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ABSTRACT

This paper studies the ability of a general class of habit-based asset pricing models to match the

conditional moment restrictions implied by asset pricing theory. Our approach is to treat the

functional form of the habit as unknown, and to estimate it along with the rest of the model's finite

dimensional parameters. This semiparametric approach allows us to empirically evaluate a number

of interesting hypotheses about the specification of habit-based asset pricing models. Using

stationary quarterly data on consumption growth, assets returns and instruments, our empirical

results indicate that the estimated habit function is nonlinear, the habit formation is internal, and the

estimated time-preference parameter and the power utility parameter are sensible. In addition, our

estimated habit function generates a positive stochastic discount factor (SDF) proxy and performs

well in explaining cross-sectional stock return data . We find that an internal habit SDF proxy can

explain a cross-section of size and book-market sorted portfolio equity returns better than (i) the

Fama and French (1993) three-factor model, (ii) Lettau and Ludvigson (2001) scaled consumption

CAPM model, (iii) an external habit SDF proxy, (iv) the classic CAPM, and (v) the classic

consumption CAPM.
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1 Introduction

Over the last �fteen years, academics interested in asset pricing have witnessed an explosion of

theoretical research aimed at explaining the behavior of expected stock market returns, both in the

times series and the cross-section. There are several competing classes of theories, ranging from

explanations based on idiosyncratic income shocks, incomplete markets and borrowing constraints,1

to those based on limited stock market participation,2 heterogeneity in preferences,3 nonseparable

utility between durable and nondurable consumption,4 and irrational expectations.5 Yet a com-

prehensive survey of this literature reveals that a leading and increasingly pervasive explanation of

aggregate stock market behavior is one based on investor preferences. This strand of the literature

argues that assets are priced as if there were a representative investor whose utility is a power

function of the di¤erence between aggregate consumption and a �habit�level, where the habit is a

function of lagged and (possibly) contemporaneous consumption.6

Given the plethora of competing theories, it would seem important to �nd some way of empir-

ically evaluating the representative-agent, habit-based asset pricing framework as an explanation

for aggregate stock market behavior. For the most part, these models have been �tested�by under-

taking a calibration exercise, and then asking whether the calibrated model is capable of matching

a select set of asset pricing moments computed from data. Although such exercises are undoubt-

edly useful as an initial step in the evaluation of asset pricing theories, it�s clear that a complete

evaluation of these models requires moving beyond calibration, to formal estimation and testing.7

It is little wonder that such an empirical investigation has yet to emerge. Consider the range of

habit-based asset pricing models cited in footnote 6. All of these models place testable restrictions

on the joint behavior of aggregate consumption and asset returns, and each implies that the habit

stock is a function of past and (possibly) contemporaneous consumption. But there is substantial

divergence across models in how the habit stock is speci�ed to vary with aggregate consumption.

Some work relies on a linear speci�cation for the habit stock as a function of past consumption (e.g.,

1For example, Constantinides and Du¢ e (1996), Heaton and Lucas (1996), Krusell and Smith (1997), Constanti-

nides, Donaldson, and Mehra (2002), Kogan and Uppal (2002).
2For example, Attanasio, Banks, and Tanner (2002), Brav, Constantinides, and Geczy (2002), Vissing-Jrgensen

(2002). Constantinides (2002) provides a survey of this literature.
3For example, Abel (1989), Dumas (1989), Grossman and Zhou (1996), Sandroni (1999), Chan and Kogan (2002).
4For example, Lustig and Nieuwerburgh (2002); Piazzesi, Schneider, and Tuzel (2002); Yogo (2003).
5For example, Barsky and De Long (1993), Barberis, Shleifer, and Vishny (1998), Hansen, Sargent, and Tallarini

(1999), Cecchetti, Lam, and Mark (2000).
6See Sundaresan (1989), Constantinides (1990), Ferson and Harvey (1992), Heaton (1995), Jermann (1998), Camp-

bell and Cochrane (1999), Campbell and Cochrane (2000); Boldrin, Christiano, and Fisher (2001), Li (2001), Shore

and White (2002); Wachter (2002), Dai (2003), and Menzly, Santos, and Veronesi (2004). We discuss these papers

further below.
7Special cases of habit-based asset pricing models have been empirically evaluated: Ferson and Constantinides

(1991); Heaton (1995). We discuss these papers further below.
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Sundaresan (1989); Constantinides (1990); Heaton (1995); Jermann (1998); Boldrin, Christiano,

and Fisher (2001)). By contrast, more recent theoretical work often takes as a starting point the

highly nonlinear habit speci�cation that includes current consumption developed in Campbell and

Cochrane (1999) (e.g., Campbell and Cochrane (2000); Li (2001); Wachter (2002); and Menzly,

Santos, and Veronesi (2004)). These authors parameterize the functional form of the habit so that

a calibrated version of their model closely matches a selected set of asset pricing moments calculated

from post-war data. Because the habit speci�cations have not been estimated, however, it is unclear

whether they provide a valid description of the data. For example, emphasis on matching di¤erent

sets of asset pricing moments is likely to lead to di¤erent functional forms for the habit; it is unclear

how one should choose among these.8

These observations raise an important econometric issue for researchers interested in estimation

and testing: there are good reasons to think that the true habit speci�cation is unknown, implying

that its functional form should be treated not as a given, but as part and parcel of the empirical

investigation.

This study evaluates the ability of a general class of habit-based asset pricing models to match

the conditional moment restrictions implied by asset pricing theory. Our approach is to treat

the functional form of the habit as unknown, and estimate it along with the rest of the model�s

parameters. The empirical model we explore presumes that investor utility is a power function

of the di¤erence between aggregate consumption and a habit level, but allows the habit to be

an unknown function of lagged and contemporaneous consumption. The resulting speci�cation

for investor utility is semiparametric in the sense that it contains both the �nite dimensional set

of unknown parameters that are part of the power function and time-preference, as well as the

in�nite dimensional unknown habit function that must be estimated nonparametrically. In essence,

our empirical investigation does for estimation and testing what Campbell and Cochrane (1999)

did for calibration: we allow the data to �reverse engineer� the functional form of the habit that

most closely matches the joint distribution of aggregate consumption growth and asset returns

implied by asset pricing theory. Moreover, to avoid potential misspeci�cation, the law of motion of

consumption growth and asset returns are left unspeci�ed.

Estimation and testing are conducted by applying a minimum distance procedure to the essen-

tial asset pricing condition (a set of Euler equations) corresponding to the habit-based framework

we study. These Euler equations deliver a set of restrictions on the joint distribution of aggregate

consumption growth and asset returns by dictating that the product of the intertemporal marginal

rate of substitution in consumption and each asset return must have a conditional expectation equal

to unity. We use the sieve minimum distance (SMD hereafter) estimator for semiparametric condi-

8Most studies focus on the mean and standard deviation of excess stock returns and the risk-free rate. An exception

is Otrok, Ravikumar, and Whiteman (2002), which asks whether habit models can explain these moments taking

into account changes in the temporal distribution of consumption volatility.
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tional moment models developed in Newey and Powell (2003) and Ai and Chen (2003) to directly

estimate the Euler equations underlying the optimal consumption choice of an investor with access

to N asset payo¤s. The SMD estimator is an especially appealing estimator for this application

because it can be implemented as Generalized Method of Moments (GMM, Hansen (1982)), an

approach that will be familiar from prior work in estimating fully parametric, consumption-based

asset pricing models (e.g., Hansen and Singleton (1982)).9

The �sieve�part of the minimum distance estimator is a procedure for approximating an un-

known function by a sequence of parametric functions, with the number of parameters expanding

as the sample size grows (Grenander (1981)). The obvious advantage of this approach relative

to parametric modeling is that it imposes few restrictions on the form of the joint distribution of

the observed data, so there is little room for model misspeci�cation. The cost of the nonparamet-

ric approach is that the convergence rate of the resulting estimator is slower than the parametric

rate. Nevertheless, we show in the Appendix that all of the parameters in our model (the habit

function, the curvature parameter of the power utility function and the time-preference parameter)

are identi�ed, and may be consistently estimated using the SMD methodology. In addition, the

SMD estimates of the �nite dimensional parameters that are part of the power function and time-

preference are
p
T consistent (where T is the sample size), and asymptotically normally distributed.

This approach allows us to empirically investigate a number of interesting hypotheses about

the speci�cation of habit-based asset pricing models that have not been previously investigated.

One interesting hypothesis concerns whether the habit is better described as a linear function,

as in the work of Sundaresan (1989), Constantinides (1990), Heaton (1995), Jermann (1998) and

Boldrin, Christiano, and Fisher (2001), or as a nonlinear function, as in the more recent work of

Campbell and Cochrane (1999) and the many other researchers who have extended their model to

accommodate a variety of settings (e.g., Campbell and Cochrane (2000); Li (2001); Wachter (2002);

and Menzly, Santos, and Veronesi (2004)). Campbell and Cochrane (1999) argue that nonlinearities

in the habit are crucial for allowing such models to �t key features of asset pricing data, such as

time-series predictability of excess stock returns and counter-cyclical variation in the conditional

Sharpe ratio for the aggregate stock market. Our empirical results suggest that the functional form

of the habit is better described as nonlinear rather than linear, consistent with these more recent

modeling strategies.

A second interesting hypothesis concerns the distinction between �internal� and �external�

habit formation. The models investigated by Sundaresan (1989), Constantinides (1990), Heaton

(1995) and Boldrin, Christiano, and Fisher (2001) are models of internal habit formation, in which

the habit is a function of the agent�s own past consumption. By contrast, Campbell and Cochrane

9Jagannathan, Skoulakis, and Wang (2002) provide several examples illustrating the use of GMM in asset pricing

applications.
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(1999), Campbell and Cochrane (2000), Li (2001), Shore and White (2002), Wachter (2002), and

Menzly, Santos, and Veronesi (2004) investigate models of external habit formation, in which the

habit depends on the consumption of some exterior reference group, typically per capita aggregate

consumption. Abel (1990) calls external habit formation �catching up with the Joneses.�Deter-

mining which form of habit formation is more empirically plausible is important because the two

speci�cations have dramatically di¤erent implications for optimal tax policy and welfare analysis,

as well as for whether such models are capable of resolving long-standing asset-allocation puz-

zles in the international �nance literature (e.g., see Ljungqvist and Uhlig (2000) and Shore and

White (2002)). Our empirical results indicate that the data are better described by internal habit

formation than external habit formation.

Finally, our approach allows us to assess the quantitative importance of the habit in the

power utility speci�cation. Using stationary quarterly data on consumption growth, assets returns

and instruments, our empirical results suggest that the habit is a substantial fraction of current

consumption�about 97 percent on average�echoing the speci�cation of Campbell and Cochrane

(1999) in which the steady-state habit-consumption ratio exceeds 94 percent. In addition, our

estimated habit function is concave, generates positive intertemporal marginal rate of substitution

in consumption, our estimated time-preference parameter is around 0.99 and the estimated power

utility parameter is about 0.80 for three di¤erent combinations of instruments and asset returns.

How well does the habit-based framework �t the asset pricing data? We evaluate the SMD-

estimated habit model and several competing asset pricing models by employing the model com-

parison distance metric recommended in Hansen and Jagannathan (1997), where all the models are

treated as stochastic discount factor (SDF) proxies to the truth. We compare the SMD-estimated

habit model to two empirical asset pricing models that have displayed relative success in explaining

the cross-section of stock market portfolio returns: the three-factor asset pricing model of Fama

and French (1993), and the approximately linear, conditional, or �scaled� consumption capital

asset pricing model (CCAPM) explored in Lettau and Ludvigson (2001b). We also compare its

performance with the classic CAPM of Sharpe (1964) and Lintner (1965) and classic consump-

tion CAPM of Breeden (1979) and Breeden and Litzenberger (1978). Doing so, we �nd that a

SMD-estimated internal habit model can explain a cross-section of size and book-market sorted

equity returns better than the Fama-French three-factor model, better than the Lettau-Ludvigson

scaled consumption CAPM, better than a SMD-estimated external habit model, and better than

the classic CAPM and consumption CAPM models.10

To our knowledge, there has been only a small amount of prior work applying sieve nonparamet-

10For the internal and external habit models, we treat the SMD-estimated habit functions as a known part of

the SDF proxy for those models. As we explain below, this procedure places the habit models at a disadvantage

relative to other models because we don�t minimize the Hansen-Jagannathan distance with respect to the habit sieve

parameters but instead �x them at the values that minimize the SMD criterion. See Section 6 for further discussion.
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ric estimation techniques to asset pricing questions. Gallant and Tauchen (1989) employed a �semi-

nonparametric�modeling approach based on series expansions to estimate a consumption-based

asset pricing model. Gallant, Hansen, and Tauchen (1990) employ the same semi-nonparametric

methodology, but apply it to the conditional distribution of a vector of monthly asset payo¤s. This

procedure allowed the e¢ cient use of conditioning information in the computation of volatility

bounds for the intertemporal marginal rate of substitution of consumers (Hansen and Jagannathan

(1991)). Following this work, Bansal and Viswanathan (1993) and Bansal, Hsieh, and Viswanathan

(1993) use the semi-nonparametric methodology to estimate nonlinear arbitrage-pricing models,

while Chapman (1997) approximates an asset pricing kernel using orthonormal polynomials in

state variables implied by a real business cycle model. Our study di¤ers from these in several

ways. First, we place more structure on the empirical asset pricing model by embedding the un-

known habit function in the more familiar power-utility framework.11 By contrast, Gallant and

Tauchen (1989) treat the entire period-by-period utility function as unknown and approximate it

using polynomial series, while Bansal and Viswanathan (1993), Bansal, Hsieh, and Viswanathan

(1993) and Chapman (1997) approximate the whole SDF as a function of a few macroeconomic

factors. The more structural approach taken in this paper makes it straightforward to investigate

a number of interesting hypotheses speci�c to the habit-based theoretical framework (such as in-

ternal vs external habit formation) that have not been investigated elsewhere. Second, Gallant

and Tauchen (1989) focused on time series asset pricing properties of their estimated model using

a consumption growth series and a small number (N = 2) of asset return series. We focus on

the cross-sectional asset pricing properties with a larger number (for example, N = 7; 17 or 26) of

return series, and we also use di¤erent conditioning variables. These di¤erences are of relevance

because, as shown in the Appendix, larger N and the appropriately chosen conditioning variables

make it more likely that the conditions for identi�cation of all the model parameters (the unknown

habit function, the power utility parameter and the time-preference parameter) will be satis�ed.

Indeed, these conditions appear to be well satis�ed in our data, since the SMD estimation results

are all very similar when di¤erent sets of asset returns and instruments are used. Third, Gallant

and Tauchen (1989) and Gallant, Hansen, and Tauchen (1990) approximate the transition density

underlying the conditional moment restrictions using a Hermite polynomial, whereas we approxi-

mate the conditional moments directly using known basis functions of conditioning variables. Their

approach is potentially more e¢ cient, while ours is computationally simpler, especially when the

number of conditional moment restrictions N is large.12 Fourth, treating all models as potentially

11There are good reasons in asset pricing theory to allow the habit to be an unknown function of contemporaneous

consumption. However, this speci�cation makes the estimation and testing very challenging, since it becomes a

nasty nonparametric nonlinear ill-posed inverse problem, see e.g., Blundell and Powell (2001), Darolles, Florens, and

Renault (2002), Newey and Powell (2003), Ai and Chen (2003).
12For the set of Euler equations with N returns, the Gallant and Tauchen (1989) procedure needs to estimate the
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misspeci�ed, we conduct an extensive model comparison of the performance of our SMD-estimated

habit models by evaluating them against other leading asset pricing models designed to explain the

cross-section of asset returns.

The rest of this paper is organized as follows. In the next section we lay out the empirical asset

pricing model to be estimated and tested. Section 3 explains the estimation technique and how

it is implemented. Section 4 describes the data; Section 5 presents the results of estimation and

hypothesis testing about the linearity of the habit function, and Section 6 provides speci�cation tests

for internal versus external habit formation, and conducts model comparison when all the competing

models can be misspeci�ed. Section 7 concludes. In the Appendix we present identi�cation of all

the model parameters, and provide some technical details on the large sample properties of the

SMD estimators and the related test statistics.

2 The Model

In this section we present a model of investor behavior in which utility is a power function of the

di¤erence between aggregate consumption and the habit. We do not consider models in which utility

is a power function of the ratio of consumption to the habit stock, as in Abel (1990) and Abel (1999).

Ratio models of external habit formation imply relative risk-aversion is constant, hence they have

di¢ culty accounting for the predictability of excess stock returns documented in the empirical asset

pricing literature.13 By contrast, di¤erence models can generate time-variation in the equilibrium

risk-premium because relative risk aversion varies countercyclically. Di¤erence models are also far

more common in the asset pricing literature; for example, the di¤erence speci�cation is used in all

the habit-based asset pricing models referenced in footnote 6 of this paper.

Throughout this paper we assume that identical agents maximize the utility function

U = E
1X
t=0

�t
(Ct �Xt)1�
 � 1

1� 
 : (1)

(1+N)�dimensional conditional density of the consumption growth and N asset returns, given the past consumption

growth and past returns, subject to the N Euler equations. By contrast, our procedure only needs to compute N

least square projections of the product of the SDF and an asset return onto the instruments.
13A large literature �nds that excess stock returns are forecastable. Shiller (1981), Fama and French (1988),

Campbell and Shiller (1988), Campbell (1991), and Hodrick (1992) �nd that the ratios of price to dividends or

earnings have predictive power for excess returns. Harvey (1991) �nds that similar �nancial ratios predict stock

returns in many di¤erent countries. Lamont (1998) forecasts excess stock returns with the dividend-payout ratio.

Campbell (1991) and Hodrick (1992) �nd that the relative T-bill rate (the 30-day T-bill rate minus its 12-month

moving average) predicts returns, while Fama and French (1988) study the forecasting power of the term spread (the

10-year Treasury bond yield minus the one-year Treasury bond yield) and the default spread (the di¤erence between

the BAA and AAA corporate bond rates). Lettau and Ludvigson (2001a) forecast returns with a proxy for the log

consumption-wealth ratio.
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Here Xt is the level of the habit, and � is the time discount factor. Xt is assumed to be a function

(known to the agent but unknown to the econometrician) of current and past consumption

Xt = f (Ct; Ct�1; :::Ct�L) ;

such that Xt < Ct; Xt � 0: Note that we allow the habit to depend on contemporaneous as well

as past consumption, a modeling choice that is a feature of several habit models in the recent

theoretical literature (e.g., Campbell and Cochrane (1999)).14

When the habit is internal, the agent takes into account the impact of today�s consumption

decisions on future habit levels. In this case the intertemporal marginal rate of substitution in

consumption is given by

Mt+1 = �
MUt+1
MUt

; (2)

where

MUt =
@U

@Ct
= (Ct �Xt)�
 � Et

24 LX
j=0

�j (Ct+j �Xt+j)�

@Xt+j
@Ct

35 ; (3)

and where Et is the expectation operator conditional on information available at time t. When the

habit is external, agents maximize (1) but ignore the impact of today�s consumption on tomorrow�s

habits, since the habit in this speci�cation merely plays the role of an externality. In this case, only

the �rst term on the right-hand-side of (3), (Ct �Xt)�
 , is part of marginal utility. In equilibrium,
however, identical individuals choose the same consumption, so that regardless of whether the habit

is external or internal, individual consumption, Ct, is equal to aggregate consumption, Cat , which

we denote as Ct from now on.

The asset pricing model comes from the �rst-order conditions for optimal consumption choice.

These �rst-order conditions place restrictions on the joint distribution of the intertemporal marginal

rate of substitution in consumption and asset returns. They imply that for any traded asset indexed

by i, with a gross return at time t+ 1 of Ri;t+1; the following equation holds:

Et (Mt+1Ri;t+1) = 1; i = 1; :::; N: (4)

Equation (4) shows that the intertemporal marginal rate of substitution in consumption, Mt, is the

stochastic discount factor (SDF), which in this setting depends on the unknown habit function. The

resulting N equations yield a set of conditional moment restrictions containing a vector of unknown

parameters, (�; 
)0, and a single unknown habit function Xt = f (Ct; Ct�1; :::Ct�L). It is clear that

identi�cation of the unknown habit function using (4) requires ruling out the case Xt = KCt with

a constant K 2 [0; 1); this is not a problem since any model of habit formation naturally depends

on past consumption. The model (4) is semiparametric in the sense that it contains both �nite

14 In the conclusion we discuss a possible alternative speci�cation (a signi�cant extension of the empirical approach

developed here), in which the habit is speci�ed as a recursive functional of unknown form e.g., Xt = r (Ct; Ct�1; Xt�1) :
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dimensional and in�nite dimensional unknown parameters. In addition, it leaves the law of motion

unspeci�ed.

3 Empirical Implementation

Our empirical approach is based on estimation of the conditional moment restrictions (4). Es-

timation in this setting may be undertaken using the sieve minimum distance (SMD) estimator

developed in Newey and Powell (2003) and Ai and Chen (2003).

The idea behind the SMD estimator is that sample analog of the conditional moment (4) can

be consistently estimated via minimum distance estimation in a procedure that has two essential

parts. First, although the functional form of the conditional distribution implied by (4) is unknown,

we may replace the conditional expectation itself with a consistent nonparametric estimator (to

be speci�ed later). Second, although the habit function f is an in�nite-dimensional unknown

parameter, we can approximate it by a sequence of �nite-dimensional unknown parameters (sieves)

fKT
, where the approximation error decreases as the dimension KT increases with the sample size

T , and where fKT
is estimated jointly with the �nite-dimensional parameters (�; 
)0 by minimizing

a (weighted) quadratic norm of estimated conditional expectation functions.

Under the assumption of i.i.d. observations, Ai and Chen (2003) show that the SMD estimators

of the unknown functions such as f are consistent with rate, that the SMD estimators of the �nite-

dimensional parameters such as (�; 
)0 are
p
T consistent and asymptotically normally distributed

and the optimally weighted versions are semiparametric e¢ cient. In the Appendix we show that

the results on nonparametric consistency and parametric
p
T�asymptotic normality can be easily

extended to allow for stationary beta-mixing time series observations.15 Beta-mixing is one popular

measure of temporal dependence for nonlinear time series; see Appendix for the formal de�nition.

It is satis�ed by many widely used �nancial time series models including nonlinear ARCH, GARCH,

stochastic volatility and di¤usion models; see e.g., Doukhan (1994), Chen, Hansen, and Carrasco

(2001) and Carrasco and Chen (2002). Thus, our procedure requires stationary ergodic observations

but does not restrict to linear time series speci�cations, nor do we specify parametric laws of motions

of the data.

Before we can estimate the model, we must address two speci�cation issues that arise both from

the nature of the data on aggregate consumption and the nature of the moment conditions speci�c

to our application. First, it is clear that consumption is trending over time, so it is necessary

to transform the model to use stationary observations on consumption growth. We address this

problem by assuming that the unknown functionXt = f (Ct; Ct�1; :::Ct�L) is homogeneous of degree

one. The homogeneous of degree one assumption is consistent with the habit models studied in
15However, there is currently no general semiparametric e¢ cient result for SMD estimators of time series models

of conditional moment restrictions containing unknown functions.
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the asset pricing literature cited above, including the complex habit speci�cation investigated in

Campbell and Cochrane (1999). This assumption allows us to express the stochastic discount

factor, Mt+1, as a function of gross growth rates in consumption, which are plausibly stationary.

In this case, the unknown function Xt may be written

Xt = Ctf

�
1;
Ct�1
Ct

; :::;
Ct�L
Ct

�
; (5)

which can be rede�ned as

Xt = Ctg

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
; (6)

where g : RL ! R is an unknown function of the gross growth rates of consumption, with domain

space reduced by one dimension relative to f . Note that g now replaces f as the unknown function to

be identi�ed and estimated along with (�; 
) using the Euler equation (4) and the SMD procedure.

In the Appendix we show that g; �; and 
 are identi�ed as long as 0 � g < 1, g(0; :::; 0) = 0,

g 6= const:, � > 0 and 
 > 0.

A second implementation issue concerns the form of the nonparametric speci�cation in (6). A

speci�cation such as that in (6) will clearly be infeasible if L is too large, a �curse of dimensional-

ity.�16 One approach to this problem is to estimate a fully nonparametric sieve model (e.g., tensor

product linear sieves such as tensor product splines) and to simply limit the number of lags, L,

to some small number, such as one.17 Alternatively, we may employ more lags in our estimation

by using a nonlinear sieve (e.g., a neural network) to approximate g
�
Ct�1
Ct

; :::;
Ct�L
Ct

�
. Such an ap-

proach has several important advantages for our application. First, it allows the use of more lags

by delivering a relatively fast convergence rate (compared to linear tensor product sieves) when

approximating the unknown function g (Chen and White (1999)). Second, the use of a nonlinear

sieve is often in practice better able to allow for nonlinearities in the unknown function, something

that is particularly important for the habit-based asset pricing literature which has increasingly

emphasized nonlinear speci�cations for the habit. Third, a nonlinear sieve allows for possible non-

16A curse of dimensionality in this context refers to the situation in which, �xing the smoothness of the function to

be estimated, the rate of convergence of the estimate approaches zero as the dimension of the domain of the target

function, g, approaches in�nity.
17This approach takes linear combinations of the tensor product of basis functions over each lag of consumption:

g
� eCt; eCt�1; ::: eCt�L� � KTX

i=0

�i

LY
j=0

Bij

� eCt�j� : (7)

Approximations of this form are routinely employed in economic problems which require a numerical solution to

a functional equation (for example, in numerical solutions of stochastic growth models), and are known to deliver

reasonably accurate results (e.g., Judd (1998), McGrattan (1998)). An important shortcoming of this approach in

empirical settings, however, is that approximation based on linear tensor product sieves may have slower convergence

rates than approximation based on nonlinear sieves when the domain of g is of high dimension (Chen and White

(1999)).
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separability between elements of g. Such nonseparability is a feature of well-known habit-based

asset pricing models (e.g., Campbell and Cochrane (1999)).

Of course, even using a nonlinear sieve, the number of lags of Ct upon which Xt is estimated

to depend must be restricted to some reasonable number relative to the sample size. Nevertheless,

such lag limitations are less restrictive than they might at �rst appear, since standard theoretical

treatments of habit formation imply that more recent values of consumption have the greatest

in�uence on the habit stock. Thus, the estimation procedure we propose may still do a good job of

characterizing how the habit changes with consumption, by estimating the habit stock as a function

the current and most recent lags of consumption.

In this paper, we estimate the function g
�
Ct�1
Ct

; :::;
Ct�L
Ct

�
using a single-layer smooth Arti�cial

Neural Network (ANN) sieve approximation, de�ned as

g

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
� �0 +

KTX
j=1

�j 

�

j;1

Ct�1
Ct

+ � � �+ 
j;L
Ct�L
Ct

+ �j

�
; (8)

where  (�) is called an activation function, which can be any known function except a polynomial
function of �xed �nite degree; see Hornik, Stinchcombe, and White (1989). A common choice for

 is the logistic function,  (x) = (1 + e�x)�1, a speci�cation we use here. To provide a nonpara-

metric estimate of the true unknown function, go (�), where �(�)�denotes its generic argument, it
is necessary to require KT to grow with the sample size to ensure consistency of the method.18 We

denote the unknown parameters to be estimated as � = (�; 
; g)0 =�
�; 
; �0; �1; :::; �KT

; 
1;1; :::; 
1;L; :::; 
KT ;1; :::; 
KT ;L; �1; :::; �KT

�0. We are not interested in the

sieve parameters per se, but in the dynamic behavior of the habit stock and marginal utility,

which depend on those parameters.

An important advantage of using the particular ANN sieve above is that, as long as consumption

is strictly positive, we may easily restrict coe¢ cients so that the habitXt < Ct, for all possible shocks

to consumption, not just those observed in our sample. Imposing this restriction is straightforward

in our setting because the sigmoid function  (x) = (1 + e�x)�1 lies between zero and one, regardless

of the values taken by its arguments. This insures that utility is always well de�ned, and avoids

the danger that the model will break down out-of-sample. Imposing this restriction is sometimes

di¢ cult even when the habit is speci�ed parametrically, for example, as a linear or polynomial

function of past consumption.

We are now in a position to estimate the unknown �; 
; and g using the conditional moment

conditions (4). When the habit stock is a homogeneous of degree one function of current and past
18Hornik, Stinchcombe, and White (1989) provide a universal approximation result which states that, asymptoti-

cally, we can approximate any continuous function using a neural network sieve; Chen and White (1999) provide con-

vergence rates for a large class of single hidden layer feedforward arti�cial neural networks. Bansal and Viswanathan

(1993) use a neural network to approximate the stochastic discount factor of an nonlinear arbitrage pricing model.

See Campbell, Lo, and MacKinlay (1997) for additional neural network sieve applications in �nance.
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consumption, marginal utility, MUt, takes the form

MUt = C�
t

�
1� g

�
Ct�1
Ct

; :::;
Ct�L
Ct

���

(9)

�C�
t Et

24 LX
j=0

�j
�
Ct+j
Ct

��
 �
1� g

�
Ct+j�1
Ct+j

; :::;
Ct+j�L
Ct+j

���
 @Xt+j
@Ct

35 ;
where,

@Xt+j
@Ct

=

8>><>>:
gj

�
Ct+j�1
Ct+j

; :::;
Ct+j�L
Ct+j

�
8j 6= 0

g
�
Ct�1
Ct

; :::;
Ct�L
Ct

�
�
PL
i=1 gi

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
Ct�i
Ct

j = 0

(10)

In the expression directly above, gi denotes the derivative of g with respect to its ith argument.

Together, equations (9) and (10) imply that the stochastic discount factor can be expressed as a

function of the gross growth rates of consumption:

Mt+1 = �
MUt+1
MUt

= �

�
Ct+1
Ct

��

	t+1; (11)

where,

	t+1 �

0B@
�
1� g

�
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

���

�Et+1

�PL
j=0 �

j
�
Ct+1+j
Ct+1

��
 �
1� g

�
Ct+j
Ct+1+j

; :::;
Ct+j+1�L
Ct+1+j

���
 @Xt+1+j
@Ct+1

�
1CA

0B@
�
1� g

�
Ct�1
Ct

; :::;
Ct�L
Ct

���

�Et

�PL
j=0 �

j
�
Ct+j
Ct

��
 �
1� g

�
Ct+j�1
Ct+j

; :::;
Ct+j�L
Ct+j

���
 @Xt+j
@Ct

�
1CA

:

The stochastic discount factor, Mt+1, is the product of two terms, �
�
Ct+1
Ct

��

and 	t+1. The

�rst term is the familiar expression for the intertemporal marginal rate of substitution when pref-

erences are characterized by constant relative risk aversion utility and no habit formation. The

second term is a complicated function of expected future, current, and past consumption growth,

and is attributable to the presence of Xt in (1).

To obtain an estimable expression, the stochastic discount factor, Mt+1, must be rearranged

so that the conditional expectation Et appears only on the outside of (4). The Appendix presents

several equivalent expressions of this form; here we present one. Denote the true values of the

parameters with an �o�subscript. Combining (11) and (4) and rearranging terms generates a set

of N conditional moment conditions:

Et

( 
�o

�
Ct+1
Ct

��
o
zt+1Ri;t+1 � 1

!
�t+1

)
= 0; i = 1; :::; N; (12)
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where

zt+1 �

0B@
�
1� go

�
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

���
o
�
�PL

j=0 �
j
o

�
Ct+1+j
Ct+1

��
o �
1� go

�
Ct+j
Ct+1+j

; :::;
Ct+j+1�L
Ct+1+j

���
o @Xt+1+j
@Ct+1

�
1CA =�t+1;

�t+1 �

0B@
�
1� go

�
Ct�1
Ct

; :::;
Ct�L
Ct

���
o
�
�PL

j=0 �
j
o

�
Ct+j
Ct

��
o �
1� go

�
Ct+j�1
Ct+j

; :::;
Ct+j�L
Ct+j

���
o @Xt+j
@Ct

�
1CA :

Let

zt+1 �

�
R1;t+1; :::; RN;t+1;

n
Ct+1+j
Ct+1

oL
j=1

;
n

Ct+j
Ct+1+j

; :::;
Ct+j+1�L
Ct+1+j

oL
j=1

; Ct
Ct+1

; :::

::;
Ct+1�L
Ct+1

;
n
Ct+j
Ct

oL
j=1

;
n
Ct+j�1
Ct+j

; :::;
Ct+j�L
Ct+j

oL
j=1

; Ct�1Ct
; :::;

Ct�L
Ct

�0 :
De�ning

�i(zt+1; �o; 
o; go) �
 
�o

�
Ct+1
Ct

��
o
zt+1Ri;t+1 � 1

!
�t+1;

we may write (12) more compactly as

E f�i(zt+1; �o; 
o; go)jw�t g = 0; i = 1; :::; N; (13)

where the conditional expectation in (13) is taken with respect to agents�information set at time

t, w�t . Let wt be a dw � 1 observable subset of w�t that does not contain a constant. Equation (13)
implies

E f�i(zt+1; �o; 
o; go)jwtg = 0; i = 1; :::; N: (14)

In the Appendix we provide su¢ cient conditions so that the conditional moment restrictions (14)

identi�es the parameters of interest �o = (�o; 
o; go)
0.

For any candidate value � = (�; 
; g)0 we let �(zt+1;�) = (�1(zt+1;�); :::; �N (zt+1;�))
0 and

m(wt;�) = Ef�(zt+1;�)jwtg. It is obviously true that

�o = (�o; 
o; go)
0 = argmin

�
E
�
m(wt;�)

0m(wt;�)
�
:

Let fp0j(wt); j = 1; 2; :::; JT g be a sequence of known basis functions (including a constant function)
that map from Rdw into R. Denote pJT (�) � (p01 (�) ; :::; p0JT (�))

0 and the T � JT matrix P ��
pJT (w1) ; :::; p

JT (wT )
�0
. Then bm(w;�) = �PT

t=1 �(zt+1;�)p
JT (wt)

0(P0P)�1
�
pJT (w) is a sieve

Least Squares estimator of the conditional mean vector m(w;�) = Ef�(zt+1;�)jwt = wg (note
that JT must grow with the sample size to ensure its consistency). In this paper we consider a

simple SMD estimator

b� = argmin
�

1

T

TX
t=1

bm(wt;�)0 bm(wt;�); (15)
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which is in fact a two-stage nonlinear Least Squares estimator of �o. By extending the results in

Newey and Powell (2003) and Ai and Chen (2003) for i.i.d. data to stationary beta-mixing time

series observations, we obtain the consistency of bg and root-T consistency and asymptotic normality
of (b�; b
).

Plugging the sieve least squares estimator bm(w;�) into (15) reveals that b� is also a GMM

(Hansen (1982)) estimator:

b� = argmin
�

h
g(�;yT )

i0
fIN


�
P0P

��1g hg(�;yT )i ; (16)

where19

g(�;yT ) � 1

T

TX
t=1

�(zt+1;�)p
JT (wt) (17)

is the sample moment conditions associated with the NJT � 1 -vector of population unconditional
moment conditions:

E f�i(zt+1; �o; 
o; go)p0j(wt)g = 0; i = 1; :::; N; j = 1; :::; JT : (18)

It is well known that as long as the sequence of basis functions fp0j(wt); j = 1; 2; :::; JT g is
dense in the space of square integrable functions of wt, the conditional moment restrictions (14)

hold if and only if the increasing number of unconditional moment restrictions (18) hold. Therefore,

one could also estimate �o = (�o; 
o; go)
0 by minimizing the following GMM criterion with a general

weighting matrixW:

QT (�) =
h
g(�;yT )

i0
W
h
g(�;yT )

i
: (19)

We conjecture that minimizing the GMM criterion (19) using an arbitrary weighting matrix W

would also lead to consistent estimation of �o = (�o; 
o; go)
0. Unfortunately, even for i.i.d. data,

such a consistency result for an arbitrary weighting matrix has not been established when an

unknown function go of an endogenous variable is involved. Fortunately, minimization of (19)

using the particular weighting matrix W = IN
 (P0P)�1 is shown to yield consistent estimation
of �o = (�o; 
o; go)

0. This procedure is equivalent to regressing each �i on the set of instruments

pJT (�) and taking the �tted values from this regression as an estimate of the conditional mean,

hence gives greater weight to moments that are more highly correlated with the instruments pJT (�).
It is important to note that the general SMD procedure described in Ai and Chen (2003)

and stated in the Appendix collapses to a case of GMM only when the speci�c weighting matrix

W = IN
 (P0P)�1 is employed, a speci�cation that is crucial to the nonparametric estimation of
the conditional mean (14) using the basis functions fp0j(wt); j = 1; 2; :::; JT g. Estimation of the
conditional expectation Ef�(zt+1; �; 
; g)jwtg (as opposed to an unconditional expectation) is in
turn necessary to obtain consistent estimates of the nonparametric habit function.

19 In this paper yT � (z0T+1; :::z02;w0
T ; :::w

0
1)
0 denotes the vector containing all observations in the sample of size T .
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To summarize, the empirical procedure for estimating � is based on the following steps. First,

we transform the model so that the observations we employ are stationary beta-mixing, by assuming

that the habit is a homogeneous of degree one function of current and past consumption. This allows

us to derive an expression for the stochastic discount factor that is a function only of the gross

growth rates of consumption. Second, a �exible and robust functional form for the habit is obtained

by approximating it using a neural network sieve, whose dimensionality (complexity) grows with

the sample size T . Third, we estimate the set of N conditional expectations in (13) by transforming

(14) into a set of NJT unconditional expectations, multiplying each �i(zt+1; �; 
; g) for i = 1; :::N

by JT �instruments,�pJT (wt), which are known basis functions of observable variables, wt. Fourth,

we compute the sample average of the NJT orthogonality conditions, g(�;yT ): Finally, we �nd

estimates of � by setting a weighted sum of the NJT sample average moments g(�;yT ) as close

as possible to the population moment of zero, by minimizing the GMM criterion function (16).20

We considered a number of additional implementation issues in our estimation. First, as with

any nonlinear estimation procedure, it is necessary to require the parameter space to lie in a compact

set. In practice, researchers use prior information to restrict the parameter space. Restriction of

the parameter space is particularly important for our application, since sieve parameters which

generate values for the ANN sieve logistic activation function  (x) = (1 + e�x)
�1 that lie in the

tails of the function imply that the habit g is constant. Thus, we restrict the sieve parameters to a

range that does not generate tail observations on  (�). We also restrict the rate of time-preference,
� 2 (0; 1:2], and the curvature parameter 
 2 [:1; 100].

Second, we may compute standard errors for � and 
, but have no way of formulating standard

errors for the sieve parameters or the habit function itself. Although we provide consistency of the

sieve estimator for time series observations (see the Appendix), a general asymptotic distribution

theory for SMD estimators of unknown functions has not been developed, even for i.i.d. observa-

tions.21 But the parametric part of our speci�cation (� and 
) are root-T asymptotically normally

distributed. Moreover, as shown in Ai and Chen (2003) for the i.i.d. case, the asymptotic standard

errors for these parameters (� and 
) may be computed using GMM theory (Hansen (1982)). We

present these estimates in Table 1 below.

A �nal implementation issue concerns the sampling interval of our data relative to the decision

interval of households. If consumption decisions occur more frequently than the data sampling

20 In this paper we only assume that the time series f(z0t;w0
t)g is stationary beta-mixing, and hence only consider

the ine¢ cient but consistent SMD estimation of �o = (�o; 
o; go)
0. In the future we plan to study the semiparametric

e¢ cient SMD estimation of �o; we conjecture that Ai and Chen�s (2003) optimally weighted SMD criterion will still

lead to e¢ cient estimation for time series data.
21Some authors treat the sieve estimators of unknown functions as parametric ones and compute their standard

errors by applying standard root-T asymptotic normality theory. Such practices ignore the uncertainty of the unknown

functions and may in general lead to erroneous inference decisions.
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interval, aggregate consumption data are time-aggregated. Heaton (1993) studies the interaction

of time-aggregation and time-nonseparable preferences and concludes that it can in�uence the

evidence in favor of habit formation, at least when habits are of the linear variety. Unfortunately,

as Ferson and Constantinides (1991) and Heaton (1995) point out, it is not possible to model time-

aggregation in a fully nonlinear framework using minimum distance estimation, which our procedure

requires. To the extent that time-aggregation is a concern, this must be considered a limitation

of our approach. Nevertheless, there are at least two reasons to think that time-aggregation may

not unduly a¤ect inference. First, Ferson and Constantinides (1991) note that estimates of the

nonseparability parameter in Heaton (1993)� which uses a �rst-order linear approximation of the

Euler equation but allows for time-aggregation� are similar to their own estimates generated from

nonlinear GMM in which no time-aggregation is modeled. This suggests that time-aggregation

may not have a large in�uence on the estimates from minimum distance procedures. Second,

Ferson and Constantinides also note that, at least for the case of linear habit speci�cations, linear

approximations of the Euler equation imply that the e¤ect of time-aggregation is to increase the

order of the moving average process followed by the GMM error, in our case �i(zt+1; �o; 
o; go).

Of course, the in�uence of time-aggregation may be more complex for nonlinear speci�cations;

but we follow Ferson and Constantinides (1991) and at least partly account for these e¤ects when

computing the asymptotic standard errors for � and 
, by using a higher order nonparametric

correction for serial correlation in �i(zt+1; �o; 
o; go).

4 The Data

A detailed description of the data and our sources is provided in the Appendix. Our data are

quarterly,22 and span the period from the fourth quarter of 1952 to the fourth quarter of 2001.

We study three groups of asset returns. All stock return data are taken from Kenneth French�s

Dartmouth web page (URL provided in the appendix). The �rst group (Group 1) contains the

three-month Treasury bill rate, 10 industry portfolios of common stocks based on 4-digit SIC

codes, and six value-weighted portfolios of common stock sorted into two size (market equity)

quantiles and three book value-market value quantiles. Thus Group 1 consists of 17 asset returns

in total. The portfolios are created from all stocks traded on the NYSE, AMEX, and NASDAQ,

as detailed on Kenneth French�s web page. The second group of asset returns we consider (Group

2), uses a smaller number of asset returns, the three-month Treasury bill rate and the six value-

weighted portfolios of common stock sorted into two size quantiles and three book value-market

value quantiles, for a total of 7 asset returns. Because of the smaller number of asset returns, this

estimation has a smaller number of endogenous variables. Finally, we consider a larger cross-section
22 It is known that the quarterly consumption data contains less measurement errors than the monthly consumption

data.
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of returns: the three-month Treasury bill rate, plus 25 value-weighted returns for the intersections

of 5 market equity quantiles and 5 book equity-market equity quantiles, or 26 asset returns in total

(Group 3). Again, the portfolios are created from stocks traded on the NYSE, AMEX, NASDAQ,

and are constructed as described on Kenneth French�s web page.

The focus of this paper is on testing and modeling cross-sections of asset returns, rather than

one or two aggregate asset returns. Exploiting the cross-section aids the empirical identi�cation

of the unknown habit function. The number of moment conditions must be greater than the

number of parameters to be estimated, which is typically fairly large for estimation of an unknown

function. Exploiting a cross-section of asset returns is useful because there is often more independent

information in a well-chosen cross-section of asset returns than in ever larger numbers of basis

functions of a few conditioning variables.

Our measure of consumption is real, per-capita expenditures on nondurables and services. Since

consumption is real, our estimation uses real asset returns, which are the nominal returns described

above de�ated by the implicit chain-type price de�ator (1996=100) for our measure of consumption.

The procedure requires computation of instruments, pJT (wt), which are known basis functions

(including a constant function) of conditioning variables, wt. The importance of instrument rele-

vance in a GMM setting (i.e., using instruments that are su¢ ciently correlated with the included

endogenous variables) is now well understood.23 Although no formal test of instrument relevance

has been developed for estimation involving an unknown function, we focus on variables for wt

that are known to be strong predictors of asset returns and consumption growth in quarterly data.

We include lagged consumption growth in wt, as well as three variables that have been shown

elsewhere to have signi�cant forecasting power for excess stock returns on aggregate stock market

indexes and/or consumption growth in quarterly data, as well as for several of the portfolio returns

studied here. The �rst variable is a proxy for the log consumption-wealth ratio studied in (Lettau

and Ludvigson (2001a)), where wealth here includes human capital as well as nonhuman capital.

This proxy is measured as the cointegrating residual between log consumption, log asset wealth,

and log labor income and is denoted dcayt.24 This variable has strong forecasting power for stock
returns over horizons ranging from one quarter to several years. Lettau and Ludvigson (2001b)

report that this variable also forecasts portfolio returns. Two other variables that have been found

to display forecasting power for excess stock returns at a quarterly frequency are the �relative

T-bill rate� (which we measure as the three month Treasury-bill rate minus its 4-quarter moving

average), and the lagged value of the excess return on the Standard & Poor 500 stock market index

23See Stock, Wright, and Yogo (2002) for a survey of this issue.
24See Lettau and Ludvigson (2001a) and Lettau and Ludvigson (2004) for further discussion of this variable and its

relation to the log consumption-wealth ratio. Note that standard errors do not need to be corrected for pre-estimation

of the cointegrating parameters in dcayt, since cointegrating coe¢ cients are �superconsistent,� converging at a rate
faster than the square root of the sample size.
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(S&P 500) over the three-month Treasury bill rate (see Campbell (1991), Hodrick (1992), Lettau

and Ludvigson (2001a)). We denote the relative bill rate RREL and the excess return on the S&P

500 index, SPEX.25 Time-series regressions using these variables to predict future excess stock

returns on aggregate stock market indexes can be found in Lettau and Ludvigson (2001a). Lettau

and Ludvigson (2004) �nd that quarterly consumption growth is predictable by one lag of wealth

growth, a variable that is highly correlated with SPEX, and results (not reported) con�rm that

it is also predictable by one lag of SPEX. Thus, we use wt =
hdcayt; RRELt; SPEXt; Ct

Ct�1

i0
: We

note that consumption growth�often thought to be nearly unforecastable�displays a fair amount of

short-horizon predictability in the sample used here: a linear regression of consumption growth on

the one-period lagged value wt and a constant produces an F�statistic for the regression in excess
of 12.26

Since the error term �i(zt+1; �o; 
o; go) is orthogonal to the information set wt, any measurable

transformation of wt, pJT (wt), can be used as valid instruments. We use power series as instru-

ments, investigating three di¤erent speci�cations. Each speci�cation includes a constant (vector of

ones). The �rst speci�cation includes a constant, the linear terms plus the squared terms of each

variable in wt, creating nine instruments; we use these basis functions when studying the asset

returns in Group 1. The second set of instruments includes a constant, the linear terms, squared

terms and pair-wise cross products of each variable in wt, or 15 instruments in total. The third

set of instruments utilizes just a constant and the linear terms of each variable, or �ve instruments

in total. Recall that Group 1 assets contain 17 returns, Group 2 contains 7 returns and Group 3

contains 26 returns. We use the third instrument set when analyzing the larger asset return group,

Group 3, and the second instrument set when analyzing the smaller asset return group, Group

2. This is done because the number of total moment conditions is not uniquely determined by

the estimation theory. The theory merely requires that there be more moment conditions than

parameters to be estimated, NJT � dim (�), and that the number of moments, NJT , increase with
the sample size T , but at a slower rate than the sample size, so that NJT =T ! 0 and NJT !1 as

T !1. Since Group 3 has 26 asset returns, we reduce the number of instruments by using only a
constant and the linear transformations of wt in this case, so that the total number of moments is

similar to that for the estimations on Group 1 and Group 2 assets. Similar reasoning suggests that

we use a greater number of instruments when employing the smaller set of asset returns in Group

2.
25We focus on these variables not only because they have been found to have signi�cant forecasting power for future

excess stock returns, but also because, in samples that include recent data, they drive out many of the other popular

forecasting variables for stock returns, such as an aggregate dividend-price ratio, earnings-price ratio, term spreads

and default spreads (Lettau and Ludvigson (2001a)).
26As recommended by Cochrane (2001), the conditioning variables in wt are normalized by standardizing and

adding one to each variable, so that they have roughly the same units as unscaled returns.
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5 Empirical Results

5.1 Empirical Estimates

All the tables and �gures are reported at the end of the Appendix. Table 1 and Figures 1-10 present

the estimation results of the semiparametric habit model presented above, using the instruments

and the three groups of assets described in the previous section.27 The results reported below

were very similar with L = 4 and L = 3: Thus, we opt for the more parsimonious speci�cation,

and in all cases reported below set L = 3.28 We emphasize that our use of three lags is already a

generalization of what has been done previously in the estimation of time-nonseparable asset pricing

models, most of which have focused on speci�cations with L = 1 (e.g., Ferson and Constantinides

(1991), Chapman (1997)) and/or L = 2 (e.g., Gallant and Tauchen (1989)).29

For the dimensionality of the ANN sieve, g(x1; :::; xL) � �0 +
PKT
j=1 �j (�

L
l=1
j;lxl + �j), we

set KT = 3. Because asymptotic theory only provides guidance about the rate at which (L+2)KT

must increase with the sample size T , other considerations must be used to judge how best to set

this dimensionality. The bigger is (L + 2)KT , the greater is the number of parameters that must

be estimated, therefore the dimensionality of the sieve is naturally limited by the size of our data

set. With KT = 3, the dimension of the parameter vector, � = (�; 
; g)0, is 18, estimated using

a sample of size T = 200. In practice, we obtained very similar results setting KT = 4; thus we

present the results for the more parsimonious speci�cation using KT = 3 below.

We consider three estimations: the �rst one using Group 1 asset returns with a constant, the

linear and squared values of the elements of wt as instruments; the second one using Group 2 asset

returns with a constant, the linear, squared and cross terms of the elements of wt as instruments;

the third one using Group 3 asset returns with a constant and linear terms of wt as instruments.

The estimates of the time-preference parameter, �, and the curvature parameter, 
, are presented

in Table 1, with asymptotic standard errors in parentheses.

27The results reported here are based on w0
t =

hdcayt; RRELt; SPEXt;
Ct
Ct�1

i
. Nevertheless, all the empirical results

remain virtually unchanged when we use [dcayt; RRELt; SPEXt] as wt. We have also tried wt, lagged wt and lagged

returns as instruments, again the empirical results change little with the additional lagged wt and lagged returns.
28Taken literally, the choice of L = 3 implies that the error term, fMt+1Ri;t+1 � 1g ; is correlated with its three-

period lagged value. If this were known to be the true lag structure of the error term, e¢ ciency gains could be

made by imposing this structure in estimation. The choice of lag length here, however, is largely dictated by

our sample size. With no clear theoretical guidance on the value for L, possible e¢ ciency gains are likely to be

outweighed by the greater robustness a¤orded by foregoing e¢ cient estimation in favor of consistent estimation. For

this reason, we do not impose a third-order moving average (or other) structure on the error term, and instead simply

apply a nonparameteric adjustment for higher-order serial correlation to the asymptotic standard errors of the �nite

dimensional parameters.
29Using stationary monthly data on consumption growth and two return series, Gallant and Tauchen (1989) ex-

perimented with 1 and 2 lags and found the appropriate lag length is 1 for their subutility approximation.
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Table 1 shows that the estimates of � and 
 are very similar across these three estimations.

In each case, the subjective rate of time-preference is about 0:99, and the curvature parameter is

between 
 = 0:76 and 
 = 0:81: The standard errors indicate that these variables are estimated

precisely.30 The estimates for 
 are e¤ectively estimates of unity, since the minimized value of the

GMM criterion is very similar when 
 is restricted to one. Boldrin, Christiano, and Fisher (2001)

�nd that a business cycle model with linear habit formation and 
 = 1 performs well in matching

the mean equity premium and Sharpe ratio.

To get a sense of how important the habit is in the power utility speci�cation, the top panel

and bottom panels of Figure 1 plot the habit-consumption ratio and an estimate of the stochastic

discount factor, respectively, over time, for the estimation on Group 1 assets, where the instru-

ments are a constant, the linear and squared values of the elements of wt. The corresponding

�gures for the estimations on Group 2 and Group 3 assets are very similar and are therefore omit-

ted to conserve space. The �gure demonstrates signi�cant evidence in favor of habit formation,

conditional on the power utility framework. The habit is about 97 percent of current consumption

on average, reminiscent of the Campbell and Cochrane (1999) model, in which the steady state

habit-consumption ratio is in excess of 94%. Since the procedure is free to estimate a zero habit,

this evidence implies that habit formation signi�cantly improves the model�s ability to �t the data,

and rejects the notion that preferences are well described as time-separable in the power utility

framework. Note, however, the habit-consumption ratio is not highly volatile, ranging only from

0.97 to 0.974.

The bottom panel of Figure 1 plots the estimated stochastic discount factor over time. The

stochastic discount factor (Mt) is given in equation (11), and depends on the conditional expectation

of nonlinear functions of consumption growth and the estimated habit. Shown in Figure 1 is

an estimate of Mt, using our estimated parameter values with those parts of Mt that appear in

expectation as their projection onto the set of instruments used in that estimation. Note that the

estimate of Mt is always positive, thus it is an arbitrage-free stochastic discount factor suitable for

pricing derivative claims, as discussed in Hansen and Jagannathan (1997) and Wang and Zhang

(2003).31 The relative stability of the habit-consumption ratio translates into a relatively stable

stochastic discount factor: the mean is slightly less than one (0.98), while the standard deviation is

30Standard errors for � and 
 are computed using GMM theory (Hansen (1982)), which requires the inversion

of the product of two matrixes, the �rst a function of the �rst derivatives of the GMM errors with respect to the

parameter values, and the second the GMM weighting matrix. In many applications this matrix can be near singular,

and it is in ours. To alleviate the instability of the estimator that is attributable to such near-singularity, we add

a tiny positive scalar to the roots of the near-singular matrix to be inverted, delivering a �Ridge� estimator for the

variance-covariance matrix. In practice this is implemented by adding 1:0e�08 to the diagonal elements of the matrix
to be inverted, a value on the same order of magnitude as the minimized GMM objective function.
31A related point is made by Chapman (1998) who notes that requiring MUt itself to be positive places restrictions

on habit models. The �tted marginal utility values are never negative in the sample of data used here.
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about 0.02. Although the standard deviation is not large, it is nonetheless signi�cantly larger than

the standard deviation of quarterly consumption growth, equal to 0.0045 in this sample. Still, it

is evident that these speci�cations do not �t the unconditional volatility bounds for the stochastic

discount factor implied by the work of Hansen and Jagannathan (1991) when matched to post-war

data on aggregate stock returns. These bounds determine whether the model can match the mean

equity premium and Sharpe ratio. This �nding is not too surprising, since the methodology used

here must place very high weight on conditional moments (and therefore relatively little weight on

unconditional moments) in order to nonparametrically estimate the unknown habit function with

accuracy, and it serves as a reminder that the estimation in this study places weight on a much

larger set of asset pricing restrictions than those implied by the unconditional volatility bound. Our

�nding is also similar to �ndings by Ferson and Constantinides (1991), who concluded that habit

persistence improves the �t of the standard consumption-based model largely through its in�uence

on moments other than the mean equity premium and Sharpe ratio.

Figure 2 plots Ct�Xt against Ct (top panel), Xt against Ct (middle panel) and Xt against Ct�1
(bottom panel) for the estimation on Group 1 assets with a constant, the linear and squared values

of the elements of wt as instruments; again, the corresponding plots for the other estimations are

similar and are omitted to conserve space. This �gure plots the observed values of consumption

against our estimate of the habit stock over time. Its purpose is to get a sense of how the habit

stock varies over time with consumption. Note that this is not a plot of partial derivatives of the

habit with respect to consumption, but merely a plot of two time series, one against the another.

Thus, for example, Panel B shows how Xt tends to vary with Ct over time, but it does not hold

�xed the values of lagged consumption, which also in�uence the habit stock.

The top panel of Figure 2 shows that the di¤erence between consumption and habit tends to

rise with contemporaneous consumption; the middle panel shows that the habit also increases with

consumption, as would be consistent with common notions of habit formation. Thus, the habit

tends to rise with consumption, but does not rise one-for-one with consumption. The estimated

habit also increases with lagged consumption, as the bottom panel of each �gure shows for the

case of one-period lagged consumption, again consistent with common notions of habit persistence.

Plots of Xt against the second and third lags of consumption (not shown) are similar.

We can also check whether our estimates of the habit imply that the partial �rst derivatives,
@Xt+i
@Ct

; i = 1; 2; 3 are greater than zero, and decreasing in i. Such a structure is typical of linear habit

models speci�ed as a declining polynomial lag of past consumption. Of course, with a nonlinear

habit, these partial derivatives are not constant, but given our estimated X function, we may plot

the derivatives as they vary over time with lagged consumption growth. This is done in Figure 3,

again for the model estimated on Group 1 assets with a constant, the linear and squared terms

of wt as instruments. In each case, the partial derivative is positive everywhere; moreover, the
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partial derivative of the habit one-step ahead is everywhere greater than that two-steps, which

in turn is everywhere greater than that three steps ahead. This result is again consistent with

common intuition about the properties of habit formation: the habit depends positively on lagged

consumption, but this positive dependence decreases as the consumption becomes more distant.

Although the plots of Xt against Ct and Ct�1 in Figure 2 look �linear,� one cannot make

inferences about whether the habit itself is a linear function of current and past consumption on the

basis of these time-series plots.32 The shape of our estimated habit function can be better illustrated

by plotting Xt as a function of lagged consumption, Ct�1; holding �xed current consumption, Ct,

and the other lags of consumption, Ct�2; :::; Ct�L. Figures 4 through 6 plot this relation for each

estimation described above. For these plots, one-period lagged consumption is allowed to vary, but

Ct; Ct�2; :::; Ct�L are alternately held �xed at their median, 25th, and 75th percentile values in

our sample. The three �gures are quite similar; we can draw several conclusions from them. First,

the estimated habit looks nonlinear; this is evident from the curved shape of the functions and

from the �nding that the shape depends on where in the domain space the function is evaluated.

Second, the estimated habit is always increasing in past consumption. Third, the estimated habit

is increasing at a decreasing rate in past consumption. The next section presents a formal test of

the linearity of the habit.

5.2 Is Habit Function Linear?

Figures 4 to 6 indicate that the estimated habit function looks nonlinear. In this section, we test for

nonlinearity more formally. Whether habits are linear is an interesting empirical question because

the functional form of the habit is often crucial in determining the asset pricing implications of the

model. Sundaresan (1989), Constantinides (1990) and Heaton (1995) model the habit as a linear

function of consumption, but Campbell and Cochrane (1999) and many subsequent authors argue

that nonlinearities are a key factor determining whether the habit-based framework can match

the time-series properties of asset returns and consumption growth. For example, Campbell and

Cochrane (1999) argue that a nonlinear speci�cation is necessary to make stable risk-free rates and

a time-varying Sharpe ratio consistent with a random walk process for log consumption.33 Is the

habit we estimate here better described as a linear or nonlinear function of consumption growth?

To answer this question, it is useful to think about what linearity implies in this context. It

32See the next subsection for a statistical test of the linear habit speci�cation.
33Campbell and Cochrane specify their nonlinear habit as a pure externality, however nonlinearities may also be

important in internal habit speci�cations. In this section we test for nonlinearity in the internal habit speci�cation;

in the next section we undertake model speci�cation tests aimed at determining whether internal or external habit

formation better describes the data.
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implies that @Xt+i@Ct
is constant for all i � 0, and in particular

@2Xt+i
@C2t

= Ct+i
@2

@C2t
g

�
Ct+i�1
Ct+i

; :::;
Ct+i�L
Ct+i

�
� 0 8i � 1: (20)

The second derivative of the habit function with respect to each value of lagged consumption

must be identically zero everywhere, that is for all possible values of lagged consumption, not

merely those observed in our sample. We can get an idea of whether the second derivatives are

zero by plotting the estimated values of (20) based on our estimates for the cases above. This

is done in Figures 7 through 9 for i = 1. Notice from (10) that @2Xt+i=@C2t will take the form

(1=Ct+i) gii

�
Ct+i�1
Ct+i

; :::;
Ct+i�L
Ct+i

�
, where gii denotes the second partial derivative of g with respect to

its i�th argument. Obviously (1=Ct+i) gii cannot be identically zero unless gii
�
Ct+i�1
Ct+i

; :::;
Ct+i�L
Ct+i

�
is a zero function, since consumption is everywhere positive and �nite. Therefore, in order to

rid (1=Ct+i) gii of its dependence on the arbitrary units of Ct, we plot the �normalized� second

derivative of Xt+i, which consists only of the term gii. To conserve space, we plot only the values

g11

�
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
corresponding to @2Xt+1=@C2t .

Figure 7 plots the time series of g11 for the model estimated on Group 1 assets with a constant,

the linear and squared terms of wt as instruments; Figure 8 plots the same for the model estimated

on Group 2 assets and a constant, the linear, squared and cross terms of wt as instruments; Figure

9 plots the same for the model estimated on Group 3 assets with a constant, the linear terms of wt

as instruments. The second partial derivatives are everywhere negative; taken together with the

estimates of the �rst partial derivatives (e.g., Figure 3), this implies that the habit is increasing in

lagged consumption, but at a decreasing rate. Moreover, all three �gures indicate that the second

derivative of Xt is nonzero. Even though the numbers are less than one in absolute value, they

are nonzero. We should expect a small value for g11 merely because the second derivative of the

sigmoid function itself is always less than one, while the sieve parameters, the squared values of

which multiply the second derivative of the sigmoid function, are also typically small in absolute

value in order to keep the habit less than consumption. The point is that the units of gii are

naturally small, so we should expect values for the second derivative that are signi�cantly less than

one in absolute value. What one should look for in these �gures is whether the derivatives are

identically zero everywhere, as would be required by a linear habit function. This is not evident

from Figures 7 through 9.

Ideally we would like to construct a consistent statistical test of whether the second derivatives

are identically zero. Unfortunately, this is impractical because the convergence rates for any test

statistic based on second derivatives of an unknown function are known to be very slow. Neverthe-

less, we can provide a formal statistical test based on smooth functionals of unknown functions, as

discussed in Chen and Shen (1998). Such smooth functionals converge at the standard parametric

rate,
p
T , and have standard asymptotic distributions.
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One such smooth functional is the unconditional mean of the second derivative

� � E

�
@2Xt+i
@C2t

�
: (21)

Clearly if (20) is everywhere identically equal to zero, its mean (21) must be zero, although the

converse need not hold. Nevertheless, if we �nd that the mean (21) is statistically di¤erent from

zero, we may conclude that (20) is not true, and the habit function is nonlinear. We present

the results of such a test now, focusing, as discussed above, on the normalized second derivative

corresponding to @2Xt+1=@C2t , which is g11
�

Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
.

We wish to test whether the mean of g11, denoted as

�g � E

�
g11

�
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

��
;

is di¤erent from zero. Let bg() denote the SMD estimate of g() and bg11() be the second partial
derivative of bg() with respect to its �rst argument. Then �g can be estimated by

b�g = 1

T

TX
t=L

bg11� Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
:

By the result in Ai and Chen (2004) and under mild regularity conditions,
p
T (b�g � �g) is asymp-

totically normally distributed with mean zero and variance �211 > 0. Let b�211 be some consistent
estimator of �211 such as the Newey-West HAC estimator, then one could use

p
Tb�g=b�11 as a test

statistic, which has a standard normal limiting distribution under the null hypothesis �g = 0.

However the asymptotic variance �211 takes a complicated form and the calculation of any con-

sistent estimator b�211 is complicated. Instead, we use a bootstrap procedure to directly compute
an empirical, 95% con�dence region for �g. We estimate the distribution of �g by bootstrapping

the transformed raw data consisting of consumption growth rates, asset returns and conditioning

variables which can be regarded as drawn from stationary beta-mixing processes. The bootstrap

sample is obtained by sampling blocks of the raw data randomly with replacement and laying them

end-to-end in the order sampled.34 We then conduct SMD estimation on 500 bootstrap samples

so formed, which delivers 500 estimates of �g.

The results are as follows. There is very little variation in the variance of the mean across

bootstrap samples. This is not surprising, as the Figures above also suggest there is very little

variation in the second derivative estimates over time. This results in very strong rejections of

�g = 0. For the estimation on Group 1 assets with a constant, the linear and squared terms of wt as

instruments, the estimated 95 percent con�dence region for �g is [�0:052151;�0:051435]. Since the
34To choose the block length, we follow the recommendation of Hall, Horowitz, and Jing (1995) who show that the

asymptotically optimal block length for estimating a symmetrical distribution function is l _ T 1=5; also see Horowitz
(2003).
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estimated habit function is very similar across estimations, the con�dence intervals for estimation

on Group 2 assets using a constant, the linear, squared and cross-term of wt as instruments, and

on Group 3 assets with a constant and the linear terms of wt as instruments, are almost identical

to that reported above. In every case, zero is well outside the 95% con�dence region. Thus, we

reject the hypothesis that �g � E[g11] is zero, implying that (20) is not true and the habit function

estimated is nonlinear.

6 Speci�cation and Model Comparison

In the introduction we discussed a number of interesting speci�cation and model comparison issues.

Here we investigate two of them. First, we ask whether habit formation is better described as

internal or external habit formation. Second, we undertake a model comparison of the empirical

performance of our estimated habit models with several leading and classic asset pricing models.

6.1 Is Habit Formation Internal or External?

An interesting hypothesis concerns the distinction between �internal� and �external� habit for-

mation. Much of our intuition about this distinction is based on simple linear models of habit

formation. For example, Cochrane (2001) (Chapter 21, page 484) considers an example in which

the habit is a distributed lag of past consumption, under the additional assumptions of an I.I.D.

endowment sequence and the existence of a constant risk-free rate, Rf , which equals the inverse

of the rate of time preference, 1=�. Cochrane (2001) shows that the asset pricing implications of

such a model when the habit is external are observationally equivalent to those when the habit is

internal. This example can be understood by inspecting (2), (3) and (4). When Rf = 1=�, the

�rst-order condition for optimal consumption choice becomes

MUt = EtfMUt+1g: (22)

When habit formation is external, regardless of its functional form, marginal utility is

MUt = (Ct �Xt)�
 : (23)

By contrast, when habit formation is internal, (3) gives the expression for MUt. The internal habit

expression (3) shows that if the @Xt+j
@Ct

terms on the right-hand-side are all constant, as is the case

with habits linear in past consumption, the solution (Ct �Xt)�
 = Et
�
(Ct+1 �Xt+1)�


�
will lead

to an expression forMUt that satis�es (22). By plugging this solution into (3), it is straightforward

to show that marginal utility in the internal habit formation case is proportional to (Ct �Xt)�
 ,
and therefore to external habit formation marginal utility. It follows that�in this simple example

with a constant risk-free rate Rf = 1=� and linear habits�the asset pricing implications of each
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speci�cation, which derive from the intertemporal ratio of marginal utilities, MUt+1=MUt; are

equivalent.

This equivalency breaks down if habits are nonlinear in past consumption. In this case, the
@Xt+j
@Ct

terms in (3) are not constant, but instead vary with lagged consumption. As a consequence,

with nonlinear habit formation, marginal utility in the internal habit case will not be proportional

to (Ct �Xt)�
 , and the asset pricing implications of internal and external habit speci�cations
may di¤er. In the last subsection we tested whether the habit function we estimate is linear; our

test results strongly reject linear habit in favor of nonlinear habit. Moreover, even if the habit

function is linear in current and past consumption, this equivalency will generally break down

when consumption growth and wt are serially dependent and when Rf 6= 1=�. The distinction

between internal and external habits is important, not only because it is likely to have asset pricing

implications at the aggregate level, but also because the two paradigms have dramatically di¤erent

social welfare and tax policy consequences (Ljungqvist and Uhlig (2000)).35

One way to assess which speci�cation better describes the data is simply to compute the value

of the minimized SMD criterion function when habit formation is restricted to be external and

compare it with that of the internal habit cases estimated above. This is done by estimating the

model on the same set of moments imposing the restriction that MUt = (Ct �Xt)�
 . Doing so
for each estimation described above, we �nd that the minimized SMD criterion is several orders

of magnitude larger when marginal utility is restricted to external habit formation. For example,

using Group 3 asset returns with a constant and the linear terms of wt as instruments, the external

habit case is found to be 1.2177e-04, compared to 1.3424e-07 for the internal habit case, about 1000

times larger. The estimations using Group 1 and Group 2 assets produced similar results. Ideally,

of course, this comparison would be made on statistical grounds, but unfortunately criterion-based

statistical tests have not been developed for procedures involving an unknown function.36 Still,

the sheer magnitude of the di¤erence in minimized criteria suggests it unlikely the values would be

judged the same statistically by any test.

An alternative way to address the question posed in the title of this subsection is to directly

35Campbell and Cochrane (1999) note that there are two possible interpretations of the representative agent

habit-based paradigm. One is that the representative-agent preferences could take the same form as the underlying

preferences of individual agents, another is that they could result from aggregation of heterogeneous agents with

quite di¤erent preferences. Unfortunately, it is very di¢ cult to conclusively determine which interpretation is more

empirically plausible because of the severely limited nature of household-level consumption data. One careful study

of habit formation on micro data is Dynan (2000). However, Dynan�s conclusions bear out these data limitations as

they pertain only to food consumption and to the simplest linear model of habit formation.
36Note that one could use the subsampling procedure to provide a statistical comparison between the minimized

SMD criteria of the external habit and the internal habit, however, since the subsampling procedure is computationally

very time-consuming, we do not implement it here.
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test the Euler equations corresponding to the external habit formation:

E

 
�

�
Ct+1 �Xt+1
Ct �Xt

��

Ri;t+1 � 1 j wt

!
= 0; i = 1; :::; N: (24)

In the appendix we show that the conditional moment restrictions for the internal habit asset

pricing model can be written as:

E

 
�

�
Ct+1 �Xt+1
Ct �Xt

��

Ri;t+1 eFi;t+1 � 1 j wt! = 0; i = 1; :::; N; (25)

where

eFi;t+1 � 1� LX
j=0

�j
�
Ct+1+j �Xt+1+j
Ct+1 �Xt+1

��
 @Xt+1+j
@Ct+1

+

LX
j=0

�j�1
�
Ct+j �Xt+j
Ct+1 �Xt+1

��
 @Xt+j
@Ct

1

Ri;t+1
:

We note that both the external and the internal habit conditional moment restrictions are

nested into

E

 
�

�
Ct+1 �Xt+1
Ct �Xt

��

Ri;t+1 eFi;t+1(�; �; 
; g)� 1 j wt! = 0; i = 1; :::; N; (26)

with Xt = Ctg
�
Ct�1
Ct

; :::;
Ct�L
Ct

�
and

eFi;t+1(�; �; 
; g)
� 1� �

LX
j=0

�j
�
Ct+1+j �Xt+1+j
Ct+1 �Xt+1

��
 @Xt+1+j
@Ct+1

+ �
LX
j=0

�j�1
�
Ct+j �Xt+j
Ct+1 �Xt+1

��
 @Xt+j
@Ct

1

Ri;t+1
.

It is clear that the external habit corresponds to (26) with � = 0; the internal habit corresponds

to (26) with � = 1. Note that we still assume that Xt is a homogeneous of degree one function

of current and lagged consumptions with �nite lag length L. Nevertheless, we allow for one set

of parameter values (�ex; 
ex; gex(�)) satisfying the external habit conditional moment restrictions
(24) and another set of parameter values (�in; 
in; gin(�)) satisfying the internal habit conditional
moment restrictions (25). In particular we allow that gex

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
6= gin

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
.

We estimate all the unknown parameters (�; 
; �; g(�)) corresponding to the generalized condi-
tional moment restrictions (26) by the SMD method employed before, using the same ANN sieve

(8) to approximate the unknown g(�), the same three asset groups with the associated sets of in-
struments. Again, the SMD estimates of (�; 
; �; g(�)) converge in probability to the pseudo-true
values (��; 
�; ��; g�(�)) identi�ed by the generalized conditional moment restrictions (26); and the
SMD estimates of �nite-dimensional parameters �; 
; � are root-T consistent and asymptotically

normally distributed. Let b�2� be a consistent estimator of the asymptotic variance of the SMD
estimate of �. Using the result that

p
T (b� � ��)=b�� is asymptotically standard normal, we can
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then apply a sequential Wald test of the null hypothesis of � = 0 for external habit; and the null

hypothesis of � = 1 for internal habit.

For all the three asset groups and the corresponding instruments, the SMD estimates of �, 


and their standard errors are quite similar to those in Table 1;37 the estimates of � are found to be

extremely close to unity, ranging between 1.0272 (for Group 1), 1.0876 (for Group 2) and 1.0275

(for Group 3), with small standard errors. In all cases, the hypothesis of � = 0 (external habit

formation) is strongly rejected. For example, using the estimation result for Group 2 assets with

the constant, the linear, squared and cross terms of wt as instruments, b� = 1:0876 and b�� = 0:057,
we can easily reject the null hypothesis of � = 0 but fail to reject the null hypothesis of � = 1. It is

clear that the stochastic discount factor is much better approximated by internal habit formation

than external habit formation.

6.2 Model Comparison

We have estimated a habit-based consumption asset pricing model, allowing the habit to be a �ex-

ibly speci�ed function of current and past consumption. Of interest is the question of how well

habit-based models explain asset pricing data relative to other models that have been explored

in the literature. We seek a methodology which recognizes that competing models are mere ap-

proximations of reality and therefore by de�nition false, and allows us to investigate which model

provides the best approximation of the data. Such a methodology is provided by Hansen and

Jagannathan (1997), who develop a way to compare asset pricing models when it is understood

that the competing stochastic discount factors do not correctly price all portfolios. As Hansen and

Jagannathan emphasize, pricing errors (given by the sequence fE(Mt+1Ri;t+1) � 1g; for any can-
didate M , and a set of N asset returns indexed by i) can arise either because the model is viewed

formally as an approximation, or because the empirical counterpart to the theoretical speci�cation

is measured with error. In their approach, all stochastic discount factor models are treated as mis-

speci�ed proxies for the true stochastic discount factor, and the relevant question is which model

contains the least speci�cation error.

We apply this approach to assess pricing errors for the habit-based framework considered in

this paper, and compare its performance along this dimension to a number of alternative asset

pricing models. Hansen and Jagannathan suggest that we compare the pricing errors of various

candidate stochastic discount factor models by choosing each model�s parameters, �, to minimize

the quadratic form gHJT (�) � w0T (�)G
�1
T wT (�), where wT (�) = (w1T (�); :::; wNT (�))

0 is the

vector of the sample average of pricing errors (i.e., wiT (�) = 1
T

PT
t=1Mt(�)Ri;t�1 for i = 1; :::; N),

and GT is the sample second moment matrix of the N asset returns upon which the models are

37For example, for Group 2 assets with the constant, the linear, squared and cross terms of wt as instruments, the

estimates of �; 
 are 0.9805 and 0.7991 with standard errors 0.018 and 0.014 respectively.
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evaluated (i.e., the (i; j)-the element of GT is 1
T

PT
t=1Ri;tRj;t for i; j = 1; :::; N). The measure of

model misspeci�cation is then the square root of this minimized quadratic form, dT �
q
gHJT (b�),

which gives the maximum pricing error per unit norm on any portfolio of the N assets studied,

and delivers a metric suitable for model comparison. Hansen and Jagannathan (1997) also show

that dT gives the least-square distance between the candidate stochastic discount factor and the

closest point to it in the set of all admissible stochastic discount factors (all stochastic discount

factors that price assets correctly). We refer to the square root of this minimized quadratic form,

dT �
q
gHJT (b�), as the Hansen-Jagannathan distance, or HJ distance for short.

An important advantage of this procedure is that the second moment matrix of returns delivers

an objective function that is invariant to the initial choice of asset returns. The identity and other

�xed weighting matrices do not share this property. Kandel and Stambaugh (1995) have suggested

that asset pricing tests using these other �xed weighting matrices can be highly sensitive to the

choice of test assets. Using the second moment matrix helps to avert this problem.

To apply this procedure to the habit-based framework, we treat our SMD estimate of the habit

as a proxy for the true habit, and minimize gHJT (�) corresponding to the asset pricing model in

(1-4) over the parameters � = (�; 
)0 using the same quarterly sample that was used in the SMD

estimation. Notice that we cannot obtain consistent estimates of the in�nite dimensional habit

function g using the Hansen-Jagannathan procedure.38 Thus, we treat the habit estimated from

the SMD procedure as part of the stochastic discount factor proxy, and compute the HJ distance for

the habit models by only choosing the two scalar parameters � and 
 to minimize gHJT (�). Recall

that the SMD minimization gives greater weights to moments that are more highly correlated

with the instruments pJT (wt), while the Hansen-Jagannathan minimization matches unconditional

moments. Because we �x the habit sieve parameters at their minimized SMD criterion values,

(rather than reestimating them along with �; 
 to minimize the HJ distance), the habit model

is placed at a disadvantage relative to the other models we use as a comparison, since for the

comparison models all free parameters are chosen to minimize the HJ distance.39

38This is true both theoretically and as a practical matter. Theoretically, we cannot even identify the unknown

habit function from a �xed �nite set of unconditional population moments. Practically, even if we treated the neural

net sieve function as a fully parametric speci�cation, rather than recognizing that it is an approximation of an

unknown function, it is not possible to choose the sieve parameters of the habit function to minimize gHJT (�), which

necessarily contains a large number of parameters. The reason is that doing so would require the use of signi�cantly

more asset returns in the estimation, requiring the second moment return weighting matrix to be of a su¢ ciently

large dimension so as to render the weighting matrix nearly singular once inverted.
39One way to see that �xing the sieve parameters at their minimized SMD criterion values does not help the habit

models in �tting the unconditional moments studied in this section, is to compare the HJ distance for the habit

models when all of their parameters (including � and 
) are �xed at their minimized SMD criterion values, with

the HJ distance computed by minimizing gHJT (�) over � and 
. If this procedure did not place the habit models

at a disadvantage, the HJ distances for these models, with parameters �xed at the values which minimize the SMD
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We compare the speci�cation errors of the habit-based model to several alternative asset pricing

models that have been studied in the literature. First, we compare the SMD-estimated habit model

to two empirical asset pricing models that have displayed relative success in explaining the cross-

section of stock market portfolio returns: the three-factor, portfolio-based asset pricing model of

Fama and French (1993), and the approximately linear, conditional, or �scaled�consumption-based

capital asset pricing model explored in Lettau and Ludvigson (2001b). These models are both linear

stochastic discount factor models taking the form

Mt+1 = �0 +
kX
i=1

�iFi;t+1; (27)

where Fi;t+1 are variable factors, and the coe¢ cients �0 and �i are treated as free parameters to be

estimated. Fama and French develop an empirical three-factor model (k = 3), with variable factors

related to �rm size (market capitalization), book equity-to-market equity, and the aggregate stock

market. These factors are the �small-minus-big�(SMBt+1) portfolio return, the �high-minus-low�

(HMLt+1) portfolio return, and the market return, Rm;t+1, respectively.40 The Fama-French model

has displayed unusual success in explaining the cross section of mean equity returns (Fama and

French (1993), Fama and French (1996)). The model explored by Lettau and Ludvigson (2001b) can

be interpreted as a �scaled�or conditional consumption CAPM (�scaled CCAPM�hereafter) and

also has three variable factors (k = 3),dcayt;dcayt �� logCt+1, and � logCt+1: Lettau and Ludvigson
(2001b) show that such a model can be thought of as a linear approximation to any consumption-

based CAPM (CCAPM) in which risk-premia vary over time. The standard CCAPM of Breeden

(1979) uses just the consumption growth rate as the single observable factor, but performs poorly

empirically. By contrast, Lettau and Ludvigson (2001b) �nd that the scaled CCAPM performs

about as well as the Fama-French model in explaining average returns on portfolios double-sorted

on the basis of size and book equity-to-market equity on the aggregate stock market.

One possible interpretation of the Fama-French and scaled CCAPM models is that they ap-

proximate the stochastic discount factor of a consumption CAPM with habit formation of the type

criterion, should be no larger than the HJ distance for the same set of moments computed by minimizing gHJT (�)

over � and 
. In fact, however, �xing the parameters at their SMD-estimated values makes the HJ distance metric

much larger for the two sets of asset returns (six size/book-market returns, and six size/book-market returns plus

the T-bill) upon which the models are evaluated below. For example, for the internal habit model and the six return

case, the HJ distance with all parameters �xed at their SMD estimates is twice as large (equal to 0.339) as the HJ

distance computed by minimizing gHJT (�) over � and 
 (reported in Table 2 below), whereas it is almost three times

as large (equal to 0.4768) for the seven return case.
40SMB is the di¤erence between the returns on small and big stock portfolios with the same weight-average book-

to-market equity. HML is the di¤erence between returns on high and low book-to-market equity portfolios with the

same weighted-average size. Further details on these variables can be found in Fama and French (1993). We follow

Fama and French and use the CRSP value-weighted return as a proxy for the market portfolio, Rm. The data are

taken from Kenneth French�s Dartmouth web page (see the Appendix).
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that generates time-varying risk aversion (Campbell and Cochrane (2000), Lettau and Ludvigson

(2001b)). Because these models are not explicit structural models of the stochastic discount factor

under habit formation, however, such a proposition can only be considered a conjecture. By estimat-

ing and evaluating a fully structural model of the stochastic discount factor under habit formation,

we may provide direct empirical evidence on whether the empirical success of the Fama-French and

scaled CCAPM models can be reasonably attributed to a representative-agent, habit-based asset

pricing framework. We also compare speci�cation errors of these models to those of a linearized

version of the standard CCAPM (with consumption growth the single variable factor in (27), k = 1)

(Breeden and Litzenberger (1978)), and to those of the CAPM (with the market return Rm the

single variable factor in (27), k = 1). For all linear models, the unknown coe¢ cients �0 and �i are

estimated by minimizing the corresponding squared HJ distance, gHJT (�), for that model.

We evaluate the speci�cation errors of the asset pricing models described above using a time-

series on two alternative sets of quarterly returns: (i) the six equity returns on portfolios double-

sorted on size and book-to-market characteristics provided by Fama and French, and (ii) these

six equity portfolio returns plus the three-month Treasury bill rate. We use equity returns on

size and book-to-market sorted portfolios because Fama and French (1992) show that these two

characteristics provide a �simple and powerful characterization�of the cross-section of average stock

returns, and seem to absorb the roles of leverage, earnings-to-price ratio and many other factors

governing average stock return di¤erentials. We include the Treasury-bill rate to assess how well the

models explain average returns on a set of assets that also includes non-equity returns. Although

Fama and French (1992) evaluate the CAPM on 25 size and book-market sorted portfolios, we follow

Hansen and Jagannathan (1997) and evaluate the speci�cation error of each model on smaller sets of

six or seven portfolio returns. We do so because computation of the Hansen-Jagannathan distance

requires an estimate of the second moment matrix of returns, and experience tells us that this

matrix is poorly estimated in time-series samples of the size currently available when the number

of portfolios, N , is too large (e.g., see Hansen, Heaton, and Yaron (1996), Ahn and Gadarowski

(2004), Lettau and Ludvigson (2001b)). Our own experience shows that when N is reduced to

about six or seven, estimates of the second moment matrix are reliable, but that larger numbers

of test assets produce nearly singular weighting matrices. For this reason, we do our analysis on

the two sets of assets mentioned above. The six size and book-to-market returns should continue

to provide a good summary measure of the cross-section of U.S. equity returns, albeit at a more

aggregated level than the 25 portfolios sorted on this basis. Below we present results from using the

habit estimate of g generated from SMD estimation on Group 2 assets (six size and book-market

returns plus the T-bill rate).41

41Estimation of the Hansen-Jagannathan distance for the internal habit model requires an estimate of the stochastic

discount factor (11), which contains the conditional expectation of several terms in the denominator and numerator
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Before discussing how each model fares according to speci�cation error, we note that the esti-

mates of � generated from minimizing gHJT (�) for the general internal habit model are similar to

those estimated using the SMD procedure but generally smaller, equal to 0.70 when the model is

evaluated on the equity portfolios alone, and 0.73 when the Treasury bill is included. The estimates

of the curvature parameter 
, when freely estimated to minimize the Hansen-Jagannathan criterion

function, are substantially larger than those using the SMD estimation, equal to 26 when the model

is evaluated on the equity portfolios alone, and 25 when the Treasury bill is included. The larger

values for 
 are not surprising because the Hansen-Jagannathan procedure places emphasis on un-

conditional mean returns whereas the SMD procedure emphasizes conditional moments. Fitting

unconditional moments requires a more volatile discount factor (Hansen and Jagannathan (1991)),

which can be generated by a higher value for 
.

We also report the HJ distance for external habit formation, based on SMD estimation that

restricts the last term in (3) to be zero. As for the internal habit case, we treat the habit estimated

from the SMD procedure on the six size and book-market returns plus the T-bill as part of the

stochastic discount factor proxy, and compute the HJ distance for the model by choosing the �nite

dimensional parameters � and 
 to minimize gHJT (�). The resulting estimates of the curvature

parameter 
; are equal to 37 when the Treasury bill is included, and 62 when it is excluded.

Estimates of � are more similar to the internal habit case, equal to 0:9 when the Treasury bill is

included and 0:6 when it is omitted.

Table 2 reports the measure of speci�cation error given by the Hansen-Jagannathan distance

(�HJ Dist�), dT �
q
gHJT (b�), for all the models discussed above. There are interesting di¤erences

in the estimated speci�cation error across the models. Regardless of whether the Treasury bill rate

is included in the set of test assets, by a wide margin the smallest speci�cation error is generated

by the SMD-estimated internal habit model. The HJ distance for this model is equal to 0.18 on

the set of stock returns and Treasury bill, and 0.17 on the set of size and book-market sorted

equity returns alone. These numbers are substantially lower than those for all the other models;

for example, when the T-bill is included, the next lowest pricing error is given by the Fama-French

model, equal to 0.28. When the models are assessed on equity returns alone, the scaled CCAPM

delivers the second lowest speci�cation error, equal to 0.21, but performs relatively worse when the

T-bill is added (speci�cation error = 0.35). For equity returns, the Fama-French model and the

external habit model have almost identical values of the HJ distance, with the former 0.262 and the

latter 0.261. The classic CCAPM and CAPM have errors substantially larger, equal to 0.31 and

of 	t+1. An estimate of the stochastic discount factor is formed by replacing the terms in (11) over which a

conditional mean is taken with their �tted values from a regression of those terms on the set of instruments used

in the SMD estimation of g using Group 2 assets (six size and book-market equity returns, and the Treasury bill

rate). Just as the terms themselves are functions of � and 
, so are the expressions for their �tted values, and

gHJT (�) � w0
T (�)G

�1
T wT (�) can easily be minimized over � = (�; 
)0.
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0.34, respectively. But when the Treasury bill is included in the set of test assets, the external habit

model fairs the worst, with a speci�cation error of 0.43, the largest for any model. These results

are particularly encouraging for the internal habit framework, especially since the model is placed

at a disadvantage because the habit function is not reestimated to minimize the HJ distance.

We note that Table 2 only reports the point estimates of the HJ distances for the six competing

asset pricing models without taking into account the statistical uncertainty. Wang and Zhang

(2003) provide a way to compare HJ distance measures across models using Bayesian methods,

under the assumption that the data follow linear, Gaussian processes. Their procedure is not

directly applicable here since our methodology permits the data to be governed by stationary beta-

mixing processes, allowing a wide variety of nonlinear time-series processes such as di¤usion models,

stochastic volatility, nonlinear ARCH, GARCH, Markov switching, and many more. Luckily, we

can apply the �reality check�method developed in White (2000) and perform statistical model

comparison tests of the six competing models as follows. Let j = 1; 2; :::; 6 index the six asset

pricing models reported in Table 2, with j = 1 being the internal habit model. Let E[wjT (�j)]

denote the vector of population average of pricing errors associated with model j and the candidate

parameter value �j . Let gHJj (�j) � E[wjT (�j)]
0fE[GT ]g�1E[wjT (�j)] and �

�
j � argmingHJj (�j).

Denote d2j � gHJj
�
��j
�
as the population squared HJ distance associated with model j. The null

hypothesis is:

H0 : max
j=2;:::;6

fd21 � d2jg � 0;

meaning that, among the six competing models, model 1 (the internal habit model) has the smallest

pricing error according to the squared HJ distance. The alternative hypothesis is:

H1 : max
j=2;:::;6

fd21 � d2jg > 0;

meaning that there is at least one competing model has smaller pricing error in the squared HJ

distance than model 1 (the internal habit model).

Let d2T;j � gHJT;j (
b�j) denote the sample estimate of the squared HJ distance for model j =

1; 2; :::; 6. By slightly modifying the result of Hansen, Heaton, and Luttmer (1995), we have, under

mild regularity conditions, that

p
T
�
d2T;1 � d2T;2 � [d21 � d22]; :::; d2T;1 � d2T;6 � [d21 � d26]

�0 �!D (Z2; :::; Z6)
0

where (Z2; :::; Z6)0 is distributed as N (0;
) for a positive semi-de�nite variance 
. This justi�es

our applications of White�s reality check test (White (2000)), T W , and Hansen�s modi�ed reality
check test (Hansen (2003)), T H :

T W � max
j=2;:::;6

p
Tfd2T;1 � d2T;jg and T H � max

�
max
j=2;:::;6

p
Tfd2T;1 � d2T;jg ; 0

�
:
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Both tests have complicated null limiting distributions. To implement the reality check test T W ,
White (2000) suggested to approximate its null limiting distribution using the stationary bootstrap

of Politis and Romano (1994). Lately several papers including Hansen (2003) and Corradi and

Swanson (2003) point out that the block bootstrap can also approximate its null limiting distri-

bution. In the following we present two bootstrap test statistics: White�s original bootstrap test

T W;b and a modi�ed bootstrap test T H;b suggested in Hansen (2003); both are implemented using
the same block bootstrap procedure that we have employed in the test of linear habit.

Step 1: Draw a b�th block bootstrap sample of size T from the transformed raw data,42 then

compute the bootstrap estimates d2;bT;j = min�j w
j
T;b (�j)

0G�1
T;bw

j
T;b (�j) for j = 1; 2; :::; 6;

Step 2: Compute the b�th bootstrap estimates of the tests:

T W;b � max
j=2;:::;6

p
T
n
(d2;bT;1 � d

2;b
T;j)� (d

2
T;1 � d2T;j)

o
:

T H;b � max
�
max
j=2;:::;6

p
T

�
(d2;bT;1 � d

2;b
T;j)� (d

2
T;1 � d2T;j)1fd2T;1 � d2T;j � �

log (log T )

4
p
T

g
�
; 0

�
:

Step 3: Repeat Steps 1 - 2 for b = 1; :::; B with B = 500 (say). Compute the bootstrap

estimates of the p� value

bpW � 1

B

BX
b=1

1fT W;b > T W g; bpH � 1

B

BX
b=1

1fT H;b > T Hg

The test T W (or T H) using the squared HJ-distance is to reject null hypothesis if bpW (or bpH)
is close to zero and not to reject null if bpW (or bpH) is close to one. We implemented both bootstrap
tests. For the six return case bpW = 0:9780 and bpH = 0:9120, while for the six return plus T-bill

case bpW = 0:9926 and bpH = 0:8868. Both suggest that the model 1 (the internal habit model) is

the best according to the squared HJ distance measure.

Hansen and Jagannathan (1997), and more recently Wang and Zhang (2003), have noted that it

is sometimes of interest to identify a stochastic discount factor from some initial set of asset returns

and use it in pricing other assets, such as derivative claims on the payo¤s of the initial assets. When

this is the objective, Hansen and Jagannathan show that an alternate distance metric, one that

restricts the set of admissible stochastic discount factors to be positive, should be used for model

comparison. Table 3 reports this alternate distance metric, denoted �HJ+ Dist,�for all the models

discussed above. The SMD-estimated internal habit model continues to beat all the other models by

a wide margin, according to this metric.43 The only models for which HJ+ is substantially di¤erent
42Recall that the transformed raw data consists of consumption growth rates, asset returns, conditioning variables

and various factors that can be regarded as drawn from stationary beta-mixing processes.
43We also perform the reality check model comparison tests of White and Hansen using the squared HJ+-distance.

This is simply done by replacing dT;j and dbT;j in T W , T H and Steps 1-3 by the estimates of HJ+-distances d+T;j and

d+bT;j . Both bootstrap tests again suggest that the internal habit is the best according to the squared HJ
+ distance

measure.
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from HJ, are the scaled CCAPM and the classic CCAPM. For example, the scaled CCAPM metric

increases by a factor of four in pricing the equity returns when the set of admissible stochastic

discount factors is restricted to be positive. Although this model does a relatively good job of

assigning the right prices to size and book-market sorted equity returns, its linearity implies that it

can assign negative prices to some positive derivative payo¤s on those assets. This is not altogether

surprising, since linear models�typically implemented as approximations of nonlinear models for

use in speci�c applications�are not designed to price derivative claims.

Why does the internal habit model perform better than the external habit model? The sto-

chastic discount factors of the two models behave di¤erently over time: the internal habit model is

more volatile and more autocorrelated (quarterly standard deviation equals to 2.8 and �rst-order

autocorrelation equals to 0.21), than the external habit model (quarterly standard deviation equals

to 1.05 and �rst-order autocorrelation equals to 0.04).44 Such time-series properties are likely to

be important determinants of whether the estimated models can rationalize any time-variation

in conditional moments of returns. This point is emphasized by Campbell and Cochrane (1999)

who note that the slow-moving and persistent behavior of their calibrated habit model allows it to

match evidence for long-horizon predictability in stock returns. Here, however, models are tested

not on their ability to explain time-variation in selected conditional moments of returns, but on

their ability to explain moment restrictions about the cross-section of asset returns implied by the

theory itself, in this case a cross-section of unconditional mean returns on size and book-market

sorted equity portfolios. Such theoretical moment restrictions dictate that any cross-sectional vari-

ation in unconditional mean excess returns must be proportional to the covariance of the stochastic

discount factor with each return.45

What seems to drive the superior empirical performance of the internal habit SDF over the

external SDF is the presence of the forward looking terms in marginal utility, present in internal

habit formation but not in external (see (3) ). Those forward-looking terms are captured empiri-

cally as projections on to instruments which are correlated with the nonlinear functions of future

endogenous variables that appear in our moment conditions. As a diagnostic, we re-computed the

HJ distance for the internal model using instead the ex-post values of the future terms in (3) and

found that, in that case, the performance of the internal habit model was much closer to that of

the external habit model. Thus, a key feature of the empirical success of the internal habit model

lies with the forward-looking nature of marginal utility for that model.

44These numbers are for the stochastic discount factors estimated when computing the HJ distances�where only �

and 
 are reestimated to minimize gHJT (�)�not for the original SMD estimate of the stochastic discount factor.
45Start with 1 = E [MtRj;t] and rearrange to �nd

E (Rj;t)� 1=E (Mt) =
�Cov (Mt; Rj;t)

E (Mt)
:
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The relative performance of the two models can also be intuitively understood by examining

how the stochastic discount factors of each model (internal and external habit) covaries with the

test asset returns. Table 4 shows sample estimates of the unconditional covariances, for each of the

six size and book-market sorted portfolio returns. For reference, the top panel of Table 4 shows

the average quarterly excess return on each portfolio over the three-month Treasury bill rate.

The �rst aspect of note is that the average excess returns on these portfolios are large, ranging

from 1.8 percent to 3.2 percent per quarter (top panel, Table 4). Accordingly, the bottom panel

of Table 4 shows that a big part of the explanation for why the internal habit model does better

than the external model is that the absolute value of its covariance with each return is considerably

larger (in many cases by an order of magnitude) than that of the external model.46 Returns simply

covary more with the estimated internal habit SDF than they do with the external habit SDF. The

internal model also gets the cross-sectional patterns right. For example, the biggest cross-sectional

spread in returns occurs between the return on S1B3, the �value� portfolio in the smallest size

category, and the return on S1B1, the �growth�portfolio in the same size category. The former

has an average excess return of 3.2%, the latter just 1.8%. This di¤erence captures the well-known

value-premium in these data, which is especially pronounced for small capitalization �rms. The

internal habit model covaries more with S1B3 than it does with S1B1, thereby explaining the higher

excess return on the former relative to the latter. This is not the case for the external habit model,

where these two covariances are about the same. Such patterns in the unconditional moments

of returns and stochastic discount factors help explain intuitively why the internal habit model

performs better than the external habit model according to the tests above.

To close this section, we note that when there is only one asset, a natural gauge of model

misspeci�cation is the pricing error associated with that asset. Hansen and Jagannathan (1997)

stress that when there is more than one asset, comparing pricing errors is not possible without

taking a stand on the relative importance of the various assets. A weighted average of the pricing

errors is the natural measure of model misspeci�cation. Nevertheless, it is sometimes useful to

examine the individual pricing errors for each test asset, if only because it gives a sense of which

assets are better priced than others. For reference, Table 5 gives the raw (unweighted) pricing

errors for the Fama-French model and for the SMD-estimated internal habit model, when these

models are evaluated on the size and book-market sorted returns.

7 Conclusion

Theories of asset pricing have developed in a number of new and interesting directions in recent

years. Nevertheless, it could be argued that the theoretical possibilities multiply more rapidly than
46We expect this covariance to be negative. Positive excess returns are associated with positive covariance with

consumption growth, and therefore a negative covariance with marginal utility growth.
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their empirical evaluation: formal estimation and testing of these new models is less common and

often lags well behind their development. Data limitations, identi�cation problems, and general

econometric pitfalls are among the likely culprits responsible for the relative paucity of empirical

work. In the case of the burgeoning literature on asset pricing theories of habit formation, empirical

study is immediately confronted by the lack of agreement over the functional form of the habit

speci�cation. When such lack of agreement is present, econometric theory dictates that we treat

the functional form of the habit, not as a given, but as an unknown parameter to be estimated

along with the rest of the model�s parameters.

In this article, we empirically evaluate a general class of representative-agent asset pricing mod-

els that derive their most salient implications from the presence of habit formation in investor

preferences. Rather than choosing, from this literature, a particular functional form for the habit,

we treat the habit speci�cation as unknown and estimate it along with parameters governing cur-

vature of the subutility function and the rate of time-preference. The resulting empirical model of

investor utility is semiparametric, and consequently imposes few restrictions on the functional form

of the habit in matching the joint distribution of aggregate consumption and asset returns implied

by theory.

This semiparametric approach allows us to empirically evaluate a number of interesting hy-

potheses about habit-based asset pricing models that have previously not been evaluated. First,

our results suggest that� conditional on the power utility framework� preferences are far from

time separable: a �exibly speci�ed habit constitutes a quantitatively important part of the power

utility speci�cation and is a large fraction of current consumption. Second, we �nd that the habit

speci�cation is better described as a nonlinear function of current and past consumption, rather

than as a linear function. Several authors have argued that nonlinearities in the habit function

are crucial for allowing the model to account for the joint behavior of aggregate consumption and

asset returns (e.g., Campbell and Cochrane (1999)). Third, we strongly reject the hypothesis that

habits are a pure externality governed by the consumption of everyone else in the economy; models

of habits based on own-consumption better describe the asset pricing data studied here.

Finally, we assess how well the habit-based paradigm explains asset pricing data. We use the

methodology of Hansen and Jagannathan (1997) to compare a stochastic discount factor proxy

using a SMD-estimated habit formation, with proxies from a variety of alternative linear (or ap-

proximately linear) models that have been explored in the asset pricing literature. According to the

Hansen and Jagannathan (1997) distance metric, a SMD-estimated internal habit model explains

a cross-section of size and book-market sorted equity returns better than (i) the Fama and French

(1993) three-factor model, (ii) the scaled consumption CAPM explored by Lettau and Ludvigson

(2001b), (iii) a SMD-estimated external habit model, (iv) the classic CAPM, and (v) the classic

consumption CAPM.
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There is at least one possible extension of our analysis that could be undertaken in future

work. The speci�cation of the habit may be treated as a recursive function of past habits, e.g.,

Xt = r (Ct; Ct�1; Xt�1) ; thereby allowing the habit stock to implicitly depend on an in�nite number

of past consumption lags. Such a speci�cation would permit a change in focus, to an analysis of

habit models and long-horizon aggregate stock-market returns, in which an extremely slow-moving

habit is likely to be more important. The di¢ culty with this type of recursive estimation is that

it might be slow to converge. Not only must the unknown habit, Xt; be estimated, but the

recursive functional r (�) must also be estimated nonparametrically. The econometric theoretical
results required to execute such an estimation have yet to be developed. Nevertheless, the empirical

work in this paper is a natural starting place for such an investigation, because the estimation of

Xt nonparametrically comprises one step in the recursive estimation procedure. We pursue this

interesting work in future research.
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8 Appendices

This appendices consist of several parts: Appendix 1 describes the data. Appendix 2 presents

alternative expressions of the conditional moment models, and also provides su¢ cient conditions

for identi�cation. Appendix 3 describes the general sieve minimum distance (SMD) procedure.

Appendix 4 presents large sample properties of the SMD estimator. Appendix 5 provide limiting

distributions of the test statistics for testing linear habit and testing internal vs external habit.

1. Data Description

The sources and description of each data series we use are listed below.

CONSUMPTION

Consumption is measured as expenditures on nondurables and services, excluding shoes and cloth-

ing. The quarterly data are seasonally adjusted at annual rates, in billions of chain- weighted 1996

dollars. The components are chain-weighted together, and this series is scaled up so that the sample

mean matches the sample mean of total personal consumption expenditures. Our source is the U.S.

Department of Commerce, Bureau of Economic Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per capita

disposable income. Consumption, wealth, labor income, and dividends are in per capita terms.

Our source is the Bureau of Economic Analysis.

PRICE DEFLATOR

Real asset returns are de�ated by the implicit chain-type price de�ator (1996=100) given for the

consumption measure described above. Our source is the U.S. Department of Commerce, Bureau

of Economic Analysis.

ASSET RETURNS

� 3-Month Treasury Bill Rate: secondary market, averages of business days, discount basis
percent; Source: H.15 Release �Federal Reserve Board of Governors.

� 25 size/book-market value weighted returns for NYSE, AMEX, NASDAQ; Returns were cre-
ated using 200112 CRSP database. It contains value-weighted returns for the intersections

of 5 market equity categories and 5 book equity-market equity categories. The portfolios are

constructed at the end of June. Source: Kenneth French�s homepage,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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� 6 size/book-market returns: Six portfolios, monthly returns from July 1926-December 2001.

The portfolios, which are constructed at the end of each June, are the intersections of 2 portfo-

lios formed on size (market equity, ME) and 3 portfolios formed on the ratio of book equity to

market equity (BE/ME). The size breakpoint for year t is the median NYSE market equity at

the end of June of year t. BE/ME for June of year t is the book equity for the last �scal year

end in t-1 divided by ME for December of t-1. The BE/ME breakpoints are the 30th and 70th

NYSE percentiles. Source: Kenneth French�s homepage, http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.

� 10 Industry Portfolios: The process assigns each NYSE, AMEX, and NASDAQ stock to an

industry portfolio at the end of June of year t based on its four-digit SIC code at that time.

Return data was created by CMPT_IND_RETS using the 200112 CRSP database. Returns

are computed from July of t to June of t+1. Source: Kenneth French�s homepage,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

PROXY FOR LOG CONSUMPTION-WEALTH RATIO,dcay
The proxy for the log consumption-wealth ratio is computed as described in Lettau and Ludvigson

(2001a) using data from 1952:4-2001:4.

RELATIVE BILL RATE, RREL

The relative bill rate is the 3-month treasury bill yield less its four-quarter moving average. Our

source is the Board of Governors of the Federal Reserve System.

LOG EXCESS RETURNS ON S&P 500 INDEX: SPEX

SPEX is the log di¤erence in the Standard and Poor 500 stock market index, less the log 3-month

treasury bill yield. Our source is the Board of Governors of the Federal Reserve System.

Rm, SMB, HML

The Fama/French benchmark factors, Rm, SMB, and HML, are constructed from six size/book-to-

market benchmark portfolios that do not include hold ranges and do not incur transaction costs.

Rm, the return on the market, is the value-weighted return on all NYSE, AMEX, and NASDAQ

stocks. Source: Kenneth French�s homepage,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

2. Conditional Moment Restrictions and Identi�cation

Alternative expressions of the conditional moment restrictions:

Et (Mt+1Ri;t+1 � 1) = 0 i = 1; :::; N;
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where

Mt+1 = �o
MUt+1
MUt

; (28)

where

MUt =
@U

@Ct
= (Ct �Xt)�
o � Et

24 LX
j=0

�jo (Ct+j �Xt+j)
�
o @Xt+j

@Ct

35 (29)

= (Ct �Xt)�
o Et

8<:1�
LX
j=0

�jo

�
Ct+j �Xt+j
Ct �Xt

��
o @Xt+j
@Ct

9=; ; (30)

where

Xt = Ctfo

�
1;
Ct�1
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; :::;
Ct�L
Ct

�
= Ctgo

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
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�
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��
(32)

hence
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This can be expressed three di¤erent ways:
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Now if we specialize to the speci�cation Xt = aoCt�1 with a unknown constant ao, as in Ferson

and Constantinides (1991) with no durable consumption, we have @Xt
@Ct

= 0, @Xt+1@Ct
= ao,

@Xt+j
@Ct

= 0

for all j � 2 and

Et

 
�o

�
Ct+1 �Xt+1
Ct �Xt

��
o
[Ri;t+1 + ao]� �2o

�
Ct+2 �Xt+2
Ct �Xt

��
o
aoRi;t+1 � 1

!
= 0

which coincides with their expression.

Alternatively we can write the conditional moment restrictions as:

Et

 
�o

�
Ct+1 �Xt+1
Ct �Xt

��
o
Ri;t+1 eFi;t+1 � 1! = 0; i = 1; :::; N;

with
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��
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1
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:

We note that eFi;t+1 = 1 for external habit.
Alternatively
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Identi�cation:

It is obvious that the presence of internal habit formation (i.e. eFi;t+1 a nonlinear function of
(�o; 
o; go)) will make the identi�cation of (�o; 
o; go) easier than the external habit (i.e. eFi;t+1 = 1),
also that more lags (i.e. L > 1) will make the identi�cation of (�o; 
o; go) easier than the model with

L = 1. Therefore it su¢ ces that we study identi�cation of the unknown true parameters (�o; 
o; go)
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satisfying the conditional moment (33) under the special case of external habit with L = 1. The

conditional moment restrictions for this special case becomes:

E

�
ho

�
Ct
Ct+1

;
Ct�1
Ct

�
Ri;t+1 � 1 j wt

�
= 0; i = 1; :::; N; (34)

with wt =
hdcayt; RRELt; SPEXt; Ct�1Ct

i0
and

ho

�
Ct
Ct+1

;
Ct�1
Ct

�
= �o

�
Ct+1
Ct

��
o �1� go � Ct
Ct+1

���
o�
1� go

�
Ct�1
Ct

���
o (35)

with 0 � go < 1; go 6= const:, 
o > 0; �o > 0:

We note that the conditional moment restriction (34) is treating the stochastic discount factor

Mt+1 � �MUt+1
MUt

as a totally unknown function Mt+1 = ho

�
Ct
Ct+1

; Ct�1Ct

�
. We �rst provide su¢ cient

conditions to identify the totally unknown ho() using the conditional moment restriction (34),

and we then use the semiparametric speci�cation (35) and the identi�ed ho() function to identify

(�o; 
o; go).

The conditional moment restriction (34) is very similar to the equation (2.3) in Newey and Powell

(1988). In the following we denote f( Ct
Ct+1

; Rj;t+1jwt) as the conditional density of ( Ct
Ct+1

; Rj;t+1)

given wt. Following the result in Newey and Powell (1988), we have that the identi�cation of

Mt+1 = ho

�
Ct
Ct+1

; Ct�1Ct

�
using the restriction (34) is equivalent to:

there is a j from f1; :::; Ng such that

0 =

Z Z
�(yt+1; yt)Rj;t+1f(yt+1; Rj;t+1jwt)dyt+1dRj;t+1 (36)

=

Z
�(yt+1; yt)

�Z
Rj;t+1f(yt+1; Rj;t+1jwt)dRj;t+1

�
dyt+1

implies �(yt+1; yt) = 0 almost surely. Obviously (36) is equivalent to

0 =

Z
�(yt+1; yt)

�Z
Rj;t+1

E[Rj;t+1jwt]
f(yt+1; Rj;t+1jwt)dRj;t+1

�
dyt+1;

hence the identi�cation condition for Mt+1 = ho

�
Ct
Ct+1

; Ct�1Ct

�
becomes:

the j-th return adjusted conditional density
R Rj;t+1
E[Rj;t+1jwt]f(

Ct
Ct+1

; Rj;t+1jwt)dRj;t+1 of Ct
Ct+1

given

wt is complete.

See Newey and Powell (1988) for additional su¢ cient condition for the �completeness�in terms

of exponential families. We note that the larger N , the easier to �nd such a j-th return satisfying

the identi�cation condition (36).

Next we show that (�o; 
o; go) is identi�ed given the identi�ed ho() function and the speci�cation

(35). In the following we let g0() denote the derivative of g, h0k(�; �) denote the partial derivative of
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h with respect to its k�th element for k = 1; 2. Then the semiparametric speci�cation (35) implies
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have the same distribution, we have
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After taking expectations on both sides of equations (37) and (38), we obtain:
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hence 
 is identi�ed. We now take log on both sides of the equation (35):
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then take E() on both sides, again since Ct�1

Ct
and Ct
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have the same distribution, we have
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hence � is identi�ed.

Denote �(x) � 1� g(x), which should only take values in (0; 1). Then equation (37) becomes:

(log�(x))0 =
h02
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�


h
�

Ct
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�

which can be solved for log�(x) up to a scaling constant log�(x) for a �xed x in the support of

the distribution of Ct�1Ct
:

log�(x)� log�(x) =
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hence 1� g(x) is identi�ed up to a scaling constant [1� g(x)]:

1� g(x) = [1� g(x)] exp

8<:
Z x

x

h02

�
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Ct+1

; y
�


h
�

Ct
Ct+1

; y
�dy

9=; :

We maintain the assumptions (i) Xt � 0; and (ii) Xt < Ct for Ct positive. It follows that if Ct = 0,

Xt = 0. Hence, we have g(0) = 0 and

1� g(x) = exp

8<:
Z x

0
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�
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Ct+1

; y
�


h
�

Ct
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; y
�dy

9=; :

3. Sieve Minimum Distance (SMD) Procedure

The sieve minimum distance (SMD) procedure has been proposed respectively in Newey and

Powell (2003) for nonparametric IV regression, and in Ai and Chen (2003) for semiparametric

conditional moment restrictions. Here we describe the SMD procedure in the estimation of �o =

(�o; 
o; go) for the habit formation consumption-based asset pricing model (14). We assume that

�o 2 [�; �] � [
; 
] � G, where [�; �] � [
; 
] denotes the compact parameter space for the �nite
dimensional parameters (�; 
), and G denotes the parameter space for the in�nite dimensional

unknown function g. In the application we assume [�; �]� [
; 
] � (0; 1:2]� [0:1; 100] for simplicity),
and go 2 G where

G �
�
g 2 L2(X ) :

Z
RL

jwjjeg(w)jdw <1; 0 � g < 1

�
;

here X is a convex open bounded set in RL. This means g 2 G if and only if it is square integrable
and its Fourier transform eg has �nite �rst moment, where eg(w) � R exp(�iw0x)g(x)dx is the Fourier
transform of g.

First we approximate a function g 2 G by gT 2 GT , where GT is the ANN sieve:

GT �

8<:g (x1; :::; xL) = �0 +

KTX
j=1

�j 
�
�Ll=1
j;lxl + �j

�
; 0 � g < 1

9=; ; (39)

which becomes dense in G as sample size T ! 1. Then for arbitrarily �xed candidate value
� = (�; 
; gT ) 2 [�; �]� [
; 
]� GT , we estimate the population conditional moment function:

mi(wt;�) � E f�i(zt+1; �; 
; gT )jwtg ; i = 1; :::; N

nonparametrically by bmi(wt;�) and denote bm(wt;�)0 = (bm1(wt;�); :::; bmN (wt;�)). Finally we

estimate the �; 
 and the unknown ANN sieve coe¢ cients jointly by a generalized version of minimal

distance estimation procedure:

min
�2[�;�]�[
;
]�GT

1

T

TX
t=1

bm(wt;�)0b�(wt)bm(wt;�); (40)
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where b�(wt) is a positive de�nite weighting matrix that is used to take care of heteroskedasticity and
serial dependence. We denote the resulting SMD estimator as b�T = (b�T ; b
T ; bgT ) 2 [�; �]�[
; 
]�GT .

There are many nonparametric procedures such as kernel, local linear regression, nearest neigh-

bor and various sieve methods that can be used to estimate mi(wt;�); i = 1; :::; N . In our appli-

cation we again consider the sieve estimator. For each �xed (wt;�), we approximate mi(wt;�)

by

mi(wt;�) �
JTX
j=1

aj(�)p0j(wt); i = 1; :::; N;

where p0j some known �xed basis functions, and JT !1 slowly as T !1: We then estimate the
sieve coe¢ cients fajg simply by OLS regression:

min
fajg

1

T

TX
t=1

[�i(zt+1;�)�
JTX
j=1

aj(�)p0j(wt)]
0[�i(zt+1;�)�

JTX
j=1

aj(�)p0j(wt)]

and the resulting estimator is denoted as: bmi(w;�) =
PJT
j=1 baj(�)p0j(wt). In the following we

denote: pJT (w) = (p01(w); :::; p0JT (w))
0 and P = (pJT (w1); :::; pJT (wT ))0, then:

bmi(w;�) =
TX
t=1

�i(zt+1;�)p
JT (wt)

0(P0P)�1pJT (w); i = 1; :::; N: (41)

Again many known sieve bases could be used as fp0jg. In our application we take the power
series and Fourier series as the pJT (w). The empirical �ndings are not sensitive to the di¤erent

choice of sieve bases, and we only report the results based on power series due to the length of the

paper.

In general, the SMD criterion (40) can not be expressed as a GMM criterion. However, when

the weighting matrix is the identity matrix b�(wt) = IN and when the nonparametric estimatorbmi(w;�) is the linear sieve estimator (41), the SMD criterion (40) becomes the GMM criterion

(16).

4. Asymptotic Properties of the SMD Estimator b�T = (b�T ; b
T ; bgT )
Beta-mixing:

We �rst introduce the concept of beta-mixing as a measure of temporal dependence for a time

series. Let fyt = (z0t;dcayt; RRELt; SPEXt)0g1t=�1 denote the vector time series. Let It�1 and

I1t+j be sigma-�elds generated respectively by (y�1; � � � ;yt) and (yt+j ; � � � ;y1). De�ne

�(j) � sup
t
E supfjP (BjIt�1)� P (B)j : B 2 I1t+jg:

fytg1t=�1 is called beta-mixing if �(j)! 0 as j !1. For a stationary Markov process fYtg with in-
variant measure F , the beta-mixing coe¢ cients are also given by: �(j) =

R
sup0���1 jE[�(Yj)jY0 =
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y] � E[�(Yj)]jdF (y). Many �nancial time series econometric models satisfy beta-mixing; see, e.g.,
Doukhan (1994) for nonlinear ARX(p,q) and nonlinear ARCH models, Chen, Hansen and Carrasco

(2001) for di¤usion models, and Carrasco and Chen (2002) for GARCH and stochastic volatility

models.

Consistency:

The consistency of the SMD estimator b�T = (b�T ; b
T ; bgT ) can be easily obtained by applying
Lemma A1 of Newey and Powell (2003), with their criterion function bQ(�) = 1

T

PT
t=1 bm(wt;�)0 bm(wt;�),

their Q(�) = Efm(wt;�)0m(wt;�)g, their parameter � is our �, their parameter space � is our

[�; �]� [
; 
]� G, and their sieve space b� is our [�; �]� [
; 
]� GT . Their assumption i) is satis�ed
with our identi�cation result in Appendix 2. Note that our bQ(�) and Q(�) are continuous in all
the unknown parameters. To satisfy their assumption of compact parameter spaces � and b�, we
can take the following function space G and the ANN sieve space GT :

G �
�
g 2 L2(X ) :

Z
RL

jwjjeg(w)jdw � K <1; 0 � g � 0:999
�
;

for some known big constant K > 0, and

GT �

8<:g 2 G : g(x1; :::; xL) = �0 +

KTX
j=1

�j
exp

�
�Ll=1
j;lxl + �j

�
exp

�
�Ll=1
j;lxl + �j

�
+ 1

9=; :

Then by applying the ANN denseness result of Hornik, Stinchcombe, and White (1989), the as-

sumption iii) of Lemma A1 in Newey and Powell (2003) is satis�ed with the sup-norm:

k���oks = j� � �oj+ j
 � 
oj+ sup
x2X

jg(x)� go(x)j.

It remains to verify their uniform convergence assumption ii), which is

sup
[�;�]�[
;
]�G

����� 1T
TX
t=1

bm(wt;�)0 bm(wt;�)� Efm(wt;�)0m(wt;�)g
����� = op(1): (42)

This uniform convergence can be established either by applying Lemma A2 in Newey and Powell,

or by showing the following two results hold:

(1) sup
wt;�

jbm(wt;�)�m(wt;�)j = op(1);

and

(2) sup
[�;�]�[
;
]�G

����� 1T
TX
t=1

m(wt;�)
0m(wt;�)� Efm(wt;�)0m(wt;�)g

����� = op(1):

Result (1) can be established by modifying Lemma A.1 in Ai and Chen (2003) to allow for stationary

beta-mixing data. In particular, we replace the Bernstein inequality for I.I.D. data in their proof
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by Lemma 1 in Chen and Shen (1998) for stationary beta-mixing data. Result (2) can be obtained

by applying Lemma 1 in Chen and Shen (1998) (or any other uniform laws of large numbers) for

stationary beta-mixing data.

Now by Lemma A1 in Newey and Powell (2003), we obtain: kb�T ��oks = op(1).

Convergence rate:

For any � 2 [�; �] � [
; 
] � G, let f�(�) : � 2 [0; 1]g be a continuous path in [�; �] � [
; 
] � G
such that �(0) = �o and �(1) = �. Suppose that for almost all zt+1, �(zt+1;�(�)) is continuously

di¤erentiable at � = 0. Denote the �rst pathwise derivative at the direction [���o] evaluated at
�o by:

d�(zt+1;�o)

d�
[���o] �

d(zt+1;�(�))

d�
j�=0 a:s: zt+1

and denote dm(wt;�o)d� [���o] � Efd�(zt+1;�o)d� [���o] j wtg: For any � 2 [�; �]� [
; 
]�G we de�ne
the following pseudo metric:

jj���ojj �

s
E

�
fdm(wt;�o)

d�
[���o]g0f

dm(wt;�o)

d�
[���o]g

�
:

Then under assumptions similar to those for Theorem 3.1 in Ai and Chen (2003), we have:

jjb�T ��ojj = op(T
�1=4).

This rate result can be proved by slightly modifying the proof of Theorem 3.1 in Ai and Chen

(2003), that is, we simply replace several parts in their proof that rely on I.I.D. data by the

corresponding ones for stationary beta-mixing data. In particular, their key Lemma A.1 can be

established for stationary beta-mixing data by using Lemma 1 in Chen and Shen (1998).

Root-T asymptotic normality of b�, b
:
De�ne !� = (!�� ; !

�

) with

!�� = arg min
!�2G

E

��
dm(wt;�o)

d�
� dm(wt;�o)

dg
[!�]

�0�dm(wt;�o)
d�

� dm(wt;�o)

dg
[!�]

��
;

!�
 = arg min
!
2G

E

��
dm(wt;�o)

d

� dm(wt;�o)

dg
[!
 ]

�0�dm(wt;�o)
d


� dm(wt;�o)

dg
[!
 ]

��
:

Denote

D!�(wt) =

�
dm(wt;�o)

d�
;
dm(wt;�o)

d


�
�
�
dm(wt;�o)

dg
[!�� ];

dm(wt;�o)

dg
[!�
 ]

�
:

Assumption N. (i) E[D!�(wt)0D!�(wt)] is positive-de�nite; (ii) �o 2 (�; �) and 
o 2 (
; 
); (iii)

o(w) � V ar[�(zt+1;�o)jwt = w] is positive de�nite for all w in the support of wt; (iv) jjb�T �
�ojj = op(T

�1=4):
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Under Assumption N and other regularity conditions similar to those for Theorem 4.1 in Ai

and Chen (2003), we obtain
p
T
�b� � �o; b
 � 
o�0 �!D N (0; V �1) with

V = E[D!�(wt)
0D!�(wt)]fE[D!�(wt)0
o(wt)D!�(wt)]g�1EfD!�(wt)0D!�(wt)g:

This result can be proved by slightly modifying the proof of Theorem 4.1 in Ai and Chen (2003),

that is, we simply replace several parts in their proof that rely on I.I.D. data by the corresponding

ones for stationary beta-mixing data.

5. Limiting Distributions of the Test Statistics

Root-T asymptotic normality of b� for testing internal vs. external habit
Recall that the pseudo-true value �� = (��; 
�; ��; g�(�))0 solves the following conditional mo-

ment restrictions:

E

0B@��
0@Ct+1

Ct

1� g�
�

Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
1� g�

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
1A�


�

Ri;t+1 eFi;t+1(��; ��; 
�; g�)� 1 j wt
1CA = 0; i = 1; :::; N;

with eFi;t+1(�; �; 
; g) de�ned in (??).
These unknown pseudo-true values (��; 
�; ��; g�(�)) can again be estimated by the SMD method

using the same ANN sieve (8) to approximate the unknown g�(�), the same three asset groups
with the associated sets of instruments. All we need to do is to rede�ne � = (�; 
; �; g(�))0 and
�(zt+1;�) = (�1(zt+1;�); :::; �N (zt+1;�))

0 with

�i(zt+1;�) = �

0@Ct+1
Ct

1� g
�

Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
1� g

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
1A�
 Ri;t+1 eFi;t+1(�; �; 
; g)� 1

in the sieve LS estimation (41) of mi(wt;�) and m(wt;�) = (m1(wt;�); :::;mN (wt;�))
0.

Denote �� = (��; 
�; ��; g�(�))0 and let b�T = (b�T ; b
T ; b�T ; bgT ) be the solution to
min

�2[�;�]�[
;
]�[�;�]�GT

1

T

TX
t=1

bm(wt;�)0 bm(wt;�):
Let !� = (!�� ; !

�

 ; !

�
�) with

!�� = arg min
!�2G

E

��
dm(wt;�

�)

d�
� dm(wt;�

�)

dg
[!�]

�0�dm(wt;��)
d�

� dm(wt;�
�)

dg
[!� ]

��
;

and !�� , !
�

 de�ned similarly as those in Appendix 4 (above) except replacing �o by �

�. Denote
dm(wt;��)

dg [!�] = (dm(wt;�
�)

dg [!�� ];
dm(wt;��)

dg [!�
 ];
dm(wt;��)

dg [!�� ]),

48



D!�(wt) =

�
dm(wt;�

�)

d�
;
dm(wt;�

�)

d

;
dm(wt;�

�)

d�

�
� dm(wt;�

�)

dg
[!�];

and 
�(wt) = V ar[�(zt+1;�
�)jwt]. Finally let

V� = E[D!�(wt)
0D!�(wt)]fE[D!�(wt)0
�(wt)D!�(wt)]g�1EfD!�(wt)0D!�(wt)g:

Then under assumptions similar to those suggested in Appendix 4, we obtain:

p
T
�b� � ��; b
 � 
�; b� � ���0 �!D N (0; V �1� ):

Root-T asymptotic normality of b�g for testing linear habit
Recall that

b�g = 1

T

TX
t=L

bg11( Ct
Ct+1

; :::;
Ct+1�L
Ct+1

),

where bg11() is the second partial derivative of the SMD estimator bg() with respect to its �rst
argument. Let f() denote the true unknown probability density of

�
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
and go11()

denote the second partial derivative of the true go() with respect to its �rst argument. Then

�g =

Z
go11(z1; z2; :::; zL)f(z1; z2; :::; zL)dz:

Suppose that f() is at least twice continuously di¤erentiable with respect to its �rst argument,

where f1() and f11() denote the �rst and second partial derivatives of f() with respect to its �rst

argument. Also assume that f() and f1() go to zero smoothly as their �rst argument goes to the

boundaries. Then, under some mild additional conditions, we have:

p
T
�b�g � �g�

=
1p
T

TX
t=L

�
go11(

Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)� Efgo11(
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)g
�

+E

24�bg( Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)� go(
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)

� f11(
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)

f( Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)

35+ op(1):
The asymptotic normality result of

p
T
�b�g � �g� �!D N (0; �211) can be obtained by directly

applying Ai and Chen (2004). Nevertheless, the above asymptotic expansion indicates that its

limiting variance �211 will involve terms like g
o
11 and f11, hence is complicated.
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9 Tables

Table 1

SMD Estimates of � and 


Assets Instruments � 


Group 1 1, wt, squared terms 0.9850 0.757

(0.005) (0.107)

Group 2 1, wt, squared, cross terms 0.9875 0.789

(0.005) (0.077)

Group 3 1, wt 0.9847 0.811

(0.006) (0.149)

Notes: The table reports SMD parameter estimates and asymptotic standard errors

in parentheses.
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Table 2

Speci�cation Errors for Alternative Models: HJ

6 size/BM 6 + T-bill

Model HJ Dist HJ Dist

(1) (2) (3)

Internal Habit 0.172 0.179

External Habit 0.261 0.425

Fama-French 0.262 0.282

Scaled CCAPM 0.208 0.352

CCAPM 0.307 0.403

CAPM 0.339 0.416

Notes: For each model labeled in column 1, the table reports the Hansen-Jagannathan

distance (�HJ Dist�) evaluated on equity returns alone (column 2) or equity returns

plus Treasury bill rate (column 3).

Table 3

Speci�cation Errors for Alternative Models: HJ+

6 size/BM 6 + T-bill

Model HJ+ Dist HJ+ Dist

(1) (2) (3)

Internal Habit 0.177 0.180

External Habit 0.289 0.455

Fama-French 0.262 0.287

Scaled CCAPM 0.810 0.601

CCAPM 0.372 0.618

CAPM 0.340 0.418

Notes: For each model in column 1, "HJ+ Dist" is the distance between the model proxy

and the family of admissible nonnegative stochastic discount factors. In column

2, test assets are equity returns; in 3, test assets are equity returns plus T-bill rate.
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Table 4

Covariances of SDFs with Returns

Average Excess Return Average Return

Tbill 1.0035

S1B1 0.0177 1.0213

S1B2 0.0274 1.0309

S1B3 0.0322 1.0357

S2B1 0.0185 1.0221

S2B2 0.0195 1.0230

S2B3 0.0260 1.0295

SDF internal habit SDF external habit

Covariance

S1B1 -0.0189 -0.0103

S1B2 -0.0248 -0.0096

S1B3 -0.0292 -0.0100

S2B1 -0.0200 -0.0074

S2B2 -0.0182 -0.0039

S2B3 -0.0272 -0.0083

Notes : This table reports average returns for the portfolios

in the left column, and covariance of the stochastic discount

factors of internal and external habit models with each excess

return. The sample spans the period 1952:Q4 -2001:Q2.
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Table 5

Pricing Errors for 6 Size/BM Returns

Return Fama-French Internal Habit

HJ Dist = 0.26 HJ Dist = 0.172

S1B1 -0.0031 -0.0052

S1B2 0.0005 -0.0001

S1B3 0.0009 -0.0005

S2B1 0.0026 -0.0041

S2B2 -0.0029 -0.0008

S2B3 -0.0015 -0.0027

Notes: This Table reports pricing errors from the Hansen-Jagannathan minimization

using six size/book-market portfolio equity returns. Errors for the Fama-French

model and internal habit model are reported. The internal habit model uses

SMD estimates on Group 2 assets for g.
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(bottom panel) using Group 1 assets, linear and squared instruments. 
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X(t) Against C(t-1) with C(t), C(t-2), C(t-3) at median
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Notes : X is the estimated habit, C is consumption. Estimates use Group 1 assets, linear and squared instruments. 
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X(t) Against C(t-1) with C(t), C(t-2), C(t-3) at median
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instruments.
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X(t) Against C(t-1) with C(t), C(t-2), C(t-3) at median
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Notes : X is the estimated habit, C is consumption. Estimates use Group 3 assets, linear instruments. 
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FIGURE 7

Second Derivative Of Habit One Period Ahead With Respect To Consumption

Notes : Estimates use Group 1 assets, linear and squared instruments. 
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FIGURE 8

Second Derivative Of Habit One Period Ahead With Respect To Consumption

Notes : Estimates use Group 2 assets, linear, squared and cross term instruments. 
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FIGURE 9

Second Derivative Of Habit One Period Ahead With Respect To Consumption

 
Notes : Estimates use Group 3 assets, linear instruments. 




