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ABSTRACT

This paper explores recent trends in the size of scientific teams and in institutional collaborations.
The data derive from 2.4 million scientific papers written in 110 leading U.S. research universities
over the period 1981-1999. We measure team size by the number of authors on a scientific paper.
Using this measure we find that team size increases by 50 percent over the 19-year period. We
supplement team size with measures of domestic and foreign institutional collaborations, which
capture the geographic dispersion of team workers. The time series evidence suggests that the trend
towards larger and more dispersed teams accelerates at the start of the 1990s. This acceleration
suggests a sudden decline in the cost of collaboration, perhaps due to improvements in
telecommunications. Using a panel of top university departments we find that private universities
and departments whose scientists have earned prestigious awards participate in larger teams, as do
departments that have larger amounts of federal funding. Placement of former graduate students is
a key determinant of institutional collaborations, especially collaborations with firms and foreign
scientific institutions. Finally, the evidence indicates that scientific influence increases with team
size and institutional collaborations. Since increasing team size implies an increase in the division
of labor, these results suggest that scientific productivity increases with the scientific division of
labor.
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I. Introduction   

 

Over the past century teams of scientific specialists have largely replaced the independent scientist, 

much as corporate R&D laboratories have largely replaced the independent inventor.  This trend towards 

larger teams is strongly evident in nearly all data on scientific research, including our own1.  Advancing 

instrumentation and the sheer quantity of what there is to know have pushed it, while improving 

communications have pulled it, to its present state of development.  Pencil-and-paper research is the lone 

exception to the rule, but this forms a dwindling share of science and may at last succumb to the same 

forces that have elsewhere led to large-scale research. 

The study of scientific teams is important, first, because it brings to light changes in the research 

production function that otherwise would remain hidden.  In particular, scientific collaboration might 

increase the effectiveness of research, just as specialization increases general productive efficiency2.  The 

evidence on efficiency is suggestive but not definitive.  Collaborative research is more highly cited 

(Presser, 1980; Sauer, 1988), suggesting that collaboration does raise quality.  But more able researchers 

also attract more coworkers (Zuckerman and Merton, 1973) so that separating efficiency from talent in a 

cross-section is not easy.  Still, the size of scientific teams has increased steadily with time, so that growth 

in capital, knowledge, and communications could be responsible for the rising propensity to collaborate 

even as talent has remained about the same. 

A second reason why collaboration is important lies in its role as a channel of knowledge flows 

between scientists.  And since collaborators are increasingly found in different institutions and countries, 

the entire subject is relevant to the tendency for knowledge to flow more readily and over greater distances 

than ever before. 

In this paper we present findings on the size of scientific teams, institutional collaborations, and the 

geographic dispersion of team workers, using a large database that covers most of U.S. academic science 

                                                 
1 See Zuckerman and Merton (1973), De Solla Price (1986), and Hicks and Katz (1996), for trends in the 
size of scientific teams since 1900.  Weiner (1994), writing about mid-century, strongly disapproves of the 
notion that corporate R&D laboratories might supplant individual researchers and inventors.  And yet 
Mowery and Rosenberg (1998, Ch. 2) describes exactly this process of replacement.  
2 The form of the research production function is central to the properties of growth models, as a 
comparison between Romer (1990) and Jones (1995) reveals.  Thus the findings of this paper could prove 
indirectly relevant to growth theory.  

 



 

during the years 1981-1999.  Our analysis begins with the description of trends in scientific teams and 

collaborations at the level of individual scientific papers, which are observations at the piece-work level.  

Afterwards, in the context of a panel of universities and fields observed over time, we examine the 

determinants of team size and institutional collaboration, as well as their consequences for research output. 

The descriptive findings include the following.  The data confirm that team size has increased by about 

50 percent during the last two decades of the 20th century.  We also find that the trend towards larger teams 

accelerated, rising from a 2.19 percent annual rate of growth in the 1980s to a 2.57 percent rate during the 

1990s.  This is an acceleration of 17 percent (2.57/2.19 – 1) between the 1980s and the 1990s.   We also 

study geographic dispersion directly, using a mileage indicator for the top 110 U.S. universities that form 

the core of our data.  The annual rate of growth in mileage rises from 3.53 percent in the 1980s to 4.45 

percent in the 1990s, an acceleration of 29 percent.  

During the same period of time the rate of domestic collaboration more than doubled between U.S. 

universities, and between U.S. universities and U.S. firms. Foreign collaborations, while not as common, 

increased five-fold.  Of all regions, collaboration with Asia increased most rapidly, followed by Europe, 

with other regions trailing by a considerable margin. These differences reflect differences in the growth of 

scientific research by region of the world.  Also, foreign collaboration accelerated between the 1980s and 

1990s. The foreign share in institutional collaborations rose annually by 5.11 percent during the 1980s, but 

by 7.41 percent during the 1990s.  Thus, growth accelerates by 45 percent (7.41/5.11 – 1).   

In additional work we address factors that promote or deter teams and collaborations.  This analysis is 

carried out using a panel of 12 main sciences in the top 110 U.S. universities.  Hence, the observations are 

at the level of university-fields over time.  Our results include the following: a larger stock of federally 

funded R&D, private control of a university, and the number of prestigious awards increase team size.  

Collaboration with other U.S. universities is an increasing function of the stock of R&D, private control, 

and the number of recent PhDs placed in other top 110 schools.  Collaboration with foreign institutions of 

science is found to increase with the stock of R&D, private control, the number of prestigious awards, and 

with the number of recent PhDs placed in leading research countries.  Here the results are more fragile, and 

there is evidence that the stock of R&D and private control trade places with the number of prestigious 

awards. In addition we examine collaboration with U.S. firms, finding again that R&D and private control 
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to an extent increase joint scientific research with firms.  But in this case, prestigious awards decrease 

collaboration with firms, probably because the emphasis of universities earning such awards is on basic 

rather than applied research.  As with foreign collaboration, placement of recent PhDs with industries 

proves to be very powerful in determining collaboration between universities and firms.  The greater 

importance of PhD placements in the case of foreign and corporate collaborations than in university 

collaborations is consistent with the greater scarcity of substitutes for former PhDs in foreign and corporate 

environments.  

The empirical work concludes with a study of the role of team size and collaboration in the 

determination of research output as measured by papers and citations.  The papers and citations are 

“fractionated,” in that they consist of estimated proportions that a university and field contribute to both. 

We find that papers and especially citations increase with team size, but that the role of shares of 

institutional affiliations in the production of papers is less clear.  Universities that collaborate more with 

foreign institutions, and especially other top 110 schools, produce fewer papers, holding team size constant.  

On the other hand collaboration with foreign institutions and other top 110 schools is linked to an increase 

in total citations, so that a trade off of fewer papers in return for larger overall scientific influence appears 

to be taking place.             

The rest of this paper consists of six sections.  Section II reviews the literature and models the 

determinants of scientific teams and institutional collaborations.  Section III describes the database and 

calculations that we have undertaken using it.  Section IV presents time series evidence on scientific teams.  

Section V compares trends in collaborative behavior across scientific disciplines.  Section VI provides 

regression evidence on the determinants of team size and institutional collaboration using a panel of 

university-fields.  Section VII concludes. 

II. Analytical Framework   

The economics literature on teams is both theoretical and empirical.  One line of theoretical work 

examines the problem of free-riding and proposes incentive schemes that punish shirking (Holmstrom, 

1982; Kandel and Lazear, 1992).  Other research examines the relationship between specialization, team 

size, and the extent of the market (Becker, 1985; Becker and Murphy, 1992), while still more research 
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(Rosen, 1982) looks at the role of managerial talent in determining the size of firm and its work force using 

an efficient supervision model. 

Recent empirical research on teams in steel mills by Ichniowski, Shaw and Pennushi (1997) finds that 

innovative management practices that promote cooperation in teams and offer pay incentives increase 

productivity in steel mini-mills over traditional management practices that tend to limit worker 

responsibility.  Other empirical research examines institutional collaborations in science and technology 

(Arora and Gambardella, 1990; Mowery, 1992; Powell, 1996; Stephan and Levin, 2000; Zucker, Darby, 

and Armstrong, 2001; Adams, Chiang and Starkey, 2001; Adams, 2002; Adams, Chiang, and Jensen, 2003; 

Adams, 2003, forthcoming; and Adams and Marcu, 2004).  These papers tend to find that institutional 

collaboration is related to the complementarity of skills, often abetted by policy and by the increasing 

complexity of scientific problems.  

The present paper concerns small teams of co-workers in scientific research.  However, owing to the 

location of team members in different scientific institutions, the paper is concerned as well with 

institutional collaborations.  In our analysis we abstract from free-riding and supervision because the 

system of reward for priority in discovery severely punishes shirking by team members and rewards good 

work with publication, reputation, and income.  Our analysis is inextricably connected, though, with 

specialization, the division of labor, and the location of team members, because these factors play large 

roles in the empirical analysis and influence the efficiency of scientific research. 

In the following exposition we assume that scientific research yields satisfaction to investigators, but 

we suppose that this gain in utility is insufficient for investigators to self-finance their research.  We base 

this assumption on the rarity of scientific research in societies that lack government or private support for 

science.  But if self-finance is ruled out, then it follows that the quantity of research is subject to a research 

budget constraint that is externally imposed, though the budget is of course responsive to grant-raising 

efforts3.   In conformity with the empirical work below, and with the perception that skill, specialization, 

and the division of labor are inter-related and essential elements in the formation of scientific teams, we 

assume that the decision variables are the skill of team workers , the size of the team , and distance, or s n

                                                 
3 In the analysis we assume that the research budget R  is at a maximum with respect to grant-raising 
efforts.  
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geographic dispersion D 4.  Geographic dispersion exceeds zero if and only if the team involves 

institutional collaboration so that  is an indicator of such collaboration.   D

   Research output  is produced according to a Cobb-Douglas production function of skill and team 

size.  Therefore, 

Q

 (1)   , βαnAsQ =

The exponents obey the inequalities 1 ,10  ,10 <+<<<< βαβα  so that production is subject to 

decreasing returns to scale.  The parameter A  represents total factor productivity.  It could represent the 

university environment and the ability or eminence of faculties that are matched to these environments in 

advance of the formation of scientific teams.  A  also undergoes independent increases as knowledge 

expands, because knowledge is a factor of production that is fixed with respect to individual researchers.  In 

turn A  tends to increase skill and team size.  Thus, “complexity” of projects can be viewed as an indicator 

for knowledge and other sources of total factor productivity of the knowledge production function that give 

larger teams an increasing advantage.  It has been suggested to us that sociological “norms” of scientific 

fields have changed in favor of larger teams.  However, another interpretation is that larger and higher-

skilled teams are more efficient as knowledge increases, so that norms are simply a reflection of efficiency 

rather than an independent causal factor that increases the division of scientific labor. And besides all the 

above, the increasing emphasis by funding agencies on team awards involving large grants and multiple 

scientific institutions is consistent with the advantages of larger teams as driven by A  in this framework. 

On the cost side we assume that the research budget R  must cover wage costs of all team 

members, as well as a fixed cost F  that depends on dispersion of team workers, representing coordination 

costs.  Of course, geographic dispersion entails benefits as well as costs.  In part the gain derives from the 

additional funding that can be secured, as the evidence presented below on international and firm-university 

collaboration suggests.  This is the productive role of dispersion in the present analysis. The research 

budget constraint is: 

                                                 
4 We abstract from the idea that skill and distance could be inter-related as in ( ) 0s 0,s  , <′′>′= Dss .  This 
constraint would be relevant if abilities were noticeably scarce within a given distance. The analysis in the 
paper could easily be extended to deal with this complicating factor. 
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(2)    ( ) ( ) ( )DFnswDR +=  

The amount of funding is a concave function of distance, so that 

(3)   , 0,0 <′′>′ RR

Thus the returns to dispersion are diminishing.  Below we allow for both a shift in funding and also of the 

sensitivity of funding to distance or dispersion, which are plausible elements that could alter institutional 

collaborations.  For example, funding could increase as a result of prior awards.  In addition an increase in 

the urban density of universities would tend to increase the sensitivity of funding to distance.  In (2) the 

wage rate  is an increasing and convex function of skill, as in the phenomenon of “superstars” (Rosen, 

1981).  This yields the following properties of the wage function: 

w

(4)   . 0 ,0 >′′>′ ww

We suppose that the fixed cost F , which represents coordination costs, is an increasing function of 

distance  owing to the difficulty of meeting and communicating which this imposes.  Therefore, the 

properties of the fixed cost function are  

D

(5)   . 0 ,0 >′′>′ FF

Thus, coordination costs are an increasing function of distance.  As in the case of funding R , changes in 

the fixed costs of scientific teams are plausible and realistic features of cross-sectional and time series data.  

Fixed costs and their sensitivity to geographic dispersion tend to decline over time with improvements in 

telecommunications.  F  tends to decrease with prior investments in team workers, especially graduate 

students, which make working at a distance less costly.  This is likely to be a potent factor in both cross-

sectional data, where universities with larger, more highly ranked graduate programs are more prone to 

engage in institutional collaborations; and in time series data, due to the growth of graduate programs over 

time. 

 The problem is one of maximizing output (1) subject to the research budget constraint (2) and their 

properties as expressed in (3)-(5), where the control variables are skill , team size , and distance .  

The Lagrangian function for this problem is 

s n D

(6)   ( ) ( ) ( )[ ]DFnswDRnAsL −−+=  λβα  

First order conditions for (6) are 
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Optimal amounts of skill and team size are assumed to exceed zero, so that the first two expressions are 

equalities. The third expression of (7) is for the moment left as an inequality, to suggest that if funding is 

sufficiently unresponsive to dispersion, then  equals zero and institutional collaboration does not occur.   D

However, consider the case where , so that variations in all three of the controls are allowed.  The 

second order conditions that ensure a maximum for this problem are that the determinants of the bordered 
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For exceptionally clear statements of these conditions see Chiang (1974, Section 12.3) or Dixit (1990, 

Chapter 7). Using this information and the method of comparative statics we can show that skill  and t

size n  ten  to increase with productivity

s eam 

d A .  To see this form the displacement system of (7), 
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Since by (8) [  and  are negative definite, the expression on the right of (10) is strictly negative and 

a combination of  and n  increases as 

]H [ ] 1−H

s A  increases.  Likewise we can show that an increase in sensitivity 
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of funding to distance , or a decrease in sensitivity of fixed costsD F  causes an increase in  and in 

institutional collaborations.  Finally, an exogenous increase in funding

D

R , perhaps due to past awards, will 

tend to increase team size and skill.  These implications tend to fit rather well the results that we report in 

section VI below.        

III. Database of Scientific Papers  
 

The data set consists of 2.4 million scientific papers that were published during 1981-1999 and have at 

least one author from a set of leading U.S. universities.  These “top 110” universities account for most of 

U.S. academic research.  The Institute for Scientific Information (ISI) in Philadelphia is the source of the 

data.  All papers belong to a standard set of communications consisting of articles, reviews, notes, and 

proceedings.   The specific source is ISI’s Current Contents data base5. 

  The papers are assigned to fields according to a classification of the journal in which they appear.  

This classification system consists of 88 academic fields.  In order to link the paper data to the 12 main 

sciences in the National Science Foundation (NSF) CASPAR database, we assign each of the 88 fields to 

one of the 12 main fields6.   The Appendix lists the 110 universities, ranked by their R&D funding in 1998.  

Table 1 shows the 12 main NSF sciences and their components made up of the 88 ISI sub-fields.  

As noted in the introduction, we use the data both at the paper level and at the level of university-

fields.  At the paper level we compile time trends and cross-sectional patterns by field and year.  The data 

record date of publication, scientific fields of journals in which the papers appear, institutional affiliation of 

authors, address information on city, state, and country; and author names as well as number of authors7.  

It is important for the reader to see that the address information is completely separate from author 

information, so that a name cannot be assigned to a location at this time. The address information is 

nevertheless useful in its own right.  Besides the top 110 universities the addresses identify U.S. and 

                                                 
5 The journal set consists of approximately 5500 journals that were active in 1999, as well as about 1600 
inactive journals that were cited in currently active periodicals.  
6 The 12 fields are: agriculture, astronomy, biology, chemistry, computer science, earth sciences, 
economics and business, engineering, mathematics and statistics, medicine, physics, and psychology.   
7 There is no limit at this time on the number of authors in the ISI data.  The maximum number in our 
sample is 210, while the mean number in the paper-level data is 2.36.  Notice that the number of authors 
underestimates the number of team members when it excludes contributors, such as research assistants. It is 
an overestimate when it includes honorific authors.  In short, the number of authors measures the size of 
scientific teams with error.  This error is unavoidable since we lack any other measure of team size.     
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foreign institutions consisting of other universities and colleges; governments and government research 

institutes; medical centers; corporations; and all other institutions8.  We use the addresses to construct 

fractions of scientific papers written in one or more of the top 1109.   

We also construct numbers and shares of institutional addresses contributed by different types of 

institutions as rough estimates of the location of team workers.  Within the U.S. the institutional types 

consist of (a) U.S. Government, (b) Other U.S. Universities, (c) U.S. Corporations, (d) U.S. Medical 

Centers, and (e) All Other U.S. Institutions.  Outside the U.S. the institutional types consist of (a) Foreign 

Governments, (b) Foreign Universities, and (c) All Other Foreign Institutions, including by country.  As we 

have seen, this information allows us to assign fractions of papers to different institutional classes as well 

as to provide indicators of the proportional contribution by each class.  

Table 2 reports the distribution of scientific papers by the 12 main science fields.  The table includes 

the years 1981, 1990, and 1999 and all years, showing which fields gain share and which lose.  Among the 

life sciences, which dominate the data, biology gains while agriculture loses.  Among the physical sciences 

astronomy and physics gain share.   Perhaps not surprisingly, among the mathematical sciences, computer 

science gains share and mathematics and statistics lose share. Engineering increases its share. And finally,  

the social and behavioral sciences perceptibly lose share.  

We use paper-level statistics for the descriptive work in sections IV and V, because this retains the 

means and standard deviations of the original data.  In section VI we carry out regression analysis of the 

determinants of team size, domestic and foreign collaboration, and research “output”.   For this purpose we 

construct a panel at the level of universities, fields and years.  The reason is that the panel allows us to 

combine the ISI papers and citations data with information on university-field level R&D and 

characteristics of doctoral programs.  The NSF CASPAR database of universities, a compendium of NSF 

surveys, is the source of the data on university R&D.  The National Research Council 1993 Survey of 

Doctoral Programs (NRC, 1995) includes characteristics of graduate programs, especially counts of Nobel 
                                                 
8 About 5% of the addresses could not be assigned. 
9 The fractions are ½, ½ in the case of two institutions, 1/3, 1/3, 1/3 for three institutions, and so on.  The 
cumulative distribution of the number of top 110 institutions per paper is as follows, with number of 
institutions in parentheses:  79.6% (1 institution), 96.8% (2 institutions or less), 98.3% (3 institutions or 
less), and 99.5% (4 institutions or less).  Of course, these are extremely crude indicators of contributions 
because they do not include time and effort by team members, nor do they differentiate among types of 
effort.  In short, the institutional address fractions do not measure labor input, even though we use them to 
attribute output to scientific institutions. 
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prizes and other prestigious awards, as well as rankings of quality of PhD programs in 1993.  Finally, 

microdata from the NSF Survey of Earned Doctorates (SED) provide us with estimates of the migration of 

PhD students to the academic and industrial sectors of the U.S. economy, as well as to other countries10. 

We impose one other constraint on the panel which does not apply to the paper-level data. We consider 

only leading departments out of the top 110.  All other schools form a remainder cell within each field.  

More precisely, we include the top 25 universities in astronomy plus a remainder, the top 50 universities in 

agriculture, chemistry, computer science, economics and business, earth sciences, mathematics and 

statistics, physics, and psychology, plus one remainder each.  And finally we include the top 75 universities 

in biology, medicine, and engineering plus remainders for each of these three fields.  Summing across 

fields, and accounting for the fact that only 48 schools of agriculture formally exist, the panel data consist 

of 660 university-fields in any given year.  Our purpose in breaking out fewer individual schools in smaller 

fields, and more in larger fields, is to avoid large numbers of empty cells for universities in which fields 

(and doctoral programs) are small or non-existent11.   The result is a panel of 12,540 observations, before 

bad or missing data are excluded, that approximates teams and institutional collaborations of 660 

university-fields in 12 main sciences over the 19-year period. This panel includes an array of variables that 

are likely to drive teams, collaborations, and research output.  We describe the major variables in the panel 

data and sources of these variables in section VI, where we consider determinants of team size and 

collaboration. 

IV. Time Trends in Scientific Collaborations 

Figures 1-10 display time series of scientific research, team size, and institutional collaboration.  All 

the graphs refer to the years 1981 to 1999.   Figure 1 shows trends in the output of U.S. scientific papers.  

The upper line is the sum of all papers having at least one author from a top 110 U.S. university.  The 

middle line consists of U.S. equivalent papers.  By this we mean the fraction of U.S. affiliations in all 

                                                 
10 The migration data used in this paper represents flows of new PhDs with definite plans at the time of 
graduation, so that the destinations that we used are projected as within a few months of graduation.  The 
data are undercounts since one-third of new PhDs do not have definite plans.  Moreover, the data represent 
even a greater undercount to industry, since many new PhDs go to industry only after completing their 
postdoctoral training. 
11 The size of the remainder of the top 110 equals an average “department” along the individual top 25, 50, 
or 75 schools in a field, showing that we miss rather little by our aggregation procedure.  This finding 
reflects the positive skew of academic programs.  For more on this issue see Adams and Griliches (1998). 
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institutional affiliations on each paper, which is then summed over all papers.  The lower line consists of 

top 110 paper equivalents. This is the fraction of top 110 affiliations in all affiliations summed over papers.  

U.S. and top 110 equivalent papers grow more slowly than total papers.  Top 110 equivalents decline by 

2.5% as of 1999 compared with the 1995 peak.  The increasing spread between papers and their U.S. 

equivalents reflects the rising contribution of foreign institutions.  This could be seen as beneficial: foreign 

institutions produce more of the research and transfer more of their knowledge to the U.S.  Or it could be 

viewed with pessimism: just remaining in the same place after 1995 seems to have required an increase in 

the foreign contribution.  

Figure 2 graphs domestic collaboration with other top 110 schools (left scale) and with the top 200 

U.S. R&D firms (right scale)12.  While the per paper number of schools and firms grow at roughly the same 

rate, growth in collaboration with firms is less rapid in the 1980s and more rapid in the 1990s.  This 

acceleration in university-firm joint research could represent increasing placement of graduate students 

with firms rather than schools, it could be a statement about the success of federal programs designed to 

promote joint research, or it could signify a slowdown in industrial support for basic research that leads to 

increasing reliance on university collaborators.  This last point is consistent with the decline in scientific 

papers published in industry since 1991. See National Science Foundation, Science and Engineering 

Indicators 2004, Volume II, table 5-36. 

Comparative trends in foreign and total collaborations are the subject of figure 3.  Trends in foreign 

universities and institutions per paper follow the left scale.  The right scale indicates the total of all 

institutions.  Collaborations with foreign universities and institutions grow more rapidly than institutional 

collaboration as a whole, which is consistent with figure 113. 

Figure 4 reveals that growth rates in team size (authors per paper) and institutional collaborations are 

about the same.  Given that foreign collaborations are growing more rapidly than all collaborations, 

domestic collaborations must be growing more slowly than team size.  Thus, scientific teams are becoming 

more internationalized over time. 
                                                 
12 We define the number of other top 110 schools as the number of top 110 schools minus one, which 
represents the “home” institution. In this way we account for conditioning of the data on membership in the 
top 110 universities. 
13 Correcting the total for conditioning on a top 110 university, the total institutions series increases from 
0.8 to 2.0, or 2.5 times.  Foreign schools per paper increase from 0.07 to 0.32, or more than 4.5 times, while 
all foreign affiliations increase from 0.1 to 0.46, which is again more than 4.5 times. 
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The next two figures examine trends in foreign collaboration by region of the world from 1981 to 

199914.  Figure 5 reports counts of foreign addresses per paper. The dominant region for collaboration is 

Europe, reflecting the size of the scientific sector in Europe.  The countries of South and East Asia come in 

second by the end of the period, followed by the rest of the Americas. The rest of the world, composed of 

Africa, the Middle East, and Oceania, runs a distant fourth.    Figure 6 brings out more clearly the 

differences in growth by region.  The figure normalizes each of the series in figure 5 by its 1981 value. 

Growth is more rapid in Asia and Europe and slower in the Americas and the rest of the world. This reflects 

differences in the growth of scientific resources by region. 

Figures 7 and 8 consider interactions between team size and the foreign share.  Figure 7 displays time 

paths of the foreign share classified by intervals of team size.  The foreign share is greater in larger teams.  

International cost-sharing of large-scale projects could lie behind this relationship, for example in the 

Human Genome project, in large-scale space missions, and so on.  Figure 8 brings out comparative growth 

more clearly by again normalizing each of the series in figure 7 by its 1981 value.  The graph shows that 

smaller teams are becoming more internationalized at a faster rate.  Since larger teams are more 

internationalized in 1981, this implies convergence in the foreign share by team size.  

Figures 9 and 10 reveal comparative trends in the foreign share by science field.  Figure 9 reports time 

series of the foreign share in which fields are grouped by their initial 1981 share.  The three most 

international fields are astronomy, mathematics and statistics; and physics. The three fields that are least 

international are agriculture, biology, and medicine.  The foreign shares of remaining fields (chemistry, 

computer science, earth sciences, economics, engineering, and psychology) fall in the middle.  Figure 10 

brings out comparative growth more clearly by normalizing each of the series in figure 9 by the 1981 value.  

The figure shows that the life sciences are becoming internationalized at the most rapid rate. Since these 

fields are the least internationalized at the start, this result again suggests a mild form of convergence in the 

foreign shares.      

                                                 
14 In this figure Europe consists of Western and Eastern Europe as well as the European Soviet Socialist 
Republics of the former Soviet Union.  Asian countries include Japan, India, China, and other countries of 
East and South Asia, such as Malaysia, Indonesia, South Korea, Singapore, and Taiwan.  Other countries in 
the Americas include Canada, Central America, the Caribbean, and South America.  Africa, the Middle 
East, and Oceania includes Israel (Middle East) and Australia and New Zealand (Oceania), and thus 
contains the developed countries in each region. 
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V. Findings on Collaborative Behavior By Field of Science 

  We turn now to descriptive findings by field of science and time.  We display these in a series of 

tables given the number of fields which each chart involves.  Table 3 reports team size in 1981, 1990, and 

1999, as well as growth in team size across the decades of the 1980s and 1990s.  In 10 of 12 fields, growth 

occurs more rapidly in the 1990s.  This pattern dominates the grand average in the bottom row.  

Acceleration in the growth of team size is the rule in these data. 

 Table 4 uses a direct measure of distance to explore the geographic dispersion of team members. 

Owing to data limitations the analysis is restricted to the top 110 U.S. universities. We assume that the 

highest ranked university-field on each paper is the “head” institution and calculate mileages to other top 

110 institutions on that paper based on latitude and longitude coordinates15.  If only one top 110 institution 

participates in a paper then the mileage is zero.  Therefore, changes in the mileage statistics depend on 

changes in the tendency to work with other top 110 schools. The average mileage on a paper is a direct 

measure of geographic dispersion within the system of top 110 schools. 

The table reports mean distances in 1981, 1990, and 1999 and it compares growth rates across 

decades.  Growth in geographic dispersion is quite clear but acceleration in growth is less obvious. Six of 

12 fields show evidence of acceleration (agriculture, chemistry, earth sciences, engineering, physics, and 

psychology), the growth of one (biology) is constant, and the remaining five (astronomy, computer science, 

economics and business, mathematics and statistics, and medicine) reveal mild deceleration.  And yet the 

overall pattern is one of growth acceleration. Table 3 reveals an expanding geographic scope of 

collaboration within the top 110: mean distances double from 78 miles to 159 miles over the period.  And 

despite some mixed results, overall growth accelerates across the two decades.  On average the rate of 

growth in mileage increases from 3.5% in the 1980s to 4.5% in the 1990s.  

 Table 5 considers domestic institutional collaboration by field.  The table is specifically concerned 

with collaborations with other top 110 schools and with top 200 R&D firms.  The table reports levels of 

collaboration of both kinds in 1981 and 1999 and reports growth over the full period.   The table reveals 

changes in collaboration within academia as well as between academia and industry.  Growth in 

                                                 
15 The calculation assumes that the earth is a sphere and calculates distance using the geodesic or shortest 
distance between two points on that sphere.  For more, see Adams and Jaffe (1996) and Adams (2002). 
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collaboration within the university sector is general, although it is most rapid in agriculture, biology, 

chemistry, and psychology.  The situation is quite different in the “between” dimension. There 

heterogeneity is the norm: it is the life sciences (agriculture, biology, and medicine) and psychology whose 

collaboration with firms expands most rapidly.  Industry-university collaboration in more established 

industrial-scientific fields (chemistry, computer science, engineering, and physics) grows more slowly.  Of 

course, the level of collaboration is far higher in these fields than in the life and behavioral sciences.  

Astronomy and economics are the only fields where university-firm collaboration declines.  All these 

patterns are of course driven by changes in the population of industrial scientists in the different disciplines.  

 Table 5 allows us to compare growth rates in domestic collaboration across sectors and fields.  Let 

us define a relative increase in the “outward” dimension of a field as an excess in growth of collaboration 

with industry over growth in collaboration with universities.  Likewise, let us define a relative increase in 

the “inward” dimension as taking place when the growth rate with industry is less than the growth rate with 

universities.  Based on this criterion agriculture, biology, computer science, medicine, and psychology are 

becoming more outward disciplines. By the same token astronomy, chemistry, earth science, economics 

and business, engineering, mathematics and statistics, and physics are becoming more inward.   

 Table 6 concludes the descriptive findings by examining trends in foreign collaboration across the 

sciences.  The table computes the foreign share in institutional addresses on individual papers in 1981, 

1990, and 1999.  It also examines growth in the share across the decades of the 1980s and 1990s. For 

comparison we include mean foreign and total institutional affiliations in brackets.  Almost without 

exception growth in the foreign share is more rapid than growth of either of the domestic indicators shown 

in table 4.  Moreover, growth accelerates in every field.   Average growth is 5.11% in the 1980s but 7.41% 

in the 1990s, so that the acceleration is 0.45 (7.41/5.11 - 1). 

VI. Regression Findings 

We turn now to the problem of explaining team size, the various dimensions of institutional 

collaboration by sector and country, and research “output”.  For this purpose, as we have seen, we have 

constructed a panel of universities, fields and years, in order to match relevant data from the National 

Science Foundation and the National Research Council that are reported at this level, as we have already 

explained in section III of this paper.  Table 7 contains descriptive statistics from the panel data.  The 
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statistics show that the average university field-year observation has a team size of 4.26 authors per paper, 

of which 2.65 are estimated to belong to a university-field16.  The average university-field article involves 

0.41 other top 110 universities. On average foreign institutions contribute a 5.2 percent share of all 

institutional affiliations, while U.S. firms contribute 2.0 percent.  The average number of papers is 149, for 

which 709 citations are received from other top 110 universities during the first five years including the 

year in which the paper is published. 

The average stock of deflated R&D is about 58 million dollars of 1992.  This is the eight-year stock 

depreciated at a 15% rate and lagged one year.  Thus the R&D stock in 1981 is the sum of deflated and 

depreciated R&D over the years 1973-1980 and likewise for all other years17.  The average stock of R&D 

per lagged paper, a measure of resources per unit of “output”, is about a half million dollars of 1992.  

Private universities account for 35 percent of the sample, while on average there are 0.23 prestigious 

awards per university-field. 

The local university R&D ratio captures the geographic concentration of research in the vicinity of a 

university-field, which could be a measure of the ease of institutional collaboration.  It is defined as the 

ratio of other universities’ R&D within 25 miles to the same R&D within 200 miles.  Thus, it denotes the 

low cost of nearby collaborators.  The ratio of equipment expenditure to R&D over the previous three years 

could signify capital-labor substitution, as well as replacement of institutional collaborations. 

Ten percent of graduate students go to a school that ranks in the top 20 percent of the top 110 

universities.  Eighteen percent go to U.S. firms, and five percent go to 12 countries that are highly active in 

scientific research. These variables are pools of graduate students that could drive shares of other top 110 

schools, U.S. firms, and foreign institutions in the research of a given university-field.  In the empirical 

work we lag the different graduate student shares by two years in order to take publication lags into 

account.   

                                                 
16 The average number of authors is greater in the panel data consisting of university-fields than in the 
original paper level data, because the university-field observations weight large teams more heavily than do 
individual papers.   
17 The choice of an eight-year (and thus incomplete) R&D stock is dictated by the 1973 start date for flows 
of R&D in the CASPAR data base, as this interacts with the 1981 start date of the ISI data.  The eight-year 
stock is thus the longest history that we have.  We should say that the CASPAR R&D data, while they 
represent a major achievement in data collection on universities, also contain substantial respondent errors.  
We have tried to flag these errors and to remove all suspicious observations on R&D from our analysis.  
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Table 8 reports regressions that explain the measure of team size, the logarithm of authors per paper.  

Since authors per paper are university-field means, the data are continuous and the estimation method is 

OLS.  All the regressions remove bad or missing data on the R&D stocks.  All include dummy variables for 

year and field, in which 1981 and chemistry are the omitted categories.  The dummies absorb trend and 

field effects, which are highly significant and similar to those depicted in the preceding figures.   

Equation 8.1 is a baseline regression that includes the logarithm of the stock of federally funded R&D 

in thousands of 1992 dollars and the private university indicator.  We find that the stock of federally funded 

R&D per paper to an extent increases team size18.  This suggests that larger projects entail greater 

specialization.  Private universities form significantly larger teams.  There are several possible explanations 

for this result.  Private universities may obtain more R&D funding from private foundations and wealthy 

donors, which we are not able to measure.  Another possible reason for the finding is that better pay, start-

up packages, and working conditions in top private institutions attract more talented faculty (Ehrenberg, 

2003; Ehrenberg, Rizzo, and Jakubson, forthcoming). This talent advantage, which is related to salary and 

perhaps governance advantages of top private institutions, could pull together a larger pool of coworkers 

(Zuckerman and Merton, 1973). 

Equation 8.2 repeats 8.1 but restricts team size to less than 10 workers.  The idea behind this restriction 

is that university-field R&D is increasingly mismatched with team size as size increases, because an 

escalating share of funding is external and is not captured by university-field R&D.  Thus, the error in the 

R&D stock rises with team size.  Consistent with this idea, the coefficient on R&D stock increases slightly 

and is more significant in 8.2 than 8.1.   

Equations 8.3 and 8.4 add a battery of variables to 8.1 and 8.2. As a whole these variables reduce the 

regression coefficient of the stock of R&D per paper. The battery includes the number of prestigious 

awards.  Since awards data are missing for agriculture and medicine, 8.3 and 8.4 exclude these two fields.  

Awards increase team size, consistent with the notion that funding and talent attract coworkers.  The local 

R&D ratio, which tries to capture local concentration of potential team members, has a small positive effect 

on team size, which is not always significant, perhaps because team workers in the same school substitute 

for team workers elsewhere.  The equipment intensity of R&D spending in the most recent three years 
                                                 
18 We divide federally funded R&D by papers lagged two years, in order to avoid division error bias with 
the logarithm of authors per paper on the left hand side of the regression. 
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could signify capital- labor substitution.  Consistent with this, its coefficient is negative, but again it is not 

always significant.  Finally, the indicator of top 20 percent in field slightly decreases team size, possibly 

indicating the availability of graduate student assistance within an institution. 

Table 9 consists of Grouped Logit equations. The dependent variable is the logarithm of the relative 

share of other top 110 schools in the research of a given university-field. This is the share divided by one 

minus the share19.  While the relative share seems to be a useful way to get at substitution of research by 

other top 110 schools for internal research, it does have one limitation.  Observations for which the relative 

share equals zero cannot be included in the estimation procedure, because these zero values rule out any 

finite value for the regression function.  The same point applies to tables 10 and 11, which also use 

Grouped Logit. 

All equations in table 9 include year and field dummies, which are highly significant.  In equations 9.1 

and 9.3 the logarithm of the stock of federally funded R&D per paper significantly increases the share of 

other top 110 schools. Private universities collaborate to a larger extent with other top 110 schools, as do 

schools where the faculty have earned a larger number of awards.  Again we attribute the greater reach of 

institutions with more research dollars and more awards to greater resources and talent. 

Equations 9.2 and 9.4 include an array of new variables. The fraction of former PhD students placed in 

the top 40 percent of schools in a field is a significant factor in collaboration.  Again top 20 percent status 

in a field deters collaborations with other top 110 schools, perhaps because of the availability of graduate 

assistance within a university-field. 

Table 10 is similar to table 9, except that here the dependent variable is the relative share of foreign 

institutions in the research of a university-field.  For this reason the PhD placement indicator is the fraction 

of PhDs who have located to top research countries.  The role of the university-field R&D stock per paper 

is not as strong in table 10 as it was before in table 9, perhaps because the availability of foreign R&D in 

part drives the collaboration.  And yet additional R&D and private control do increase the foreign share in 

10.1 and 10.2. 

The foreign placement indicator contributes strongly to foreign collaboration.  It is of some interest to 

note that the share of equipment expenditures in the recent past significantly discourages foreign 

                                                 
19 Grouped Logit writes the regression function as ( )[ ] uXss +′=− β1/log . 
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collaboration.  This result suggests the role of the funding motive (see section II) for foreign and other 

collaborations, especially in equipment-intensive fields such as astronomy and experimental physics, which 

are well represented in these data (see figures 9 and 10 and table 6).  Foreign collaborations could amortize 

fixed costs of expensive equipment across countries in such fields. 

Table 11 repeats the exercise of tables 9 and 10, this time using the logarithm of the relative U.S. 

corporate share in the research of a university-field as the dependent variable.  While the stock of R&D per 

paper has rather weak effects on the corporate share, private control of a university increases U.S. corporate 

collaboration at a high level of statistical significance.  In contrast university-fields that have earned many 

prestigious awards collaborate less with firms.  What these results suggest to us is that corporate R&D 

support is much sought after by private universities.  This is true, except in the case of departments with a 

strong basic science focus that tend to win prestigious awards and extensive federal support. Notice that 

because firms are the primary supporters of research collaborations with universities, it is their R&D that is 

the likely driver of collaboration, not the university-field’s R&D. 

Also in table 11, the fraction of former PhDs placed in industry strongly drives collaboration with 

firms, as one would expect. Recent equipment-intensity also appears to substitute for firm collaborations, 

again suggesting the role of outside research partners in underwriting equipment expense. 

Tables 8-11 hold constant science field, R&D stock, private control, PhD placements, equipment 

intensity of R&D, as well as other variables.  For this reason time effects from the regression tables should 

lie closer to “pure” effects of technological change on collaboration than trends in the raw data.  To show 

what these effects look like, figure 11 graphs the regression coefficients from the time dummies in 

equations 8.1, 9.1, 10.1, and 11.1, which we previously suppressed in the interest of brevity.  A comparison 

of the various line graphs confirms what we have already seen—that the foreign share increases more 

rapidly than the other indicators, and so on.  However, there is an interesting jump in the time series of 

relative shares contributed by foreign institutions, U.S. universities, and U.S. firms, which occurs between 

1990 and 1991.  This jump likely applies to papers written in the late 1980s.  Our guess is that the jump 

measures the increasing availability of information technology, which enables team workers to collaborate 

more cheaply and effectively at a distance.  This seems especially reasonable given that there is no clear 
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jump in team size at this time, so that external coworkers are replacing internal coworkers.  We concede 

that this point is somewhat speculative and that more work is needed to prove the claim.              

The empirical work concludes with Table 12, which is concerned with the explanation of research 

“output” measured by the sum of fractions of papers and citations to those papers by a university-field20.  

The estimation method is Ordinary Least Squares.  As before, year and field dummies are included 

throughout the table.  Equations 12.1 to 12.3 use the logarithm of the fractional number of papers as the 

dependent variable, while 12.4 to 12.6 use the logarithm of fractional five-year citations.  By “fractional” of 

course, we mean the sum of the internal paper and citation fractions within a university-field 

In equation 12.1 and the others the coefficient of the logarithm of the lagged stock of R&D is as 

expected, positive and highly significant.  However, it is also significantly less than 1.0, consistent with the 

findings of Adams and Griliches (1998) that suggest diminishing returns to the stock of R&D at the 

university-field level.  The logarithm of all authors per paper decreases the output of papers in 12.1.  

However, this anomalous result merely picks up movement of authorship outside the university-field.  The 

negative sign is spurious: larger teams involve more institutional collaboration, a smaller number of inside 

authors, and thus a smaller number of internal, fractional papers.  To see this more clearly notice that when 

the fractional number of authors inside a university-field is used instead, as in 12.2, the coefficient on the 

logarithm of authors reverses and becomes positive and highly significant.  This is precisely the pattern of 

sign that one would expect of indicators of the division of labor such as team size. 

Equation 12.3 adds shares of other U.S. universities foreign institutions, and U.S. firms to 12.1. 

Shares of outside institutions reduce the fractional number of papers, in part because, as already noted, 

authorship moves away from the university-field.  Another possibility, which is raised by the citation 

results, is that a quantity-quality tradeoff exists in the data.  An increase in the foreign share may genuinely 

imply that fewer but better papers are written within a university-field. 

If equations 12.1 to 12.3 seem to suggest that collaboration reduces the number of papers for 

reasons that are mostly spurious, then 12.4 to 12.6 indicate that institutional collaboration increases citation 

and thus total scientific impact.  However, the counterpart to the spurious negative effect of all team 

                                                 
20 Recall that if a university-field contributes half a paper, the fraction assigned is ½; if it contributes a 
third, then the fraction is 1/3, and so forth. See fn. 7.  For present purposes this fractionation of papers and 
citations avoids multiple counting of the papers and citations across universities.   

 19



 

members on papers in 12.1, is the much smaller output elasticity of all authors in 12.4 compared with that 

of “inside” authors in 12.5.  In 12.6 we see that that institutional collaboration also increases fractional 

citations.  Overall, the evidence of table 12 suggests that the scientific division of labor increases research 

“output” as measured by total influence of a university-field21.    

VII. Discussion and Conclusion         

This paper has presented evidence on patterns of research collaboration in U.S. universities over the 

last two decades of the 20th century.  The evidence on the size of scientific teams, as measured by authors 

per paper, suggests that specialization and the division of labor have increased markedly over this period, 

especially during the 1990s.  Our findings on collaboration between institutions suggest a similar pattern of 

developments, but with some new twists.  Collaboration with foreign universities increases more rapidly 

over time than team size, while domestic collaboration increases less rapidly.  We take this as evidence that 

the location of team members is shifting and is becoming more geographically dispersed.  However, we 

lack complete information on the causal factors directing this dispersion.  It seems plausible to say that 

domestic collaboration has for a long time been more feasible than international collaboration, and that 

only recently have modern communications technologies made international science viable for researchers 

on projects of normal size.  This interpretation receives support from figures 7 and 8 where it is the smaller 

teams that are becoming internationalized at a faster rate.  But in addition, an increasing emphasis on large 

databases, as in biology and medicine, and on massive instrumentation, as in astronomy and physics, may 

have also played important roles in these trends towards greater internationalization.   

The growth of collaboration as observed in this article could be viewed as consistent with the 

increasing efficiency of the research enterprise.  Collaboration at a distance permits a combination of 

complementary capabilities that leads to the execution of more and hopefully better research.  In this way it 

is likely welfare-improving. However, a more somber interpretation is that lagging public funding of 

scientific research compels universities to engage in institutional collaborations, especially with firms and 

foreign institutions, as a substitute means of support.  

                                                 
21 This is not a perfect test.  Some citations could involve hidden self-citations to previous collaborations by 
the same research team.  We cannot address this upward bias with the data that we have, because we cannot 
link names and addresses of researchers, including across papers. 
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Appendix 
The 110 Top Universities 

  
 

Appendix Table A-1 
The Top 110 U.S. Universities in the Institute for Scientific Information (ISI) Database 

Ranked By 1998 Federal R&D 
 

University Name (Rank) 

 
1998 Federal 

R & D 
Expenditures 

 

University Name (Rank) 

 
1998 Federal 

R & D 
Expenditures 

 
Johns Hopkins University (1) 752.983* Emory University (36) 118.045 

Stanford University (2) 342.426 University of Iowa (37) 115.312 

University of Washington – Seattle (3) 336.748 University of California-Davis (38) 114.912 

University of Michigan, All Campuses (4) 311.450 Georgia Institute of Technology, All Campuses (39) 113.643 

Massachusetts Institute of Technology (5) 310.741 Baylor College of Medicine (40) 110.610 

University of California-San Diego (6) 262.303 University of Florida (41) 106.510 

Harvard University (7) 251.876 Vanderbilt University (42) 106.325 

University of Pennsylvania (8) 247.914 Boston University (43) 104.428 

University of Wisconsin-Madison (9) 240.513 University of Miami (44) 101.492 

University of California-Los Angeles (10) 233.702 New York University (45) 101.426 

Columbia University, All Campuses (11) 229.723 University of Utah (46) 100.722 

University of Colorado, All Campuses (12) 228.342 University of Massachusetts, All Campuses (47) 100.122 

University of California-San Francisco (13) 219.912 University of Texas Southwestern Med Center Dallas (48) 97.200 

University of Alabama, All Campuses (14) 205.511 Indiana University, All Campuses (49) 95.840 

Yale University (15) 205.046 Carnegie Mellon University (50) 95.046 

University of Minnesota, All Campuses (16) 204.741 University of Virginia, All Campuses (51) 93.328 

Cornell University, All Campuses (17) 204.187 Purdue University, All Campuses (52) 92.844 

University of Southern California (18) 190.547 SUNY at Stony Brook, All Campuses (53) 91.531 

Washington University (19) 187.173 University of Cincinnati, All Campuses (54) 90.307 

Pennsylvania State University, All Campuses (20) 186.274 University of Hawaii at Manoa (55) 86.886 

California Institute of Technology (21) 177.748 Georgetown University (56) 84.801 

Duke University (22) 172.532 University of New Mexico, All Campuses (57) 84.365 

University of North Carolina at Chapel Hill (23) 171.505 Virginia Polytechnic Institute and State University (58) 82.734 

University of California-Berkeley (24) 171.135 Oregon State University (59) 82.416 

University of Illinois at Urbana-Champaign (25) 168.871 Michigan State University (60) 81.146 

University of Pittsburgh, All Campuses (26) 168.511 Colorado State University (61) 80.451 

University of Texas at Austin (27) 165.082 Yeshiva University (62) 80.000 

University of Arizona (28) 161.999 North Carolina State University at Raleigh (63) 79.533 

Texas A&M University, All Campuses (29) 144.938 University of Maryland at Baltimore (64) 78.037 

Case Western Reserve University (30) 132.274 SUNY at Buffalo, All Campuses (65) 76.037 

University of Rochester (31) 130.773 University of Illinois at Chicago (66) 73.797 

University of Maryland at College Park (32) 129.198 Oregon Health Sciences University (67) 71.054 

Northwestern University (33) 127.911 University of Texas Health Science Center Houston (68) 70.446 

University of Chicago (34) 125.982 Rutgers the State University of NJ, All Campuses (69) 69.829 

Ohio State University, All Campuses (35) 124.177 University of Tennessee, All Campuses (70) 69.793 
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Appendix Table A-1 

The Top 110 U.S. Universities in the Institute for Scientific Information (ISI) Database 
Ranked By 1998 Federal R&D 

 

University Name (Rank) 

 
1998 Federal 

R & D 
Expenditures 

 

University Name (Rank) 

 
1998 Federal 

R & D 
Expenditures 

 
Princeton University (71) 69.005 Louisiana State University, All Campuses (91) 67.090 

University of California-Santa Barbara (72) 68.408 University of California-Irvine (92) 65.902 

Woods Hole Oceanographic Institution (73) 64.765 Washington State University (93) 44.510 

University of Missouri, All Campuses (74) 63.556 Brown University (94) 44.412 

Tufts University (75) 61.167 Rockefeller University (95) 43.845 

University of Kentucky, All Campuses (76) 60.760 Arizona State University Main (96) 41.359 

University of Nebraska, All Campuses (77) 58.482 Rice University (97) 34.772 

Wayne State University (78) 57.646 University of Delaware (98) 33.688 

Wake Forest University (79) 56.705 CUNY, All Campuses (99) 32.412 

New Mexico State University, All Campuses (80) 56.587 University of AK Fairbanks, All Campuses (100) 31.505 

University of Texas Health Science Center San Antonio (81) 55.004 University of Vermont (101) 31.460 

Utah State University (82) 54.903 University of California-Santa Cruz (102) 29.849 

University of Georgia (83) 54.712 Syracuse University, All Campuses (103) 29.200 

University of Connecticut, All Campuses (84) 53.189 Brandeis University (104) 28.098 

Tulane University (85) 52.924 University of Oregon (105) 27.041 

Iowa State University (86) 51.196 University of New Hampshire (106) 25.913 

University of Kansas, All Campuses (87) 50.567 West Virginia University (107) 24.985 

Florida State University (88) 50.451 University of California-Riverside (108) 22.988 

Virginia Commonwealth University (89) 48.167 Loyola University of Chicago (109) 17.685 

Dartmouth College (90) 45.053 Lehigh University (110) 13.019 
Notes.  Federal R&D is taken from the CASPAR database of the National Science Foundation.  * The data 
for Johns Hopkins University includes R&D expense for the Applied Physics Laboratory.  
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Figure 1--Total Papers, Top 110 Equivalents, and US Equivalents of the Top 11 U.S. 
Universities, 1981-1999
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Figure 2--Top 110 U.S. Universities and Top 200 U.S. R&D Firms
Per Paper, 1981-1999
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Figure 3--Foreign Schools, Foreign Instiutions, and All Institutions
Per Paper, 1981-1999
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Figure 4--Mean Authors and Institutions per Paper, 1981-1999
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Figure 5--Foreign Address Counts per Paper,
By Region of the World, 1981-1999
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Figure 6--Normalized Foreign Address Counts per Paper,
By Region of the World, 1981-1999 (1981=1.0)
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Figure 7--Foreign Address Share per Paper,
By Team Size, 1981-1999
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Figure 8--Normalized Foreign Address Share per Paper,
By Team Size, 1981-1999 (1981=1.0)
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Figure 9--Foreign Address Share per Paper,
By Degree of Internationalization, 1981-1999 
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Figure 10--Normalized Foreign Address Share per Paper,
By Degree of Internationalization, 1981-1999 (1981=1.0)
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Figure 11--Trends in Team Size and Institutional Collaborations,
Time Effects from Regression Analysis, 1983-1999 (1983=0.0)
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Table 1 

Composition of 12 Main Science Fields, 
Papers and Citations of the Top 110 U.S. Universities 

 
 

Main Science Field 
 

Sub-Field Composition of Main Science Field 
 

 
Agriculture 
 

 
General agriculture and agronomy; aquatic sciences; animal sciences; plant sciences; agricultural 
chemistry; entomology and pest control; food science and nutrition; veterinary medicine and animal 
health 
 

Astronomy 
 

Astronomy and astrophysics 

Biology 
 

General biological sciences; biochemistry and biophysics; cell and developmental biology; ecology 
and environment; molecular biology and genetics; biotechnology and applied microbiology; 
microbiology; experimental biology; immunology; neurosciences and behavior; pharmacology and 
toxicology; physiology; oncogenesis and cancer research  
 

Chemistry 
 

General chemistry; analytical chemistry; inorganic and nuclear chemistry; organic chemistry and 
polymer science; physical chemistry and chemical physics; spectroscopy, instrumentation, and 
analytical science 
  

Computer Science 
 

Computer science and engineering; information technology and communications systems 
 

Earth Sciences 
 

Atmospheric sciences; geology and other earth sciences; geological, petroleum, and mining 
engineering; oceanography 
  

Economics and Business 
 

Economics; accounting; decision and information sciences; finance, insurance, and real estate; 
management; marketing 
 

 
Engineering 
 

 
Aeronautical engineering; biomedical engineering; chemical engineering; civil engineering; 
electrical and electronics engineering; engineering mathematics; environmental engineering and 
energy; industrial engineering; materials science; mechanical engineering; metallurgy; nuclear 
engineering 
 

Mathematics and Statistics 
 

Mathematics; biostatistics and statistics 

Medicine 
 

General and internal medicine; anesthesia and intensive care; cardiovascular and hematology 
research; cardiovascular and respiratory systems; clinical immunology and infectious disease; 
clinical psychology and psychiatry; dentistry and oral surgery; dermatology; endocrinology, 
metabolism, and nutrition; environmental medicine and public health; gastroenterology and 
hepatology; health care sciences and services; hematology; medical research, diagnosis, and 
treatment; medical research, general topics; medical research, organs and systems; neurology; 
oncology; ophthalmology; orthopedics, rehabilitation, and sports medicine; otolaryngology; 
pediatrics; radiology, nuclear medicine, and imaging; reproductive medicine; research, laboratory 
medicine, and medical technology; rheumatology; surgery; urology and nephrology   
 

Physics 
 

General physics; applied physics, condensed matter, and materials science; optics and acoustics 
 

Psychology Psychology and psychiatry 
 

Source: Institute for Scientific Information   
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Table 2 

Distribution of Papers by Field, of the Top 110 U.S. Universities 
1981, 1990, 1999, and All Years 

 
 

Number of Papers 
  

Field of Science 
  

1981 
 

1990 1999 All Years 

     

Agriculture 
8,697 

(9.0%) 
 

10,714 
(8.5%) 

9,341 
(6.1%) 

189,004 
(7.8%) 

Astronomy 
1,688 

(1.7%) 
 

1,581 
(1.3%) 

2,913 
(1.9%) 

35,508 
(1.5%) 

Biology 
24,928 
(25.7%) 

 

32,495 
(25.7%) 

41,742 
(27.4%) 

634,737 
(26.3%) 

Chemistry 
7,951 

(8.2%) 
 

10,432 
(8.3%) 

12,205 
(8.0%) 

194,798 
(8.1%) 

Computer Science 
872 

(0.9%) 
 

1,611 
(1.3%) 

2,045 
(1.3%) 

28,037 
(1.2%) 

Earth Sciences 
2,802 

(2.9%) 
 

3,818 
(3.0%) 

4,956 
(3.3%) 

72,920 
(3.0%) 

Economics 
1,758 

(1.8%) 
 

2,600 
(2.1%) 

2,363 
(1.6%) 

43,540 
(1.8%) 

Engineering 
5,334 

(5.5%) 
 

9,204 
(7.3%) 

11,689 
(7.7%) 

170,147 
(7.1%) 

Mathematics 
3,086 

(3.2%) 
 

3,127 
(2.5%) 

3,623 
(2.4%) 

60,710 
(2.5%) 

Medicine 
26,791 
(27.6%) 

 

33,154 
(26.3%) 

41,199 
(27.0%) 

648,704 
(26.9%) 

Physics 
7,289 

(7.5%) 
 

11,521 
(9.1%) 

13,840 
(9.1%) 

215,942 
(9.0%) 

Psychology 5,770 
(6.0%) 

6,017 
(4.8%) 

6,538 
(4.3%) 

115,482 
(4.8%) 

     
Total 96,966 126,274 152,454 2,409,529 
     

  Source: Institute for Scientific Information and authors’ calculations. 
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Table 3 
Team Size and Its Rate of Growth, by Field, of the Top 110 U.S. Universities 

1981, 1990, and 1999 
 

 
Mean Authors Per Paper 

 

 
 
 

Field of Science 
 

1981 

 
% Annual 

Growth Rate, 
1981-1990 

 

 
 

1990 

 
% Annual 

Growth Rate, 
1990-1999 

 
 

1999 

      

Agriculture 2.407 
 

1.55 2.768 
 

2.00 3.314 
 

Astronomy 2.654 
 

2.36 3.283 
 

4.57 4.952 
 

Biology 2.810 
 

2.11 3.398 
 

2.55 4.274 
 

Chemistry 2.816 
 

1.04 3.093 
 

1.68 3.597 
 

Computer Science 1.861 
 

1.47 2.124 
 

2.42 2.640 
 

Earth Sciences 2.288 2.30 2.814 
 

2.78 3.615 

Economics 1.572 
 

1.04 1.727 
 

1.29 1.939 
 

Engineering 2.289 
 

1.14 2.537 
 

1.80 2.984 
 

Mathematics 1.531 
 

0.97 1.671 
 

1.47 1.907 
 

Medicine 3.259 
 

1.79 3.828 
 

1.99 4.580 
 

Physics 3.091 
 

5.46 5.053 
 

4.03 7.264 
 

Psychology 2.209 
 

1.66 2.565 
 

2.24 3.138 
 

      
Total 2.766 2.19 3.368 2.57 4.244 
      
Source: Institute for Scientific Information and authors’ calculations. 
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Table 4 

Distance Between Team Workers in the Top 110 U.S. Universities, 
By Field, 1981, 1990, and 1999 

 
 

Mean Distance in Miles 
 

 
 
 

Field of Science 
 

1981 

 
% Annual 

Growth Rate, 
1981-1990 

 

 
 

1990 

 
% Annual 

Growth Rate, 
1990-1999 

 
 

1999 

      

Agriculture 50.9 
 

2.63 64.5 
 

7.15 122.8 
 

Astronomy 264.6 
 

2.76 339.2 
 

1.82 399.5 
 

Biology 76.8 
 

4.45 114.6 
 

4.46 171.2 
 

Chemistry 50.8 
 

0.58 53.5 
 

4.65 81.3 
 

Computer Science 138.2 
 

0.45 143.9 
 

0.12 145.4 
 

Earth Sciences 145.7 
 

2.29 179.1 5.95 306.0 

Economics 124.8 
 

4.28 183.5 
 

0.81 197.3 
 

Engineering 61.2 1.76 71.7 2.94 93.4 
 

Mathematics 128.3 
 

1.68 149.2 
 

1.50 170.8 
 

Medicine 62.2 
 

5.34 100.6 
 

4.84 155.5 
 

Physics 92.6 
 

2.51 116.1 
 

3.40 157.7 
 

Psychology 88.8 
 

4.18 129.4 
 

4.55 194.8 
 

      
Total 77.7 3.53 106.8 4.45 159.4 
      
Source: Institute for Scientific Information and authors’ calculations. 
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Table 5 
Indicators of U.S. Institutional Collaboration, 

By Field, Paper of the Top 110 Universities, 1981 and 1999 
 

 
Other Top 110 Universities Per Paper* 

 

 
Top 200 Firms Per Paper 

 
 

Field of Science 
  

1981 
 

 
%Annual Growth 
Rate, 1981-1999 

 

 
1999 

 
1981 

 
%Annual Growth 
Rate, 1981-1999 

 

 
1999 

       

Agriculture 0.224 
 

5.44 0.630 0.003 8.11 0.014 

Astronomy 0.387 
 

2.72 0.649 0.016 -0.34 0.015 

Biology 0.403 
 

5.45 1.135 0.007 6.03 0.022 

Chemistry 0.195 
 

7.50 0.811 0.023 2.78 0.039 

Computer Science 0.197 
 

2.55 0.320 0.078 4.25 0.175 

Earth Sciences 0.250 
 

3.71 0.506 0.021 0.24 0.022 

Economics 0.177 
 

3.47 0.342 0.009 -3.09 0.005 

Engineering 0.175 
 

4.73 0.430 0.046 2.91 0.080 

Mathematics 0.166 
 

3.11 0.300 0.012 2.69 0.020 

Medicine 0.500 
 

3.67 1.005 0.005 8.26 0.024 

Physics 0.280 
 

3.98 0.596 0.048 0.11 0.049 

Psychology 0.214 
 

5.34 0.590 0.002 6.59 0.007 

       
Total 0.345 4.70 0.843 0.014 4.18 0.031 
       

Source: Institute for Scientific Information and authors’ calculations. *This is the number of top 110 
universities per paper minus one.  This measure maintains symmetry with top 200 firms per paper, which is 
the number of “other” institutions as well, in this case, top R&D firms. 
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Table 6 

Measures of Foreign Affiliation, by Field 
Papers of the Top 110 Universities, 1981, 1990, and 1999 

 
Mean Share of Foreign Affiliations 

 [Mean Foreign Affiliations, Mean Total Affiliations] 
 

 
 

Field of Science 
  

Foreign 
Institutional 

Affiliations in 
1981 

 

 
% Annual 
Growth In 

Foreign Share, 
1981-1990 

 
Foreign 

Institutional 
Affiliations in 

1990 

 
% Annual 
Growth In 

Foreign Share, 
1990-1999 

 
Foreign 

Institutional 
Affiliations in 

1999 

      

Agriculture 
0.028 

[0.067,1.482] 
 

4.77 0.043 
[0.113,1.638] 

 

9.81 0.104 
[0.340,2.397] 

 

Astronomy 
0.086 

[0.247,1.963] 
 

5.49 0.141 
[0.509,2.479] 

 

6.14 0.245 
[1.144,3.436] 

 

Biology 
0.034 

[0.092,1.732] 
 

6.31 0.060 
[0.189,2.046] 

 

6.73 0.110 
[0.455,3.085] 

 

Chemistry 
0.046 

[0.111,1.456] 
 

3.14 0.061 
[0.161,1.573] 

 

6.35 0.108 
[0.363,2.441] 

 

Computer Science 
0.043 

[0.102,1.479] 
 

3.70 0.060 
[0.151,1.680] 

 

7.03 0.113 
[0.317,2.057] 

 

Earth Sciences 
0.052 

[0.141,1.627] 
 

5.33 0.084 
[0.267,1.950] 

 

7.23 0.161 
[0.559,2.626] 

 

Economics 
0.041 

[0.092,1.432] 
 

3.06 0.054 
[0.130,1.634] 

 

6.16 0.094 
[0.255,1.926] 

 

Engineering 
0.040 

[0.095,1.506] 
 

3.13 0.053 
[0.131,1.574] 

 

7.60 0.105 
[0.302,2.111] 

 

Mathematics 
0.071 

[0.161,1.438] 
 

4.45 0.106 
[0.248,1.588] 

 

5.12 0.168 
[0.422,1.901] 

 

Medicine 
0.021 

[0.067,2.035] 
 

6.29 0.037 
[0.132,2.265] 

 

8.14 0.077 
[0.345,3.140] 

 

Physics 
0.070 

[0.205,1.721] 
 

3.74 0.098 
[0.456,2.169] 

 

7.70 0.196 
[1.194,3.187] 

 

Psychology 
0.016 

[0.042,1.559] 
 

6.22 0.028 
[0.075,1.775] 

 

8.28 0.059 
[0.188,2.329] 

 

Total 0.036 
[0.097,1.731] 

5.11 0.057 
[0.186,1.971] 

7.41 0.111 
[0.466,2.840] 

      
Source: Institute for Scientific Information and authors’ calculations. 
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Table 7 

Means and Standard Deviations of Principal Regression Variables 
Top 110 U.S. University Data 

 
 

Variable 
 

Mean 
(S.D.)  

  
Indicators of Teamwork and Research “Output”  
  

Number of Authors in a University-Field per Paper 2.65 
(0.96) 

Number of Authors per Paper 4.26 
(6.43) 

Other Top 110 U.S. Universities per Paper 
 

0.41 
(0.57) 

Foreign Share per Paper  0.07 
(0.05) 

U.S. Corporate Share Per Paper 
 

0.02 
(0.02) 

Number of Papers by a University-Field 
 

149.28 
(158.28) 

Number of Citations Received by a University-Field, 
This Year and the Next Four Years 

708.75 
(1575.74) 

  
Characteristics of University-Fields 
  

Stock of Federally Funded R&D in a University and Field 
(in Thousands of 1992 Dollars) 

58,277.65 
(81,955.07) 

Stock of Federally Funded R&D in a University and Field 
Per Paper (in Thousands of 1992 Dollars) 

485.71 
(746.57) 

Private University 0.35 
(0.48) 

Number of Awards a 0.23 
(0.62) 

Local University R&D Ratio b  
 

0.08 
(0.16) 

Equipment Expenditure/R&D, 
Previous Three Years 

0.07 
(0.05) 

Share of Graduate Students Placed in Top 20 Percent 
Schools, lagged two Years  

0.10 
(0.14) 

Share of Graduate Students Placed in U.S. Firms, lagged 
Two Years 

0.18 
(0.20) 

Share of Graduate Students Placed in 12 Top Research 
Countries, lagged two years c
 

0.05 
(0.10) 

Notes:  Sources for the data are the Institute for Scientific Information, National Science Foundation, 
National Research Council, and authors’ calculations.   a Awards include the Fields Medal, MacArthur 
Awards, the National Medal of Science, the National Medal of Technology, Fellow of the National 
Academy of Science, and the Nobel Prize.  See the text for a further discussion. b The Local University 
R&D Ratio equals R&D in the same field but in other universities within 25 miles, divided by R&D in the 
same field but in other universities within 200 miles.  c Research countries are Australia, Canada, France, 
Germany, Japan, the United Kingdom, Italy, the Netherlands, Israel, New Zealand, Sweden, and 
Switzerland. 
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Table 8 
Determinants of Team Size 

Dependent Variable: Log (Authors/Paper) 
(T-Statistics in Parentheses) 

 
 

Variable or Statistic 
 

 
Eq. 8.1 

 
Eq. 8.2 

 
Eq. 8.3 

 
Eq. 8.4 

 
Time Period 
 

 
1983-1999 

 
1983-1999 

 
1983-1999 

 
1983-1999 

Restrictions on Team Size 
 

None Less than 10 
Workers 

None Less than 10 
Workers 

Fields Included All 12 Main 
Fields 

All 12 Main 
Fields 

10 Fields a 10 Fields a

Year Dummies Included 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Field Dummies Included 
 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Log (Stock of Federally Funded R & D, 
Divided by papers lagged two years) 

0.012 
(3.0)** 

0.014 
(6.4)** 

0.007 
(1.5) 

0.007 
(2.6)** 

Private University 
(1=yes, 0=No) 

0.044 
(7.5)** 

0.035 
(10.6)** 

0.049 
(6.3)** 

0.031 
(7.3)** 

Number of Awards a 

 
  0.021 

(3.1)** 
0.019 

(5.4)** 
Local University R&D Ratio   0.020 

(1.0) 
0.026 
(2.3)* 

Equipment Expenditure/R&D, 
Previous Three Years 

  -0.166 
(-2.5)** 

-0.010 
(-0.3) 

Top 20 Percent In Field 
(1=yes, 0=No) 

  -0.029 
(-3.0)** 

0.001 
(0.3) 

Root MSE 
 

0.267 0.147 0.295 0.155 

Adjusted R 2
 

0.76 0.81 0.76 0.78 

Number of Observations 
 

9,638 9,228 7,371 6,979 

Notes:  Estimation Method is OLS.  Sources for the data are the Institute for Scientific Information, the 
National Science Foundation, the National Research Council, and authors’ calculations. The dependent 
variable is the logarithm of the mean number of authors per paper in a university, field, and year.  a 

Agriculture and Medicine lack data on prizes and awards   b Awards include the Fields Medal, MacArthur 
Awards, the National Medal of Science, the National Medal of Technology, Fellow of the National 
Academy of Science, and the Nobel Prize.  See the text for a further discussion.  c The Local University 
R&D Ratio equals R&D in the same field but in other universities within 25 miles, divided by R&D in the 
same field but in other universities within 200 miles.  **Parameter is significantly different from zero at the 
1% level for a one-tailed test.  * Parameter is significantly different from zero at the 5% level for a one-
tailed test.   
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Table 9 
Determinants of Relative Contribution of U.S. Universities 

Dependent Variable: Log (Other Top 110 Share/(1-Other Top 110 Share)) 
(T-Statistics in Parentheses) 

 
 

Variable or Statistic 
 

 
Eq. 9.1 

 
Eq. 9.2 

 
Eq. 9.3 

 
Eq. 9.4 

 
Time Period 
 

 
1983-1999 

 
1983-1999 

 
1983-1999 

 
1983-1999 

Fields Included All 12 Main 
Fields 

All 12 Main 
Fields 

10 Fields a 10 Fields a

Year Dummies Included 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Field Dummies Included 
 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Log (Stock of Federal Funded R & D, 
per Paper Lagged Two Years) 

0.056 
(11.8)** 

0.067 
(12.7)** 

0.068 
(12.8)** 

0.067 
(12.2)** 

Private University 
(1=yes, 0=No) 

0.076 
(13.1)** 

0.057 
(8.9)** 

0.101 
(15.1)** 

0.078 
(10.5)** 

Number of Awards b 

 
  0.021 

(4.9)** 
0.019 

(4.3)** 
Fraction of PhDs Placed In Top 40 Percent 
Departments, Lagged Two Years 

 0.053 
(2.6)** 

 0.103 
(4.5)** 

Local University R&D Ratio c 

 
 0.218 

(12.0)** 
 0.204 

(10.4)** 
Equipment Expenditure/R&D, 
Previous Three Years 

 0.074 
(1.0) 

 0.005 
(0.1) 

Top 20 Percent in Field 
(1 if yes, 0 if no) 

 -0.034 
(-5.1)** 

 -0.022 
(-2.8)** 

Root MSE 
 

0.268 0.267 0.270 0.266 

Adjusted R 2
 

0.57 0.57 0.60 0.61 

Number of Observations 
 

9,613 8,621 7,726 7,182 

Notes:  Estimation method is Grouped Logit. Sources for the data are the Institute for Scientific 
Information, National Science Foundation, National Research Council, and authors’ calculations.  
a Data on prizes and awards are missing for agriculture and medicine.  b Awards include the Fields Medal, 
MacArthur Awards, the National Medal of Science, the National Medal of Technology, Fellow of the 
National Academy of Science, and the Nobel Prize.  See the text for further discussion.  c The Local 
University R&D Ratio equals R&D in the same field but in other universities within 25 miles, divided by 
R&D in the same field but in other universities within 200 miles.  **Parameter is significantly different 
from zero at the 1% level for a one-tailed test.  * Parameter is significantly different from zero at the 5% 
level for a one-tailed test.   
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Table 10 
Determinants of the Relative Foreign Contribution 

Dependent Variable: Log (Foreign Share /(1- Foreign Share)) 
(t-Statistics in Parentheses) 

 
 

Variable or Statistic 
 

 
Eq. 10.1 

 
Eq. 10.2 

 
Eq. 10.3 

 
Eq. 10.4 

 
Time Period 
 

 
1983-1999 

 
1983-1999 

 
1983-1999 

 
1983-1999 

Fields Included All 12 Main 
Fields 

All 12 Main 
Fields  

10 Fields a 10 Fields a

Year Dummies Included 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Field Dummies Included 
 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Log (Stock of Federally Funded R & D 
divided by papers lagged 2 years) 

0.026 
(4.7)** 

0.014 
(2.4)* 

0.008 
(1.2) 

0.005 
(0.7) 

Private University 
(1=yes, 0=No) 

0.035 
(5.2)** 

0.030 
(4.2)** 

0.007 
(0.8) 

0.008 
(1.0) 

Number of Awards b
 

  0.021 
(4.2)** 

0.018 
(3.2)** 

Fraction of PhDs Placed In the Top 12 c 
Research Countries, Lagged Two Years  

 0.278 
(7.1)** 

 0.194 
(4.4)** 

Equipment Expenditure/R&D, 
Previous Three Years 

 -0.510 
(-6.7)** 

 -0.378 
(-5.0)** 

Top 20 Percent in Field 
(1 if yes, 0 if no) 

 0.035 
(5.0)** 

 0.009 
(1.0) 

Root MSE 
 

0.312 0.309 0.312 0.310 

Adjusted R 2
 

0.72 0.73 0.67 0.67 

Number of Observations 
 

9,509 9,169 7,629 7,461 

Notes:  Estimation method is Grouped Logit. Sources for the data are the Institute for Scientific 
Information, National Science Foundation, National Research Council, and authors’ calculations. 
a Agriculture and Medicine lack data on prizes and awards   b Awards include the Fields Medal, MacArthur 
Awards, the National Medal of Science, the National Medal of Technology, Fellow of the National 
Academy of Science, and the Nobel Prize.  See the text for a further discussion.  c The top 12 research 
countries are Australia, Canada, France, Germany, Israel, Italy, Japan, the Netherlands, New Zealand, 
Sweden, Switzerland, and the United Kingdom.  See the text for further details.  **Parameter is 
significantly different from zero at the 1% level for a one-tailed test.  * Parameter is significantly different 
from zero at the 5% level for a one-tailed test.   
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Table 11 

Determinants of the Relative U.S. Corporate Contribution 
Dependent Variable: Log (U.S. Corporate Share/(1-U.S. Corporate Share)) 

(t-Statistics in Parentheses) 
 

 
Variable or Statistic 

 

 
Eq. 11.1 

 
Eq. 11.2 

 
Eq. 11.3 

 
Eq. 11.4 

 
Time Period 
 

 
1983-1999 

 
1983-1999 

 
1983-1999 

 
1983-1999 

Fields Included All 12 Main 
Fields 

All 12 Main 
Fields  

10 Fields a  10 Fields a

Year Dummies Included 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Field Dummies Included 
 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Log (Stock of Federally Funded R & D 
divided by papers lagged 2 years) 

0.024 
(2.7)** 

0.026 
(2.8)** 

0.003 
(0.3) 

0.010 
(1.0) 

Private University 
(1=yes, 0=No) 

0.070 
(6.3)** 

0.067 
(5.9)** 

0.144 
(11.3)** 

0.136 
(10.2)** 

Number of Awards b
 

  -0.060 
(-6.8)** 

-0.063 
(-6.6)** 

Fraction of PhDs Placed In U.S. 
Industry, Lagged Two Years 

 0.532 
(14.3)** 

 0.482 
(11.5)** 

Equipment Expenditure/R&D, 
Previous Three Years 

 -0.263 
(-2.4)* 

 -0.316 
(-2.7)** 

Top 20 Percent in Field 
(1 if yes, 0 if no) 

 -0.005 
(-0.4) 

 0.010 
(0.8) 

Root MSE 
 

0.461 0.453 0.460 0.452 

Adjusted R 2
 

0.69 0.70 0.63 0.64 

Number of Observations 
 

8,378 8,103 6,597 6,472 

Notes:  Estimation method is Grouped Logit. Sources for the data are the Institute for Scientific 
Information, National Science Foundation, National Research Council, and authors’ calculations. 
a Agriculture and Medicine lack data on prizes and awards   b Awards include the Fields Medal, MacArthur 
Awards, the National Medal of Science, the National Medal of Technology, Fellow of the National 
Academy of Science, and the Nobel Prize.  See the text for a further discussion.  **Parameter is 
significantly different from zero at the 1% level for a one-tailed test.  * Parameter is significantly different 
from zero at the 5% level for a one-tailed test.   
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Table 12 
Determinants of Research “Output” 

Dependent Variables: Log (Papers), Log (Citations over Five Years) 
(t-Statistics in Parentheses) 

 
 

Log (Papers) 
 

 
Log (Citations over Five Years) 

 
Variable or Statistic 

 
 

Eq. 12.1 
 

 
Eq. 12.2 

 
Eq. 12.3 

 
Eq. 12.4 

 
Eq. 12.5 

 
Eq. 12.6 

 
Time Period 
 

 
1981-1999 

 
1981-1999 

 
1981-1999 

 
1981-1995 

 
1981-1995 

 
1981-1995 

Fields Included All 12 
Main Fields 

All 12 
Main Fields 

All 12 
Main Fields 

All 12 
Main Fields 

All 12 
Main Fields 

All 12 
Main Fields 

Year Dummies Included 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Field Dummies Included 
 
 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Yes, 
Significant 

Log (Stock of Federally Funded R &D) 0.457 
(89.0)** 

0.450 
(87.1)** 

0.0.443 
(89.3)** 

0.553 
(69.6)** 

0.546 
(68.0)** 

0.557 
(69.6)** 

Log (Authors per Paper) 
 

-0.085 
(-4.8)** 

 0.019 
(1.1) 

0.312 
(10.2)** 

 0.264 
(8.4)** 

Log (University-Field Authors per Paper)  0.286 
(9.0)** 

  0.548 
(10.8)** 

 

Top 110 U.S. University Share per Paper 
 

  -5.973 
(-30.1)** 

  1.276 
(4.0)** 

Foreign Share per Paper    -1.059 
(-7.6)** 

  1.237 
(5.2)** 

U.S. Corporate Share Per Paper 
 

  -.378 
(-1.4) 

  0.094 
(0.2) 

Root MSE 
 

0.497 0.495 0.453 0.688 0.687 0.686 

Adjusted R 2
 

0.80 0.81 0.80 0.82 0.82 0.82 

Number of Observations 
 

10,772 10,772 10,772 8,504 8,504 8,504 

Notes:  Estimation method is OLS. Sources for the data are the Institute for Scientific Information, 
National Science Foundation, National Research Council, and authors’ calculations. 
b Awards include the Fields Medal, MacArthur Awards, the National Medal of Science, the National Medal 
of Technology, Fellow of the National Academy of Science, and the Nobel Prize.  See the text for a further 
discussion.  **Parameter is significantly different from zero at the 1% level for a one-tailed test.  * 
Parameter is significantly different from zero at the 5% level for a one-tailed test. 
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