixed-income derivative prices

and (ii) theQ-measure transition density of the short rate process nests that of all otherAm(n)

models.

We claim the following:

Proposition 1 The canonicalQ-representation of the state vectorH is Q-maximal.

Proof First we show that all parameters are identified from cross-section of derivative data. In

particular, consider the fixed income derivative which has a payoff equal toe
∫ T
0 rsdseiξ·H(T ) for some

vectorξ of N constants. By definition the price of this derivative is theQ-measure characteristic

function of the state vector

ΦQ(ξ, T ) = EQ
[
eiξ·H(T )

]
.

We can assume that such derivative exists since the components ofH in our representation are

observable. Hence, contracts whose payoffs are tied to future values of the state vector can be

written, and agents will agree on the final payoff of such contracts independent of what model they

use and what their parameter estimates are.15 Since we may assume that a continuum (inT and

ξ) of these derivatives are traded, this implies that conditional on a large panel data set of these

derivatives, allQ-measure conditional moments of the state vector are observable. In particular,

this implies that we can infer from derivatives data the left hand side of equations (23) and (24) for

every date in our data set. Since the state vectorH(t) is also observable at these dates we obtain,

by stacking equations (23) and (24) for specific dates where we observe differentH(t) values, a

system of non-redundant linear equations, which with a large enough panel data can be perfectly

inverted for all the parameters.

Second, the fact that the term structure dynamics generated by our model cannot be nested

within a more general model follows directly from the fact that the transformation performed on the

initial state vectorX given in equation (1) to obtainH is an invariant transformation as defined in

Dai and Singleton (2000). 2

We emphasize that the notion ofQ-maximality is independent of the specification of the risk

premia. That is, it is independent of theP -measure dynamics of the state variables. This contrasts

with the notion of maximality introduced in Dai and Singleton (2000), which is based on theP -

measure likelihood. One drawback of their approach is that the notion of maximality changes

as we consider more general risk-premium specifications. In particular, note that their canonical

15To accommodate the fact that the characteristic function has an imaginary component and there are no ‘imaginary
dollar,’ simply assume that the derivative contract specifies that the value of the real part is paid separately from that of
the imaginary part (or in some different numeraire).
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representation is not maximal if one relaxes the ‘completely affine’ (e.g., DS (2000)) risk-premia

specification in favor of the ‘essentially affine’ (e.g., Duffee (2002)) or the ‘generalized essentially

affine’ (e.g., Cheridito et al (2004)). In contrast, all of these models areQ-maximal in the sense that

they all possess the same number of risk-neutral parameters. Moreover, as emphasized by the work

of Duarte (2003), one can obtain tractable models even if theP -measure dynamics are not affine,

so long as theQ-measure dynamics remain affine. Our framework identifies the maximal number

of risk-neutral parameters for a given class of models.

From there, aQ-maximal model can be combined with any form of risk-premium specification

so long as the resultingP -dynamics of the state variables are identifiable. Since the diffusion

parameters are unchanged between measures, onlyP -measure drift parameters must be checked. A

common case would be when theP -measure drift ofH is linear in state variables and/or parameter-

free functions of state variables. Examples are affine models or the ‘semi-affine’ class of Duarte

(2003), where drifts are linear in the state variables and their square roots. In those cases, the

P -measure drift ofH can be written as

µP (t) = C [1 g1(X(t)) g2(X(t)) · · · gM (X(t))] (25)

≡ C G(t), (26)

and identification merely requires that (i)G(t) is comprised of linearly independent time series

and (ii) the mapping from underlying model parameters to the matrixC is one-to-one. Essentially,

we are merely imposing the same conditions that one would require of a standard discrete-time

vector autoregression, and we are only precluding such obviously degenerate cases asyi = α +

(β + γ) xi + εi or yi = α + βxi + γ (2xi) + εi.

Thus, the notion ofQ-maximality emphasizes that the problem of identification in affine models

rests with the risk-neutral specification of the model. This is because we observe bond and fixed

income derivative prices but not the latent state variables themselves. Only when a model’sQ-

measure parameters are identified can we extract the latent state variables from the data. Given the

time series of these state variables, whether or not the remaining unknownP -measure parameters

are identified is typically obvious.

2.1 Relation to Duffie and Kan’s ‘yield-factor model’

Conceptually, the rotation of the state vector to observables we propose is similar to the original idea

of DK (1996), who proposed to view affine models as ‘yield-factor’ models, effectively rotating

from the latent state vector to an ‘observable’ state vector defined in terms of yields with constant

time to maturities. However, in practice, their approach turns out to be intractable for two reasons.

First, for the subset of models exhibiting USV, the rotation proposed by DS fails as not all state

variables can be written as linear combination of yields. Second, even for non-USV models where

the rotation is, in principle, possible, the identification restrictions take the form of restrictions on

the solution of the Riccatti equations, which are not generally known in closed-form. To provide
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some intuition, consider a two-factor Gaussian (i.e., non-USV) model of the short rater and a latent

variablex:

drt = (αr + βrr rt + βrx xt)dt + σr dZQ
r (t) (27)

dxt = (αx + βxr rt + βxx xt)dt + σx dZQ
x (t) (28)

Allowing for a correlation coefficient (dZQ
r (t) dZQ

x (t) = ρr,xdt), this model has a total of9 risk-

neutral parameters. We emphasize thatif one could observe the risk-neutral trajectories of the two

state variables, then one could estimate all9 parameters from observing fixed income securities.

However, in practice only data on yields and other fixed-income derivative securities are available.

As a result, we show below that at most6 risk-neutral parameters can be identified from observing

fixed income derivatives data. We emphasize that this result depends solely on the risk-neutral

dynamics of the state vector and is independent of the physical measure dynamics (which depends

on a particular choice of risk-premia).

Since yields of arbitrary maturities are linear inr andx we have

Y (t, τ) = −A(τ)
τ

+
Br(τ)

τ
rt +

Bx(τ)
τ

xt.

We can thus rotate from the latent state vector(r, x) to the observable state vector(r, Y (t, τ̂)) for

some specific choice of̂τ > 0. As shown by DK, the dynamics of this state vector must be affine,

i.e.:

drt = (α̂r + β̂rr rt + β̂ry Y (t, τ̂))dt + σr dZQ
r,t (29)

dY (t, τ̂) = (α̂y + β̂yr rt + β̂yy Y (t, τ̂)dt + σy dZQ
y,t (30)

and yields are still affine in both state variables, i.e.:

∀τ Y (t, τ) = −Â(τ)
τ

+
B̂r(τ)

τ
rt +

B̂y(τ)
τ

Y (t, τ̂).

In particular, this must hold for the special caseτ = τ̂ , which introduces three additional constraints,

namely:

Â(τ̂) = 0, B̂r(τ̂) = 0 and B̂y(τ̂) = τ̂ . (31)

Intuitively, these additional (non-linear) restrictions will imply that at least three parameters in the

specification of (29) and (30) above cannot be freely chosen. Hence, while the latent state vector

representation (equations (27) and (28)) seems to suggest that there are nine free risk-neutral param-

eters, by rotating to an observable vector, we see that there areprobablyonly six. Unfortunately,

this ‘yield-based’ approach proposed by Duffie and Kan (1996) is intractable, because the coeffi-

cientsA(τ) andB(τ) are generally not known in closed-form16, making it difficult to impose the

constraints implied in equation (31).

16We note that for the particularA0(2) model at hand, we do have analytic solutions forA(τ) andB(τ). But this does
not affect the general point we are trying to make.
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In contrast, our proposed representation circumvents the practical issues associated with DK’s

choice of finite maturity yields by choosing a different set of observable state variables, namely

yields with infinitesimal maturity, or equivalently the derivatives of the term structure at zero{Y0 , Y1 . . .}.
Indeed, our approach only involves the solution of these Ricatti equations and their higher order

derivatives at zero, all of which are known functions of the parameters. Using our proposed rep-

resentation, we would rotate from(r, x) to (r, µQ) which (as discussed above) is equivalent to

(Y0 , Y1). Using the definition ofµQ and equation (27), we findµQ = αr + βrr rt + βrx xt. Hence,

the dynamics of the system become:

dr(t) = µQ(t)dt + σr dZQ
r (t) (32)

dµQ(t) = (β0 + β1 rt + β2 µQ(t))dt + σm dZQ
m(t) (33)

whereσmdZQ
m(t) = βrxσxdZQ

x (t) + βrrσrdZ
Q
r (t) and we have the following relation between

parameters:

β0 = βrxαx − βxxαr (34)

β1 = βrxβxr − βxxβrr (35)

β2 = βrr + βxx (36)

σ2
m = β2

rxσ2
x + β2

rrσ
2
r + 2ρr,xβrxσxβrrσr (37)

ρr,mσmσr = ρr,xβrxσrσx + βrrσ
2
r (38)

Note that with ‘no effort’ our representation demonstrates that at most6 (linear combination of)

risk-neutral parameters are identifiable (σr, β0, β1, β2, σm, ρr,m). Indeed, any choice of parameters

in model (27)-(28) that leaves the left hand side of equations (34)-(38) unchanged, generates a short

rate process which is path by path identical to that of model (32)-(33). Consequently, both mod-

els are observationally equivalent conditional on observing only term structure and fixed-income

derivatives. In other words, only the left hand side of equations (34)-(38) are separately identifiable

from fixed-income derivatives data.

Note further, that our discussion is valid irrespective of the risk-premium specification chosen.

Starting from such aQ-maximal model, any risk-premium specification that is ‘reasonable’ in the

sense that it leads to aP -measure state variable process identifiable from vector autoregression, will

be maximal in the sense of DS (2000).

Up to this point, our example demonstrates that six risk-neutral parametersat mostare identifi-

able from the cross section of fixed-income prices. As such, to demonstrateQ-maximality, we still

need to show that all remaining parameters are in fact identifiable. Proposition 1 shows that this is

in fact the case. Here we illustrate this idea in a different way by introducing a set of contingent

claims whose prices will directly allow us to infer the parameters.

Suppose that a futures contract is traded with time to maturity∆ written on theobservable
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underlyingµQ . The corresponding futures priceF (t, ∆) is given by:

F (t, ∆) = EQ
t [µQ(t + ∆)]

By definition when∆ → 0 we have the relation:

F (t) = µQ(t) + (β0 + β1r(t) + β2µQ(t))∆

Since both(r, µQ) are observable, all we need is three set of (distinct) observationsF̂ ≡ {F (t1),

F (t2), F (t3)} to perfectly infer the parameters(β0, β1, β2) by running a cross-sectional ‘regression’

of F̂ onto the observed values{r(t1), r(t2), r(t3)} and{µQ(t1), µQ(t2), µQ(t3)}. Similarly, the

variance-covariance matrix parameters can be inferred from futures contracts written onr(t + ∆)2,

on µQ(t + ∆)2 and onr(t + ∆)µQ(t + ∆). Note that at no point does this approach require any

assumption about risk-premia, as it uses only the cross-section of our panel data and not any of its

time series properties.

Availability of derivative data and observability of the state variables are both crucial to our

argument. While the fixed income securities we have used in the example above do not exist in

practice, this argument guarantees nevertheless that theoretically our canonicalQ-representation is

identifiable. In practice, bonds alone are usually sufficient for identifying all risk-neutral parameters.

When the model is specified to exhibit USV, bonds and simple fixed income derivatives such as caps

are sufficient.

The next section documents using simulations, that the model-independent ‘observability’ of

our state variables may also be of practical interest.

2.2 Model-insensitive estimation of the state variables

When a model is specified in terms of latent state variables, estimates of the state vector depend on

the assumed values of the parameters, which are not initially available. In contrast, as demonstrated

above, the two state variables(r, µQ) in our representation are proportional to the level and slope

of the term structure at zero. In theory, this suggests that it should be possible to obtain model-

insensitive estimates of these state variables simply by observing the yield curve. Such estimates can

be quite valuable. For example, they can be used to obtain reasonable estimates of the parameters,

which in turn can be used as first guesses for a full-fledged estimation. This should be especially

useful for multi-factor models with more than three factors.

In practice, however, we rarely observe the entire (continuous) term structure of zero-coupon

yields. Rather, we only observe discrete points along the curve. Further, there may be some noise

resulting from, e.g., bid-ask spread and non-synchronous trading. To investigate how this would

affect the model-independent recovery of the state variables, we perform the following experiment.

We simulate a two factorA2(2) model using the estimates of Duffie and Singleton (1997). We

sample 10 years of weekly data and use a set of maturities typical of those used in the term structure

literature, namely{0.5, 1, 2, 5, 7, 10} years. Then we add i.i.d. noise with either 2bp or 5bp standard
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deviations to account for potential ‘measurement errors.’ We estimate the level and slope at zero

of the term structure by using two types of polynomials (quadratic and cubic). From our previous

results the two state variablesr andµQ can be estimated as, respectively, the level and twice the

first derivative at zero. We then regress the estimates obtained from the polynomial fits on the true

value of the simulation, i.e., we perform the following regressions:

truert = α
r
+ β

r × estimatedrt + ε
r

t

trueµQ
t

= α
µ

+ β
µ × estimatedµQ

t
+ ε

µ

t
,

wherert is the instantaneous short rate andµQ
t is its drift under the risk-neutral measure. If the

model-independent estimates are unbiased and accurate, we expect to find coefficientsβ
r

andβ
µ

close to one, along with highR2 values. The results reported in Table 1 are encouraging. They

show that the estimate ofr is unbiased and accurate even given a high level of noise. Further, the

estimate ofr is insensitive to the type of polynomial used. The results forµQ are also quite good, but

accuracy tends to diminish faster as noise increases. TheR2 drops as low as89% in the high noise

case for the less efficient cubic polynomial. Further, the order of the polynomial seems to matter for

the estimate of the first derivative. For example, the quadratic spline seems to systematically bias

the estimate (β
µ ≈ 1.6) of the second derivative. However, it is extremely highly correlated with

the state variable (R2 ≈ 0.98).

We emphasize that we have made no particular effort to find an appropriate interpolation proce-

dure. Rather, we have used the simplest available procedures, and did not try any others. These first

results thus seem very promising. The first state variable can be recovered very accurately without

much effort from available data. The second state variable can be recovered quite accurately with an

appropriate interpolation/extrapolation procedure.17 Below we demonstrate that similar accuracy is

apparently obtained using actual data, since we find our model-insensitive estimates to be extremely

highly correlated with estimates from full-fledged estimation procedures.

3 Q-maximality for stochastic volatility models

Below we focus on three and four factor models of the term structure which have only one factor

driving stochastic volatility. This seems natural for two reasons. First, in their study of three factor

models DS (2000) have shown that theA1(3) model is the least mis-specified at fitting various

moments of the term structure. Second, Duffee (2002) shows that among three-factor models,

Gaussian models perform best at capturing predictability regressions and for out of sample forecasts.

However, there is also clear evidence that the conditional variance of the short rate is time-varying

(e.g., Andersen, Benzoni and Lund (2003)). Thus it seems natural to only allow for one factor to

17We conjecture that a more sophisticated procedure based on either a term structure model (such as a two-factor
Gaussian model) or a Nelson-Siegel-type spline would provide a more robust method for recoveringr andµQ , even in
the presence of substantial noise.
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drive conditional variances. Finally, as we will see below the results of our investigation of three

factor models call for the addition of a fourth factor.

3.1 Q-maximality and A1(3) Model

Consider theA1(3) model in the terminology of Dai and Singleton (2000). It is defined by 3 state

variables, one of which follows a square-root process. One of the latent variable representations

under the risk-neutral measure has 19 parameters:

dv = (γv − κvv) dt + σv

√
v dZ

Q

3
(39)

dθ = [γ
θ
− κ

θ
θ − κ

θr
r − κ

θv
v] dt + σ

θr

√
αr + αvv dZ

Q

1
+

√
β

θ
+ βvv dZ

Q

2
+ σ

θv

√
v dZ

Q

3
(40)

dr = [γr − κrr − κ
rθ

θ − κrvv] dt +
√

αr + αvv dZ
Q

1
+ σ

rθ

√
β

θ
+ βvv dZ

Q

2
+ σrv

√
v dZ

Q

3
. (41)

Further, since we are interested in models where the short rate displays stochastic volatility we

assume that

αv + σ2
rθ

βv + σ2
rv

> 0.

DS demonstrate that this model is not identified, and thus econometric analysis cannot determine

all of the parameters. Following the approach proposed in the previous section, we rotate the

A1(3) model from an unobservable latent state vector(r, θ, v) to the ‘observable’ state vector

(r, µQ , V ) defined by:18

µQ = γr − κrr − κ
rθ

θ − κrvv (42)

V = αr + σ2
rθ

β
θ
+ (αv + σ2

rθ
βv + σ2

rv
)v (43)

This rotation takes a model with 19 parameters, not all of which are identifiable, to a maximal model

with 14 identifiable parameters inherent in its dynamics. Indeed, it is a matter of straightforward (but

tedious) verification combining their definition given in equations (42) and (43) with the original

dynamics of (39)-(41) we obtain:

dVt = (γV − κV Vt)dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (44)

drt = µQ
t
dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
σ2

2
Vt − ψ2 dZ

Q

2
(t) +

√
σ2

3
Vt − ψ3 dZ

Q

3
(t) (45)

dµQ
t

= (m0 + mrrt + mµµQ
t

+ mV Vt)dt

+ν1

√
Vt − ψ1 dZ

Q

1
(t) + ν2

√
σ2

2
Vt − ψ2 dZ

Q

2
(t) + ν3

√
σ2

3
Vt − ψ3 dZ

Q

3
(t), (46)

where by definition ofVt we have:

σ2
1

+ σ2
2

+ σ2
3

= 1 (47)

σ2
1
ψ1 + ψ2 + ψ3 = 0. (48)

18Since we have restricted ourselves to model where the short rate displays stochastic volatility (i.e.,αv + σ2
rθ

βv +
σ2

rv
> 0), such a rotation is always feasible. More generally, if one wanted to avoid this restriction, then aQ-maximal

representation of the model would involve four state variables(r, µQ , θQ , V ) (which would reduce to three when volatil-
ity is constant). For simplicity and given our focus on SV models we choose to impose the parameter restriction.
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The model is admissible if19

γV ≥ κV ψ1 (49)

ψ1 ≥ max
(

ψ2

σ2
2

,
ψ3

σ2
3

)
. (50)

Note that all the parameters in equations 44-46 above can be expressed as linear combinations

of parameters appearing in equations (42) and (43) above that are not separately identifiable. For

example, for the volatility dynamics we have:20

ψ1 = αr + β
θ
σ2

rθ
(51)

γV = (αr + β
θ
σ2

rθ
)κv + (αv + βvσ

2
rθ

+ σ2
rv

)γv (52)

κV = κv (53)

σV = σv

√
αv + βvσ

2
rθ

+ σ2
rv

(54)

In addition to the advantages mentioned in the previous section, our proposedQ-representation

is especially valuable for affine models that exhibit unspanned stochastic volatility (USV), because

it isolates those parameters which are not identifiable from bond prices alone. Furthermore, this

rotation allows us to express the parameter restrictions needed to generate USV in a much simpler

form, in turn facilitating empirical investigation.

The A1(3) model is written above in equations (44)-(46). Alternatively, and for future refer-

ence, we can express the restrictions imposed by the maximality condition on the drift vector and

instantaneous covariance matrix in the following form:




1
dtE

Q
[dr]

1
dtE

Q
[dµQ ]

1
dtE

Q
[dV ]


 =




µQ

m0 + mrr + mµµQ + mV V

γV − κV V


 (55)

Σ2 =




V c0 + cV V σ1σV (V − ψ1)

c0 + cV V σµ
0

+ σµ
V
V ν1σV (V − ψ1)

σ1σV (V − ψ1) ν1σV (V − ψ1) σ2
V

( V − ψ1)


 , (56)

where, by definition

cV = σ1ν1 + σ2
2
ν2 + σ2

3
ν3 (57)

σ
µ

V
= ν2

1
+ ν2

2
σ2

2
+ ν2

3
σ2

3
(58)

σµ
0

= −(ν2
1
ψ1 + ν2

2
ψ2 + ν2

3
ψ3) (59)

c0 = −(σ1ν1ψ1 + ν2ψ2 + ν3ψ3). (60)

19Note that as a practical matter it may be simpler to verify admissibility by usingv ≡ (V − ψ1) as a state variable,
since in this case zero is a natural lower boundary.

20We omit similar identities for the other parameters for the sake of brevity. They are available upon request.
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Again we see that 14 risk-neutral parameters can be identified: six from the drift and eight from

the variance-covariance matrix. Below, we will use both of these representations to simplify the

notation.

3.2 Q-maximality and the A1(3) USV Model

In this section we propose a full characterization of the ‘maximal’A1(3) model exhibiting USV.

Recall that by definition a model exhibits USV if state variables driving volatility risk cannot be

hedged by trading in bond prices alone. Collin-Dufresne and Goldstein (2002a) (proposition 6)

provide six necessary and sufficient conditions for a three-factor affine model to exhibit USV. In

applying these conditions to the particularA1(3) framework, however, only one state variable enters

the conditional covariance matrix, forcing two of the conditions to be satisfied automatically. The

remaining conditions are:

mr = −2c2
V

(61)

mµ = 3cV (62)

mV = 1 (63)

σµ
V

= c2
V
. (64)

Interestingly, note that our representation leads naturally to the condition in equation (63). Indeed,

equation (21) shows thatmV = 1 is a necessary condition forY2 to be independent ofV , which in

turn is a necessary condition for the entire yield curve to be independent ofV .

Since the maximalA1(3) model has 14 risk-neutral parameters and USV imposes 4 restrictions,

the A1(3) USV model has at most ten risk-neutral parameters (3 from the drift and 7 from the

variance-covariance matrix) to estimate. However, we demonstrate below that once admissibility

is enforced, the number of risk-neutral parameters gets reduced further to nine. Indeed, admissi-

bility requires that the model satisfy both the USV conditions given in equations (61)-(64) and the

admissibility conditions given in equations (49) and (50).

Combining the USV conditions (62) and (64) we see that to obtain stationary model under the

Q measure (which requires thatmµ < 0), the parameters must satisfy:

cV = −
√

σµ

V
.

Hence, from the definitions in equations (57) and (58), it follows that the parameters must satisfy

the following system of equations:
{

σ1ν1 + σ2
2
ν2 + σ2

3
ν3 = −√

ν2
1

+ ν2
2
σ2

2
+ ν2

3
σ2

3

σ2
1

+ σ2
2

+ σ2
3

= 1.
(65)

If we can find parameters that satisfy these equations, then the three USV conditions (61)-(63) can be

satisfied by appropriately choosing the parameter values formr , mµ , mV . Further, the admissibility

conditions (49) and (50) can be satisfied by appropriately choosing values for{ψ1 , ψ2 , ψ3}.
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To show there exists a solution to the system in equations (65), note that if we define the two

vectors{u, v} in <3 by their coordinatesu = [σ1 , σ2 , σ3 ] andv = [ν1 , ν2σ2 , ν3σ3 ], then the

system can be rewritten as: { ||u|| = 1
u · v

||v|| = −1.
(66)

The geometric interpretation is straightforward: The solution must satisfyu = − v
||v|| , or equiva-

lently:

σ1 = − ν1√
ν2

1
+ ν2

2
σ2

2
+ ν2

3
σ2

3

(67)

σ2 = − ν2σ2√
ν2

1
+ ν2

2
σ2

2
+ ν2

3
σ2

3

(68)

σ3 = − ν3σ3√
ν2

1
+ ν2

2
σ2

2
+ ν2

3
σ2

3

. (69)

There are three possible solutions to this system:

• Case 1:σ2 , σ3 6= 0

• Case 2:σ2 = 0

• Case 3:σ2 = σ3 = 0.

It can be shown that Case 1 is a degenerate case that reduces to a two-factor model, and that Case 3

is a special case of Case 2.21 Hence, we focus our attention on Case 2.

In this case equation (68) holds for any value ofν2 . Equations (67) and (69) further imply that

ν1 = σ1cV (70)

ν3 = cV . (71)

Thus the system of equations becomes:

dVt = (γV − κV Vt)dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (72)

drt = µQ
t
dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ2 dZ

Q

3
(t) +

√
−ψ2 dZ

Q

2
(t) (73)

dµQ
t

= (m0 − 2c2
V
rt + 3cV µQ

t
+ Vt) dt

+cV

(
σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ2 dZ

Q

3
(t)

)
+ ν2

√
−ψ2 dZ

Q

2
(t), (74)

with the following conditions:

κV > 0 for stationarity (75)

cV < 0 for stationarity (76)

γV − κV ψ1 > 0 for admissibility (77)

−ψ2 > 0 for admissibility (78)

1 > σ2
1

for admissibility (79)

ψ1 + ψ2 > 0 for admissibility. (80)
21The proofs are available upon request.
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Thus the model has 9 parameters under theQ measure:

γV , κV , σV , ψ1 , σ1 , cV , ψ2 , m0 , ν2 .

Finally, we verify that the short rate process given by equations (72)-(74) above exhibits USV in

that the zero-coupon bond price is not a function of the volatility state variableVt :

Proposition 2 If the short rate process follows the three-factor Markov process given by equations

(72), (73) and (74), where the parameters satisfy the admissibility conditions (75)-(80), then zero-

coupon bond prices are given by:

P (t, T ) = exp
(
A(T − t)−Br(T − t)rt −Bµ(T − t)µQ

t

)
, (81)

where the deterministic functionsA(·), Br(·) andBµ(·) are given by:

Br(τ) =
−3 + 4ec

V
τ − e2c

V
τ

2cV

(82)

Bµ(τ) =
(1− ec

V
τ )2

2c2
V

(83)

A(τ) =
∫ τ

0

(
1
2
σµ

0
B2

µ
(s)−m0Bµ(s) + c0Br(s)Bµ(s)

)
ds (84)

and where the parametersc0 andσµ
0

can be written as

c0 = ψ2 (cV − ν2) (85)

σµ
0

= ψ2

[
c2

V
− ν2

2

]
. (86)

Proof See Appendix A 2

From equations (82)-(84) it is clear that only four parameters,{m0 , ψ2 , ν2 , cV }, can be identified

from the cross-section of bond prices. Further, from observing a time series of bond prices we can

determine both the volatility state variable and the three diffusion parameters{σV , σ1 , ψ1}. How-

ever, using only panel data on bond prices, we cannot determine the risk-neutral drift parameters

(γV , κV ) of V .22 Rather, prices of other fixed income derivatives (e.g., caps) must be used to infer

these risk-neutral parameters.

Note that bond prices would retain their exponential-affine form in the above model forany

specification of the process forVt . Indeed, the proof of Proposition 2 does not depend in on the

specific process followed by the variance of the short rate.23 In other words, bond prices can be

exponential-affine even if the state vector is not! This could prove helpful in estimating more general

models for the volatility dynamics while retaining the analytical tractability of affine models for

22This statement assumes that the risk premia are general enough so that the risk-neutral parameters (γV , κV ) are
distinct from their physical-measure counterparts.

23The only condition is that the volatility process be sufficiently regular for the stochastic integral in equation (A.20)
to be a martingale.
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bond prices. Interestingly, the expression obtained for the term structure displays strong similarities

to that of two-factor Gaussian model (such as that of Jegadeesh and Pennacchi (1996) for example)

despite the fact that the short rate has stochastic volatility. Finally, we note that the integral in (84)

can be obtained in closed-form as well, but to simplify notation we leave it in integral form.

3.3 Q-maximality and the A1(4) USV Model

In this section we identify anA1(4) model which exhibits USV. For identification purposes, we see

from equation (21) that is natural to use{Y0 , Y1 , Y2 , V }, or equivalently{rt , µ
Q
t , θ

Q

t
, Vt} as the state

vector, whereθ
Q

t
is defined byθ

Q

t
≡ 3Y2,t =

(
1
dtE

Q

t
[dµQ

t ]− Vt

)
. The maximalA1(4) model is

given by:

dVt = (γV − κV Vt) dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (87)

drt = µQ
t
dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

4∑

i=2

√
σ2

i
Vt − ψi dZ

Q

i
(t) (88)

dµQ
t

= (θ
Q

t
+ Vt)dt + ν1

√
Vt − ψ1 dZ

Q

1
(t) +

4∑

i=2

νi

√
σ2

i
Vt − ψi dZ

Q

i
(t) (89)

dθ
Q

t
= (a0 + arrt + aµµQ

t
+ a

θ
θ

Q
+ aV Vt)dt

+η1

√
Vt − ψ1 dZ

Q

1
(t) +

4∑

i=2

ηi

√
σ2

i
Vt − ψi dZ

Q

i
(t), (90)

where by definition ofVt we have:

σ2
1

+ σ2
2

+ σ2
3

+ σ2
4

= 1 (91)

σ2
1
ψ1 + ψ2 + ψ3 + ψ4 = 0. (92)

The model is admissible if

γV ≥ κV ψ1 (93)

ψ1 ≥ max
ψi

σ2
i

∀ i = 2, 3, 4 s.t. σi 6= 0. (94)

Note that the maximal unrestrictedA1(4) model has a total of 22 free risk-neutral parameters(
γV , κV , σV , {ψi , νi , ηi , σi}|4i=1 , a0 , ar , aθ

, aµ , aV

)
, and two restrictions from equations (91) and

(92).

For theA1(4) model to display USV, the model must satisfy certain restrictions. To identify

these restrictions, we define the vectors

σ ≡ (σ1 , σ2 , σ3 , σ4) (95)

ν ≡ (ν1 , ν2σ2 , ν3σ3 , ν4σ4) (96)

η ≡ (η1 , η2σ2 , η3σ3 , η4σ4). (97)
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As for theA1(3) USV model, it is convenient to introduce a representation for the instantaneous

variance covariance matrix of the state variables(rt , µ
Q
t , θt):

Σ2 =




V crµV + c
0

rµ
c

rθ
V + c

0

rθ

crµV + c
0

rµ
σ2

µ
V + σ0

µ
c

µθ
V + c

0

µθ

c
rθ

V + c
0

rθ
c

µθ
V + c

0

µθ
σ2

θ
V + σ0

θ




, (98)

where, by definition

crµ ≡ σ · ν (99)

c
rθ

≡ σ · η (100)

c
µθ

≡ ν · η (101)

σ2
θ
≡ ‖η‖2 (102)

σ2
µ

≡ ‖ν‖2. (103)

Following the approach of CDG we find that theA1(4) model exhibits USV if the following restric-

tions are imposed:

ar = −2c2
rµ

(3crµ − a
θ
) (104)

aµ = 7c2
rµ
− 3crµa

θ
(105)

aV = 3crµ (106)

σµ = −crµ (107)

σ
θ

= c
rθ

(108)

c
rθ

= c2
rµ

(109)

c
µθ

= c3
rµ

(110)

As for theA1(3) USV model, there is a natural geometric interpretation for the restrictions on the

variance covariance matrix. For example, equations (91), (99), (103), and (107) imply that the vec-

torsσ andν are collinear but pointing in opposite directions. Similarly, equations (91), (100), (102)

and (108) imply that the vectorsσ andη are collinear and pointing in the same direction. Combining

these results with the implications from equations (99), (100) and (109) we conclude that

σ =
η

‖η‖ = − ν

‖ν‖ (111)

‖η‖ = ‖ν‖2. (112)

In order to identify the set of parameters that satisfy these restrictions, we investigate a few distinct

cases.

• Case 1:σ2 , σ3 , σ4 6= 0. We claim that this case reduces to a two-factor model. Indeed,

equation (111) implies thatη2 = η3 = η4 andν2 = ν3 = ν4 . Therefore, we can define

21



the Brownian motionB
Q

t
by

√
σ2V − ψ dB

Q
(t) ≡ ∑4

i=2

√
σ2

i
V − ψi dZ

Q

i
(t), whereσ2 =

∑4
i=2 σ2

i
andψ =

∑4
i=2 ψi . It follows that the dynamics of the state vector is then adapted

to the natural filtration generated by the two Brownian motions(Z
Q

1
, B

Q
). That is, this case

reduces to a two-factor model as claimed.

• Case 2:σi = 0 for somei ∈ [2, 3, 4] andσj 6= 0 for all j ∈ [2, 3, 4] such thatj 6= i.

Analogous to the previous case, we can show that this case reduces to a three factor model.

• Case 3: σj = σi = 0 for somei 6= j ∈ [2, 3, 4]. Without loss of generality, assume

σ3 = σ4 = 0. Then equations (111) and (112) imply:

ν1 = crµσ1 (113)

ν2 = crµ (114)

η1 = c2
rµ

σ1 (115)

η2 = c2
rµ

. (116)

Further, from equations (91) and (92) we have:

σ2
1

+ σ2
2

= 1 (117)

σ2
1
ψ1 + ψ2 + ψ3 + ψ4 = 0. (118)

Combining all of these results, we obtain the following representation for theA1(4) USV

model.

dVt = (γV − κV Vt)dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (119)

drt = µQ
t

dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ3 + ψ4 dZ

Q

2
(t)

+
√
−ψ3 dZ

Q

3
(t) +

√
−ψ4 dZ

Q

4
(t) (120)

dµQ
t

= (θ
Q

t
+ Vt) dt + crµσ1

√
Vt − ψ1 dZ

Q

1
(t) + crµ

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ3 + ψ4 dZ

Q

2
(t)

+ν3

√
−ψ3 dZ

Q

3
(t) + ν4

√
−ψ4 dZ

Q

4
(t) (121)

dθ
Q

t
=

(
a0 − 2c2

rµ
(3crµ − a

θ
) rt + (7c2

rµ
− 3crµa

θ
) µQ

t
+ a

θ
θ

Q
+ 3crµ Vt

)
dt

+c2
rµ

σ1

√
Vt − ψ1 dZ

Q

1
(t) + c2

rµ

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ3 + ψ4 dZ

Q

2
(t)

+η3

√
−ψ3 dZ

Q

3
(t) + η4

√
−ψ4 dZ

Q

4
(t). (122)

Note that theA1(4) model exhibiting USV has a total of 14 risk-neutral parameters (γV , κV , σV ,

ψ1 , ψ3 , ψ4 , ν3 , ν4 , η3 , η4 , σ1 , a0 , crµ , a
θ
), as opposed to 22 for the unrestricted model.24

24Note that the two restrictionsσ3 = σ4 = 0 makes one of the seven restrictions from equations (104)-(110) redundant,
leading to eight total restrictions, and thus 22 - 8 = 14 parameters.
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The admissibility restrictions are:

κV > 0 for stationarity (123)

crµ < 0 for stationarity: see equation (107) (124)

a
θ
− 3crµ < 0 for stationarity: see, for example, equation (131) (125)

γV − κV ψ1 > 0 for admissibility (126)

ψ3 , ψ4 < 0 for admissibility (127)

1 > σ2
1

for admissibility: see equation (117) (128)

ψ1 + ψ3 + ψ4 > 0 for admissibility. (129)

Note that this model nests theA1(3) USV model which may be obtained by settingψ4 =

ν4 = η4 = 0 anda
θ

= 3crµ andη3 = −2c2
rµ

+ 3crµν3 (this can be readily verified by an

appropriate change of variable in the previous model).

The following proposition verifies that the proposed model exhibits USV and provides the

closed-form solution for bond prices.

Proposition 3 If the short rate process follows a four-factor Markov process given by equations

(119)-(122) where the parameters satisfy the admissibility conditions (123)-(129) then zero-coupon

bond prices are given by:

P (t, T ) = exp
(

A(T − t)−Br(T − t) rt −Bµ(T − t) µQ
t
−B

θ
(T − t) θ

Q

t

)
, (130)

where the deterministic functionsA(τ), Br(τ), Bµ(τ), andB
θ
(τ) are given by:

Br(τ) =
ecrµ τ

(
6 crµ − 2 a

θ

)

4 crµ
2 − crµ a

θ

+
e2 crµ τ

(
3 crµ − a

θ

)

−10 crµ
2 + 2 crµ a

θ

+
7 crµ − 3 a

θ

−6 crµ
2 + 2 crµ a

θ

− 2 crµ
2 e(−3 crµ+a

θ) τ

Γ
(131)

Bµ(τ) =
a

θ

2 crµ
2

(−3 crµ + a
θ

) +
e2 crµ τ

(
2 crµ − a

θ

)

10 crµ
3 − 2 crµ

2 a
θ

+
ecrµ τ

(
crµ − a

θ

)

−4 crµ
3 + crµ

2 a
θ

+
3 crµ e(−3 crµ+a

θ) τ

Γ
(132)

B
θ
(τ) =

ecrµ τ

crµ
2

(−4 crµ + a
θ

) +
1

6 crµ
3 − 2 crµ

2 a
θ

+
e2 crµ τ

10 crµ
3 − 2 crµ

2 a
θ

− e(−3 crµ+a
θ) τ

Γ
(133)

A(τ) =
∫ τ

0

(
σ0

µ

2
Bµ(s)2 +

σ0
θ

2
B

θ
(s)2 + Br(s)Bµ(s)c0

rµ
+ Br(s)Bθ

(s)c0
rθ

+ B
θ
(s)Bµ(s)c0

µθ
−B

θ
(s)a0

)
ds,

and where

Γ =
(
3 crµ − a

θ

) (
4 crµ − a

θ

) (
5 crµ − a

θ

)
. (135)

Proof See Appendix A 2

As before, we note that the integral in (134) can be obtained in closed-form as well, but to simplify

notation we leave it in integral form. We now turn to the estimation of three and four-factorQ-

maximal SV and USV models.
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4 Empirical Approach

Of primary empirical interest is whether standard affine models can simultaneously explain both

the cross-sectional and time series properties of bond prices. In this section, we use data on USD

swap rates to estimate a variety of maximal two-, three-, and four-factor affine models both with

and without USV.

As discussed in the previous section, the volatility state variable does not enter into the bond

price formulas for those models which exhibit USV. As such, theA1(3) USV model is effectively a

two-factor model in the cross-sectional sense and therefore bears some resemblance to both the un-

restrictedA1(2) andA1(3) models. The latter model, with three factors in the yield curve, motivates

examination of theA1(4) USV specification, which also has three factors in yields but which has an

additional volatility factor that is free to explain time series patterns.

While USV seems desirable from evidence on derivatives-pricing (CDG 2002, Heiddari and

Wu (2003)), it remains to be seen whether USV is too restrictive of an assumption for bond prices

themselves. We begin by discussing the specification of risk-premia and the implied dynamics under

the historical measure. We then discuss the data and empirical methodology. Finally, the results are

presented.

4.1 Model specifications to be estimated

In Section 3 we introduced a representation of theA1(3) model to establishQ-maximality. Note

that this was accomplished even though we specified only the risk-neutral dynamics. To complete

the model, however, we also need to specify the risk-premia{λ}, which link the Brownian motions

under the historical measure and risk-neutral measure via:

dZP
i

(t) = dZ
Q

i
(t)− λi(t) dt, ∀ i = 1, 2, 3, (136)

We specify theλi(t) as:

λ1(t) =
λ10 + λ13Vt√

Vt − ψ1

(137)

λ2(t) =
λ20 + λ21rt + λ22µ

Q
t + λ23Vt√

σ2
2
Vt − ψ2

(138)

λ3(t) =
λ30 + λ31rt + λ32µ

Q
t + λ33Vt√

σ2
3
Vt − ψ3

. (139)

By including a term in (137) proportional to1/
√

Vt − ψ1 , we are in fact generalizing Duffee’s

(2002) essentially affine specification. While, the Novikov condition may not be satisfied, a simple

application of Theorem 7.19 in Liptser and Shiryaev (1974, p. 294) shows that if zero is not ac-

cessible byVt − ψ1 under both measures then the two measures implicitly defined by the market

price of risks above are equivalent.25 We therefore impose the Feller condition for both measures as
25Cheridito, Filipovic, and Kimmel (2004) recently offer an alternative proof of this result in the context of affine

models. Liptser and Shiryaev’s result however applies more generally to any process of the ‘diffusion type’ (see their
definition 7 p. 118).
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a constraint in the likelihood maximization.26 Combined with condition (50), the Feller condition

implies that the Radon-Nikodym density defined by the risk-premia specification in (136) above

integrates to one.

The flexibility of this specification of risk-premia allows for every drift parameter in ther, µQ ,

andV processes be adjusted when changing measures. For simplicity of exposition we use the

following notation: we denote byλxy the adjustment in the drift ofx to the loading ony, where

x ∈ {r, µQ , V } andy ∈ {0, r, µQ , V } (where0 denotes a constant). The dynamics of the state

vector for the unrestrictedA1(3) under theP measure are:

dVt =
(
γV + λV 0 − (κV − λV V ) Vt

)
dt + σV

√
Vt − ψ1 dZ1(t) (140)

drt =
(
λr0 + λrrrt + (1 + λrµ)µQ

t
+ λrV Vt

)
dt

+σ1

√
Vt − ψ1 dZ1(t) +

√
σ2

2
Vt − ψ2 dZ2(t) +

√
σ2

3
Vt − ψ3 dZ3(t) (141)

dµQ
t

=
(
m0 + λµ0 + (mr + λµr)rt + (mµ + λµµ)µQ

t
+ (mV + λµV ) Vt

)
dt

+ν1

√
Vt − ψ1 dZ1(t) + ν2

√
σ2

2
Vt − ψ2 dZ2(t) + ν3

√
σ2

3
Vt − ψ3 dZ3(t). (142)

With this specification, the unrestrictedA1(3) model has a total of 24 parameters (14 risk neutral

and 10 risk-premium parameters). The USV model, on the other hand, has a only 17 parameters

that can be estimated from bond prices (9 risk-neutral and 10 risk-premium parameters, but the two

volatility risk premia parameters are not identifiable from bond prices alone).

For comparison, we also consider models with ‘completely affine’ risk premia, so that

λ1(t) = λ1

√
Vt − ψ1 (143)

λ2(t) = λ2

√
σ2

2
Vt − ψ2 (144)

λ3(t) = λ3

√
σ2

3
Vt − ψ3 . (145)

For both USV and non-USV specifications, all three completely affine risk premia parameters are

identifiable from bond prices.

For theA1(4) USV model, essentially affine risk premia can involve up to 17 parameters. Pre-

liminary results suggested that this was too great a number to be estimated reliably, so our investi-

gation of the essentially affineA1(4) USV specifications uses the restricted risk premia

λ1(t) =
λ10 + λ12Vt√

Vt − ψ1

(146)

λ2(t) =
λ20 + λ21µ

Q
t + λ22Vt√

(1− σ2
1
)Vt + σ2

1
ψ1 + ψ3 + ψ4

(147)

λ3(t) =
λ30 + λ31µ

Q
t + λ32Vt√−ψ3

(148)

26The Feller condition for theQ-measure parameters of the processV −ψ1 is simply2(γV −κV ψ1) > σ2
V

. A similar
condition applies for theP -measure parameters.
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λ4(t) =
λ40 + λ41µ

Q
t + λ42Vt√−ψ4

. (149)

Note, however, thatλ10 andλ12 are unidentified because of USV.

We include a dependence onµQ
t in each of the risk premia because of studies such as Fama

and Bliss (1987), which document strong relations between slope and bond excess returns. Since

µQ is proportional to the slope of the yield curve at zero, we would expect it to be related to more

conventional measures of yield curve slope as well. We include dependence onVt so that these risk

premia nest the completely affine specification, which we also consider.

The unrestrictedA1(2) model is the last specification considered. Its representation under the

Q-measure is given by

dVt = (γV − κV Vt) dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (150)

drt = (γr − κrrrt − κrV Vt) dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
(1− σ2

1
)V + σ2

1
ψ1 dZ

Q

2
(t). (151)

Generalized essentially affine risk premia for this model are

λ1(t) =
λ10 + λ12Vt√

Vt − ψ1

(152)

λ2(t) =
λ20 + λ21rt + λ22Vt√

(1− σ2
1
)Vt + σ2

1
ψ1

, (153)

yielding a total of 13 parameters (8 risk neutral plus 5 risk premia). Completely affine risk premia

for this model are defined as usual.

4.2 Data

We use weekly LIBOR and swap rate data from Datastream from January 6, 1988, to December

30, 2003. On each day in the sample, zero coupon yield curves are bootstrapped from all available

swap rates and the six-month LIBOR rate. For dates before January 1997, when the one-year swap

rate first became available, we also use the one-year LIBOR rate. Swap rates are converted to zero-

coupon rates assuming that they can be valued as par bond rates.27 Following Bliss (1997), we use

the extended Nelson-Siegel method for bootstrapping.

A complication arises from the use of LIBOR rates because the swap rates used in our sample are

quoted roughly nine hours later.28 To overcome this problem, following Jones (2003), we estimate

the ‘synchronized’ values of the LIBOR rates. The procedure is essentially a Bayesian smoothing

algorithm that exploits the extremely high correlations between changes in LIBOR and swap rates

of similar maturities. Jones (2003) shows that the errors of the procedure are typically on the order

27If swap were free of default risk, this would directly follow from absence of arbitrage. In the presence of credit-risk,
this assumption is warranted if there is homogeneous credit quality across swap and LIBOR market. In that case, the
zero-coupon curve corresponds to a risk-adjusted corporate curve for issuers with refreshed AA credit quality (see Duffie
and Singleton (1997), Collin-Dufresne and Solnik (2001), Johannes and Sundaresan (2002)).

28LIBOR rates are quoted by the British Bankers’ Association at 11:00am London time, while our swap rates are
recorded at 5:00pm New York time.
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of one basis point, or roughly one third the magnitude of the errors one would make by using either

the same morning’s LIBOR quote, the next morning’s quote, or the average of the two.

From the bootstrapped yield curves we extract yields with maturities of 0.5, 1, 2, 3, 4, 5, 7,

and 10 years. We choose these eight maturities because on each day in the sample there is some

underlying yield quote for each one. We therefore expect the bootstrapped yields to be particularly

accurate for these maturities.

Ideally, we would fit the model to the data in their original form, without modification via tem-

poral smoothing or bootstrapping. Our decision to ‘pre-process’ the raw data is for convenience

only, as it linearizes the relation between observables (the yields) and unobservables (rt , µQ
t , etc.).

Using the raw swap and LIBOR rates would complicate an estimation procedure that is already

computationally demanding due to the presence of latent variables. We proceed with these method-

ological caveats in place.

4.3 Econometric methodology

We estimate all models using a quasi-maximum likelihood approach similar to Fisher and Gilles

(1996), Duffee (2002), and others. As is well known, for the unrestrictedA1(3) model (and a given

trial parameter vector), it is (theoretically) possible to identify the state variables given any three

linear combinations of zero-coupon yields. Indeed, since any linear combination of yields is linear

in the state variables, the state vector can be identified by matrix inversion. A standard procedure

used in the literature is to assume that some arbitrarily chosen set of yields is observed without error.

These yields are then used to identify the state variables. Further, it is assumed that the remaining

yields are observed with error. The latter are interpreted as ‘measurement errors’ (e.g., Chen and

Scott (1993) and Pearson and Sun (1994), Duffie and Singleton (1997), Collin-Dufresne and Solnik

(2001), and Duffee (2002)).

In contrast, in this paper we assume that the first two or threeprincipal componentsof the

term structure are observed without errors, and that the measurement errors apply to the remaining

principal components. This approach has three advantages. First, it guarantees that our proce-

dure will fit perfectly the most important principal components, which we know from Litterman

and Scheinkman (1991) explain the vast majority of the variance of changes in yields. Second, by

construction the factors are unconditionally orthogonal, which approximately ‘orthogonalizes’ the

matrix of ‘measurement’ errors. Finally, this procedure circumvents the arbitrariness of the stan-

dard approach of fitting specific yields. In Table 2 we present the eigenvectors corresponding to the

eigenvalues of the covariance matrix. The first two or three give the loadings of the linear combi-

nation of yields which we fit perfectly (i.e., those which are measured without ‘error’). Consistent

with Litterman and Scheinkman (1991), the first three principal components can loosely be inter-

preted as level, slope, and curvature factors. Only the first six principal components are reported,

as the remaining two explain only 0.26% of the total variance in yield curve changes and appear to
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represent pure noise.29

Note that the standard quasi-maximum likelihood approach relies on the ‘invertibility’ of the

bond yields to identify the state vector. However, under USV there does not exist a one-to-one

mapping between yields and factors since bond prices are independent of the volatility state variable.

Moreover, the situation is even worse for the unrestrictedA1(3) model if we assume that only two

principal components are observed without error. Indeed, in that case none of the state variables can

then be inverted from yields. To overcome this obstacle, we use the Efficient Importance Sampler

(EIS) of Richard and Zhang (1996, 1997) to evaluate the quasi-likelihood function by Monte Carlo

simulation.

This approach is somewhat unique in the literature on affine models, as authors such as Duan

and Simonato (1999) and de Jong (2000) have applied the Kalman filter to affine models like ours

in which both the mean and the variance are linear functions of state variables. A problem with this

method is that for non-Gaussian models it is generally infeasible to derive the optimal nonlinear

filter for the state variables, and a suboptimal linear filter must be used instead. This results in an

incorrect specification of conditional variances, which, as Lund (1997) and de Jong (2000) argue,

leads to inconsistent estimates. Interestingly, however, these studies, as well as that of Duffee and

Stanton (2002), have found that methods based on the Kalman filter perform well in simulated

samples, with minimal biases and relatively high accuracy. A natural explanation of this result is

that the linear relationship between yields and latent state variables is strong in typical affine term

structure models. Ignoring nonlinearities is therefore innocuous since even the suboptimal linear

filter results in a high degree of accuracy. In the USV case, however, this result seems unlikely

to hold. As Duan and Simonato (1999, p. 115) note, the Kalman filtered estimates of the state

variables are linear projections on the observed yields. Since yield levels provide no information

about the volatility state variable under USV, these projections should result in substantial errors in

Vt , which drives all conditional variances. In this case, the inconsistency identified by Lund (1997)

and de Jong (2000) could be especially severe. We therefore adopt the EIS algorithm of Richard

and Zhang (1996, 1997), which computes quasi-likelihoods conditional on simulated paths ofVt .

These likelihoods are then averaged to obtain an unconditional value.30

To describe the algorithm in more specific terms, assume that we are estimating one of the

A1(3) specifications. Letφ denote the parameter vector andP = {P1 ,P2 , ...,PT } the time series

of principal components of the yield curve, representing the data that the models are attempting

to explain. The simulated QML approach is based on the observation that the likelihood function,

29There is one potential shortcoming resulting from the use of estimated principal components. When more data is
added to the sample, revisions in parameter estimates will result both from the new information in those data and from
the changes that they cause in the estimated principal component loadings.

30We attempted to use a variant of the better-known approach of Kim, Shephard, and Chib (1998) in a previous version
of the paper, but we found generalizations of this method unreliable for non-USV specifications where the stochastic
volatility process plays a somewhat complex role. We now find that the EIS approach generates a substantially different
set of parameters and results in much higher likelihoods for the non-USV models, demonstrating that this approach is
more appropriate in these cases. We thank the referee for pushing us in this direction.
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p(P|φ), can be written as the integral
∫

p(P,V|φ) dV, whereV = {V1 , V2 , ..., VT } denotes the

time series of the latent stochastic variance process. The integral is evaluated using simulation. In

general, the density p(V|P, φ) implied by the true model is unknown. But for an arbitrary density

p∗(V|P, φ), we may still write

∫
p(P,V|φ) dV =

∫
p(P,V|φ)

p∗(V|P, φ)
p∗(V|P, φ)

dV

≡ E∗
[

p(P,V|φ)
p∗(V|P, φ)

]
. (154)

We can therefore evaluate the integral by simulating stochastic variance paths from p∗(V|P, φ) and

averaging the ratio inside the brackets. One can see that in the unlikely case that p∗(V|P, φ) =

p(V|P, φ), then
p(P,V|φ)
p∗(V|P, φ)

= p(P|φ), (155)

independent ofVt . In this case only one simulation would be needed, as every realization ofV

would yield the same result. The idea of Richard and Zhang’s (1996, 1997) Efficient Importance

Sampler is essentially to choose the p∗(V|P, φ) that minimizes the variation in

ln p(P,V|φ)− ln p∗(V|P, φ),

thereby reducing the number of simulations required to estimate (154) accurately. Unlike more

traditional importance sampling, such as Sandmann and Koopman (1998), EIS does not require

the ad hoc construction of an approximate linearized model. The importance sampler is simply

defined as the density (within a parametric class) that maximizes simulation efficiency. An appendix

provides more details about the sampler. Given each draw ofV, evaluation of p(P,V|φ) is fairly

straightforward. LetPt = {P0,t ,Pε,t}, whereP0,t are principal components observed without error

andPε,t are the remaining principal components, assumed observed with some serially independent

measurement errors. Then assuming thatP0,t has two elements, thejoint process forPt andVt is

Markov. This follows from the fact thatP0,t andVt jointly imply (both with and without USV)

values forrt , µQ
t , andVt , which are themselves jointly Markov. We can therefore decompose the

‘augmented’ likelihood function as

p(P,V|φ) =
T∏

t=1

p(Pt , Vt |Pt−1 , Vt−1 , φ)

=
T∏

t=1

p(Pt , Vt |rt−1 , µ
Q
t−1

, Vt−1 , φ)

=
T∏

t=1

p(P0,t , Vt |rt−1 , µ
Q
t−1

, Vt−1 , φ) p(Pε,t |rt , µ
Q
t
, Vt , φ)

=
[
det(L∗−1

0
)
]T

T∏

t=1

p(rt , µ
Q
t
, Vt |rt−1 , µ

Q
t−1

, Vt−1 , φ) p(Pε,t |rt , µ
Q
t
, Vt , φ), (156)
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whereL∗
0

is defined below. The first equality follows from the Markov property, and the second

from the invertibility ofPt andVt . In the third, we separate, using Bayes rule, those principal

components that are assumed perfectly observed,P0,t , from those that are assumed observed with

error,Pε,t . Irrelevant conditioning arguments are also eliminated. The final equality again makes

use of the invertibility ofPt andVt . Specifically, letK0 (1× 2) andL0 (3× 2) be the matrices such

that

P0,t = K0 +
[
rt µQ

t
Vt

]
L0 . (157)

Note thatK0 is a weighted sum of theA(τ) coefficients, where the weights correspond to the

principal component loadings. Similarly,L0 is a weighted sum of theB(τ) coefficients. Then

defining

L∗
0
≡


L0

0
0
1


 , (158)

we obtain [P0,t Vt

]
= [K0 0] +

[
rt µQ

t
Vt

]
L∗

0
, (159)

which implies the ‘inversion formula’

[
rt µQ

t
Vt

]
=

([P0,t Vt

]− [K0 0]
)
L∗−1

0
. (160)

The term
[
det(L∗−1

0
)
]T

in the likelihood decomposition thus reflects the change in variables from{P0,t , Vt

}
to

{
rt , µ

Q
t , Vt

}
.31

To summarize, we use 1,000 simulations from the importance sampling density p∗(Vi |P, φ) to

approximate the likelihood function as

1
1000

∑

i

[
det(L∗−1

0
)
]T ∏T

t=1 p(r
i

t
, µQ,i

t , V
i

t
|ri

t−1
, µQ,i

t−1 , V
i

t−1
, φ) p(Pε,t |r

i

t
, µQ,i

t , V
i

t
, φ)

p∗(Vi |P, φ)
, (161)

where theV
i

t
are simulated from p∗(Vi |P, φ) and{ri

t
, µQ,i

t } are inferred via equation (160). By

design, p∗(V|P, φ) is known in closed-form. As discussed above, p(r
i

t
, µQ,i

t , V
i

t
|ri

t−1
, µQ,i

t−1 , V
i

t−1
, φ)

is treated as Gaussian, where we use Fisher and Gilles’ (1996) algorithm for computing exact con-

ditional means and covariances.

Finally, to compute p(Pε,t |rt , µ
Q
t , Vt , φ) we use the affine structure to find theKε andLε such

thatwithoutmeasurement error we would have

Pε,t = Kε +
[
rt µQ

t
Vt

]
Lε . (162)

The density ofPε,t is computed assuming that measurement errors, causing deviations from these

values, are Gaussian with mean zero with a diagonal covariance matrixΣε .
32

31In the case of theA1(3) USV model, the last row ofL0 is a row of zeros, so the vector
[
rt µQ

t

]
can be recovered

perfectly by post-multiplyingP0,t −K0 by the inverse of the first two rows ofL0 .
32In many cases, assuming that the measurement error covariance matrix is diagonal would be unnatural. However,

recall that we are working with principal components which are unconditionally orthogonal. Hence, cross-sectional error
correlations are expected to be small enough to ignore.
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An obvious improvement to the estimation procedure would be to use the true transition density

for the state vector rather than the Gaussian approximation. Except for a few specific cases (such as

the Gaussian or the independent square root models), the transition density for affine models is not

known in closed-form. Given the computational demands of the importance sampling procedure,

we refrain from considering more sophisticated density approximations such as those of Ait-Sahalia

and Kimmel (2002). We note, however, that with a sufficiently short sampling frequency (weekly

in our case) this is unlikely to have a big impact.

4.4 Estimated state variables

To further understand the properties of the models, we will need methods to extract estimates of

the latent state variables.33 For theA1(2) model, the state vector is obtained by inverting the first

two principal components. Analogously, for theA1(3) 3PC model, the state vector is obtained by

inverting the first three principal components. For the remaining three models, however, it is not

possible to identify all state variables from an inversion technique. Instead, smoothed estimates

based on the entire sample of yields must be computed. Here we explain the procedure used to do

so.

The model-implied short-rate (or short rate drift or variance) at timet for the unrestricted

A1(3) model, for example, is computed as the expectation ofrt given the QML parameter esti-

mates and the entire time series of principal components, or E[rt |P, φ]. Following the estimation

methodology, we can compute this expectation as
∫

rtp(rt |P, φ) drt =
∫

rt

∫
p(rt ,V|P, φ) dVdrt

=
∫ ∫

rtp(rt |V,P, φ) drtp(V|P, φ) dV

=
∫

E [rt |V,P, φ] p(V|P, φ) dV

= E∗
[
E [rt |V,P, φ]

p(V|P, φ)
p∗ (V|P, φ)

]
, (163)

where we have again used the importance sampling density introduced in equation (154). Given the

joint invertibility of Vt andPt , rt is nonstochastic givenV, P, andφ, so E[rt |V,P, φ] is simply

equal to the value obtained via (160). The smoothed estimate ofrt can therefore be computed via

simulation. E[µQ
t |P, φ] and E[Vt |P, φ] can be computed analogously, the latter also being relevant

for both USV models.
33We note that the use of the word ‘latent’ here differs from the way it was used in the first section of the paper, where

latent referred to state variables that have no physical meaning independently of parameter values of the model. Here,
the state variables do have physical meaning independent of parameter values, but they are ‘latent’ in that they are not
directly observable in practice due to either ‘noisy prices’ or to the unavailability of data at a continuum of dates.
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5 Empirical Results

Table 3 presents likelihood-based analysis of several variations on each of five models. The first

is theA1(2) model, which is an unrestricted two-factor model. Next are theA1(3) USV and unre-

strictedA1(3) models. Each of these three models assume that exactly two principal components

are observed without error. This implies that the entire state vector{rt , Vt} of the A1(2) model

can be inverted, without error, from the yield curve. For theA1(3) USV specification, only the

state variablesrt andµQ
t can be inverted from yields, withVt remaining latent. For the unrestricted

A1(3) models, observing two yields is insufficient to infer any of the state variables.

The next model, labelledA1(3) 3PC, is identical to the unrestrictedA1(3) specification except

that it assumes that three principal components are perfectly observed. This allows the inversion of

the entire state vector{rt , µ
Q
t , Vt}. Finally, theA1(4) USV model also assumes that three principal

components are observed without error, which is sufficient to identify the state variablesrt , µ
Q
t , and

θt , but notVt .

We note that all the models other thanA1(4) USV can be viewed as special cases of the unre-

strictedA1(3) model. TheA1(3) USV model, for instance, imposes the four restrictions tabulated

in equations (61) to (64). TheA1(2) class, as defined by Dai and Singleton (2000), is a special case

of theA1(3) class as well. Given our risk premia specification, there are total of seven restrictions

in going fromA1(3) to A1(2) . Finally, theA1(3) 3PC model is a special case ofA1(3) in that the

A1(3) 3PC model imposes the restriction that the measurement error standard deviation on the third

principal component is zero, whereas the unrestricted model removes this restriction.

Table 3 first examines essentially affine specifications estimated using all six principal compo-

nents over the 729 weeks of data from January 1988 to December 2001. Next we consider com-

pletely affine models estimated using the same data, and finally, where possible, we re-estimate the

completely affine specifications using only the first two principal components of yields.

Panel A reports the statistics on essentially affine specifications. Among the five models, the

A1(4) USV model displays the highest log likelihood both for the estimation sample and for a 105-

week hold-out sample from January 2002 to December 2003. Akaike and Bayesian information

criteria, which are lower for ‘preferred’ specifications, also favorA1(4) USV.

Given that three of the models are nested within the unrestrictedA1(3) model, Table 3 includes

likelihood ratio tests of the implicit restrictions. In Panel A, all restricted versions are strongly

rejected, though we stress that these results completely ignore the test misspecification induced by

the use of Gaussian transition densities. Nevertheless, the rejection of theA1(2) andA1(3) USV

models likely reflects the presence of at least three factors in the yield curve, as Litterman and

Scheinkman (1991) find. The failure ofA1(3) 3PC has many potential causes. One is that the third

principal component (which explains just over 8% of yield variation) is free of observation error.

Another explanation, which is supported below, is that theA1(3) model is deeply misspecified, so

that the additional error term is required to offset some failing of the model.
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Finally, Panel A reports that the Feller condition is binding for only one of the essentially affine

specifications – theA1(2) model – and that it binds under theQ measure only. Below we will

ignore this constraint in calculating standard errors, noting that results may be inaccurate because

of it. Lastly, for both USV specifications the Feller condition can be evaluated only under theP

measure, as volatility risk premia parameters are unobservable.

Panel B repeats the same analysis for models with completely affine risk premia. Little changes

except that the Feller condition is always binding for non-USV specifications. Panel C then reports

likelihood ratio tests comparing each completely affine model with its essentially affine counterpart.

In all cases, there is a significant improvement from specifying more general risk premia, confirming

the conclusions of Duffee (2002) that richer specifications are required to fit the data.

Panel D reconsiders completely affine specifications using a data set that consists only of the first

two principal components of yields.34 Likelihood ratio tests result in a rejection of theA1(2) against

the unrestrictedA1(3) model, but no rejection ofA1(3) USV. We interpret this result as an indication

that the failure ofA1(3) USV is in fitting the cross-section of bond yields rather than in describing

their time series properties. More evidence on this point is provided below.

Finally, Panel E reports the number of parameters used in each of the specifications. All models

require the number of risk neutral parameters specified plus those parameters corresponding to

the type of risk premia used. Models estimated using all six principal components also require

the number of measurement error standard deviations given. These values imply the degrees-of-

freedom used to obtain the LRT p-values.

Given the results in Table 3, we subsequently consider only the essentially affine specifications.

In addition, we do not present results for theA1(3) 3PC model because they are not substantially

different from the unrestrictedA1(3) model.

Tables 4A and 4B therefore report parameter estimates, expressed on an annualized basis, for

the remaining four essentially affine models. Standard errors are in parentheses. For completeness,

we include estimates of restricted parameters under both USV specifications. For example, the

parametermr is restricted to equal to−2c2
V

for the A1(3) USV model, so the value reported for

that model is implied by the estimate ofcV . Standard errors for these restricted parameters are

calculated, where appropriate, using the delta method. In addition, we do not report the risk-neutral

parametersγV andκV , but rather theirP -measure counterpartsγP
V
≡ γV +λV 0 andκP

V
≡ κV −λV .

We do so because only the latter are identified under USV.

In general, the four specifications offer dramatically different interpretations of the values of

each parameter. For example, theA1(3) USV model results in an estimate of.465 for κP
V

, implying a

half-life of about 1.5 years for volatility shocks. The same half-life for the unrestrictedA1(3) model,

with κP
V
≈ .0071, is almost 100 years, indicating vastly different time series behavior.

34Because of the use of a different data set, likelihood-based statistics are not comparable to those from other panels
of the table.
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5.1 Yield curve fit

Rather than relying only on statistical evaluations, such as likelihood ratio tests, the appraisal of a

term structure model must also account for that model’s abilities in valuation and forecasting. In

Table 5 we examine the accuracy of the model’s in-sample fit of the yield curve, both in terms of

bias and root mean squared error. Below, we also investigate out-of-sample performance.

Statistical tests for bias are relatively standard. Errors are defined as actual yields minus fitted

yields, where fitted yields are computed via (8) using smoothed state variables calculated as in

section 4.4. T-statistics are based on Newey-West (1987) standard errors. For ease of comparison,

all standard errors in a given panel are calculated using the same lag length, which in the case of the

top panel of Table 5 was 21. This lag length is chosen by calculating the optimal lag length for each

series individually using the method of Newey and West (1994), and then averaging those optimal

lags across series. The same procedure is repeated in Tables 7, 9, and 10. Absolute values in excess

of 1.96 and 2.56 are taken to imply significance at the 5% and 1% levels, respectively. Estimated

biases with these levels of significance are marked with one or two stars.

Statistical evaluation of RMSE is somewhat more complicated. Because there is no well-defined

null hypothesis for the RMSE of a given model, the best we can do is to compare the RMSEs of

two models to see if one is significantly higher than the other. In order to reduce the number of

pairwise comparisons made, however, we report only those comparisons that we find interesting ex

ante. These are:

• A1(2) versusA1(3) USV: Both of these models ‘explain’ the cross-section of yields with only

two factors, so it is not obvious which model will out-perform the other.

• A1(3) USV versus unrestrictedA1(3) : Do the USV restrictions substantially worsen the

ability of the model to fit the yield curve?

• UnrestrictedA1(3) versusA1(4) USV: Does the addition of a ‘free’ volatility state variable

allow the remaining three factors to better explain yields?

For each maturity, these three pairwise comparisons are made using the method of Diebold and

Mariano (1995). For each model, we compute forecast errors, sayê1,t and ê2,t , and calculate t-

statistics for the difference in squared forecast errors

ê2
1,t
− ê2

2,t
. (164)

In this case, a significantly positive mean would indicate the superiority of model 2 over model 1.

Standard errors are again calculated using the method of Newey and West (1987, 1994) with 20

lags. If two RMSEs are significantly different, they are separated by an inequality sign signifying

the direction of the rejection of the null, along with either one or two stars signifying the level of

significance.
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Table 5 reveals that all four models imply reasonably unbiased fits of individual yields, with

few rejections of zero mean errors. Root mean squared errors are much clearer in their preference

for the unrestrictedA1(3) model and theA1(4) USV model, both of which have three factors that

affect yields rather than the two implied byA1(2) andA1(3) USV. The errors from all four models

are highly autocorrelated, an indication that all the models are misspecified.

In comparingA1(3) to theA1(4) USV model, the former seems to offer slightly better perfor-

mance in sample. It is therefore surprising that this result is reversed in Table 6, which reports

out-of-sample yield fits using data from January 2002 to December 2003. Significant biases in

both models indicate that while both theA1(3) andA1(4) USV models fit the principal components

reasonably well, they do not fit the individual yields as accurately. These deviations are larger for

A1(3) than they are forA1(4) USV model, as indicated by the former’s significantly larger RMSEs.35

One reason for the high RMSEs of theA1(2) andA1(3) USV models, both in and out of sample,

is depicted in Figure 1, which shows time series of actual and model-implied curvature of yields. A

vertical dotted line denotes the end of the estimation period. Curvature here is defined as defined as

Y10y − 2Y3y + Y6m, which from Table 2 is seen to be similar in construction to the third principal

component. It is therefore not that surprising that actual curvature, depicted by the solid black

line, is indistinguishable with the curvature implied from theA1(3) andA1(4) USV models, both of

which have a third factor that can explain variation in the third principal component. TheA1(2) and

A1(3) USV models, with only two cross-sectional factors, cannot generate fluctuations in curvature

of a realistic magnitude.

5.2 Properties of model-implied time series

We now examine some properties of the model-implied state variables and other time series, where

state variables are extracted using the methods in section 4.4.

Figure 2 shows the implied time series of E[Vt |P, φ] for each specification along with volatili-

ties from Nelson’s (1991) EGARCH(1,1) model estimated from demeaned changes in the 6-month

yield. A vertical dotted line again denotes the end of the estimation period. For both USV specifi-

cations, the model-implied and EGARCH volatilities track each other closely, but for the non-USV

specifications there appears to be little or no relation at all.

Table 7 reports a variety of correlations between observed time-series and related model-implied

variables over the full estimation period and two subsamples. Over all three periods, we see that

every model is capable of matching both the average yield (defined as the average of the 0.5, 1, 2,

5, 7, and 10-year yields) and the slope of the yield curve (defined asY10y −Y6m). As shown earlier,

actual and model-implied curvature are also extremely close for theA1(3) andA1(4) USV models,

but not so forA1(2) andA1(3) USV.

35The superiority of theA1(4) USV model might be expected since it fits three principal components perfectly, rather
than the two fitted by theA1(3) model. However, theA1(3) 3PC specification, which fits an additional principal compo-
nent without error, delivers performance virtually indistinguishable from the otherwise identicalA1(3) model.
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Model-implied volatilities for both USV specifications are closely related to volatilities from

both EGARCH(1,1) and Bollerslev’s (1986) GARCH(1,1) models, the latter two having a cor-

relation of .951 over the entire sample. Volatility from the unrestrictedA1(3) model is actually

negatively correlated with both GARCH volatilities over all sample periods. Volatility from the

A1(2) model is fairly highly correlated with both GARCH volatilities, though Figure 2 shows that

the variation inA1(2) volatility is unreasonably low.

The bottom panel Table 7 also reports correlations of model volatilities with an average of

one-year implied volatilities from cap and floor contracts, which are available from DataStream

after 1995. Since by convention implied volatilities are determined assuming LIBOR rates follow

a geometric Brownian motion, this volatility may be interpreted as the volatility of proportional

changes in (or logarithms of) one-year LIBOR rates. We therefore also report correlations with the

product of implied volatility and the level of the one-year rate. Under reasonable assumptions, this

will approximate the volatility of thelevelof the one-year rate, making it more comparable to the

other volatility proxies included.

We find that volatilities from both USV specifications are highly correlated with the two implied

volatility measures, and also that these implied volatilities are about as closely related to the two

GARCH series. Volatilities from the non-USV specifications are weakly or negatively correlated

with the option-implied series. As such, we speculate that the USV models would therefore be much

more successful in pricing such derivatives.

The table also reports correlations between various volatility measures and the actual curvature

in yields, as defined in Figure 1. In general, this relationship is weak for the USV specifications and

for the GARCH and implied volatilities as well. For theA1(3) model, the relationship is stronger

and positive, which is surprising given the negative correlation between volatility and curvature that

Litterman, Scheinkman, and Weiss (1991) find more theoretically plausible.36 Only for ‘volatility’

extracted from theA1(2) model is the correlation large and negative.

Finally, Table 7 reports correlations between model-implied estimates of the state variables and

the values obtained from the ‘interpolation’ scheme of section 2.2. In general, interpolated state

variables are highly related to the values obtained through estimation of the model, which we take

as strong empirical evidence of the observability of the state vector under our model rotations.

These results highlight the dual role that volatility plays in an unrestricted affine model, as it

affects both the cross section of bond prices as well as the time series properties of the short rate.

The estimation of such a model therefore presents a tradeoff between choosing volatility dynamics

that are more consistent with either role, and in the present data set it seems that the tradeoff is

36Litterman, Scheinkman, and Weiss (1991) examine whether the theoretical relation between yields and volatility
holds empirically between January 1984 and June 1988. Regressing realized volatility on short, medium, and long-term
yields results in an R-squared of .7 and slope coefficients whose signs suggest a negative relation between volatility
and curvature. We note that their sample is short and that no standard errors were provided for their estimates. Using
simulations, we find that R-squares above .7, coupled with coefficient estimates of the same sign as those reported by
Litterman, Scheinkman, and Weiss (1991), occur with about 10% probability under theA1(4) USV model, in which
volatility and curvature are essentially unrelated in population.
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heavily tilted towards explaining the cross section. The result is that volatilities imputed from

the two models without USV restrictions are essentially nonsensical, being unrelated to all other

volatility proxies. Instead, both models use the variance process to provide a better fit of the cross

section, as evidenced by a relation betweenVt and curvature that holds only for these two models.

TheA1(3) USV model, meanwhile, generates reasonable volatility dynamics but cannot match

curvature, which simply reinforces Litterman and Scheinkman’s (1991) finding that three factors

are required to drive the yield curve. Only theA1(4) USV model has enough flexibility to both fit

the yield curve and generate realistic volatility dynamics.

We interpret these findings as evidence that three state variables cannot simultaneously describe

the yield curve level, slope, curvature, and volatility. That is, volatility is unable to play the dual role

that the unrestrictedA1(3) model predicts that it does. Less formally, volatility cannot reasonably be

‘inverted’ from the yield curve, at least for the models we consider. Conversely, our results suggest

that the dynamics of stochastic volatility, as proxied, say, by a GARCH estimate using the implied

short rate series, are not able to capture adequately movements in the third principal component of

yields.

5.3 Forecasting performance

To reinforce these results we examine the forecasting performance of the same four models, both

for evidence of misspecification and for assessing their potential usefulness in securities pricing

and hedging. Because our sample size is relatively short, we focus on short horizon (one-week)

forecasts of changes in yields and of two different volatility proxies. All forecasts are constructed

using the parameter estimates reported in Table 4, so the bulk of our forecasts are in-sample. After

using two years of data to initialize the forecasts, we are left with a 625-week in-sample period.

With our hold-out sample from 2002 and 2003, we perform a 105-week out-of-sample validation of

those results.

To construct a forecast, we first estimate the value of the current state variables. These are

computed similarly to Section 4.4. Here, however, only data observed up until timet are used to

infer state variables att (though for in-sample forecasting the parameter estimates are based on data

subsequent tot as well). Given the current values of the state variables, we simulate ten thousand

paths of the model and form a forecast distribution of the state variables one week ahead (timet+1),

from which we then compute a distribution for each yield.

Results for in-sample forecasts of yield changes are reported in Table 8. Out-of-sample forecasts

appear in Table 9. In both tables, forecast errors are defined as the actual yield change minus

Et [Yt+1 ]− Ŷt , where Et [Yt+1 ] is the model-implied expectation and̂Yt is the model’s current fitted

value. The statistical significance of biases, which are averages of these errors, is assessed using

Newey-West standard errors. Pairwise comparison tests for root mean squared errors are tested with

the method of Diebold and Mariano (1995), also with Newey-West standard errors. The Newey-

West lag length selection, following the procedure outlined for Tables 5 and 6, results in lags of 11
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and 3 for the two panels of Table 8. For Table 9, 1 and 2 lags are used.

Unfortunately, yield forecasts fail to clearly distinguish the models, most likely because our

sample is too short to evaluate forecasts of a relatively unpredictable time series. In sample, we see

weak evidence favoringA1(3) USV over theA1(2) model in terms of RMSE. Otherwise, there are

no statistically significant results in sample. Out of sample forecasts are slightly more informative,

with theA1(3) USV model displaying significant biases across all maturities and the unrestricted

A1(3) model having a strong bias at the 6-month maturity only. In no cases do we find RMSEs

significantly different from one another.

For volatility forecasting, we consider two alternative proxies for realized volatility or variance.

The first is simply the absolute one-week change in the yield of each maturity. Our second proxy is

a volatility measure constructed using daily data, which are not used elsewhere in the paper. For a

given week withN days (typically,N = 5), this is defined as

σ̂t,τ ≡

√√√√
N∑

i=1

∆Y (t, i, τ)2, (165)

whereY (t, i, τ) is theτ -maturity yield observed on theith day following observationt. The forecast

of each volatility proxy is constructed simply by averaging over the Monte Carlo simulations of that

proxy. Thus, under the null hypothesis that the model and parameter values are correct, every

forecast should be unbiased.

In-sample results on forecasted volatility are reported in Table 10. Newey-West lag lengths

for the four panels of the table are 8, 7, 16, and 16, in that order. Throughout the table, the best

performance, in terms of RMSE, is generally registered by theA1(4) USV model, though even that

model displays significant biases in its forecasts of daily realized volatility.

In the out of sample results, reported in Table 11,A1(4) USV continues to perform well in fore-

casting volatilities on short-maturity yields, though long yield volatilities are best predicted by the

unrestrictedA1(3) model. This is surprising given that model’s generally unrealistic portrayal of

Vt as a variable that is even related to volatility. We believe the reason for this is that for most of

the in-sample period, all yield volatilities were close to one-percent per year on average. However,

during the out-of-sample period, short run volatility dropped to 0.5% per year, while the long run

volatilities jumped to about 1.25% per year. Hence, during the out-of-sample period the short-run

volatility changes were negatively correlated with long-run volatility changes. Unfortunately, such

behavior cannot be captured by a single state variable for volatility. Rather, this empirical observa-

tion suggests that we may need more state variables to capture the ‘term structure of volatilities’,

consistent with the findings of Heidari and Wu (2003) and Han (2004).

5.4 The Dai and Singleton (2003) challenges

In their review article, Dai and Singleton (2003) identify two empirical observations that have each

proven somewhat of a challenge for affine term structure models. The first, which they label LPY,

38



refers to the observation that a linear projection of yield changes on the lagged slope of the yield

curve typically results in negative slope coefficients that are decreasing in maturity. This observation

from Fama and Bliss (1987) and Campbell and Shiller (1991), among others, is a motivation for

more general risk premia specification such as those of Duffee (2002) and Duarte (2003).

Figure 3 plots estimates of the slope coefficient in the regression of yield changes,Y (t+1, τ)−
Y (t, τ), on lagged slope,(Y (t, τ)− Y (t, .5)) /(τ − .5).37 For consistency with Dai and Singleton

(2003), we look at changes over four-week intervals. In each panel, the thick grey line depicts the

sample slope coefficients from actual data as a function of the maturityτ . The solid black line

denotes the average values computed from artificial 14-year data sets simulated using each model

under the parameter values given in Table 4. The 95% confidence intervals from these distributions

are depicted by dashed lines.

The figure shows that in all cases confidence intervals are rather large, mirroring the conclusion

from Tables 8 and 9 that the sample we are using is probably too short to distinguish models on

the basis of their yield forecasting performance. We note, however, that the unrestrictedA1(3) and

A1(4) USV specifications are the only to reproduce, at least on average, the convex shape of the

actual relation between maturity and slope coefficients.

Dai and Singleton’s (2003) second observation, labeled CVY, refers to time variation in condi-

tional volatility and the hump shape in unconditional volatility as a function of maturity. Figure 4

displays the relation between maturity and the unconditional volatility of four-week yield changes.

Results from actual data over the 1988-2001 sample are again displayed as a thick grey line. Means

and 95% confidence intervals of model-implied sampling distributions are depicted by solid and

dashed black lines, respectively.

The top two panels of Figure 4 reveal separate failures of theA1(2) andA1(3) USV models

in explaining the volatility hump. Both models come close to matching average volatilities across

maturities but fail to match patterns related to maturity, with theA1(2) model overstating short-

maturity volatility and understating long-maturity volatility. While theA1(3) USV model produces

a much wider distribution of possible sample volatilities, it is clear that the model overstates long-

maturity volatility by roughly 20%. Both theA1(3) andA1(4) USV models perform well.

6 Conclusion

We have proposed a representation for affine term structure models in terms of the derivatives of the

term structure at zero and their quadratic co-variations. These state variables have simple physical

interpretation such as level, slope, and curvature. They are by construction observable from the

cross-section of the yield curve, and it is straightforward to show that our representation is ‘max-

imal’ (i.e., econometrically identified). Further, model-insensitive estimates of the process of the

37Due to data constraints, our specification differs slightly from that of Dai and Singleton (2003), whose left hand side
variable is defined asY (t + 1, τ − 1)− Y (t, τ).
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state variable are readily available, which simplifies the empirical estimation of the model.

We apply this representation to two-, three-, and four-factor affine stochastic volatility models.

We find that the unrestrictedA1(3) model implies a volatility time series that is essentially unrelated

to the actual volatility of the short rate process. This surprising result is a consequence of the dual

role played by the volatility state variable in the unrestricted affine model: it is both a linear combi-

nation of yields (i.e., it affects the cross-section of the term structure) and the quadratic variation of

the short rate (i.e., it impacts the time series of the term structure). Maximum likelihood estimation

results in more weight placed on the first role at the expense of the second. We then investigate

two ‘unspanned stochastic volatility’ models, where volatility does not enter the cross-section of

bond prices. The three-factor USV model, which is nested within the unrestrictedA1(3) model,

dramatically improves the estimates of volatility at the expense of an inadequate cross-sectional fit.

A four-factor USV specification allows the model to fit level, slope, and curvature while simultane-

ously producing a volatility process that is highly correlated with both GARCH and option-implied

volatility series. It does so by explicitly introducing variation in curvature that is unrelated to volatil-

ity, a straightforward generalization within the new representation introduced in this paper.

While our results confirm the findings of Litterman and Scheinkman (1991) that at least three

factors are needed to explain the cross sectional features of the yield curve, it further demonstrates

that these factors are an inadequate description of the state space, as they are incapable of replicating

observed patterns of conditional volatility. However, we find that theA1(4) USV model is able to

provide both a good cross-sectional fit and a good description of yield volatility.
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A Proofs

A.1: Proof of Generality of equations (19), (20) and (21)

Consider a Markov state vector{X(t)} of length N with general (i.e., non-affine) risk-neutral

dynamics

dXi = mQ
i

({X}, t) dt +
N∑

k=1

σ
ik

({X}, t) dzQ
k

. (A.1)

Further, assume the spot rate is some arbitrary function of the state vector:r = r ({X}, t). Using

the shorthand notationsri ≡ ∂r
∂Xi

, mQ
i

= mQ
i

({X}, t) andσ
ik

= σ
ik

({X}, t), we obtain from

Ito’s lemma the dynamics forr:

dr = rt dt +
N∑

i=1

ri

[
mQ

i
dt +

N∑

k=1

σ
ik

dzQ
k

]
+

1
2

N∑

i,j,k=1

rijσik
σ

jk
dt. (A.2)

Note that this allows us to define

µQ(t) ≡ 1
dt

EQ
t

[dr]

≡ rt +
N∑

i=1

ri mQ
i

+
1
2

N∑

i,j,k=1

rijσik
σ

jk
. (A.3)

V (t) ≡ 1
dt

VarQ
t

[dr]

≡
N∑

i,j,k=1

ri rj σ
ik

σ
jk

. (A.4)

Finally, from Ito’s lemma we have

EQ
t

[
dµQ(t)

]
= µQ

t
dt +

N∑

i=1

µQ
i

mQ
i

dt +
1
2

N∑

i, j, k=1

µQ
ij

σ
ik

σ
jk

dt. (A.5)

Using the relationship between yield to maturity and bond prices

P (t, ({X}) , T ) ≡ e−(T−t) Y (t,{X},T ), (A.6)

and similar notations as above, we find (assuming sufficient differentiability of the yield curve)

Pt = [Y − (T − t) Yt ] P (A.7)

Pi = [−(T − t)Yi ] P (A.8)

Pij =
[
(T − t)2 Yi Yj − (T − t) Yij

]
P (A.9)

Bond prices satisfy the PDE

rP = Pt +
N∑

i=1

Pi mQ
i

+
1
2

N∑

ijk=1

Pijσik
σ

jk
(A.10)
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Plugging in equations (A.7)-(A.9), we find

r = [Y − (T − t) Yt ]−(T−t)
N∑

i=1

Yi mQ
i

+
1
2

N∑

ijk=1

[
(T − t)2 Yi Yj − (T − t) Yij

]
σ

ik
σ

jk
. (A.11)

Now we use a Taylor series expansion to write yields as

Y (t, {X}, T ) = Y (t, {X}, T = t) + (T − t)YT (t, {X}, T = t) +
1
2
(T − t)2 YTT (t, {X}, T = t) + . . .

≡ Y 0(t, {X}) + (T − t) Y 1(t, {X}) +
1
2

(T − t)2 Y 2(t, {X}) + . . .

Plugging this Taylor expansion into equation (A.11), and collecting terms of different orders of

(T − t), we find

(T − t)0 : Y 0(t, {X}) = r(t, {X}) (A.12)

(T − t)1 : Y 1(t, {X}) =
1
2
µQ(t) (A.13)

(T − t)2 : Y 2(t, {X}) =
1
3

[
1
dt

EQ
t

[
dµQ

]− V (t)
]

, (A.14)

which is what we wished to prove. 2

A.2: Proof of Proposition 2

To prove the proposition note that it is sufficient to show thate−
∫ t
0 rsdsP (t, T ) is aQ-martingale for

P as defined in equation (81). Indeed, in that case we havee−
∫ t
0 rsdsP (t, T ) = E

Q

t

[
e−

∫ T
0 rsdsP (T, T )

]
,

which implies

P (t, T ) = E
Q

t

[
e−

∫ T
0 rsds

]
,

since equations (81)-(84) implyP (T, T ) = 1. To show thate−
∫ t
0 rsdsP (t, T ) is aQ-martingale we

apply Itô’s lemma to equation (81). Using the fact that the functionsA(·), Br(·) andBµ(·) satisfy

the system of ODE:

B′
r

= −2(cV )2Bµ + 1 (A.15)

B′
µ

= Br + 3cV Bµ (A.16)

A′ =
1
2
B2

µ
σµ

0
−Bµm0 + BrBµc0 , (A.17)

and that, in particular, we have:

Br = −cV Bµ +
√

2Bµ , (A.18)

we find that

E
Q

[dP (t, T )− rtP (t, T )] = 0 (A.19)

Thus,

e−
∫ t
0 rsdsP (t, T ) = −

∫ t

0

√
2Bµ(s)

(
σ1

√
Vs − ψ1 dZ

Q

1
(s) +

√
(1− σ2

1
)Vs + σ2

1
ψ1 + ψ2 dZ

Q

3
(s)

)

−
∫ t

0

(
Br(s) + ν2Bµ(s)

) √
−ψ2 dZ

Q

2
(s). (A.20)
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This shows thate−
∫ t
0 rsdsP (t, T ) is indeed aQ-martingale.

2

A.3: Proof of Proposition 3

To prove the proposition it is sufficient to show thate−
∫ t
0 rsdsP (t, T ) is a Q-martingale forP as

defined in equation (81). Indeed, in that case we havee−
∫ t
0 rsdsP (t, T ) = E

Q

t

[
e−

∫ T
0 rsdsP (T, T )

]
,

which implies

P (t, T ) = E
Q

t

[
e−

∫ T
0 rsds

]
,

since equations (130)-(134) implyP (T, T ) = 1. To show thate−
∫ t
0 rsdsP (t, T ) is aQ-martingale,

we apply It̂o’s lemma to equation (130). Using the fact that the functionsA(·), Br(·) andBµ(·)
satisfy the system of ODE:

B′
r

= arBµ + 1 (A.21)

B′
µ

= Br + aµB
θ

(A.22)

B′
θ

= Bµ + a
θ
B

θ
(A.23)

A′ =
σ0

µ

2
B2

µ
+

σ0
θ

2
B2

θ
+ BrBµc0

rµ
+ BrBθ

c0
rθ

+ B
θ
Bµc0

µθ
−B

θ
, (A.24)

and that, in particular, because of the restrictions onar , aµ given in equations (104) and (105), we

have:

Br = −crµ(Bµ + crµB
θ
) +

√
2Bµ + 6crµB

θ
, (A.25)

we find that

E
Q

[dP (t, T )− rtP (t, T )] = 0. (A.26)

Therefore,

e−
∫ t
0 rsds P (t, T ) = (A.27)

−
∫ t

0

√
2Bµ(s) + 6crµB

θ
(s)

(
σ1

√
Vs − ψ1 dZ

Q

1
(s) +

√
(1− σ2

1
)Vs + σ2

1
ψ1 + ψ3 + ψ4 dZ

Q

2
(s)

)

−
∫ t

0

(
Br(s) + ν3Bµ(s) + η3Bθ

(s)
) √

−ψ3 dZ
Q

3
(s)−

∫ t

0

(
Br(s) + ν4Bµ(s) + η4Bθ

(s)
)√

−ψ4 dZ
Q

4
(s).

This shows thate−
∫ t
0 rsdsP (t, T ) is indeed aQ-martingale.

2

Note that the functionA(τ) can be obtained in closed-form since it is composed of integrals of

exponential functions of time. But for conciseness, we leave it in integral form.

B Efficient Importance Sampling

The true density

p(V|P, φ)
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may be decomposed as the product of conditional densities of the form

p(Vt |Vt−1 ,P, φ) ∝ p
(Pt+1 , ...,PT |Vt , Vt−1 ,P1 , ...,Pt , φ

)
p

(
Vt |Vt−1 ,P1 , ...,Pt , φ

)
. (B.28)

Using the Markovian nature of{Pt , Vt} to eliminate irrelevant conditioning arguments, this reduces

to

p
(Pt+1 , ...,PT |Vt ,Pt , φ

)
p

(
Vt |Vt−1 ,Pt−1 ,Pt , φ

)
. (B.29)

Note that within the context of the Gaussian quasi-likelihood, the second density is normal. Denote

it’s mean asµ0,t and its standard deviation asσ0,t .

Following Liesenfeld and Richard (2002), we construct the importance sampler by replacing the

first term, p
(Pt+1 , ...,PT |Vt ,Pt , φ

)
, with a Gaussian kernel. Lognormal and inverted gamma den-

sities were also applied, with no improvements in performance. Our importance sampling density

is therefore defined as

p∗
t
(Vt) ∝ exp

(
a1,tVt + a2,tV

2
t

)
exp


−1

2

(
Vt − µ0,t

σ2
0,t

)2

 ≡ k(Vt , at). (B.30)

Liesenfeld and Richard (2002) note that the normalized density p∗
t
(Vt) is Gaussian with mean

µt = σ2
t

(
µ0,t

σ2
0,t

+ a1,t

)

and variance

σ2
t

=
σ2

0,t

1− 2σ2
0,t

a2,t

.

Thus implicitly definingχ(Vt−1 , at) by

k(Vt , at)
χ(Vt−1 , at)

=
k(Vt , at)∫
k(Vt , at)dVt

= p∗
t
(Vt) =

1
σt

√
2π

exp

(
−1

2

(
Vt − µt

σt

)2
)

(B.31)

we have

lnχ(Vt−1 , at) =
1
2

ln(σ2
t
)− µ2

0,t

2σ2
0,t

+
µ2

t

2σ2
t

+
1
2

ln(2π).
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The likelihood function is thus the expectation, under the importance sampling density, of

p(P,V|φ)
p∗(V|P, φ)

=
p(P1 , V1)
m1(V1)

×
T∏

t=2

p
(P

t
, V

t
|P

t−1 , Vt−1

)

p∗
t
(V

t
)

(B.32)

=
p(V1 |P1) p(P1)

p∗
1
(V1)

×
T∏

t=2

p
(
Vt |Pt−1 ,Pt , Vt−1

)
p

(Pt |Pt−1 , Vt−1

)

p∗
t
(V

t
)

(B.33)

=
p(V1 |P1) p(P1) p(P2 |P1 , V1)

p∗
1
(V1)

×
T−1∏

t=2

p
(
V

t
|P

t−1 ,Pt
, V

t−1

)
p

(P
t+1 |Pt

, V
t

)

p∗
t
(Vt)

× p
(
VT |PT−1 ,PT , VT−1

)

p∗
T
(VT )

(B.34)

=
p(V1 |P1) p(P1) p(P2 |P1 , V1)

k1(V1 , a1)/χ(a1)

×
T−1∏

t=2

p
(
V

t
|P

t−1 ,Pt
, V

t−1

)
p

(P
t+1 |Pt

, V
t

)

kt(Vt , at)/χ(Vt−1 , at)
× p

(
V

T
|P

T−1 ,PT
, V

T−1

)

k
T
(V

T
, a

T
)/χ(V

T−1 , aT
)

(B.35)

= p(P1)χ(a1)
p(V1 |P1) p(P2 |P1 , V1)
k1(V1 , a1)/χ(V1 , a2)

×
T−1∏

t=2

p
(
Vt |Pt−1 ,Pt , Vt−1

)
p

(Pt+1 |Pt , Vt

)

kt(Vt , at)/χ(Vt , at+1)
× p

(
V

T
|P

T−1 ,PT
, V

T−1

)

kT (VT , aT )
(B.36)

= p(P1)χ(a1)

1
σ0,1

√
2π

p(P2 |P1 , V1) χ(V1 , a2)

exp
(
a1,1V1 + a2,1V

2
1

)

×
T−1∏

t=2

1
σ0,t

√
2π

p
(Pt+1 |Pt , Vt

)
χ(Vt , at+1)

exp
(
a1,tVt + a2,tV
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=
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=
p(P1)χ(a1)
σ0,1(2π)T/2

p(P2 |P1 , V1) χ(V1 , a2)
σ0,2 exp

(
a1,1V1 + a2,1V
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)

×
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(
a1,tVt + a2,tV
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exp
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a1,T VT + a2,T V 2
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) (B.39)

In the above calculations, equation (B.34) is simply a rearrangement terms, and (B.35) merely

invokes the definitions ofp∗
t
, kt , andχ. (B.36) is another rearrangement, while (B.37) results from

cancelling out the p
(
Vt |Vt−1 ,Pt−1 ,Pt , φ

)
terms. In (B.38), theσ0,t terms are “transferred back”

in t because they are functions ofVt−1 , not Vt . The final equality just simplifies the expressions

slightly.

The purpose of this representation is to gain insight as to howa1,t anda2,t should be optimally

selected. Efficient Importance Sampling suggests that the numerator and denominator of each of

the ratios in (B.39) be as close as possible. We therefore chooseat to minimize deviations between

their logarithms. Fort = T , we simply choosea1,T = a2,T = 0. This sets the last ratio in (B.39)
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equal to a constant.

For1 ≤ t < T , we choosea1,t anda2,t based on a set of simulated paths of the variance process,

to minimize variation in the logarithm of

p
(Pt+1 |Pt , Vt

)
χ(Vt , at+1)

σ0,t+1 exp
(
a1,tVt + a2,tV

2
t

) .

Given the simulatedVt , we do so by regressing

ln p
(Pt+1 |Pt , Vt

)
+ lnχ(Vt , at+1)− ln σ0,t+1 (B.40)

onVt andV 2
t

. a1,t anda2,t are then set equal to the two slope coefficients. Finally, these values are

used to constructχ(Vt−1 , at), which are then used in the timet−1 regression to computea1,t−1 and

a2,t−1 . The process is repeated until time 1.

In practice, the EIS algorithm is initiated by simulating from p∗
t
(Vt) based on some guess of

theat . In the likelihood maximization process, very good guesses are typically obtained from the

values used in the previous evaluation of the likelihood function. Given this first set of simulated

Vt , newat are calculated using the procedure above, and the results generally converge after three

or four iterations.

The performance of the sampler is analyzed in Figure 5. The top three panels plot recursive

estimates of the maximized likelihood for three models that require the use of importance sam-

pling. The bottom panels replicate Shephard and Koopman’s (2002) tests of theξ parameter, which

measures the tail thickness of the distribution of

p(P,V|φ)
p∗(V|P, φ)

,

as well as it’s 95% critical value. Values ofξ above .5 indicate a distribution with no finite variance.

From Figure 5, we see that theA1(3) USV model is clearly the worst performer of the three.

Likelihoods do not appear to stabilize completely at even 10,000 simulations, though the instability

in the likelihood seems unlikely to explain the large differences in likelihoods between this model

and the others. Furthermore, the values ofξ in the lower panel indicate that the above variance may

not exist. While this does not strictly invalidate the use of importance sampling, it makes inferences

about this model somewhat unreliable, and it is possible that the parameter vector resulting from

the maximization of the simulated likelihood function is not close to the true MLE estimate. It is

possible, therefore, that the performance of theA1(3) USV model might improve given a better

estimator.

For theA1(3) model, in the middle panel, the likelihood stabilizes almost immediately and there

is no cause for concern. The sampler performance for theA1(4) USV model is somewhat worse,

though likelihoods still converge reasonably well andξ is well below its critical value.
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Table 1
Observability of state variables
The table contains output from the regressions

truert = α
r

+ β
r × estimatedrt + ε

r

t

trueµQ
t = α

µ

+ β
µ × estimatedµQ

t + ε
µ

t
,

wherert is the instantaneous short rate andµQ
t is its drift under the risk-neutral measure. Ten-year

samples of weekly short rate data are simulated from the two-factor CIR modeldxi,t = κi(θi −
xi,t)dt+σi

√
xi,tdzi,t , rt = x1,t +x2,t , with parameter values from Table I of Duffie and Singleton

(1997). Zero coupon yields with maturitiesτ = {.5, 1, 2, 5, 7, 10} years are computed under the
risk-neutralized processdxi,t =

[
κi(θi − xi,t)− λixi,t

]
dt + σi

√
xi,tdzQ

i,t
, and then modified by

adding i.i.d. measurement errors with standard deviations of either 2 or 5 basis points. Quadratic and
cubic polynomials inτ are used to fit these yields by OLS. The value of the polynomial at zero and
twice the value of it’s slope at zero are taken as estimates ofrt andµQ

t , respectively. Numbers in the
table are means and standard deviations (in parentheses) from 5000 simulated data samples.

2 b.p. measurement error 5 b.p. measurement error
quadratic cubic quadratic cubic

Instantaneous Short Rate
α

r × 100 -0.303 -0.074 -0.299 -0.064
(0.292) (0.069) (0.286) (0.059)

β
r

1.033 1.008 1.032 1.005
(0.017) (0.004) (0.017) (0.005)

R2 0.999 0.999 0.998 0.997
(0.001) (0.000) (0.002) (0.002)

Short Rate Drift
α

µ × 100 -0.042 0.024 -0.013 0.155
(0.008) (0.020) (0.023) (0.088)

β
µ

1.631 1.129 1.599 1.026
(0.006) (0.014) (0.022) (0.058)

R2 0.996 0.980 0.976 0.890
(0.002) (0.010) (0.012) (0.049)
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Table 2
Principal component loadings
The table contains the eigenvectors corresponding to the eigenvalues of the covariance
matrix of changes in bootstrapped zero coupon yields from January 1988 to December
2001. They represent the loadings on yields of different maturities used to construct the
principal components. The table also reports the percent of the total variance explained
by each of the principal components.

Principal Component
1 2 3 4 5 6

6-month 0.09 3.15 1.81 7.09 9.36 26.42
1-year 0.12 2.60 0.34 -6.64 -16.14 -89.59
2-year 0.14 1.04 -1.44 -5.93 7.09 168.50
3-year 0.14 -0.03 -1.49 0.62 8.50 -52.72
4-year 0.14 -0.70 -0.94 4.63 0.30 -123.67
5-year 0.13 -1.16 -0.27 5.77 -7.21 -38.92
7-year 0.13 -1.73 0.94 2.66 -10.44 187.29
10-year 0.12 -2.17 2.05 -7.20 9.55 -76.30

% explained 63.92 18.38 8.36 4.51 3.36 1.20

Total % explained by first six principal components: 99.74
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Table 3
Likelihood analysis of various models
For Panels A and B of the table, likelihoods were maximized over the 1988 to 2001 sample from a dataset consisting of six principal
components of zero-coupon yields bootstrapped from swap and LIBOR rates. Panel A reports statistics on essentially affine specifications,
while Panel B describes completely affine models. Out-of-sample likelihoods use the parameters estimated over that period to compute
a likelihood for the 105 weekly observations of 2002 and 2003. The Akaike and Bayesian Information Criteria (AIC) and (BIC) are
calculated as−L+N and−L+ .5N ln T , respectively, whereL is the sample log likelihood,N is the number of model parameters, and
T = 729 is the number of weeks in the sample. Likelihood ratio statistics are used to test the restrictedA1(2), A1(3) USV, andA1(3)
3PC models against the more generalA1(3) specification. P-values are in parentheses. Finally, these panels report whether the Feller
constraint was binding under theP andQ measures. Note that volatility drift parameters under the risk-neutral measure are unidentified
for USV specifications.

Panel C of the table contains likelihood ratio statistics corresponding to the test of each completely affine specification against its more
general essentially affine counterpart.

Panel D again reports results for the completely affine specifications, but models are now estimated using data only on the first two
principal components. Statistics are therefore not comparable to those from other panels of the table.

Panel E summarizes the number of parameters estimated in each specification. All models require the number of risk neutral parameters
specified plus those parameters corresponding to the type of risk premia used. Models estimated using all six principal components also
require the number of measurement error standard deviations given.

A1(2) A1(3) USV A1(3) A1(3) 3PC A1(4) USV

Panel A: Essentially affine specifications estimated using all 6 principal components

Sample log likelihood 14118.26 14742.08 16193.24 16103.89 16249.97
Out-of-sample log likelihood 1768.35 2080.07 2046.72 2111.28 2221.96
AIC -14101.26 -14721.08 -16165.24 -16076.89 -16223.97
BIC -14062.23 -14672.86 -16100.95 -16014.91 -16164.27
LRT relative toA1(3) 4149.96 2902.32 178.69
LRT p-value (0.0000) (0.0000) (0.0000)
Feller binding underP /Q? no/yes no/NA no/no no/yes no/NA

Panel B: Completely affine specifications estimated using all 6 principal components

Sample log likelihood 13942.18 14709.27 15882.56 15867.19 16242.38
Out-of-sample log likelihood 1835.94 2066.84 1996.32 2081.28 2213.97
AIC -13928.18 -14693.27 -15861.56 -15847.19 -16221.38
BIC -13896.04 -14656.54 -15813.34 -15801.28 -16173.17
LRT relative toA1(3) 3880.75 2346.57 30.73
LRT p-value (0.0000) (0.0000) (0.0000)
Feller binding underP /Q? yes/yes no/no yes/yes yes/yes no/no

Panel C: Essentially versus completely affine LR tests

LRT of EA vs CA 352.15 45.53 621.36 473.40 15.17
LRT p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0097)

Panel D: Completely affine specifications estimated using only 2 principal components

Sample log likelihood 6487.34 6612.18 6616.60
Out-of-sample log likelihood 914.87 927.67 920.37
AIC -6477.34 -6600.18 -6599.60
BIC -6454.38 -6572.63 -6560.57
LRT relative toA1(3) 258.51 8.84
LRT p-value (0.0000) (0.1155)
Feller binding underP /Q? no/no no/no yes/yes

Panel E: Numbers of model parameters

risk-neutral 8 9 14 14 14
essentially affine risk premia 5 8 10 10 9
completely affine risk premia 2 3 3 3 4
measurement error std. devs. 4 4 4 3 3
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Table 4A
Parameter estimates
Parameter estimates and standard errors are calculated by quasi-maximum likelihood from
weekly bootstrapped yields from January 1988 to December 2001.

A1(2) A1(3) USV A1(3) A1(4) USV

σ1 0.0677 0.2454 -0.1305 -0.1631
(0.0333) (0.0411) (0.0501) (0.0446)

σ2 0 0.9898 0.9866
NA (0.0183) (0.0074)

σ3 0.9694 0.0567 0
(0.0104) (0.3054) NA

ν1 -0.0274 6.6379 0.0842
(0.0046) (4.1839) (0.0230)

ν2 -84.4499 -3.7288 -0.5160
(2184.1561) (0.8022) (0.0063)

ν3 -0.1116 3.7282 -430.3842
(0.0019) (3.2253) (2377.8647)

ν4 -76.7401
(8.4888)

σV × 103 0.9942 8.1198 1.8390 5.0652
(0.1404) (0.2545) (0.2764) (0.1936)

ψ1 × 105 0.0002 0.0112 2.3310 0.0471
(2.1015) (0.0357) (1.1669) (0.0331)

ψ2 × 105 -0.0004 2.2838 0.0082
(0.0022) (1.8648) (0.0024)

ψ3 × 105 0.0002 -2.3235 0.0001
(0.0033) (1.8699) (0.0001)

ψ4 × 105 -0.0094
(0.0023)

κP
V

0.1559 0.4650 0.0071 0.2527
(0.0980) (0.1655) (0.1667) (0.0301)

γP
V
× 104 0.2694 0.4810 0.0192 0.2540

(0.1572) (0.0706) (0.2275) (0.0239)

m0 × 102 -0.1513 -15.3115
(0.0085) (1.1706)

mr × 102 -2.4899 -104.9432
(0.0853) (3.6014)

mµ -0.3347 -2.3793
(0.0057) (0.0585)

mV 1 -521.8524
NA (101.9732)

Additional parameters for theA1(2) model

γr κrr κrV

0.0102 0.3297 -247.4986
(0.0068) (0.0069) (46.2590)

Additional parameters for theA1(4) USV model

a0 × 104 aθ η3 η4 crµ

-1.3742 -1.5576 -714.8040 113.8364 -0.5160
(2.5943) (0.0118) (122.3995) (13.4077) (0.0063)
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Table 4B
Parameter estimates, cont.
Parameter estimates and standard errors are calculated by quasi-maximum likelihood from
weekly bootstrapped yields from January 1988 to December 2001.

A1(2) A1(3) USV A1(3) A1(4) USV
λr0 -0.0768 -0.0289 -0.0382 -0.0066

(0.0400) (0.0061) (0.0364) (0.0013)

λrr 0.3022 0.4265 0.3681
(0.2176) (0.0941) (0.2323)

λrµ 1.6801 -0.1711 -0.0472
(0.2838) (0.1816) (0.1340)

λrV 170.7519 -244.5913 73.9945 2.5103
(263.8621) (35.4346) (202.5647) (37.9357)

λµ0 0.0224 0.2550 -0.0152
(0.0078) (0.1222) (0.0065)

λµr -0.3143 -0.3266
(0.1017) (0.8028)

λµµ -0.7552 0.3485 -0.5597
(0.3365) (0.6648) (0.5148)

λµV 93.3392 248.4142 -1.1103
(23.4874) (673.2265) (65.2360)

λθ0 0.0252
(0.0095)

λθµ 0.9195
(0.7437)

λθV -2.7537
(91.4982)

λV 0 × 104 0.2644 0.6549
(0.1571) (0.2274)

λV V -0.1559 -0.3672
(0.0980) (0.1668)
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Table 5
In-sample yield fits
This table contains statistics on the in-sample fits of zero coupon yields (Y ). For each model, fitted yields (Ŷt )
are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities. The table examines the bias, root mean squared
error, and autocorrelation of̂et = Yt − Ŷt , whereŶt denotes the model fitted value.∗ and∗∗ denote statistical
significe at the 5% and 1% levels, respectively, where standard errors are calculated using the method of Newey
and West (1987). For biases, statistical significance relates to the null hypothesis that the bias is zero. For RMSE,
the statistical significance of the pairwise comparison of two models is reported, along with an inequality sign
that reflects the direction of the rejection. The sample size is 729 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

meanê (basis points)

6-month 0.81 2.07 -0.37 0.76
1-year -0.49 0.01 0.27 -0.64
2-year -1.08 -1.53 0.45 -0.79
3-year -0.45 -1.48 0.07 -0.01
4-year 0.50 -0.81 -0.28 0.61
5-year 1.29∗ -0.05 -0.47 0.80∗

7-year 1.55∗ 1.08 -0.32 0.22
10-year -2.00 1.73 0.59 -0.84

RMSE (basis points)

6-month 13.86 >∗ 13.09 >∗∗ 3.59 <∗ 4.40
1-year 5.18 5.40 >∗∗ 4.00 <∗ 4.75
2-year 9.47 >∗ 9.09 >∗∗ 2.71 2.93
3-year 8.32 7.95 >∗∗ 1.28 1.27
4-year 6.05 5.88 >∗∗ 2.22 2.49
5-year 4.11 4.15 >∗ 2.74 2.85
7-year 5.53 >∗ 5.34 >∗∗ 1.82 1.65
10-year 13.73 12.92 >∗∗ 3.65 3.58

autocorrelation of̂e

6-month 0.96 0.96 0.92 0.95
1-year 0.94 0.95 0.90 0.93
2-year 0.95 0.95 0.87 0.90
3-year 0.95 0.96 0.62 0.85
4-year 0.96 0.97 0.88 0.94
5-year 0.95 0.96 0.90 0.91
7-year 0.93 0.93 0.79 0.80
10-year 0.96 0.97 0.87 0.91
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Table 6
Out-of-sample yield fits
This table contains statistics on the in-sample fits of zero coupon yields (Y ). For each model, fitted yields (Ŷt )
are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities. The table examines the bias, root mean squared
error, and autocorrelation of̂et = Yt − Ŷt , whereŶt denotes the model fitted value.∗ and∗∗ denote statistical
significe at the 5% and 1% levels, respectively, where standard errors are calculated using the method of Newey
and West (1987). For biases, statistical significance relates to the null hypothesis that the bias is zero. For RMSE,
the statistical significance of the pairwise comparison of two models is reported, along with an inequality sign
that reflects the direction of the rejection. The sample size is 105 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

meanê (basis points)

6-month -8.44 0.52 5.40∗∗ 2.04∗

1-year 0.22 3.30∗∗ -4.36∗∗ -0.85
2-year 3.82 -0.62 -6.08∗∗ -3.85∗∗

3-year 5.00 -2.87 -0.20 -1.03∗∗

4-year 5.11 -3.21 4.32∗∗ 2.29∗∗

5-year 4.04∗∗ -2.57∗ 5.96∗∗ 3.98∗∗

7-year -1.14 0.14 2.99∗∗ 2.39∗∗

10-year -13.10∗ 6.73 -7.24∗∗ -4.64∗∗

RMSE (basis points)

6-month 19.77 15.94 >∗ 8.60 >∗∗ 5.23
1-year 5.37 5.96 <∗ 8.07 >∗∗ 5.00
2-year 12.34 10.88 7.95 >∗∗ 5.20
3-year 14.72 12.34 >∗∗ 1.30 1.43
4-year 12.13 9.49 6.12 >∗∗ 3.65
5-year 7.23 5.08 7.83 >∗∗ 5.31
7-year 7.35 7.12 >∗ 3.64 >∗∗ 2.94
10-year 27.36 20.13 9.68 >∗∗ 6.38

autocorrelation of̂e

6-month 0.92 0.91 0.82 0.70
1-year 0.73 0.69 0.82 0.68
2-year 0.91 0.91 0.85 0.73
3-year 0.95 0.94 0.68 0.64
4-year 0.94 0.93 0.86 0.70
5-year 0.89 0.83 0.87 0.75
7-year 0.93 0.93 0.87 0.84
10-year 0.95 0.94 0.87 0.76
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Table 7
Correlations of observed and model-implied time series
This table reports correlations between actual and model-implied series. Average yield is simply the average of the .5, 1, 2, 3, 4, 5, 7,
and 10-year zero yields. Slope is defined as the 10-year yield minus the 6-month yield. Curvature is defined using the 3-year yield in
addition. GARCH(1,1) and EGARCH(1,1) volatilities are calculated from demeaned changes in the six-month rate. Interpolatedr, µQ ,
andθ are calculated using a third-order polynomial regression of yields on maturity. The Implied Volatility series, obtained from one-year
cap and floor contracts, is an average of Black-Scholes implied volatilities on the logorithm of the one-year LIBOR rate. Multiplying the
implied volatilities by the level of the one-year rate yields an approximate volatility of the level of one-year LIBOR. Note that the Implied
Volatility series is available only starting in 1995.

A1(2) A1(3) A1(3) A1(4) EGARCH GARCH Implied Imp. Vol.
USV USV (1,1) (1,1) Volatility × Y1

Full Sample

Actual vs. model average yield 1.000 1.000 1.000 1.000
Actual vs. model slope 0.998 0.998 0.998 0.998
Actual vs. model curvature 0.006 0.357 0.999 1.000
EGARCH vs. model volatility 0.669 0.862 -0.693 0.875
GARCH vs. model volatility 0.697 0.905 -0.704 0.917 0.951
Interpolated vs. modelr 0.996 0.996 0.986 0.997
Interpolated vs. modelµQ 0.880 0.611 0.884
Interpolated vs. modelθ 0.845
Actual curvature vs. model volatility -0.400 -0.066 0.253 -0.101 -0.067 -0.111
Actual curvature vs. model variance -0.395 -0.062 0.262 -0.101 -0.040 -0.103

1988 to 1994

Actual vs. model average yield 1.000 1.000 1.000 1.000
Actual vs. model slope 0.998 0.998 0.998 0.998
Actual vs. model curvature 0.179 0.373 0.998 1.000
EGARCH vs. model volatility 0.467 0.743 -0.542 0.747
GARCH vs. model volatility 0.545 0.809 -0.603 0.807 0.925
Interpolated vs. modelr 0.997 0.997 0.990 0.998
Interpolated vs. modelµQ 0.864 0.485 0.845
Interpolated vs. modelθ 0.815
Actual curvature vs. model volatility -0.471 -0.159 0.269 -0.196 -0.101 -0.211
Actual curvature vs. model variance -0.471 -0.103 0.275 -0.149 -0.031 -0.159

1995 to 2001

Actual vs. model average yield 1.000 1.000 1.000 1.000
Actual vs. model slope 0.998 0.996 0.999 0.998
Actual vs. model curvature -0.269 0.415 0.999 1.000
EGARCH vs. model volatility 0.209 0.871 -0.086 0.883
GARCH vs. model volatility 0.204 0.878 -0.068 0.894 0.946
Imp. vol. vs. model volatility 0.072 0.742 0.057 0.742 0.843 0.857
Imp. vol.× Y1 vs. model volatility 0.279 0.385 -0.378 0.392 0.540 0.484 0.592
Interpolated vs. modelr 0.987 0.990 0.964 0.992
Interpolated vs. modelµQ 0.892 0.820 0.944
Interpolated vs. modelθ 0.943
Actual curvature vs. model volatility -0.786 0.052 0.619 -0.001 0.021 -0.002 0.157 0.109
Actual curvature vs. model variance -0.790 0.016 0.615 -0.028 -0.005 -0.020 0.067 0.105
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Table 8
In-sample yield forecasts
This table contains statistics on the in-sample one-week forecasts of zero coupon yield changes. For each model,
expected yield changes are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities as differences between the
model expectations of future yields and the currend model fitted values. The table examines the bias, root mean
squared error, and autocorrelation ofêt+1 = (Yt+1 − Yt) − (Et [Yt+1 ] − Ŷt), where Et [Yt+1 ] is the model-

implied expectation and̂Yt is the model fitted value.∗ and∗∗ denote statistical significe at the 5% and 1% levels,
respectively, where standard errors are calculated using the method of Newey and West (1987). For biases,
statistical significance relates to the null hypothesis that the bias is zero. For RMSE, the statistical significance of
the pairwise comparison of two models is reported, along with an inequality sign that reflects the direction of the
rejection. The sample size is 625 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

meanê (basis points)

6-month -0.24 -0.92 -0.30 -0.65
1-year -0.25 -0.84 0.35 -0.03
2-year -0.24 -0.68 0.89 0.66
3-year -0.26 -0.58 1.03 0.92
4-year -0.31 -0.52 1.04 0.99
5-year -0.35 -0.49 1.01 0.99
7-year -0.44 -0.44 0.95 0.92
10-year -0.52 -0.41 0.89 0.81

RMSE (basis points)

6-month 11.33 >∗ 11.08 11.12 11.19
1-year 13.34 13.18 13.20 13.25
2-year 14.76 14.66 14.68 14.73
3-year 14.93 14.85 14.86 14.91
4-year 14.72 14.66 14.67 14.72
5-year 14.48 14.42 14.43 14.48
7-year 14.12 14.09 14.08 14.13
10-year 14.05 14.03 14.02 14.06

autocorrelation of̂e

6-month 0.04 -0.01 -0.02 0.02
1-year 0.01 -0.02 -0.03 0.00
2-year 0.01 -0.01 0.00 0.01
3-year -0.01 -0.02 -0.02 0.00
4-year -0.03 -0.04 -0.03 -0.02
5-year -0.04 -0.05 -0.05 -0.04
7-year -0.07 -0.07 -0.06 -0.06
10-year -0.08 -0.08 -0.08 -0.08
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Table 9
Out-of-sample yield forecasts
This table contains statistics on the in-sample one-week forecasts of zero coupon yield changes. For each model,
expected yield changes are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities as differences between the
model expectations of future yields and the currend model fitted values. The table examines the bias, root mean
squared error, and autocorrelation ofêt+1 = (Yt+1 − Yt) − (Et [Yt+1 ] − Ŷt), where Et [Yt+1 ] is the model-

implied expectation and̂Yt is the model fitted value.∗ and∗∗ denote statistical significe at the 5% and 1% levels,
respectively, where standard errors are calculated using the method of Newey and West (1987). For biases,
statistical significance relates to the null hypothesis that the bias is zero. For RMSE, the statistical significance of
the pairwise comparison of two models is reported, along with an inequality sign that reflects the direction of the
rejection. The sample size is 105 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

meanê (basis points)

6-month 1.16 -1.90∗∗ 2.13∗∗ -0.75
1-year 0.90 -2.14∗ 1.21 -0.63
2-year 0.03 -2.97∗ -0.15 -0.91
3-year -0.51 -3.47∗ -0.79 -1.04
4-year -0.81 -3.71∗ -1.04 -1.01
5-year -0.96 -3.81∗ -1.12 -0.91
7-year -1.08 -3.78∗ -1.07 -0.66
10-year -1.08 -3.54∗ -0.88 -0.33

RMSE (basis points)

6-month 6.70 6.82 7.31 6.79
1-year 12.07 12.23 12.25 12.13
2-year 15.72 15.95 15.71 15.70
3-year 16.68 16.96 16.61 16.61
4-year 17.35 17.65 17.26 17.25
5-year 17.71 18.02 17.61 17.61
7-year 17.67 17.99 17.58 17.59
10-year 17.14 17.43 17.05 17.08

autocorrelation of̂e

6-month 0.08 0.07 0.18 0.13
1-year -0.18 -0.19 -0.16 -0.17
2-year -0.12 -0.13 -0.12 -0.12
3-year -0.05 -0.06 -0.05 -0.05
4-year -0.02 -0.04 -0.03 -0.03
5-year -0.02 -0.03 -0.03 -0.03
7-year -0.04 -0.05 -0.04 -0.04
10-year -0.08 -0.08 -0.08 -0.08
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Table 10
In-sample volatility forecasts
This table contains statistics on in-sample one-week forecasts of different volatility proxies. For each model, expected
absolute yield changes (E[|∆Y |]) and expected “realized volatility” (E[σ̂]) are calculated for .5, 1, 2, 3, 4, 5, 7, and
10-year maturities. Realized volatility is defined byσ̂2

t, τ
=

∑5
i=1 ∆Y (t, i, τ)2 and is calculated using daily data. The

table examines the forecast bias (actual minus forecast) and root mean squared error of|∆Y | andσ̂, where all yields are
expressed in basis points.∗ and∗∗ denote statistical significance at the 5% and 1% levels, respectively, where standard
errors are calculated using the method of Newey and West (1987) with 8, 7, 16, and 16 lags, respectively, for the four
panels of the table. For biases, statistical significance relates to the null hypothesis that the bias is zero. For RMSE, the
statistical significance of the pairwise comparison of two models is reported, along with an inequality sign that reflects
the direction of the rejection. The sample size is 625 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

bias in weekly|∆Y |
6-month -5.39∗∗ -1.67∗∗ -3.05∗∗ -2.04∗∗

1-year -2.26∗∗ 0.50 -1.50∗∗ -1.18∗∗

2-year 0.66 1.53∗∗ -0.78 -1.07∗∗

3-year 1.81∗∗ 1.09∗∗ -0.32 -0.99
4-year 2.25∗∗ 0.29 -0.07 -0.84
5-year 2.41∗∗ -0.46 0.04 -0.66
7-year 2.43∗∗ -1.45∗∗ 0.08 -0.37
10-year 2.49∗∗ -1.68∗∗ 0.21 0.09

RMSE of weekly|∆Y |
6-month 10.02 >∗∗ 8.48 <∗∗ 9.20 >∗∗ 8.48
1-year 9.35 >∗ 8.98 <∗∗ 9.40 >∗∗ 9.00
2-year 9.44 9.41 9.67 >∗∗ 9.41
3-year 9.56 >∗ 9.37 9.59 >∗∗ 9.43
4-year 9.54 >∗∗ 9.25 9.45 >∗ 9.33
5-year 9.47 >∗ 9.17 9.32 9.21
7-year 9.32 9.14 9.13 9.03
10-year 9.20 9.02 9.01 >∗∗ 8.89

bias inσ̂

6-month -7.96∗∗ -3.50∗∗ -5.12∗∗ -3.88∗∗

1-year -4.31∗∗ -0.99∗ -3.38∗∗ -2.98∗∗

2-year -0.10 0.98∗ -1.84∗∗ -2.14∗∗

3-year 1.66∗∗ 0.84 -0.91 -1.66∗∗

4-year 2.32∗∗ 0.02 -0.47 -1.35∗∗

5-year 2.57∗∗ -0.81 -0.28 -1.07∗

7-year 2.69∗∗ -1.90∗∗ -0.13 -0.62
10-year 2.87∗∗ -2.07∗∗ 0.13 0.04

RMSE ofσ̂

6-month 9.59 >∗∗ 6.49 <∗ 7.66 >∗ 6.56
1-year 7.27 >∗∗ 6.18 <∗ 6.93 6.54
2-year 6.61 6.68 7.07 6.89
3-year 6.91 6.74 6.97 6.89
4-year 6.90 6.52 6.69 6.63
5-year 6.79 6.39 6.43 6.37
7-year 6.58 6.34 6.12 6.02
10-year 6.53 6.21 6.09 >∗∗ 5.88
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Table 11
Out-of-sample volatility forecasts
This table contains statistics on in-sample one-week forecasts of different volatility proxies. For each model, expected
absolute yield changes (E[|∆Y |]) and expected “realized volatility” (E[σ̂]) are calculated for .5, 1, 2, 3, 4, 5, 7, and
10-year maturities. Realized volatility is defined byσ̂2

t, τ
=

∑5
i=1 ∆Y (t, i, τ)2 and is calculated using daily data. The

table examines the forecast bias (actual minus forecast) and root mean squared error of∆Y 2 andσ̂, where all yields are
expressed in basis points.∗ and∗∗ denote statistical significance at the 5% and 1% levels, respectively, where standard
errors are calculated using the method of Newey and West (1987) with 2, 2, 4, and 3 lags, respectively, for the four
panels of the table. For biases, statistical significance relates to the null hypothesis that the bias is zero. For RMSE, the
statistical significance of the pairwise comparison of two models is reported, along with an inequality sign that reflects
the direction of the rejection. The sample size is 105 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

bias in weekly|∆Y |
6-month -6.87∗∗ -3.15∗∗ -6.06∗∗ -4.41∗∗

1-year -1.75∗ 1.02 -2.21∗∗ -1.32
2-year 2.42∗∗ 3.28∗∗ -0.31 0.19
3-year 4.34∗∗ 3.55∗∗ 0.81 1.07
4-year 5.55∗∗ 3.46∗∗ 1.75 2.00
5-year 6.19∗∗ 3.14∗∗ 2.26∗ 2.66∗

7-year 6.47∗∗ 2.31∗ 2.44∗ 3.19∗∗

10-year 6.07∗∗ 1.52 1.99 3.16∗∗

RMSE of weekly|∆Y |
6-month 8.04 >∗∗ 5.30 <∗∗ 7.43 >∗∗ 6.28
1-year 7.60 7.45 7.85 7.60
2-year 9.95 <∗ 10.27 9.74 9.74
3-year 10.80 10.65 >∗∗ 9.93 10.03
4-year 11.57 >∗∗ 10.86 >∗∗ 10.26 <∗ 10.40
5-year 12.08 >∗∗ 10.95 >∗∗ 10.55 <∗∗ 10.73
7-year 12.22 >∗∗ 10.68 10.56 <∗∗ 10.85
10-year 11.75 >∗∗ 10.18 10.16 <∗∗ 10.52

bias inσ̂

6-month -8.24∗∗ -3.75∗∗ -6.94∗∗ -5.26∗∗

1-year -2.98∗∗ 0.40 -3.40∗∗ -2.50∗∗

2-year 2.50∗∗ 3.65∗∗ -0.80 -0.23
3-year 4.98∗∗ 4.18∗∗ 0.70 1.02
4-year 6.46∗∗ 4.13∗∗ 1.85∗ 2.19∗∗

5-year 7.23∗∗ 3.78∗∗ 2.49∗∗ 3.01∗∗

7-year 7.59∗∗ 2.82∗∗ 2.75∗∗ 3.70∗∗

10-year 7.11∗∗ 1.88∗ 2.23∗∗ 3.69∗∗

RMSE ofσ̂

6-month 8.82 >∗∗ 5.28 <∗∗ 7.68 >∗∗ 6.41
1-year 5.70 >∗ 5.02 <∗∗ 6.06 >∗∗ 5.49
2-year 6.32 <∗∗ 7.01 >∗ 6.02 5.87
3-year 7.83 7.57 >∗∗ 6.21 6.21
4-year 9.04 >∗∗ 7.79 >∗∗ 6.66 6.75
5-year 9.75 >∗∗ 7.78 >∗∗ 7.04 <∗ 7.24
7-year 10.09 >∗∗ 7.39 7.20 <∗∗ 7.62
10-year 9.83 >∗∗ 7.13 7.15 <∗∗ 7.71

61



1988 1990 1992 1994 1996 1998 2000 2002
−.020

−.015

−.010

−.005

  0  

 .005

 .010

 .015

 .020

Actual, A
1
(3), and A

1
(4) USV

A
1
(2)

A
1
(3) USV

Figure 1

Actual and model-implied curvature

Actual curvature, depicted by the solid black line, is defined asY10y − 2Y3y + Y6m. Model implied
curvature is calculated using smoothed estimates of the model state variables. For theA1(3) andA1(4)
USV models, fitted curvatures are almost indistinguishable from the actual. The vertical dotted line
denotes the end of the estimation period.
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Figure 2

EGARCH and model-implied short rate volatility

In each panel, the solid line depicts the fitted path of the volatility of the 6-month yield that is implied by an
EGARCH(1,1) model. The dashed lines correspond to smoothed estimates of instantaneous volatility implied by
each of the affine specifications in Table 4. The vertical dotted lines denote the end of the estimation period.
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Figure 3

Estimated and model-implied estimates of the slope coefficient

of the regression of yield changes on lagged yield curve slope

In each panel, the thick grey line depicts the sample slope coefficient of the regression ofY (t + 1, τ) − Y (t, τ) on
(Y (t, τ)− Y (t, .5)) /(τ − .5) as a function of maturity (τ ). Distributions of model-implied regression coefficients
were calculated by simulation under the parameter values given in Table 4. The means and 95% confidence intervals
of these distributions are depicted by solid and dashed black lines, respectively.
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Figure 4

The maturity/volatility relation

In each panel, the thick grey line depicts the sample standard deviation of monthly changes in yields as a function
of maturity. Distributions of model-implied sample standard deviations were calculated by simulation under the
parameter values given in Table 4. The means and 95% confidence intervals of these distributions are depicted by
solid and dashed black lines, respectively.
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