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ABSTRACT

We develop and implement a new method for maximum likelihood estimation in closed-form of

stochastic volatility models. Using Monte Carlo simulations, we compare a full likelihood

procedure, where an option price is inverted into the unobservable volatility state, to an approximate

likelihood procedure where the volatility state is replaced by the implied volatility of a short dated

at-the-money option. We find that the approximation results in a negligible loss of accuracy. We

apply this method to market prices of index options for several stochastic volatility models, and

compare the characteristics of the estimated models. The evidence for a general CEV model, which

nests both the affine model of Heston (1993) and a GARCH model, suggests that the elasticity of

variance of volatility lies between that assumed by the two nested models.
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1. Introduction

In this paper, we develop and implement a new technique for the estimation of stochastic volatility models

of asset prices. In the early option pricing literature, such as Black and Scholes (1973) and Merton (1973),

equity prices followed a Markov process, usually a geometric Brownian motion. The instantaneous relative

volatility of the equity price is then constant. Evidence from the time series of equity returns against this

type of model was noted at least as early as Black (1976), who commented on the fat tails of the returns

distribution. Evidence from option prices also calls this type of model into question; if equity prices follow a

geometric Brownian motion, the implied volatility of options should be constant through time, across strike

prices, and across maturities. These predictions can easily be shown to be false; see, for example, Stein

(1989), Aït-Sahalia and Lo (1998) or Bakshi et al. (2000). One class of models that attempts to model

equity prices more realistically takes the approach of having instantaneous volatility be time-varying and a

function of the stock price. These state-dependent, time-varying, volatility models represent a limited form of

stochastic volatility; the stock price still follows a (time-inhomogeneous) Markov process. Models of this type

include Derman and Kani (1994), Dupire (1994), and Rubinstein (1995). Such models are often able to match

an observed cross-section of option prices (across different strike prices and possibly also across maturities)

perfectly. However, empirical studies such as Dumas et al. (1998) have found that they perform poorly in

explaining the joint time series behavior of the stock and option prices. An alternative is offered by true

stochastic volatility models, such as Stein and Stein (1991) or Heston (1993), in which innovations to volatility

need not be perfectly correlated with innovations to the price of the underlying asset. Such models can explain

some of the empirical features of the joint time series behavior of stock and option prices, which cannot be

captured by the more limited models.

However, estimating stochastic volatility models poses substantial challenges. One challenge is that the

transition density of the state vector is hardly ever known in closed-form for such models; some moments may

or may not be known in closed-form, depending on the model. Furthermore, the additional state variables

which determine the level of volatility are not all directly observed. The estimation of stochastic volatility

models when only the time series of stock prices is observed is essentially a filtering problem, which requires

the elimination of the unobservable variables.1

Alternately, the value of the additional state variables can be extracted from the observed prices of options.

1This can be achieved by computing an approximate discrete time density for the observable quantities by integrating out the

latent variables (see Ruiz (1994) and Harvey and Shephard (1994)) or the derivation of additional quantities such as conditional

moments of the integrated volatility to be approximated by their discrete high frequency versions (see Bollerslev and Zhou (2002)).

For some specific models, typically those in the affine class, other relevant theoretical quantities, such as the characteristic function

(see Chacko and Viceira (2003), Jiang and Knight (2002), Singleton (2001)) or the density derived numerically from the inverse

characteristic function (see Bates (2002)), can be calculated and matched to their empirical counterparts.
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This extraction can be through an approximation technique, such as that of Ledoit et al. (2002), in which the

implied volatility (under the lognormal assumptions of Black and Scholes (1973)) of an at-the-money short-

maturity option is taken as a proxy for the instantaneous volatility (under the stochastic volatility model) of

the stock price. A more difficult, but potentially more accurate, procedure is to calculate option prices for a

variety of levels of the volatility state variables, and use the observed option prices to infer the current levels

of those state variables; see, for example, Pan (2002). The first method has the virtue of simplicity, but is an

approximation that does not permit identification of the market price of risk parameters for the volatility state

variable; the second method is more complex, but allows full identification of all model parameters. Whichever

method is used to extract the implied time series observations of the state vector, subsequent estimation has

typically been simulation-based, relying either on Bayesian methods (as in Jacquier et al. (1994), Kim et al.

(1999) and Eraker (2001)) or on the efficient method of moments of Gallant and Tauchen (1996).

In this paper, we develop a new method that employs maximum likelihood, using closed-form approxima-

tions to the true (but unknown) likelihood function of the joint observations on the underlying asset and either

option prices (when the exact technique described above is used) or the volatility state variables themselves

(when the approximation technique described above is used). The statistical efficiency of maximum likelihood

is well-known, but in financial applications likelihood functions are often not known in closed form for the

model of interest, since the state variables of the underlying continuous time theoretical model are observed

only at discrete time intervals. Our solution to this problem relies on the approach of Aït-Sahalia (2002) and

Aït-Sahalia (2001), who develops series approximations to the likelihood function for arbitrary multivariate

continuous time diffusions at discrete intervals of observations. This technique has been shown to be very

accurate, even when the series are truncated after only a few terms, for a variety of diffusion models (see

Aït-Sahalia (1999) and Jensen and Poulsen (2002)).

In all cases, we rely on observations on the joint time series of the underlying asset price and either an

option price or a short dated at the money implied volatility. By comparing the results we obtain from

the exact procedure (where the option pricing model is inverted to produce an estimate of the unobservable

volatility state variable from the observed option price) to those of the approximate procedure (where the

implied volatility from a short dated at the money option is used as a proxy for the volatility state variable),

we can assess the effect of that approximation. We find that the error introduced by the approximation is

much smaller than the sampling noise inherent in the estimation of the parameters, so that using an implied

volatility proxy does not have adverse consequences (other than not allowing the identification of the market

prices of volatility risk).

The main advantage of our approach is twofold: we provide amaximum-likelihood estimator for the parame-

ters of the underlying model, with all its associated desirable statistical properties, and we do it in closed-form,

fully if an implied volatility is used, and up to the option pricing model linking the state vector to observed
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option prices if those are used.

The closed form feature offers considerable benefits: for example, estimation is quick enough that large

numbers of Monte Carlo simulations can be run to test its accuracy, as we do in this paper. For most

other methods, large numbers of simulations are already required for a single estimation; simulating on top

of simulations to run large numbers of Monte Carlos with these techniques is so time-consuming as to be

practically infeasible, and we are not aware of evidence on their small sample behavior. By contrast, we

demonstrate that our technique is quite feasible for typical stochastic volatility models, even if option prices

rather than implied volatilities are used. Evidence from the included Monte Carlo simulations shows that the

sampling distribution of the estimates is well predicted by standard statistical asymptotic theory, as it applies

to the maximum likelihood estimator.

We illustrate our method using several typical models, including the affine model of Heston (1993), and

a GARCH model (see, for example, Meddahi (2001)), a lognormal model (see, for example, Scott (1987),

Wiggins (1987), Chesney and Scott (1989), Scott (1991), and Andersen et al. (2002b)), and a CEV model

(see, for example, Jones (2003)).2 However, it is also important to note that our technique is applicable to

arbitrary diffusion-based stochastic volatility models; the only requirement is that the model (i.e., its risk

premia, etc.) be sufficiently tractable for option prices to be mapped into the state variables.

The rest of this paper is organized as follows. In Section 2, we discuss a general class of stochastic volatility

models for asset prices. Section 3 presents our estimation technique in detail, showing how to apply it to the

class of models of the previous section. In Section 4, we show how to apply this technique to the four models

cited above, developing the explicit closed-form likelihood expressions, and extracting the state vector from

option prices or directly using an implied volatility proxy. Section 5 tests the accuracy of our technique by

performing Monte Carlo simulations for the model of Heston (1993), assessing in particular the accuracy of

the estimates, the degree to which their sampling distributions conform to asymptotic theory and the effect

of using an implied volatility proxy in lieu of option prices. In Section 6, we apply our technique to real index

option prices for four different stochastic volatility models, and analyze and compare the results. Section 7

shows how to extend the method to jump-diffusions. Finally, Section 8 concludes.

2. Stochastic Volatility Models

We consider stochastic volatility models for asset prices and in this section briefly review them and establish

our notation. Although we refer to the asset as a “stock” throughout, the models described may just as easily

be applied to other classes of financial assets, such as, for example, foreign currencies or futures contracts. A

2An early summary of some of the models we use as examples, as well as several others, may be found in Taylor (1994).
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stochastic volatility model for a stock price is one in which the price is a function of a vector of state variables

Xt that follows a multivariate diffusion process:

dXt = µP (Xt) dt+ σ (Xt) dW
P
t (1)

where Xt is an m-vector of state variables, WP
t is an m-dimensional canonical Brownian motion under the

objective probability measure P , µP (·) is anm-dimensional function ofXt, and σ (·) is anm×mmatrix-valued

function of Xt. The stock price is given by St = f (Xt) for some function f (·), but usually either the stock
price or its natural logarithm is taken to be one of the state variables. We take the stock price itself to be the

first element of Xt, and write Xt = [St;Yt]T , with Yt a N−vector of other state variables, N = m− 1.

From the well-known results of Harrison and Kreps (1979) and Harrison and Pliska (1981), and many

extensions since then, the existence of an equivalent martingale measure Q guarantees the absence of arbitrage

among a broad class of admissible trading strategies.3 Under the measureQ, the state vector follows the process:

dXt = µQ (Xt) dt+ σ (Xt) dW
Q
t (2)

where WQ
t is an m-dimensional canonical Brownian motion under Q, and µQ (·) is an m-dimensional function

of Xt. The stock itself, since it is a traded asset, must satisfy:

dSt = (rt − dt)Stdt+ σ1 (Xt) dW
Q
t (3)

where dt is the instantaneous dividend yield on the stock and σ1 (Xt) denotes the first row of the matrix

σ (Xt). In other words, under the measure Q, an investment in the stock must have an instantaneous expected

return equal to the risk-free interest rate. The instantaneous mean (under Q) of the stock price is therefore

dependent only on the stock price itself, but its volatility can depend on any of the state variables including,

but not limited to, St itself.

The price φ (t,Xt) of a derivative security that does not pay a dividend must satisfy the Feynman-Kac

differential equation:

∂φ (t,Xt)

∂t
+

mX
i=1

∂φ (t,Xt)

∂Xt (i)
µQi (Xt) +

1

2

mX
i=1

mX
j=1

∂2φ (t,Xt)

∂Xt (i)∂Xt (j)
σ2ij (Xt)− rtφ (t,Xt) = 0 (4)

where µQi (Xt) denotes element i of the drift vector µQ (Xt), and σ2ij (Xt) denotes the element in row i and

column j of the diffusion matrix σ (Xt)σ
T (Xt). The price of a derivative security with a European-style

exercise convention must satisfy the boundary condition:

φ (T,XT ) = g (XT ) (5)

3The definition of admissibility appearing in the literature varies. It is usually either an integrability restriction on the trading

strategy, which requires that the Radon-Nikodym derivative of Q with respect to P have finite variance, or a boundedness

restriction on the deflated wealth process, which imposes no such restriction on dQ/dP .
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where T is the maturity date of the derivative and g (XT ) is its final payoff. Usually, the derivative payoff is

a function only of the stock price:

g (XT ) = h (ST ) (6)

for some function h; for standard options, such as puts and calls, this condition is always satisfied.

The nature of a solution to equation (4) depends critically on the volatility specification in equation (3).

If σ1 satisfies:

σ1 (Xt)σ
T
1 (Xt) = σS (St) (7)

for some function σS (St), then the stock price is a univariate process under the measure Q (although not

necessarily under P because of the potential dependence of µP (Xt) on state variables other than St). In this

case, the price of any European-style derivative with a final payoff of the type specified in equation (6) can be

expressed as φ (t,Xt) = ξ (t, St) and equation (4) simplifies to:

∂ξ (t, St)

∂t
+

∂ξ (t, St)

∂St
(rt − dt)St +

1

2

∂2ξ (t, St)

∂St
σ2S (St)− rtξ (t, St) = 0 (8)

with the consequence that the instantaneous changes in prices of all derivative securities are perfectly correlated

with the instantaneous price change of the stock itself. In this case, knowledge of St and the parameters of

the model are sufficient to price any derivative with final payoff of the type in equation (6); any additional

state variables are either wholly irrelevant, or affect the stock price dynamics only under the measure P , and

are therefore irrelevant for derivative pricing purposes. (Of course, if the application at hand is something

other than derivative pricing, the dynamics under the P measure may be relevant.) Models of this type

usually allow explicit time dependency by replacing σS (St) with σS (t, St); see, for example, Derman and Kani

(1994), Dupire (1994), and Rubinstein (1995), who develop univariate models (or, more precisely, discrete-time

approximations to continuous-time univariate models) that have the ability to match an observed cross-section

of option prices perfectly. Some of these techniques are also able to match observed prices of a term structure

(with respect to maturity) of option prices as well. Such models are usually calibrated from the cross-section

and possibly term structure of option prices observed at a single point in time, rather than estimated from

time series observations of the stock price itself. Calibration methods specify dynamics under the measure

Q only, leaving the dynamics under P unspecified. Such methods are therefore able to reflect accurately a

number of empirical regularities, such as volatility smiles and smirks, but cannot tell us anything about risk

premia of the state variables in the model.

Despite this ability to match a cross-section, and often a term structure, of observed option prices perfectly,

Dumas et al. (1998) find that univariate calibrated models imply a joint time series behavior for the stock

price and option prices that is not consistent with the observed price processes. Consequently, such models

require periodic recalibration, in which the volatility function σS (t, St) is changed to match the new observed

cross-section and term structure of option prices. The need for such recalibration shows that the price process
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implied by such models cannot be the true price process, and the implications of such models with respect to

derivatives pricing, hedging, etc., are therefore suspect. Stochastic volatility models, in which equation (7) is

not satisfied, offer an alternative. Having the volatility of the stock depend on a set of state variables that can

have variation independent of the stock price itself permits more flexible time series modeling than is possible

with the univariate calibrated type of model. Furthermore, stochastic volatility models are able to generate

volatility smiles and smirks, although they are not able to match a cross-section of options perfectly, as are

the calibrated models. Nonetheless, a stochastic volatility model with one or more elements in Yt provides

considerable flexibility in modeling. In all the specific models we consider in Sections 4 and 5, volatility

depends on a single state variable (i.e., Yt has a single element).

Although stochastic volatility models offer considerable advantages in modeling, they do present some

estimation challenges. The next section presents a method for performing maximum likelihood estimation of

a stochastic volatility model for equity prices.

3. The Estimation Method

In stochastic volatility models, part of the state vectorXt is not directly observed. There are two fundamentally

different approaches to dealing with this issue in estimation. One approach is to assume that we observe only

a time series of observations of the stock price St, and apply a filtering technique. The elements of Xt, other

than St, are considered unobserved, and, since St is not a Markov process, the likelihood of an observation of St

depends not only on the last observation St−1, but on the entire history of the stock price. Such an approach is

taken by Bates (2002). This approach does not fully identify all of the parameters of the Q-measure dynamics.

The model offers as many as m independent sources of risk, but the stock price instantaneously depends only

on one of these sources. Consequently, only the first element of µQ (·) can be identified. If the dynamics under
the measure P are the object of interest, then this approach has some advantages; for example, an incorrect

specification of the Q-measure dynamics does not taint the P -measure estimation. However, if the Q-measure

dynamics are the objective, then clearly another approach must be taken.

A second approach, which we adopt, it to assume that a time series of observations of both the stock price,

St, and a vector of option prices (which, for simplicity, we take to be call options) Ct is observed. The time

series of Yt can then be inferred from the observed Ct. If Yt is multidimensional, sufficiently many options

are required with varying strike prices and maturities to allow extraction of the current value of Yt from the

observed stock and call prices. Otherwise, only a single option is needed. This approach has the advantage of

using all available information in the estimation procedure, but the disadvantage that option prices must be

calculated for each parameter vector considered, in order to extract the value of volatility from the call prices.
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There are two distinct methods for extracting the value of Yt from the observed option prices. One method

is to calculate option prices explicitly as a function of the stock price and of Yt, for each parameter vector

considered during the estimation procedure. This approach has the advantage of permitting identification of

all parameters under both the P and Q measures. As an alternative, one can use the method of Ledoit et al.

(2002), in which the Black-Scholes implied volatility of an at-the-money short-maturity option is taken as a

proxy for the instantaneous volatility of the stock, can be applied. This approach has the virtue of simplicity,

but can only be applied when there is a single stochastic volatility state variable. The Q-measure parameters

are not fully identified when this method is employed. We use both of these approaches in Section 6 and

compare them.

For reasons of statistical efficiency, we seek to determine the joint likelihood function of the observed data,

as opposed to, for example, conditional or unconditional moments. We proceed as follows to determine this

likelihood function. Since, in general, the transition likelihood function for a stochastic volatility model is not

known in closed-form, we employ the closed-form approximation technique of Aït-Sahalia (2001) which yields

to us in closed form the joint likelihood function of [St;Yt]T . From there, the joint likelihood function of the

observations on Gt = [St;Ct]T is obtained simply by multiplying the likelihood of Xt = [St;Yt]T by a Jacobian

term. (If the approximation method of Ledoit et al. (2002) is used, this last step is not necessary.)

We now examine each of these steps in turn: first, the determination of an explicit expression for the

likelihood function of Xt; second, the identification of the state vector Xt from the observed market data on

Gt; third, a change of variable to go back from the likelihood function of Xt to that of Gt. We present in this

section the method in full generality, before specializing and applying the results to the four specific stochastic

volatility models we consider.

3.1. Closed-Form Likelihood Expansions

The second step in our estimation method requires that we derive an explicit expression for the likelihood

function of the state vector Xt = [St;Yt]
T under P . Specifically, consider the stochastic differential equation

describing the dynamics of the state vector Xt under the measure P, as specified by (1). Let pX (∆, x|x0; θ)
denote its transition function, that is, the conditional density of Xt+∆ = x given Xt = x0, where θ denotes

the vector of parameters for the model.

Rather than the likelihood function, we approximate the log-likelihood function, lX ≡ ln pX . We now

turn to the question of constructing closed form expansions for the function lX of an arbitrary multivariate

diffusion. The expansion of the log likelihood in Aït-Sahalia (2001) takes the form of a power series (with
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some additional leading terms) in ∆, the time interval separating observations:

l
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) +

C
(−1)
X (x|x0; θ)

∆
+
XK

k=0
C
(k)
X (x|x0; θ) ∆

k

k!
. (9)

where

Dv (x; θ) ≡ 1
2
ln (det[v(x; θ)]) (10)

and v (x) ≡ σ (x)σT (x) . The series can be calculated up to arbitrary order K. The unknowns so far are the

coefficients C(k)X corresponding to each ∆k, k = −1, 0, ...,K. We then calculate a Taylor series in (x − x0) of

each coefficient C(k)X , at order jk in (x− x0), which will turn out to be fully explicit. Such an expansion will

be denoted by C(jk,k)X , and is taken at order jk = 2(K − k).

The resulting expansion is then:

l̃
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) +

C
(j−1,−1)
X (x|x0; θ)

∆
+
XK

k=0
C
(jk,k)
X (x|x0; θ) ∆

k

k!
. (11)

and Aït-Sahalia (2001) shows that the coefficients C(jk,k)X can be obtained in closed form for arbitrary speci-

fications of the dynamics of the state vector Xt by solving a system of linear equations.

The system of linear equations determining the coefficients is obtained by forcing the expansion (9) to

satisfy, to order ∆K , the forward and backward Fokker-Planck-Kolmogorov equations, either in their familiar

form for the transition density pX , or in their equivalent form for ln pX . For instance, the forward equation

for ln pX is of the form:

∂lX
∂∆

= −
mX
i=1

∂µPi (x)

∂xi
+
1

2

mX
i=1

mX
j=1

∂2νij(x)

∂xi∂xj
+

mX
i=1

µPi (x)
∂lX
∂xi

+
mX
i=1

mX
j=1

∂νij(x)

∂xi

∂lX
∂xj

+
1

2

mX
i=1

mX
j=1

νij(x)
∂2lX
∂xi∂xj

+
1

2

mX
i=1

mX
j=1

∂lX
∂xi

νij(x)
∂lX
∂xj

(12)

In the Appendix, we give the resulting coefficients C(jk,k)X in closed form for the stochastic volatility model

of Heston (1993), and three other related stochastic volatility models. While the expressions may at first

look daunting, they are in fact quite simple to implement in practice. First, the calculations yielding the

coefficients in formula (11) are performed using a symbolic algebra package such as Mathematica. Second, and

most importantly, for a given model, the expressions need to be calculated only once. So, if one is interested

in estimating, for instance, the model of Heston (1993) (or any of the other three models considered), the

expressions in the Appendix are all that is needed for that model. The reader can then safely ignore the

general method that gives rise to these expressions and simply plug-in the coefficients C(jk,k)X we give in the

Appendix into formula (11).
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3.2. Identification of the State Vector

When Yt contains a single element, that is N = 1, one possible identification approach is to use the Black-

Scholes implied volatility of an at-the-money short maturity option as a proxy for the instantaneous relative

standard deviation of the stock. From equation (3), the instantaneous relative volatility of the stock is given

by
p
σ0 (Xt)σT0 (Xt)/St. Since the stock price is observed and there is only one degree of freedom remaining

in determining the instantaneous relative standard deviation, the stock and the implied volatility of a single

option are sufficient to identify all elements of Xt. Such an approach is based on the theoretical observation

that the implied volatility of an at-the-money option converges to the instantaneous volatility of the stock as

the maturity of the option goes to zero. This approach has several advantages, but has some disadvantages

as well. First, it does not fully identify the Q-measure parameters. Second, this approach cannot be taken if

Yt has more than one element; in this case, multiple options are needed to identify the elements of Yt, and

simple approximation rules similar to that used for the univariate case are not available.

If this approach is not possible or desirable, the elements of Yt can be inferred from observed option prices

Ct by calculating true (i.e., not dependent on the above approximation) option prices. Monte Carlo simulations

in Section 5 below assess the effect of making this approximation on the overall quality of the estimates. Since

the potential for simplification by using the approximation technique is substantial — in effect, rendering the

option pricing model unnecessary — it is indeed worth investigating the trade off between the accuracy of the

estimates and the effort involved in dealing with the option pricing model.

Clearly, to identify the N elements of Yt requires observation of at least N option prices. If the mapping

from the N elements of Yt to prices of N options Ct with given strike prices and maturities has a unique

inverse, then these options suffice to identify the state vector. If the inverse mapping is not unique, additional

options are required, leading to a stochastic singularity problem. In this case, some or all of the options must

be assumed to be observed with error. Whether the mapping from Yt to the option prices is invertible must be

verified for each specific model considered. In the specific models we use in our empirical application, N = 1

and this is not an issue.

For each time period in a data sample, we therefore need not only observations of the stock price St, but also

at leastN option prices of varying strikes and/or maturities. We denote the time of maturity and strike price of

element i of Ct as Ti and Ki, respectively. The value of each element of Ct thus depends on time-to-maturity

Ti − t, the stock price St, the values of the other state variables Yt, and the option strike price Ki; these

inputs form an (N + 3)-dimensional space. As always, it is useful to reduce the dimensionality of the space of

inputs as much as possible. We propose a number of approaches for achieving a low dimensionality, as follows.

Holding Ti − t constant for each of the N options throughout the data sample reduces the dimensionality

by one; we must then consider each of the N option inputs as occupying an (N + 2)-dimensional space. We
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might be inclined to hold the strike price Ki constant throughout the data sample as well, although such a

choice is usually not practical; if the stock price exhibits considerable variation over the data sample, it is

unlikely that option prices with any fixed strike price Ki are observed in the market price for the entire data

sample. However, if, in addition to holding time to maturity constant for each of the N options, we also hold

moneyness (i.e., the ratio of St to Ki) constant, then the dimensionality of the input space is reduced to N+1;

each of the N options must be calculated for a variety of values of St and Yt, but time to maturity Ti − t

is held fixed for each option, and strike price Ki is a simple function of stock price for each option. In fact,

option markets usually provide a reasonable range of moneynesses traded at each point in time — introducing

new options if necessary — thereby insuring that such data are always available. It should be noted, given

these choices, that each Ct (i) is not simply a time series of observations of the same call throughout the data

sample: the time-to-maturity remains constant, and moneyness also remains constant even as the stock price

changes through the sample.

A further reduction in dimensionality of the input space is possible if the stochastic volatility model satisfies

a homogeneity property. Note that the payoff of a European call option is first-order homogeneous in the stock

price and strike price. Denoting the call price C as a function of time of maturity, stock price, strike price,

and Yt, we have:

C (T, αST , αK, YT ) = (αST − αK)+ = α (ST −K)+ = αC (T, ST ,K, YT ) (13)

In general, the price of an option is not first-order homogeneous prior to T , unless additional restrictions are

placed on the model. The following conditions are sufficient:

σ1 (Xt)σT1 (Xt) = ϕ11 (Yt)S
2
t

σ1 (Xt)σ
T
i (Xt) = ϕ1i (Yt)St = ϕi1 (Yt)St i > 1

σi (Xt)σ
T
j (Xt) = ϕij (Yt) i > 1, j > 1

µQi (Xt) = ψi (Yt) i > 1

(14)

for some set of functions ϕij (Yt), 1 ≤ i, j ≤ m, and ψi (Yt), 2 ≤ i ≤ m. In this case, we can express the call

price as:

C (t, St,K, Yt) = StH (t,mt, Yt) (15)

where mt is the logarithmic moneyness of the option:

mt = lnSt − lnK (16)

Substituting this expression into equation (4), we find that the pricing partial differential equation simplifies
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to:

0 =
∂H (t,mt, Yt)

∂t
−H (t,mt, Yt) dt +

∂H (t,mt, Yt)

∂mt
(rt − dt)

+
m−1X
i=2

∂H (t,mt, Yt)

∂Yt (i)
ψi (Yt) +

∙
∂H (t,mt, Yt)

∂mt
+

∂2H (t,mt, Yt)

∂m2
t

¸
ϕ11 (Yt) (17)

+
m−1X
i=2

∙
∂H (t,mt, Yt)

∂Yt (i)
+

∂2H (t,mt, Yt)

∂Yt (i) ∂mt

¸
ϕi1 (Yt) +

1

2

m−1X
i=2

m−1X
j=2

∂2H (t,mt, Yt)

∂Yt (i)∂Yt (j)
ϕij (Yt)

Note that the solution H (t,mt, Yt) cannot depend on St, but this does not present a problem, since St has

been eliminated from the coefficients of the partial differential equation. Furthermore, the strike price does

not appear in the PDE or in the scaled option payoff:

H (T,mT , YT ) =
¡
1− e−mT

¢+
(18)

The option price therefore inherits the homogeneity of its payoff. Thus, by calculating scaled option prices

(i.e., option prices divided by the stock price), the dimensionality of the input space can be reduced to m− 1.

Thus, provided the stochastic volatility model under consideration satisfies the homogeneity conditions of

equation (14), scaled option prices with m−1 distinct combinations of time to maturity Ti− t and moneyness
St/Ki must be calculated for varying values of Yt. The time series of values of Yt can then be inferred by

comparing the calculated option prices to the observed option prices. Once these values have been calculated

for a given value of the parameter vector, the joint likelihood of the time series of observations of St and Yt

must be calculated.

A variety of techniques exist for calculating option prices, and the most appropriate method in general

depends on the specific stochastic volatility model under question. For instance, if the characteristic function

of the transition likelihood is known in closed-form (as is sometimes the case even when the likelihood itself is

not known), options can be priced through a variety of Fourier transform methods.

3.3. Change of Variables: From State to Observed Variables

We have now obtained an expansion of the joint likelihood of observations on Xt = [St;Yt]
T in the form (11).

If the method of Ledoit et al. (2002) has been used to identify Yt, then this likelihood can be maximized

directly; provided the instantaneous interest rate and dividend yield are observed rather than estimated, then

the identification of Yt does not depend in any way on the model parameters. The value of Xt therefore

remains constant as the model parameters are varied during a likelihood search. When the true option prices

are calculated, this is no longer the case; as the model parameters are varied during a likelihood search,

the implied values of Xt do not remain constant. Estimation by maximization of the likelihood of Xt is

11



therefore not possible; rather, estimation requires maximization of the likelihood of the observed market

prices, Gt = [St;Ct]
T .

The third and last step of our method is therefore moving from Xt to the time series observations on Gt,

and this step requires only that the likelihood of Xt be multiplied by a Jacobian term. This term is a function

of the partial derivatives of the Xt with respect to St and Ct; these derivatives are arranged in a matrix, and

the Jacobian term is the determinant of this matrix. Because St is itself an element of Xt, the determinant

takes on a particularly simple form:

Jt = det

⎡⎢⎢⎢⎢⎢⎢⎣

∂St
∂St

∂St
∂Yt(1)

· · · ∂St
∂Yt(N)

∂Ct(1)
∂St

∂Ct(1)
∂Yt(1)

· · · ∂Ct(1)
∂Yt(N)

...
...

. . .
...

∂Ct(N)
∂St

∂Ct(N)
∂Yt(1)

· · · ∂Ct(N)
∂Yt(N)

⎤⎥⎥⎥⎥⎥⎥⎦ = det
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

∂Ct(1)
∂St

∂Ct(1)
∂Yt(1)

· · · ∂Ct(1)
∂Yt(N)

...
...

. . .
...

∂Ct(N)
∂St

∂Ct(N)
∂Yt(1)

· · · ∂Ct(N)
∂Yt(N)

⎤⎥⎥⎥⎥⎥⎥⎦

= det

⎡⎢⎢⎢⎣
∂Ct(1)
∂Yt(1)

· · · ∂Ct(1)
∂Yt(N)

...
. . .

...
∂Ct(N)
∂Yt(1)

· · · ∂Ct(N)
∂Yt(N)

⎤⎥⎥⎥⎦ (19)

It is therefore only necessary to calculate partial derivatives of the option prices Ct with respect to the state

variables Yt; these derivatives are the stochastic multivariate analog of the familiar vega of Black-Scholes option

prices. The delta coefficients of the option prices do not appear in the Jacobian term. When we calculate

the option prices to identify the state vector Xt (as per Section 3.2), the derivatives are also calculated as a

by-product.

Once the state vector is identified and the Jacobian term from the change of variables formula computed, the

transition function of the observed asset prices (the stock and options), Gt = [St;Ct]T can be derived from the

transition function of the state vector Xt = [St;Yt]
T . Specifically, consider the stochastic differential equation

describing the dynamics of the state vector Xt under the measure P, as specified by (1). Let pX (∆, x|x0; θ)
denote its transition function, that is the conditional density of Xt+∆ = x given Xt = x0, where θ denotes the

vector of parameters for the model. Let pG(∆, g|g0; θ) similarly denote the transition function of the vector of
the asset prices G observed ∆ units apart.

We now express the stock and option prices as functions of the state vector, Gt+∆ = f (Xt+∆; θ). Defin-

ing the inverse of this function to express the state as a function of the observed asset prices, Xt+∆ =

f−1 (Gt+∆; θ) , we have for the conditional density of Gt+∆ = g given Gt = g0 :

pG (∆, g|g0; θ) = det

Ã
∂f
¡
f−1 (g; θ)

¢
∂x

!−1
pX(∆, f

−1 (g; θ) |f−1 (g0; θ) ; θ) (20)

= Jt (∆, g|g0; θ)−1 pX(∆, f
−1 (g; θ) |f−1 (g0; θ) ; θ)

12



where Jt (∆, g|g0; θ) is the determinant defined in (19).

Then, recognizing that the vector of asset prices is Markovian and applying Bayes’ Rule, the log-likelihood

function for discrete data on the asset prices vector gt sampled at dates t0, t1, ..., tn has the simple form:

cn (θ) ≡ n−1
Xn

i=1
lG
¡
ti − ti−1, gti |gti−1 ; θ

¢
(21)

where

lG (∆, g|g0; θ) ≡ ln pG (∆, g|g0; θ) = − lnJt (∆, g|g0; θ) + lX(∆, f
−1 (g; θ) |f−1 (g0; θ) ; θ)

with lX obtained in Section 3.1, and we are done.

We assume in this paper that the sampling process is deterministic. Indeed, in typical practical situations,

and in our Monte Carlo experiments below, these types of models are estimated on the basis of daily or weekly

data, so that ti − ti−1 = ∆ = 7/365 or ti − ti−1 = ∆ = 1/252 is a fixed number (see however Aït-Sahalia and

Mykland (2003) for a treatment of maximum likelihood estimation in the case of randomly spaced sampling

times). Maximum likelihood estimation of the parameter vector θ then involves maximizing the expression

(21), evaluated at the observations gt0 , gt1 , ...gtn over the parameter values.

4. Example: The Heston Model

In what follows, we apply our method described above to the prototypical stochastic volatility model, that of

Heston (1993). Under the Q measure, St and Yt follow the dynamics

dXt = d

⎡⎣ St

Yt

⎤⎦ =
⎡⎣ (r − d)St

κ0 (γ0 − Yt)

⎤⎦dt+
⎡⎣ p

(1− ρ2)YtSt ρ
√
YtSt

0 σ
√
Yt

⎤⎦d
⎡⎣ WQ

1 (t)

WQ
2 (t)

⎤⎦ (22)

Note that Yt is a local variance rather than a local standard deviation; while keeping this in mind, we will

continue to refer to Yt as the stochastic volatility variable. Yt follows the square root process of Feller (1951),

and is bounded below by zero. The boundary value 0 cannot be achieved if Feller’s condition, 2κ0γ0 ≥ σ2, is

satisfied. If we restate the dynamics in terms of the logarithmic stock price st = lnSt instead, we have:

d

⎡⎣ st

Yt

⎤⎦ =
⎡⎣ r − d− 1

2Yt

κ0 (γ0 − Yt)

⎤⎦dt+
⎡⎣ p

(1− ρ2)Yt ρ
√
Yt

0 σ
√
Yt

⎤⎦d
⎡⎣ WQ

1 (t)

WQ
2 (t)

⎤⎦ (23)

The log stock price st has volatility that is an affine function of Yt, and the covariance between st and Yt

is also affine in Yt itself. The model of Black and Scholes (1973) is obviously a special case of the model of

Heston (1993), in which σ = 0 and Y0 = γ0 so that Yt is constant. The likelihood function for the model of

Heston (1993) is not known in closed-form, unless we impose parameter restrictions that in effect make the
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model equivalent to that of Black and Scholes (1973); hence the need for methods such as ours to estimate

models of this type by maximum-likelihood.

The market price of risk specification in the model is: Λ =
h
λ1
p
(1− ρ2)Yt, λ2

√
Yt

iT
. The joint dynamics

of st and Yt under the objective measure P are then:

d

⎡⎣ st

Yt

⎤⎦ =
⎡⎣ a+ bYt

κ (γ − Yt)

⎤⎦dt+
⎡⎣ p

(1− ρ2)Yt ρ
√
Yt

0 σ
√
Yt

⎤⎦ d
⎡⎣ WP

1 (t)

WP
2 (t)

⎤⎦ (24)

where

a = r − d, b = λ1
¡
1− ρ2

¢
+ λ2ρ− 1

2
, κ = κ0 − λ2σ, γ =

µ
κ+ λ2σ

κ

¶
γ0. (25)

4.1. Unobservable Volatility

When the volatility state variable Yt is not observable, its value must be backed out from option prices

as discussed above in order to carry out the maximum likelihood estimation of the model’s parameters,

θ = [κ; γ;σ; ρ;λ1;λ2]
T . Since the price of a call option is a monotonically increasing function of the level of

volatility, the value of Yt can be determined from the price of a single option. We therefore take as given a

joint time series of observations of the log-stock price st and the price of an at-the-money, constant maturity

option Ct. In principle, any option can be used, but this choice has three advantages. First, at-the-money

and short-dated options are likely to be the most actively traded and liquid options, so their prices are

least affected by microstructure and other such issues. Second, at-the-money options are highly sensitive to

changes in volatility, so small observation errors in the price will have minimal effect on the implied level

of volatility. Finally, as described in Section 3.2, the use of options with constant moneyness and time-

to-maturity considerably simplifies the extraction of volatility from the observed option prices. Note that

this model satisfies the homogeneity requirements of (14), so that only the value of Yt need be varied when

computing option prices.

To calculate option prices, we use characteristic functions (as in Heston (1993), modified by Carr and

Madan (1998)), exploiting the fact that this particular model is affine under the Q measure (it is also affine

under P but this is irrelevant). The option price can be expressed as:

C (st, Yt,K,∆) = EQ
h
[exp (st+∆)−K]+ | st, Yt

i
(26)

where K is the strike price of the option, and ∆ is the time remaining until maturity. Heston (1993) provides

a Fourier transform method for calculating the option price; however, with this method, the characteristic

function of the option is singular at the origin, making numeric integration difficult. Carr and Madan (1998)

present an alternate Fourier transform procedure that avoids this difficulty. Rather than computing the option
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price directly, we calculate the option price scaled by the current price of the stock:

c (st, Yt,K,∆) = exp [−st]C (st, Yt,K,∆) (27)

It is then convenient to express the scaled option price in terms of the logarithmic moneyness of the option

rather than the raw value of the strike price, mt = st − lnK. This scaled option price is given by:

c (st, Yt,K,∆) =

Z +∞

0

Re

∙
exp [w0 +w1 ·mt +w2 · Yt]
α (α+ 1)− u2 + (2α+ 1) iu

¸
du (28)

where α is an arbitrary scaling parameter and

w0 = ∆ ((r − d) (α+ 1)− r + (r − d) iu) +
κ0γ0

σ2
(∆γ1 − 2 ln (γ2))

w1 = iu+ α, w2 =
¡−u2 + (2α+ 1) iu+ α (α+ 1)

¢µ
1− 1

γ2

¶
1

γ1

γ0 =
p
c0 + c1u+ c2u2, γ1 = κ− (iu+ α+ 1) ρσ + γ0, γ2 = 1 +

µ
γ1
γ0

¶µ
exp (∆γ0)− 1

2

¶
c0 = (κ0)2 − σ (α+ 1) (2κ0ρ− σ)− σ2 (α+ 1)2

¡
1− ρ2

¢
c1 = −iσ ¡2σ (α+ 1) ¡1− ρ2

¢
+ 2κ0ρ− σ

¢
, c2 = σ2

¡
1− ρ2

¢
.

This expression can be evaluated quickly, since it is a one-dimensional integral. (Heston (1993) even refers

to similar one-dimensional integrals as “closed-form”.) Since we use options with constant moneyness and

time to maturity, the integral above need only be calculated for each parameter vector evaluated during a

likelihood search and over a one-dimensional grid of values of Yt. By the above procedure, we can find the

values of st and Yt as functions of St and Ct. As discussed in Section 3.1, we then derive the likelihood fsY

of st and Yt explicitly. The log-likelihood formulas, made specific for this particular model, are given in the

Appendix.

4.2. Using a Volatility Proxy

If, on the other hand, we have available a proxy for the state volatility variable, then maximum-likelihood

estimation of the vector θ can proceed directly without the need for option prices. Note however that the

dynamics under P of the process [St;Yt]T , or [st;Yt]T as given in (24), will only permit identification of the

parameters [κ; γ;σ; ρ; b]T or equivalently [κ; γ;σ; ρ;λ1]T , since both components of the observed vector are

viewed under P . In that situation, we will (arbitrarily) treat the λ2 parameter as fixed at 0, and given the

other identified parameters, translate the estimated value of b into an estimate for λ1.

In the case where volatility is unobservable, the dependence of the joint likelihood function ofXt = [St;Yt]
T

under P on the full set of market price of risk parameters is introduced by the Jacobian term, itself resulting
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from the transformation from [St;Ct]
T to [St;Yt]T as described in Section 3.3. But this suggests that, in the

unobservable volatility case, the separate identification of the two market price of risk parameters is likely to

be tenuous, a fact confirmed by the Monte Carlo experiments below.

5. Monte Carlo Results

One major advantage of our method is that it is numerically tractable, so that large numbers of Monte Carlo

simulations can be conducted to determine the small sample distribution of the estimators, examine the effect

of replacing the unobservable volatility variable Yt by a proxy, and compare the small sample behavior of the

estimators to their predicted asymptotic behavior.

5.1. Small Sample Distributions

We perform simulations for the model of Heston (1993) for a variety of assumptions about sample length, time

between observations, and observability of the volatility state variable. This model is a natural choice, since

option prices can be calculated easily through Fourier inversion of the characteristic function; it is possible

therefore to compare results obtained with the exact option pricing formula to those obtained using the proxy

of Ledoit et al. (2002). We use sample lengths of n = 500, 5, 000, and 10, 000 transitions, at the daily

(∆ = 1/252) and weekly (∆ = 7/365) sampling intervals. The parameter values for κ, γ, and σ used in the

simulations are 3.0, 0.10, and 0.25, which are similar to the values obtained from the empirical application in

Section 6. A value of −0.8 was chosen for ρ, to reflect the empirical regularity that innovations to volatility
and stock price are generally negatively correlated; this value is also similar to the value estimated in 6. The

values of the instantaneous interest rate and dividend yield, r and d, were held fixed at 0.04 and 0.015. The

risk premia parameters, λ1 and λ2, were set to 4.0 and 0.0, respectively, in the simulations.

For each batch of simulations, we generate 1, 000 sample path samples using an Euler discretization of

the process, using thirty sub-intervals per sampling interval; twenty nine out of every thirty observations are

then discarded, leaving only observations at either a daily or weekly frequency. Each simulated data series is

initialized with the volatility state variable at its unconditional mean, and the stock at 100. An initial 500

observations are generated and then discarded; the last of these observations is then taken as the starting

point for the simulated data series. We then generate 500, 5, 000, or 10, 000 additional observations.

We then estimate the model parameters using the method described above. When simulating the joint

dynamics of the state vector Xt = [St;Yt]
T , we have the luxury of deciding whether Yt is observable or not; we

can determine the effect of ignoring the difference between the (unobservable) stochastic volatility variable Yt,
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and an (observable) proxy, namely the implied volatility of a short dated at-the-money option. Our method

can be applied to either situation: treating Yt as unobservable or replacing it by an observable proxy, which, as

discussed in Section 3, eliminates the need for the third step of our method, and greatly simplifies the second.

Table 1 reports results for 1, 000 data series, each containing 500, 5, 000 or 10, 000 observations at the

daily frequency, or 500 weekly observations, all with observed volatility. Table 2 reports results for 500 weekly

observations, but with volatility not directly observed (that is, employing the full estimation procedure where

we use the model to generate simulated option prices, i.e., observations on Ct, then use Gt = [St;Ct]
T as

the observed vector). The mean difference between the estimates and the true values of the parameter (i.e.,

those used in the data generation procedure) over the simulated paths is reported as the bias of the estimation

procedure. The standard deviation of each parameter is computed accordingly and reported.

Throughout, the best estimates are for the σ and ρ parameters. Regardless of sampling frequency and

whether or not volatility is observed, both the biases and standard errors of the estimates are quite small

relative to the parameter values. The γ parameter fares only slightly worse when volatility is observed; when

volatility is unobserved, the standard deviation of γ is much larger, for reasons discussed below. The κ and λ1

parameters are estimated with less accuracy; for example, with 500 daily observations and volatility observed,

the true value of κ is 3.0, but the standard error is 1.6.

The use of otherwise similar batches of simulations with differing numbers of daily observations in each

simulated series provides some insight into how closely the small sample distribution of the estimated para-

meters approaches the asymptotic distribution. As the number of observations in each simulated data series

increases, we would expect the standard errors of the parameter estimates to decrease at a rate inversely

proportional to the square root of the number of observations. The decreases in standard errors are approx-

imately what one would expect from asymptotic theory; for example, in Table 1, the small sample standard

errors for all parameters except κ are very close to the asymptotic standard errors. The small sample standard

error for κ is larger than the asymptotic standard error for 500 daily observations, but is much closer for

5, 000 and 10, 000 daily observations. The standard errors for all parameters decrease with sample size at

roughly the rate one would predict from asymptotic theory, i.e., by a factor of the square root of ten when

increasing from 500 to 5, 000 observations, and by a factor of the square root of two when increasing from

5, 000 to 10, 000 observations. These results suggest that the distribution of the estimates is approaching the

asymptotic distribution.

When the value of the volatility state variable is determined through the use of an option price Ct, rather

than observed directly, the identification of λ2 relies exclusively on the introduction of the Jacobian term in

the likelihood function of the observables. As expected given this tenuous dependence of the likelihood on

the second market price of risk parameter, that parameter is generally identified quite poorly. The strong
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correlation between the two Brownian motions driving state variable evolution confounds this problem; as

shown in Table 2, the standard errors for both market price of risk parameters are large.

Also of note is the large standard error for the γ parameter when volatility is unobserved. This result

may seem surprising, given the relatively accurate estimation of this parameter when volatility is observed.

However, the results are not comparable. Note that γ is always multiplied by κ to determine the constant term

in the drift of Yt. When volatility is treated as observed, the market price of risk parameter λ2 is held fixed,

so that the value of κ0 (i.e., the P -measure speed of mean reversion) is constrained by the value of κ (i.e., the

Q-measure speed of mean reversion). However, when volatility is treated as unobserved, κ0 and κ may vary

independently. Consequently, κ is estimated more poorly when volatility is unobserved, and this has an effect

on the estimation of γ. If we consider the product κγ, we find it is estimated only slightly worse when volatility

is unobserved. With observed volatility, the standard deviation of this product with 500 weekly observations

is 0.31; when volatility is unobserved, this standard deviation increases to 0.38. The large increase in the

standard error of γ when volatility is unobserved is therefore largely a by-product of the increase in volatility

of κ, rather than a result of any severe deterioration of our ability to estimate the constant term in the drift

of the volatility state variable.

5.2. The Effects of Using a Volatility Proxy

Of particular interest are the results for the Monte Carlo simulations with the same sampling frequency and

number of observations, but different methods of determining the level of volatility. The results in Table 1

are based on an assumption that volatility is observed, whereas the results in Table 2 are based on volatility

extracted from option prices. At the daily frequency, the standard errors for λ1 are roughly similar; the

standard error for κ is substantially smaller when volatility is observed through a proxy.

Table 3 compares the use of Fourier inversion to determine the level of stochastic volatility to the use of

an implied volatility proxy. The simulations are the same as those used in Table 2 at the weekly frequency.

The λ2 parameter is held fixed at the data generating value of −6.0, since it is unidentified when a proxy is
used; holding this parameter fixed in both sets of estimates makes the results comparable.

A relevant metric to assess the effect is to examine whether the use of the proxy introduces enough

additional noise to be noticeable at the scale of the standard error of the estimators due to the sampling noise.

The answer is "no," since the estimators are on average more accurate when treating volatility as observable.

A more subtle point is that the design where the value of λ2 is known does bias the results in favor of

the use of the proxy. Indeed, while we can estimate the parameter b = λ1
¡
1− ρ2

¢
+ λ2ρ− 1/2 in (25) quite
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accurately, the resulting estimate for λ1 is necessarily dependent upon the assumption made on λ2. When

using real data, one does not have the luxury of knowing the value of λ2. One solution is simply to focus on

the parameter b alone, but this is of little use if the objective is to price derivatives (in which case we need

the parameters under Q). Another solution is to first estimate the process using the full procedure, and use

the resulting value of λ2 as a input above. This said, it is important to note that this feature may well be

shared by other methods designed to estimate stochastic volatility models, but their numerical intensity makes

simulating them impractical so it is difficult to know precisely how they behave.

5.3. Comparing Small Sample to Asymptotic Distributions

We can also use these Monte Carlos simulations to assess whether the predicted asymptotic behavior of

maximum-likelihood estimators is matched in small samples by our maximum-likelihood estimator. Table

4 compares the asymptotic standard deviations of the estimates obtained from the approximate likelihood

function with the empirical standard deviations obtained from the Monte Carlo simulations. As shown, the

two versions of the standard deviations converge as the sample size gets larger, suggesting not only that the

likelihood approximations are quite accurate but also that standard statistical theory, namely:

n1/2
³
θ̂ − θ

´
→ N(0, F−1) (29)

where F = −E £∂lG/∂θ∂θ0¤ is Fisher’s Information Matrix, works well in this context. As is well known, the
Cramer Rao lower bound states that F−1 is the lowest possible asymptotic variance achievable by a consistent

estimator of θ.

Table 4 shows that we are close to the efficient asymptotic standard errors for all parameters despite the

finite sample sizes, as the finite sample distribution appears very close to the asymptotic distribution with as

few as 500 daily observations (of course, anything can happen in finite samples and it is possible for a different

estimator to beat maximum likelihood in finite samples).

5.4. Conclusions from the Monte Carlo Simulations

We therefore leave our Monte Carlo analysis with the following conclusions:

1. The use of the implied volatility of a short dated at-the-money option as a proxy for the unobservable

volatility variable Yt means that one market price of risk parameter is not identifiable, but on the other

hand the separate identification of the two market price of risk parameters is poor when no proxy is
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used; it seems therefore that using the proxy is a reasonable trade-off to make if we can live without the

full identification or make an arbitrary assumption on one of market price of risk parameters.

2. The small sample distributions of the maximum-likelihood estimators are well approximated by their

asymptotic counterparts.

6. Four Models and the Data

Given the guidance provided by the Monte Carlo simulations above, we are now ready to tackle real data.

When applying our method to real data, we use direct observations on asset prices Gt = [St;Ct]
T with St

representing the S&P 500 Index and Ct the price of a short maturity at the money option. The option price

is computed from its implied volatility, itself measured as the Chicago Board Options Exchange (CBOE)

Volatility Index (VIX). We use the VIX data computed using the methodology introduced by the CBOE on

September 22, 2003, which is an implied volatility index based on the European S&P 500 options as opposed

to the American S&P 100 options (whose implied volatility index symbol is now VXO).

The VIX is an estimate of the implied volatility of a basket of S&P 500 Index Options (SPX) constructed

from different traded options in such a way that at any given time it represents the implied volatility of a

hypothetical at-the-money option with 30 calendar days to expiration (or 22 trading days). This constant

maturity - constant moneyness feature of the data matches nicely with the assumptions we have made to

reduce the dimensionality of the option pricing problem (see Section 3.2). In what follows, we will use directly

the VIX as the proxy discussed above for Yt (or rather
√
Yt, since Yt is the local variance).

The anticipated daily cash dividends of the S&P 500 are forecast by the CBOE. These forecasts are

generally very accurate in light of the short time span as well as the averaging effect of a large stock index.

Being near the money, the options entering the basket are the most liquid ones in existence. The VIX options

are European, simplifying the analysis. For further details on the VIX, see Whaley (1993) and Whaley (2000).

We use daily data from January 2, 1990, until September 30, 2003. Each trading day is considered to

be ∆ = 1/252 after the previous day, regardless of the calendar time passed (i.e., weekends and holidays

receive no special consideration). For the weekly estimation, the data for each Wednesday is used. For the

relatively small number of dates on which no trading took place on a Wednesday, the average of the Tuesday

and Thursday prices is used. The results for each of the four models are discussed briefly below. Both point

estimates and standard errors for each of the four models can be estimated quickly and easily, without the

need for simulations; other models can be estimated as easily using the technique outlined above.
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6.1. The Heston Model

In Table 5, we report the estimation results for the Heston (1993) model described above, treating volatility

Yt as observed in the form of a proxy (the VIX index). The Monte Carlo results suggest that the effect of

replacing Yt by this proxy are quite small — within the asymptotic standard errors based on Fisher’s Information

matrix. As expected, we find that the correlation parameter ρ between the innovations to stock price and

stochastic volatility is strongly negative, hovering around −0.8. The long term value of the volatility γ1/2 is

estimated to be approximately 21% per year with a mean reversion coefficient between 3 and 5 depending on

the sampling frequency. Comparing the results at the daily and weekly frequencies can be interpreted as a

form of specification test: a well-specified model should yield similar estimates up to sampling noise.

The large uncertainty for the risk premia estimates are perhaps not surprising, given that the sample

period is 13 years long, and that risk premia are typically poorly estimated even in much longer samples.

These parameters pertain the drift, and the quality of the estimates of drift parameters typically depends only

on the length of the sample, and not the sampling frequency. (To take an extreme case, consider an arithmetic

or geometric Brownian motion. The volatility can be estimated arbitrarily precisely by sampling frequently

enough, but the drift estimate is independent of sampling frequency. The first and last observations provide

as good an estimate of the drift as weekly, daily, hourly, etc. observations.) Given the length of the available

data, there is little that can be done to improve the quality of the λ1 estimate, apart from waiting for more

data to accrue.

6.2. The GARCH Stochastic Volatility Model

We now turn to the GARCH stochastic volatility model (see Meddahi (2001)). Although some of the para-

meters of this model have been estimated in Andersen et al. (2002a), neither they nor Meddahi (2001) specify

fully the form of the drift of the stock price. The estimation in Andersen et al. (2002a) uses asymptotics

where the time interval goes to zero in order to estimate the parameters of the volatility process; as the time

between observations of the stock price goes to zero, the effect of the drift of the stock price on the volatility

estimates disappears. By contrast, the time between observations remains fixed in our estimation procedure,

and the drift of the stock price remains relevant even asymptotically. Consequently, we must complete the

model definition by specifying the drift of Yt.

St and Yt follow a process of the following form under the Q measure:

dXt = d

⎡⎣ St

Yt

⎤⎦ =
⎡⎣ (r − d)St

κ0 (γ0 − Yt)

⎤⎦dt+
⎡⎣ p

(1− ρ2)YtSt ρ
√
YtSt

0 σYt

⎤⎦d
⎡⎣ WQ

1 (t)

WQ
2 (t)

⎤⎦ (30)

Note that Yt, which we take to be positive, has a boundary at zero, and this boundary is never achieved as
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long as κ0γ0 ≥ 0. The dynamics of st = lnSt under Q are independent of the stock level

d

⎡⎣ st

Yt

⎤⎦ =
⎡⎣ r − d− 1

2Yt

κ0 (γ0 − Yt)

⎤⎦dt+
⎡⎣ p

(1− ρ2)Yt ρ
√
Yt

0 σYt

⎤⎦d
⎡⎣ WQ

1 (t)

WQ
2 (t)

⎤⎦ (31)

With the VIX series as our volatility proxy, we assume that the market price of risk of the volatility state

variable is zero, and that for the stock price is proportional to the stock price itself, and to the square root of

the volatility state variable, or Λ =
h
λ1
p
(1− ρ2)Yt, 0

iT
.With these assumptions, the dynamics of the state

variables under the measure P are then:

d

⎡⎣ st

Yt

⎤⎦ =
⎡⎣ r − d+ (λ1

¡
1− ρ2

¢− 1
2)Yt

κ (γ − Yt)

⎤⎦dt+
⎡⎣ p

(1− ρ2)Yt ρ
√
Yt

0 σYt

⎤⎦d
⎡⎣ WP

1 (t)

WP
2 (t)

⎤⎦ (32)

where κ0 = κ and γ0 = γ. The Q-measure dynamics are not affine in Yt but, as noted earlier, this is not

a problem for our technique which is applicable to all diffusion specifications. The log-likelihood formula

corresponding to this model is given in Appendix B.

In Table 6, we report the estimation results for this model. Compared to the Heston model, the speed of

mean reversion is estimated at a much lower value, and the unconditional mean of volatility is estimated at a

much higher value in this model (note, however, that the standard errors for the speed of mean reversion are

very large). The point estimates for the correlation parameter are similar to those in the Heston model. The

volatility of volatility and risk premia parameters are not directly comparable, owing to the differing model

specifications.

The surprisingly large standard errors on the speed of mean reversion parameter suggest that there may

be some model misspecification; particularly at the daily frequency, the speed of mean reversion estimated

by maximum likelihood on the VIX proxy alone is normally much higher and much better estimated. The

unconditional mean of volatility corresponds to an instantaneous standard deviation in the stock price of

approximately 27% at the daily frequency and 33% at the weekly frequency, much higher than that estimated

for any of the other models.

6.3. The Lognormal Stochastic Volatility Model

Another model we consider is from Scott (1987), Wiggins (1987), Chesney and Scott (1989), Scott (1991), and

Andersen et al. (2002b), and is also examined in Meddahi (2001) and Andersen et al. (2002a) (who, as with

the GARCH model, do not fully specify the drift of the stock price). Under the Q measure, the state variables

St and Yt follow a process of the following form:

dXt = d

⎡⎣ St

Yt

⎤⎦ =
⎡⎣ (r − d)St

κ0 (γ0 − Yt)

⎤⎦dt+
⎡⎣ p

(1− ρ2) exp
¡
Yt
2

¢
St ρ exp

¡
Yt
2

¢
St

0 σ

⎤⎦d
⎡⎣ WQ

1 (t)

WQ
2 (t)

⎤⎦ (33)
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Note that Yt follows an Ornstein-Uhlenbeck process, and can take on any value, positive or negative; as there

is no boundary, there are no parameter restrictions needed to prevent attainment of the boundary. Proceeding

as before, we can express these dynamics in terms of the logarithmic stock price rather than the stock price

itself:

d

⎡⎣ st

Yt

⎤⎦ =
⎡⎣ r − d− exp(Yt)

2

κ0 (γ0 − Yt)

⎤⎦ dt+
⎡⎣ p

(1− ρ2) exp
¡
Yt
2

¢
ρ exp

¡
Yt
2

¢
0 σ

⎤⎦d
⎡⎣ WQ

1 (t)

WQ
2 (t)

⎤⎦ (34)

Since the market price of risk parameters for Yt are not identified when volatility is observable, we set this

component of the market price of risk vector at 0, and specify Λ =
h
λ1
p
(1− ρ2), 0

iT
.

The P -measure dynamics of the state variables are then:

d

⎡⎣ st

Yt

⎤⎦ =

⎡⎣ r − d− exp(Yt)
2 + λ1

¡
1− ρ2

¢
exp

¡
Yt
2

¢
κ (γ − Yt)

⎤⎦dt
+

⎡⎣ p
(1− ρ2) exp

¡
Yt
2

¢
ρ exp

¡
Yt
2

¢
0 σ

⎤⎦ d
⎡⎣ WP

1 (t)

WP
2 (t)

⎤⎦ (35)

where κ0 = κ and γ0 = γ. As with the GARCH model, the Q-measure dynamics are not affine in Yt. The

log-likelihood expansion for this model is given in Appendix C.

In Table 7, we report the estimation results for the lognormal model, treating volatility Yt as observed in

the form a proxy (the VIX). The speed of mean reversion is much better estimated in this model than in the

previous model, and has a higher value. The unconditional mean of the logarithmic volatility is about the same

when estimated at both the daily and weekly frequency, and is approximately −3.3. This value corresponds
to an instantaneous standard deviation of the stock price of approximately 0.2, slightly lower than the value

implied by the estimates for the Heston model, and much lower than those implied by the GARCH model.

The point estimates for the correlation are quite similar to those found in the previous two models.

6.4. The CEV Stochastic Volatility Model

We finally consider a more general model, which nests some of the previous examples. Under the Q measure,

the the state variables St and Yt follow a process of the following form:

dXt = d

⎡⎣ St

Yt

⎤⎦ =
⎡⎣ (r − d)St

κ0 (γ0 − Yt)

⎤⎦dt+
⎡⎣ p

(1− ρ2)YtSt ρ
√
YtSt

0 σY β
t

⎤⎦d
⎡⎣ WQ

1 (t)

WQ
2 (t)

⎤⎦ (36)

where we constrain the parameter β ≥ 1/2. This model is considered by, for example, Jones (2003), and nests
both the models of Heston (1993) (β = 1/2) and the GARCH model (β = 1). Note, however, that the special

properties of these models may still warrant separate investigation, despite their being nested by the model of

(36); for example, the Fourier inversion method for option pricing is feasible for the model of Heston (1993),
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where β = 1/2, but not for the general CEV model. The state variable Yt has a boundary at zero, but this

boundary can only be achieved when β = 1/2, and even then only for certain values of the model parameters

(see the specific discussion of the Heston (1993) model). Proceeding as before, we can express these dynamics

in terms of the logarithmic stock price rather than the stock price itself:

d

⎡⎣ st

Yt

⎤⎦ =
⎡⎣ r − d− 1

2Yt

κ0 (γ0 − Yt)

⎤⎦dt+
⎡⎣ p

(1− ρ2)Yt ρ
√
Yt

0 σY β
t

⎤⎦d
⎡⎣ WQ

1 (t)

WQ
2 (t)

⎤⎦ (37)

We again set at 0 the component of the market price of risk vector corresponding to Yt, and specify Λ =h
λ1
p
(1− ρ2)Yt, 0

iT
.

The P -measure dynamics of the state variables are then:

d

⎡⎣ st

Yt

⎤⎦ =
⎡⎣ r − d− 1

2Yt + λ1
¡
1− ρ2

¢
Yt

κ (γ − Yt)

⎤⎦ dt+
⎡⎣ p

(1− ρ2)Yt ρ
√
Yt

0 σY β
t

⎤⎦d
⎡⎣ WP

1 (t)

WP
2 (t)

⎤⎦ (38)

where κ0 = κ and γ0 = γ. As with the GARCH and lognormal models, the Q-measure dynamics are not affine

in Yt. The corresponding log-likelihood expansion can be found in Appendix D.

In Table 8, we report the estimation results for the general CEV model, treating volatility Yt as observed

in the form a proxy (the VIX). The instantaneous volatility of the stock price at the unconditional mean of

the volatility state variable is approximately 0.22 at the daily frequency and 0.27 at the weekly frequency,

somewhat higher than that obtained for the Heston and lognormal models, but much lower than that obtained

for the GARCH model. Of particular interest for the CEV model of the exponent β, which is estimated (at

both sampling frequencies) above the Heston value of 0.5 but below the GARCH value of 1. At the daily

frequency, either value can be rejected at the conventional 95% confidence level; at the weekly frequency,

the hypothesis that β = 1 can be rejected. This finding stands in contrast to that of Jones (2003), who,

using a Bayesian method, estimates this exponent above the GARCH value of 1. The point estimates for the

correlation coefficient are almost identical for all four models.

6.5. Likelihood Ratio Tests for Nested Models

The CEV model nests the Heston (β = 1/2) and the GARCH (β = 1) models. The use of likelihood estimation

makes it straightforward to calculate likelihood ratio statistics for the nested models. These statistics are shown

in Table 9 for both models at the daily and weekly frequencies. All four combinations of model and sampling

frequency are easily rejected at the conventional 95% confidence level. The statistic corresponding to the

highest p-value is for the Heston model at the weekly frequency, but the likelihood ratio statistic of 15.4 is

still more than four times the 95% cutoff value of 3.84. For the GARCH model at the weekly frequency, and
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for both models at the daily frequency, the statistic is anywhere from 40 to 180 times the 95% cutoff value,

suggesting extremely strong rejection at any reasonable confidence level.

The point estimate of the β coefficient at both frequencies lies between the Heston value of 1/2 and the

GARCH value of 1. Both of these values are boundary cases in an appropriate sense; for values of β below 1/2,

the boundary of zero is achievable, so that the stock price can be instantaneously deterministic. For values of

β above 1, the deflated stock price is a local martingale, but not a martingale, and there exists a replicating

portfolio for the stock that is cheaper than the stock itself (see Heston et al. (2004)). Although violation

of either bound does not result in arbitrage opportunities, both situations could be considered undesirable

modeling properties. The two boundary values of 1/2 and 1 are commonly used in stochastic volatility models,

owing to their tractability, but the point estimates and standard errors suggest that neither boundary value

is appropriate, with the elasticity of variance lying between the two. At the daily frequency, either boundary

value is strongly rejected.

7. Incorporating Jumps

One advantage of our methodology is that it extends readily to the situation where the underlying asset price

and/or the volatility state variable(s) can jump. Suppose that, instead of (1), Xt follows under P the dynamics

dXt = µP (Xt) dt+ σ (Xt) dW
P
t + JPt dN

P
t (39)

where the pure jump process NP has stochastic intensity λ(Xt, θ) and jump size 1. The jump size JPt is

independent of the filtration generated by the X process at time t−, and has probability density ν(., θ).

This setup incorporates the stochastic volatility with jump models that have been proposed in the literature,

such as Bates (2000), Bakshi et al. (1997) and Pan (2002). It is possible to extend the basic likelihood expansion

described in Section 3.1 to cover such cases. The expression, due to Yu (2003), is

p
(K)
X (∆, x|x0; θ) = exp

Ã
−m
2
ln (2π∆)−Dv (x; θ) +

c
(−1)
X (x|x0; θ)

∆

!XK

k=0
c
(k)
X (x|x0; θ) ∆

k

k!

+
XK

k=1
d
(k)
X (x|x0; θ) ∆

k

k!
(40)

Again, the series can be calculated up to arbitrary order K and the unknowns are the coefficients c(k)X and d(k)X .

The difference between the coefficients c(k)X in (40) and C(k)X in (9) is due to the fact that the former is written

for ln pX while the latter is for pX itself (the two coefficients families match once the terms of the Taylor series

of ln(p(K)X ) in ∆ are matched to the coefficients C(k)X of the direct Taylor series ln p(K)X . The coefficients d(k)X

are the new terms needed to capture the presence of the jumps in the transition function. The latter terms

are needed to capture the different behavior of the tails of the transition density when jumps are present.
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(These tails are not exponential in x, hence the absence of a the factor exp(c(−1)X ∆−1) in front of the sum of

d
(k)
X coefficients.) The coefficients can be computed analogously to the pure diffusive case.

8. Conclusions

We have described and implemented a technique for maximum likelihood estimation of models with stochastic

volatility, or latent variables, and applied this technique to the models of Heston (1993) and three others

with VIX data. We performed Monte Carlo simulations for the Heston model to assess the accuracy of the

technique, and find that it not only produces accurate estimates, but can also be implemented efficiently.

Computational time for estimation is of the order of a few minutes on a standard PC using Matlab when

volatility is treated as unobserved, and considerably less when a proxy is used. This is a major advantage

of our method, in additional to the statistical efficiency of maximum likelihood. When the observed vector

consists of Gt = [St;Ct]
T , we can fully identify all the parameters of the model, including the market prices of

risk, provided an option pricing technique is included in the estimation procedure. Use of an approximation

technique such as Ledoit et al. (2002) simplifies estimation, but does not permit identification of the market

price of risk for the volatility state variable. The asymptotic variances calculated from the approximate

likelihood expressions are close to those found empirically from the Monte Carlo simulations. We find that the

use of the implied volatility of at-the-money short-maturity options as a proxy for the true stochastic volatility

results in reasonable estimates. In this case, using such a proxy reduces the exercise to one of simply applying

our likelihood expansion to the state vector Xt = [St;Yt]
T . But even when that is not deemed desirable —

or no such reasonable proxy exists — our method retains its high accuracy and computational efficiency as

demonstrated by the simulations above.

We applied our method to the Heston (1993), GARCH, lognormal, and CEV stochastic volatility models.

One of the findings in our empirical analysis across models is the fact that the estimated correlation coefficient

ρ between the shocks to the the stock level St and the volatility variable Yt is consistently around −0.8 for all
models. This negative correlation has long been noted (in the form of the “leverage effect”). This suggests that

stochastic volatility models, pricing and/or estimation methods that rely on the assumption of uncorrelated

shocks (such as Hull and White (1987) for instance) will be quite unrealistic in this context.

However, nothing in our estimation procedure depends on the specific properties of these models. It is in

fact applicable to a wide variety of diffusion-based stochastic volatility models, or for that matter models with

other types of latent variables. In Section 3, we described our method without reference to any specific model.

Provided that enough traded asset prices (such as the call options we used) or other observable quantities can

be found to be mapped into the unobservable latent state vector, our method can then be applied.
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Appendix: The Log-Likelihood Expansion for Stochastic Volatility
Models

In this appendix, we give the coefficients of the likelihood expansion at order K = 1 corresponding to
each one of the models considered. These expressions, as well as higher order expansions, are available upon
request from the authors in computer form.

A. The Heston Model

At order K = 1, with x1 = s and x2 = Y and the indirect parameters

a1 = r − d, a2 = κ0γ0,

b1 = ρλ2 +
¡
1− ρ2

¢
λ1 − 1

2
, b2 = λ2σ − κ0,

the expressions for the coefficients appearing in formula (11) are given by:
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2
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(x2−x20)2(σ(σ−12ρa1)+12a2)
24(1−ρ2)σ2x220 +

(x2−x20)(x1−x10)(ρσ2−6σa1+6ρa2)
12σx220(1−ρ2)

C
(1)
X (x|x0; θ) = ρσa2b1+ρσa1b2−σ2a1b1−a2b2

(1−ρ2)σ2 +
(2ρσb1b2−σ2b21−b22)x20

2(1−ρ2)σ2
−σ4−ρ2σ4+6σ2a21−6σ2a2+6ρ2σ2a2−12ρσa1a2+6a22

12(1−ρ2)σ2x20

Note that the behavior at the 0 boundary of the state variable x2 depends here upon the values of the
parameters. This is due to the fact that x2 in this model follows a square root process which is the limiting
(and only) case for which such a phenomenon occurs. This can be seen through the presence in the coefficients
of terms x−n20 where n is an integer. Thus the behavior of the likelihood expansion near such a boundary
is specified exogenously to match that of the assumed model — the unattainability of the zero boundary in
this case — in the limit where x20 tends to zero; this is achieved by setting the log-likelihood expansion to an
arbitrarily high negative value.

B. The GARCH Stochastic Volatility Model

At order K = 1, with x1 = s and x2 = Y , the expressions for the coefficients appearing in formula (11) are
given by:

Dv (x; θ) =
1

2
ln(x32

¡
1− ρ2

¢
σ2)
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C
(−1)
X (x|x0; θ) = (45ρ2−44)(x2−x20)4

96(1−ρ2)2σ2x420
+
(14ρ−15ρ3)(x2−x20)3(x1−x10)

24(1−ρ2)2σx7/220

− 3ρ(x2−x20)2(x1−x10)
4σ(1−ρ2)x5/220

+ (x2−x20)3
2(1−ρ2)σ2x320 +

(−8+11ρ2)(x2−x20)2(x1−x10)2
48(1−ρ2)2x320

+ (x2−x20)(x1−x10)2
4(1−ρ2)x220 − ρσ(x2−x20)(x1−x10)3

24(1−ρ2)2x5/220

+ σ2(x1−x10)4
96(1−ρ2)2x220

− x22−2x2
√
x20(
√
x20+ρσ(x1−x10))+x20(x20+2ρσ√x20(x1−x10)+σ2(x1−x10)2)

2(1−ρ2)σ2x220

C
(0)
X (x|x0; θ) = −

(x2−x20) −4θκ+4(r−d)ρσ√x20+(4κ+σ2)x20+2ρσx3/220 2
√
1−ρ2λ1−1

4(1−ρ2)σ2x220

+
(x2−x20)2 −48θκ+36(r−d)ρσ√x20+24κx20+5σ2x20+6ρσx3/220 2

√
1−ρ2λ1−1

48(1−ρ2)σ2x320
− (x1−x10)(x2−x20)(−36θκρ+24(r−d)σ

√
x20+ρ(12κ+σ2)x20)

48(1−ρ2)σx5/220

− σ2(x1−x10)2
48x20(1−ρ2)

+
(x1−x10) −4θκρ+4(r−d)σ√x20+ρ(4κ+σ2)x20+2σx3/220 2

√
1−ρ2λ1−1

4(1−ρ2)σx3/220

C
(1)
X (x|x0; θ) = −x20(1+4λ21(1−ρ2))

8(1−ρ2) − γ2κ2

2(1−ρ2)σ2x202 +
(r−d)γκρ

(1−ρ2)σx20
3
2
+

ρ(4κ+σ2)
√
x20

8(1−ρ2)σ

−ρ(2γκ−d(4κ+σ2)+r(4κ+σ2))
4(1−ρ2)σ√x20 − 4(r−d)σ√x20+ρ(4κ+σ2)x20−2σx3/220 −4γκρ λ1

4(1−ρ2)σ√x20
+

γκ(4κ+(4−3ρ2)σ2)−2(r−d)2σ2
4(1−ρ2)σ2x20 − 48κ2+24(2(d−r+κ)−κρ2)σ2+(13−10ρ2)σ4

96(1−ρ2)σ2

Note that the behavior at the 0 boundary of the state variable x2 is unattainable, provided κγ is non-
negative. The log-likelihood is set to an arbitrarily high negative value when this condition is violated.

C. The Lognormal Stochastic Volatility Model

At order K = 1, with x1 = s and x2 = Y ; the expressions for the coefficients appearing in formula (11) are
given by:

Dv (x; θ) =
x2
2
+
1

2
ln(
¡
1− ρ2

¢
σ2)

C
(−1)
X (x|x0; θ) = σ2(x1−x10)4

96e2x20(1−ρ2)2 +
(x1−x10)2(x2−x20)

ex204(1−ρ2) − ρσ(x1−x10)3(x2−x20)
24e3x20/2(1−ρ2)2

−ρ(x1−x10)(x2−x20)2
ex20/2(1−ρ2)4σ +

(5ρ2−2)(x1−x10)2(x2−x20)2
48ex20 (1−ρ2)2 − ρ3(x1−x10)(x2−x20)3

24ex20/2σ(1−ρ2)2

+ ρ2(x2−x20)4
96(1−ρ2)2σ2 −

σ2(x1−x10)2+ex20 (x2−x20)2+2ex20/2ρσ(x1−x10)(−x2+x20)
2ex20(1−ρ2)σ2

C
(0)
X (x|x0; θ) = − (x1−x10)(2e

x20σ+4(d−r)σ+ex20/2(4θκρ+ρσ2−4(1−ρ2)σλ1−4κρx20))
4ex20 (1−ρ2)σ

− (x2−x20)(−2e
x20ρσ+4(r−d)ρσ+ex20/2(−4θκ−σ2+4ρ(1−ρ2)σλ1+4κx20))

4ex20/2(1−ρ2)σ2

− σ2(x1−x10)2
48ex20 (1−ρ2) −

(x2−x20)2(−6ex20ρσ+12(d−r)ρσ+ex20/2(24κ+σ2))
48ex20/2(1−ρ2)σ2

− (x1−x10)(x2−x20)(24(r−d)σ+e
x20/2(σ(−5ρσ+12(1−ρ2)λ1)+12κρ(−2−θ+x20)))
48ex20(1−ρ2)σ

C
(1)
X (x|x0; θ) = κ− ex20

8(1−ρ2) − (d−r)2
2ex20 (1−ρ2) −

ex20/2ρ(4θκ+σ2−4κx20)
8(1−ρ2)σ +− σ4(1+2ρ2)

96(1−ρ2)σ2

− (d−r)ρ(4θκ+σ
2−4κx20)

4ex20/2(1−ρ2)σ + ex20/2λ1
2 + (d−r)λ1

ex20/2
+

ρ(4θκ+σ2−4κx20)λ1
4σ

−2κ2x220−κρ2σ2x20−4θκ2x204(1−ρ2)σ2 − 2θ2κ2−2(r−d)σ2+2κσ2(1−ρ2)+θκρ2σ2+2σ2λ21(1−ρ2)2
4(1−ρ2)σ2

Note that x2 has no boundary; positivity of the variance is ensured because x2 is not the instantaneous
variance of the stock, but rather its natural logarithm.
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D. The CEV Model

At order K = 1, with x1 = s and x2 = Y and the indirect parameters

a = r − d, b =
¡
1− ρ2

¢
λ1 − 1

2
,

the expressions for the coefficients appearing in formula (11) are given by:

Dv (x; θ) =
1

2
ln(x1+2β2

¡
1− ρ2

¢
σ2)

C
(−1)
X (x|x0; θ) = x−4+2β20 σ2(x1−x10)4

96(1−ρ2)2 + (x1−x10)2(x2−x20)
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20 ρσ(x1−x10)3(x2−x20)

24(1−ρ2)2

− (1+2β)x
−(3/2)−β
20 ρ(x1−x10)(x2−x20)2

4(1−ρ2)σ +
(9ρ2−6−2β(1−ρ2))(x1−x10)2(x2−x20)2

48x320(1−ρ2)2

+
βx−1−2β20 (x2−x20)3

2(1−ρ2)σ2 − x
−(5/2)−β
20 ρ(3ρ2−2−8β(1−ρ2)−4β2(1−ρ2))(x1−x10)(x2−x20)3

24(1−ρ2)2σ
+
(ρ2−16β(1−ρ2)−28β2(1−ρ2))(x2−x20)4

96x
2(1+β)
20 (1−ρ2)2σ2

−x−1−2β20 x320+2x
3/2+β
20 ρσ(x1−x10)+x2β20σ2(x1−x10)2−2 x220+x

1/2+β
20 ρσ(x1−x10) x2+x20x

2
2

2(1−ρ2)σ2

C
(0)
X (x|x0; θ) = −

x
−3/2−β
20 4γx20κρ−4x220κρ−4ax1/2+β20 σ−4bx3/2+β20 σ+(1−2β)x2β20 ρσ2 (x1−x10)

4(1−ρ2)σ

+
x−1−2β20 4γx20κ−4x220κ−4ax1/2+β20 ρσ−4bx3/2+β20 ρσ+(1−2β)x2β20σ2 (x2−x20)

4(1−ρ2)σ2 +
(2β−3)x−3+2β20 σ2(x1−x10)2

48(1−ρ2)

+
x
−5/2−β
20 12(1+2β)γx20κρ+12(1−2β)x220κρ−24ax1/2+β20 σ+(15−28β+12β2)x2β20ρσ2 (x1−x10)(x2−x20)

48(1−ρ2)σ

− 48βγx20κ+24(1−2β)x220κ−12a(1+2β)x1/2+β20 ρσ+12b(1−2β)x3/2+β20 ρσ+(9−14β)x2β20σ2 (x2−x20)2

48x
2(1+β)
20 (1−ρ2)σ2

C
(1)
X (x|x0; θ) = (3−28β+12β2−6ρ2+40βρ2−24β2ρ2)σ2x−2+2β20

96(1−ρ2) − κ2(x20−γ)2
2(1−ρ2)σ2x2β20

+
(1−2β)ρσx−3/2+β20 (a+bx20)

4(1−ρ2) − κρx
−1/2−β
20 (x20−γ)(a+bx20)

(1−ρ2)σ
−2a2−4βγκ+γκρ2+2βγκρ2+4abx20−2κx20+4βκx20+κρ2x20−2βκρ2x20+2b2x2204(1−ρ2)x20

Note that the boundary at 0 of the state variable x2 cannot be achieved if β > 1
2 and 2κγ ≥ σ2; whether

the boundary is attainable when β = 1/2 depends on the other parameter values (see the discussion for the
Heston (1993) model).
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Table 1. Monte Carlo Simulations with Observed Volatility

True 500 Daily Obs. 5, 000 Daily Obs. 10, 000 Daily Obs. 500 Weekly Obs.
Parameter Value Bias Std.Dev. Bias Std.Dev. Bias Std.Dev. Bias Std.Dev.

κ 3.00 0.8 1.6 0.06 0.4 0.02 0.3 0.1 0.5
γ 0.10 0.0005 0.022 0.0001 0.006 −0.0001 0.0041 0.0001 0.008
σ 0.25 0.0002 0.006 0.0000 0.002 0.0000 0.0014 0.0003 0.006
ρ −0.8 −0.0002 0.013 −0.0001 0.004 −0.0001 0.003 −0.0013 0.013
λ1 4.0 0.9 6.5 0.07 1.9 0.1 1.4 0.2 2.9

Note: This table shows the results of 1, 000 Monte Carlo simulations with respectively 500, 5, 000 and 10, 000 daily
observations (i.e., ∆ = 1/252) and observed volatility. The second column shows the parameters used to generate the
simulated sample paths. The “Bias” column shows the mean bias of the estimated parameter vector, i.e., the difference
between the estimated parameters and the true values. The “Std. Dev.” column shows the standard deviation of the
parameter estimates. The market price of risk of the stochastic volatility variable, λ2, is not identified when volatility
is observed. The instantaneous interest rate and the instantaneous dividend yield of the stock were held fixed at the
values of 4%, and 1.5% respectively.
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Table 2. Monte Carlo Simulations with Unobserved Volatility

True 500 Weekly Obs.
Parameter Value Bias Std.Dev.

κ 3.00 −0.6 1.6
γ 0.10 −2.6 11.9
σ 0.45 −0.014 0.03
ρ −0.70 −0.0004 0.03
λ1 −7.0 −0.5 4.9
λ2 −6.0 −0.7 3.8

Note: This table shows the results of 1, 000 Monte Carlo simulations with 500 weekly observations (i.e., ∆ = 7/365)
and unobserved volatility. The second column shows the parameters used to generate the simulated sample paths.
The “Bias” column shows the mean bias of the estimated parameter vector, i.e., the difference between the estimated
parameters and the true values. The “Std. Dev.” column shows the standard deviation of the parameter estimates.
The instantaneous interest rate and the instantaneous dividend yield of the stock were held fixed at the values of 4%,
and 1.5% respectively.
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Table 3. Effect of Volatility Proxy

True Actual Proxy
Parameter Value Bias Std.Dev. Bias Std.Dev.

κ 3.00 −0.4 0.61 0.3 0.66
γ 0.10 −3.1 8.8 −2.6 15.1
σ 0.45 −0.01 0.024 −0.018 0.013
ρ −0.7 −0.003 0.023 −0.02 0.02
λ1 −7.0 0.1 2.0 −0.6 2.0

Note: This table shows the results of 1, 000 Monte Carlo simulations with 500 weekly observations (i.e., ∆ = 7/365)
and unobserved volatility, using both Fourier inversion and an implied volatility proxy to determine the level of the
stochastic volatility variable. The second column shows the parameters used to generate the simulated sample paths;
the simulations are the same as those used in Table 2. The third column shows the mean bias of the estimated para-
meter vector, i.e., the difference between the estimated parameters and the values shown in the second column, when
the volatility is determined by Fourier inversion. The fourth column shows the standard deviation of the parameter
estimates, also using Fourier inversion. The fifth and sixth columns show the same information, but using the implied
volatility of an at-the-money short-maturity option to determined the level of the stochastic volatility variable. The
λ2 parameter is unidentified and fixed at −6.0 when the implied volatility proxy is used. To make the results compa-
rable, the λ2 parameter was held fixed even when Fourier inversion is used. The instantaneous interest rate and the
instantaneous dividend yield of the stock were held fixed at the values of 4% and 1.5%, respectively.
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Table 4. Asymptotic Variance of Estimates with Observed Volatility

True 500 Daily Obs. 5, 000 Daily Obs. 10, 000 Daily Obs.
Parameter Value ASE SSSE ASE SSSE ASE SSSE

κ 3.00 1.136 1.554 0.359 0.377 0.254 0.253
γ 0.10 0.019 0.022 0.0059 0.0057 0.0042 0.0041
σ 0.25 0.0061 0.0062 0.0019 0.0020 0.0014 0.0014
ρ −0.8 0.0133 0.0134 0.0042 0.0042 0.003 0.003
λ1 4.00 6.24 6.49 1.97 1.91 1.40 1.42

Note: This table shows the standard deviations of the parameter estimates, calculated both analytically and from the
Monte Carlo simulations. All values are based on daily observations. The second column shows the true values of the
parameter vector; this value was used to generate the sample paths for the Monte Carlo simulations, and to calculate the
standard deviations from the likelihood expressions. The third column, marked ASE for Asymptotic Standard Error,
shows the asymptotic standard deviations of each parameter when the data series contains 500 daily observations.
These values were obtained by computing the expected value of the second derivatives of the log likelihood in the form
of an integral. The fourth column, marked SSSE for Small Sample Standard Error, shows the standard deviations of
the parameter estimates from the Monte Carlo simulations, i.e., the same information as in the corresponding column
of Table 1. The fifth and sixth columns show the same information as the third and fourth columns, but with 5, 000
daily observations instead of 500. Finally, the seventh and eighth columns show the same information, but with 10, 000
daily observations. The market price of risk for the stochastic volatility variable is not identified when volatility is
observed; the instantaneous interest rate and dividend yield of the stock were held fixed at 4% and 1.5% per year,
respectively. Note that, with this number of observations, the standard deviations calculated analytically from the
approximate likelihood function are quite close to those observed in the Monte Carlo simulations.
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Table 5. Parameter Estimates for the Heston Model

Heston Model
Parameter Daily Weekly

κ 5.0 3.6
(0.7) (0.6)

γ 0.045 0.045
(0.06) (0.08)

σ 0.48 0.43
(0.04) (0.07)

ρ −0.77 −0.79
(0.06) (0.14)

λ1 3.9 4.2
(4) (5)

Note: This table shows the estimated parameter values for the Heston stochastic volatility model using the SPX-
VIX dataset. The first column shows results for daily observations with observed volatility. The second column shows
estimates also with observed volatility, but with weekly observations. Standard errors are shown in parentheses beneath
each parameter estimate.
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Table 6. Parameter Estimates for the GARCH Model

GARCH Model
Parameter Daily Weekly

κ 1.6 1.0
(1.1) (1.3)

γ 0.075 0.11
(0.1) (1.3)

σ 2.20 3.37
(0.016) (0.06)

ρ −0.75 −0.74
(0.06) (0.2)

λ1 2.3 2.1
(3.9) (3.8)

Note: This table shows the estimated parameter values for the GARCH stochastic volatility model using the VIX
dataset. The results for daily and weekly observation frequencies are shown. Standard errors are shown in parentheses
beneath each parameter estimate.
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Table 7. Parameter Estimates for the Lognormal Model

Log-Normal Model
Parameter Daily Weekly

κ 4.0 2.7
(0.6) (0.5)

γ −3.3 −3.3
(0.5) (0.2)

σ 2.1 1.8
(0.02) (0.04)

ρ −0.76 −0.79
(0.05) (0.13)

λ1 0.4 0.4
(9) (10)

Note: This table shows the estimated parameter values for the lognormal stochastic volatility model using the SPX-VIX
dataset. The results for daily and weekly observation frequencies are shown. Standard errors are shown in parentheses
beneath each parameter estimate.
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Table 8. Parameter Estimates for the General CEV Model

CEV Model
Parameter Daily Weekly

κ 3.0 3.3
(1.0) (0.8)

γ 0.052 0.046
(0.07) (0.07)

σ 1.37 0.58
(0.03) (0.3)

β 0.85 0.59
(0.05) (0.1)

ρ −0.77 −0.79
(0.05) (0.14)

λ1 3.4 4.3
(4.2) (4.9)

Note: This table shows the estimated parameter values for the general CEV stochastic volatility model using the
SPX-VIX dataset. The results for daily and weekly observation frequencies are shown. Standard errors are shown in
parentheses beneath each parameter estimate.
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Table 9. Likelihood Ratio Tests for Nested Models

Likelihood Ratio Statistic
Model Daily Frequency Weekly Frequency

Heston 696.6 15.6

GARCH 131.6 258.8

Note: This table shows likelihood ratio statistics for the Heston and GARCH stochastic volatility models, relative to
the CEV model (which nests both). The first column shows the likelihood ratio statistics for the estimated parameter
values at a daily frequency, and the second column shows the results for weekly estimation. All estimates for all models
are obtained using the implied volatility of an at-the-money short-maturity option as a proxy for the true level of
volatility. In all cases, there is a single degree of freedom, so the 95% chi-squared cutoff value is 3.84. As shown, both
nested models at both frequencies are rejected. The rejection is particularly strong for the Heston model, at both
frequencies.
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Fig. 1. The SPX (S&P 500) index represents the value of the underlying asset.
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Fig. 2. The VIX index represents the value of the implied volatility of a basket of short maturity at-the-money
options on the S&P 500 index.
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