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1.  Introduction 

 
 An interesting class of contracts has the following form.  The parties agree 

some things now and agree to agree other things later.  For example, suppose that an 

impresario and a pianist sign a contract for a concert, or series of concerts, a year 

hence.  They may decide now on the fee and the broad outlines of the musical 

program, but may agree that the exact pieces played will be determined later.  Or 

suppose that a printer and a paper manufacturer sign a contract for the delivery of 

paper.  They may decide on the price for the first year, but agree that the price in 

future years will be subject to negotiation, within limits.  

This paper is concerned with contracts of this type.1  In order to analyze them, 

we adopt the following view.  We imagine that when parties draw up a contract they 

specify a list of all the possible outcomes from their transaction (here an outcome is a 

complete description of what might happen, e.g., a price-quantity-quality vector).  

Trade is voluntary and so “no trade” is always on the list.  The parties commit not to 

consider outcomes not on the list; that is, any outcome not on the list is ruled out.  In 

contrast, any outcome on the list may be chosen.  However, no mechanism is provided 

for selecting an outcome from the list; rather the choice will be made through 

unstructured negotiation or bargaining.  In this sense outcomes on the list are not ruled 

in. 

 At one extreme the list might consist of a small number of outcomes, e.g., just 

one (in addition to “no trade”).  This corresponds to a very tight contract since there is 

little or nothing to bargain over later.  At the other extreme the list might be very long.  

                                                 
1 Lawyers refer to such contracts as indefinite agreements, or agreements with open terms, or 
agreements to agree.  See Farnsworth (1999, p.110, pp.207-216, and particularly pp. 217-222).  Two 
recent contributions to the legal literature are Ben-Shahar (2004) and Scott (2003).  A key issue for 
these authors, and for the courts, is whether an agreement is too indefinite to be enforceable.  Legal 
enforceability is not central to our analysis, and so the attitudes of the courts to indefinite agreements, 
and their role in filling in the gaps in these agreements, are not major issues in our paper. 
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This corresponds to a loose contract since there is much to bargain over later.  Note 

that “no contract” fits easily into this framework.  “No contract” corresponds to the 

list of all possible outcomes; the reason is that if the parties write no contract now, 

then nothing is ruled out since they can always contract later. 

 We are interested in how long the parties’ list should be.  The trade-off is the 

following.  The advantage of a long list is flexibility: the parties are more likely to be 

able to choose an outcome that fits their circumstances.  That is, ex post, the parties 

have more scope to locate where they want to be in outcome space.  However, this 

very flexibility has its disadvantages.  A long list opens the door to bargaining.  As a 

result, from an ex ante perspective, the parties may end up where they don’t want to 

be. 

 We study the optimal contract in light of this trade-off.   We show that, if 

relationship-specific investments are large, the parties may need to choose a tight 

contract, e.g., in the music example, the contract might specify that the pianist will 

play Bach’s 24 Preludes and Fugues for a fixed fee in all circumstances, even though 

this is not always ex post efficient -- it is sometimes more efficient to play 

Shostakovich’s 24 Preludes and Fugues.  The parties may also make a “middle-of-the-

road” choice: they might agree that Mozart will always be performed, even though 

this is never efficient, because it is a reasonable compromise between the efficient 

choices of Bach and Shostakovich.  On the other hand, if relationship-specific 

investments are not large, the parties will choose a loose contract: the contract will fix 

the pianist’s fee but leave the choice of music to be decided later.  Finally, the parties 

may choose a convex combination of the above contracts, which can be given a 

temporal interpretation: the parties agree that the pianist will play Bach in some 



4 

performances in the concert series, and the music will be left open for the remaining 

performances. 

  The overarching idea behind our analysis is that a contract guarantees what 

will not happen, but not what will happen.  That is, in writing an ex ante contract, the 

parties restrict the set of outcomes over which they are free to bargain ex post: they tie 

their hands (not always a good idea for a pianist).  In particular, by fixing the price, 

they deliberately rule out the kinds of side payments necessary for the Coase theorem 

to work.2  This is the source of what is perhaps our most important finding: 

equilibrium outcomes can be ex post inefficient even though information is 

symmetric. 

Our model not only suggests that the parties will fix or restrict some variables, 

but it also has implications about which variables the parties should pin down and 

which they should leave open.  We show that, if the parties know that some aspect of 

the outcome -- the price or nature of the music, say -- should be in a particular range, 

the contract should say this.  To put it another way, looseness is desirable only to the 

extent that there is genuine uncertainty about what should happen.   However, there is 

an asymmetry between quality and price.  In a rough sense it is more important for the 

parties to specify price than quality because their interests over the former are 

diametrically opposed, whereas efficiency considerations will lead to some 

congruence of preferences over the latter.3  

                                                 
2 Harstad (2003) presents a model of regional coordination and negotiation in which it is sometimes 
efficient, ex ante, to limit side payments. 
3 Ours is, of course, not the only explanation of why parties choose to leave some variables open in a 
contract.  To mention some other theories: it has been argued that a loose or open contract can be 
desirable for signalling reasons (see Allen-Gale (1992), Spier (1992)); to encourage reputation-building 
and trust (see Baker et al. (1994), Boot et al. (1993), MacLeod-Malcomson (1989)); and to allow 
parties to punish “off the equilibrium path” behaviour (see Bernheim-Whinston (1998)).  Scott (2003) 
and Ben-Shahar (2004) have recently used these and related theories to understand why parties write 
agreements to agree.  Scott (2003) argues that reciprocal fairness can explain this phenomenon; while 
Ben-Shahar (2004) suggests that, among other things, agreements to agree are a way for parties, ex 
ante, to overcome negotiation deadlocks when they have different priors. 
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 Our assumption that a contract rules out (outcomes not on the list), but does 

not rule in (outcomes on the list) is strong.  In Section 4 we provide some foundations 

for this assumption.  We show that it follows from two more primitive assumptions.  

The first, to which we have already alluded, is that trade is voluntary, by which we 

mean that, irrespective of any long-run promises entered into ex ante, each party can 

unilaterally prevent trade ex post by “refusing to cooperate”; moreover, it is 

impossible for an outsider to verify which party was responsible.  The second is that 

the parties can engage in various forms of commitment: specifically, they can make 

long-run commitments not to renegotiate their contract; and they can make short-run 

commitments either to trade or not to trade. 

It is useful to provide a simple example that illustrates the model’s trade-offs.  

Suppose that a buyer needs one unit of homogeneous input from a seller at some 

future date 1, but at date 0 the seller’s costs are uncertain.  (The model in the body of 

the paper focuses instead on the richer case where the nature of the good -- e.g., the 

type of music to perform -- is uncertain.)  In particular, imagine that the value of the 

input to the buyer is 20 and the seller’s cost c is 10 with probability ½ and 16 with 

probability ½.  The parties are risk neutral and the seller’s cost will be observed by 

both parties at date 1; however, c is not verifiable.  In addition the buyer must make a 

relationship-specific investment at cost i, between dates 0 and 1, in order to realize the 

value 20.4 

 Recall that a contract is a list of outcomes -- in this case, price-quantity (p,,q) 

pairs.  Recall also that we suppose that trade is voluntary.  Normalize so that if no 

trade occurs the buyer pays the seller nothing. 

                                                 
4 Thus there is a potential hold-up problem.  See, e.g., Grout (1984), Klein et al. (1978), Williamson 
(1975).   
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 A good contract in this setting is one that specifies an input price high enough 

to encourage the seller to supply but low enough that the buyer has an incentive to 

invest.  Two contracts stand out.  One is a “fixed-price” or tight contract that sets the 

input price equal to 10, i.e., the contract is {p = 10, q = 1}.  The other is a “flexible-

price” or loose contract that allows the price to be 10 or 16.  We assume that, if the 

price can be 10 or 16, it can also be anything in between, since the parties can always 

bargain to intermediate prices by randomization (in fact, we assume that they cannot 

commit, ex ante, not to randomize ex post).  Thus the second contract is  

{10 ≤  p ≤ 16, q = 1}.    

With the tight contract, trade will take place if and only if c = 10.  The reason 

is that, when c = 10, trade is individually rational and there is nothing to bargain over.  

In contrast, when c = 16, trade will not occur since trade is not individually rational 

for the seller.  Moreover, by assumption, the parties stick to their list of outcomes, i.e., 

no renegotiation takes place on price. 

 With the flexible price or loose contract, trade will occur always since price 

can vary with cost.  If c = 16, there is nothing to bargain over: p = 16.  If c = 10, there 

is something to bargain over since any price between 10 and 16 is individually 

rational for both parties.  We adopt the symmetric Nash bargaining solution (with no 

trade as the disagreement point).  In the current context this means that p = 15 when  

c = 10.  In summary, the loose contract yields p = 15 when c = 10 and p = 16 when  

c = 16. 

 The tight contract delivers an expected gross payoff  to the buyer of 5 (the 

buyer gets 10 with probability ½), and an expected gross surplus of the same amount.  

The loose contract delivers an expected gross payoff to the buyer of 4½, and an 

expected gross surplus equal to 7. 
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 Comparing the two contracts, we see that the loose contract dominates the 

tight contract in terms of gross surplus -- in fact, it achieves the first-best -- but the 

tight contract yields a higher return for the buyer.  The conclusion is that, if i ≤ 4½, 

the loose contract is optimal and achieves the first-best.  However, if 4½< i ≤ 5, the 

loose contract is infeasible and the tight contract will be used.  (If i > 5, the project 

will be abandoned; note that, in the first-best, the project would be abandoned only if  

i > 7.)  In fact, in this case, the optimum is a convex combination of the tight contract 

and the loose contract: one interpretation of this convex combination is that there is a 

flow of trade in the “date 1 period” (akin to a series of concerts, rather than just a 

single concert), and that the tight contract will be used for a fraction τ of date 1,  and 

the loose contract for the remaining fraction (1− τ), where τ5 + (1 − τ)9/2 = i.   

 We see from this example that, as the investment cost rises, there is a 

progression from a loose contract to a tight contract to the project being abandoned.  

In Section 3, we show that this progression occurs generally; however in some cases 

the region where the tight contract is optimal disappears (this happens because the 

tight contract can be sufficiently inefficient ex post that it is actually worse than the 

loose contract for ex ante incentives). 

 We can tease out one further implication from this example.  Suppose that the 

seller’s costs are distributed on the whole interval [10, 20] rather than just being 10 or 

16.  Under these conditions what corresponds to the loose contract is the contract  

{10 ≤  p ≤ 20, q = 1}.  As in the two-state example, it will sometimes be optimal to 

use this contract for a fraction of the date 1 period.  But this contract is equivalent to 

no contract at all, since price can never rise above 20 or fall below 10 on account of 

individual rationality.  Thus we can interpret the model as saying that the parties will 
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choose a contract of limited duration, i.e., they will choose one contract for part of 

their relationship and no contract for the rest. 

 We should compare our approach with others in the literature.  Our view, that 

contracts rule out but do not rule in, differs in at least one dimension.  In the Arrow-

Debreu model, the states of the world and all the choice variables are observable and 

verifiable, and parties write a contract specifying exactly what will happen in every 

state.  Such a contract “rules out” (since nothing outside the contract can ever occur) 

and “rules in” (since there is no ambiguity about what will be chosen within the 

contract in any eventuality).  Mechanism design theory extends the Arrow-Debreu 

model to allow for less than full information about the state of the world.  In the 

classical mechanism design framework, it is supposed that parties write a contract that 

can never be renegotiated and that provides a mechanism for determining ex post 

outcomes.  For example, if there is asymmetric information between the contracting 

parties, the mechanism may specify that the informed party chooses an outcome from 

a prescribed menu, e.g., of price-quantity or price-quality pairs.5  If there is two-sided 

asymmetric information, both parties may be required to participate in the 

mechanism.6  Alternatively, the state may be “observable but not verifiable”, in that it 

cannot be verified by outsiders (the planner, the courts), even though it is observed by 

both of the inside parties: again, a mechanism will typically involve the participation 

of both parties.7  In all these cases, the contract “rules out” (since nothing outside the 

contract is possible); and “rules in”, in the sense that a mechanism for determining the 

outcome within the contract is provided8. 

                                                 
5 See, e.g., Mirrlees (1971), Mussa-Rosen (1978).   
6 See, e.g., Myerson (1979), Myerson-Satterthwaite (1983). 
7 See, e.g., Maskin (1999), Moore-Repullo (1988). 
8 The large law and economics literature on contracts is also mainly concerned with situations where 
contracts rule out and rule in.  (However, some of the literature covers as well the case where contracts 
do not rule out but do rule in.)  See, e.g., Shavell (2004).   
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 A more recent branch of the mechanism design literature allows for 

renegotiation.  Here, contracts do not “rule out”, since renegotiation introduces 

choices not mentioned in the initial contract.  However, contracts do “rule in”,  given 

that a mechanism for determining an outcome within the initial contract is provided: 

e.g., under asymmetric information one party has the right to choose from a menu (but 

the possibility of renegotiation will reduce the value of this right).9  Renegotiation 

under observable but not verifiable information can drastically reduce the power of 

contractually-specified mechanisms.10  This latter paradigm has been used as a basis 

for thinking about incomplete contracts.11 

 To repeat, we assume that agents can commit not to renegotiate: our contracts 

do “rule out”.  In this respect our approach is quite classical.  Our main innovation is 

to suppose that contracts do not “rule in”: outcomes mentioned in a contract are 

haggled over -- there is unstructured bargaining -- rather than being determined 

according to a contractually-specified mechanism.  (There is a fourth entry in our 

“ruling-in-or-out” taxonomy: contracts that neither rule out nor rule in.  Such 

contracts impose no constraints whatsoever on what can happen and so are 

worthless.)12 

 The paper is organized as follows.  The model is laid out in Section 2.    

Section 3 contains the analysis of an optimal contract.  Section 4 provides some 

justifications for restricting attention to our class of contracts.  Finally, Section 5 

discusses some extensions and directions for future research. 
                                                 
9 For renegotiation under asymmetric information between the contracting parties, see, e.g., 
Dewatripont (1989), Hart-Tirole (1988), Laffont-Tirole (1990).   
10 See, e.g., Che-Hausch (1999), Hart-Moore (1999), Maskin-Moore (1999), Reiche (2003), Segal 
(1999), Segal-Whinston (2002). 
11 See, e.g., Aghion et al. (1994), Chung (1991), Hart-Moore (1988), MacLeod-Malcomson(1993), 
Noldeke-Schmidt (1992), Rogerson (1992). 
12 This (excessively brief) discussion of the mechanism design literature has been restricted to 
situations of hidden information, where there is less than full information about the state of the world.  
There is, of course, a huge literature on hidden actions, where certain choice variables (like effort) are 
not observable (or verifiable); see, e.g., Holmstrom (1979), Mirrlees (1999). 
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2.  The Model 

 We consider the relationship between a risk neutral buyer and a risk neutral 

seller lasting from date 0 to date 1.  The buyer wants a service from the seller ex post, 

at date 1.  To fix ideas, we will use the concert example described in the Introduction.  

That is, we suppose that the buyer is an impresario arranging a concert and the seller 

is a pianist.  (For some interpretations of the model, it will be more appropriate to 

think of the pianist as performing a series of concerts rather than just one.)  The ideal 

nature of the seller’s service -- that is, the musical program -- is unclear when the 

parties write their contract ex ante, at date 0: it will depend on what transpires 

between dates 0 and 1.  We assume that, for a successful concert to occur, the buyer 

must make a relationship-specific investment, e.g., he must promote the concert (the 

investment is observed only by the buyer).  The seller has no investment.  For clarity 

of exposition we suppose that, ex ante, the seller gets all the surplus from the 

transaction (e.g., because there are many potential buyers at date 0).13  The time-line 

is as in Figure 1. 

 

  Date 0   Date ½   Date 1 

 

  Parties   Buyer invests?  Trade? 
  meet 
  and contract 

 

Figure 1 

 

                                                 
13 All our characterization results extend to any other ex ante division of surplus, modulo some transfer 
payment at date 0.   
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 We shall suppose that the possible musical programs can be represented by 

points λ on the interval [0,1].  For convenience, we will identify a musical program 

with a composer.  Three musical programs or composers will have particular 

significance: λ = 0, λ = ½, and λ = 1.  We will refer to these composers as Bach, 

Mozart, and Shostakovich, respectively. 

 For simplicity, we suppose that at date 1 there are just two possible states of 

the world, 0 and 1, with probabilities π0 and π1 = 1 − π0, respectively, where  

0 < π0 < 1.  Without loss of generality, we take π0 ≥ ½.   Assume first that the buyer 

has invested.  Then in state 0 the value (enjoyed by the buyer) and the cost (borne by 

the seller) of the music λ are given by 

(2.1) v0(λ) = v − λ ∆ ,    c0(λ) = c − λδ, 

respectively, where ∆ > 0, δ > 0.  That is, Bach is the highest value and highest cost 

composer in state 0 (with value v and cost c); and value and cost decline linearly as 

we move towards Shostakovich.  We assume that ∆ > δ, i.e., value declines by more 

than cost; and that v − ∆ > c − δ > 0, i.e., there are gains from trade even from 

Shostakovich.   

The assumption ∆ > δ implies that Bach is the efficient choice in state 0.  The 

case ∆ ≤ δ is also potentially of interest, but we will see in Section 3 that the first-best 

is easy to achieve under these conditions.   

In state 1, the interval [0,1] is rotated 180 degrees in the sense that value and 

cost are given by 

(2.2) v1(λ) = v – (1 − λ) ∆ ,    c1(λ) = c – (1 − λ)δ.   

That is, Shostakovich is efficient in state 1, with value and cost declining linearly as 

we move towards Bach.  The one composer whose value and cost are the same in the 

two states is Mozart. 
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 We will make the further assumption that the total variation in the value and 

cost of performance, ∆ + δ, is not too large; specifically, 

(A.1) v − c > ∆ + δ. 

The reason for (A.1) will become clear in Section 3, Lemma 1.   

 The above is for the case where the buyer invests.  If the buyer does not invest, 

we suppose that the value of the concert is zero, i.e., there are no gains from trade ex 

post. 

 In a first-best world, the efficient music would be selected in each state.  

Suppose the investment costs i.  We ignore discounting, so, if investment occurs, the 

net present value of the transaction is v – c – i, which we assume is strictly positive. 

 It will be useful to have a running numerical example.  Suppose v = 20,  

c = 10, ∆ = 6, δ = 2.  Then in state 0, Bach has value 20 and cost 10, while 

Shostakovich has value 14 and cost 8.  In state 1, Shostakovich has value 20 and cost 

10, while Bach has value 14 and cost 8.  In both states, Mozart has value 17 and cost 

9.  The first-best net present value of the project is 10 – i > 0.   

 If the state of the world is verifiable, the first-best is easy to achieve.  The 

buyer and seller can write a contract specifying that the seller plays Bach in state 0 

and Shostakovich in state 1, each at a price of c.  The buyer then receives the full 

gains from trade, v – c – i, and has socially correct investment incentives.  (The buyer 

will make an upfront transfer v – c – i  to reallocate the surplus to the seller.)  From 

now on we suppose that, even though each party observes the state of the world and 

the other party’s payoff (in effect, the seller can deduce whether the buyer has 

invested), none of these variables is verifiable. 

 As emphasized in the Introduction, we are interested in a situation where 

contracts “rule out” but do not “rule in”.  Specifically, we assume that at date 0 the 
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parties write a contract consisting of a list of outcomes -- in the current context, (λ,p) 

pairs, together with “no trade”.  Anything not on the list is ruled out.  However, 

neither party can be forced to accept anything on the list except for no trade.  That is, 

the parties bargain over outcomes on the list, where the disagreement point is no 

trade.  Without loss of generality, we normalize the no trade price to be zero. 

 In Section 4, we will provide some justifications for restricting attention to this 

class of contracts.  To give a flavour of the argument, consider a classic “ruling-in” 

contract, where the buyer is given the right to choose any composer at a price of c.  If 

ex post bargaining can be avoided, this contract delivers first-best since the buyer will 

choose the composer with value v, which happens to be the efficient outcome.  In our 

view, the problem with this contract is that the seller can threaten not to trade unless 

the buyer chooses the composer the seller wants.  We postpone further discussion of 

these matters until Section 4, and for the moment simply take our class of contracts as 

given.   

 We will take the view that the parties bargain according to the symmetric Nash 

bargaining solution.14  Let C be the set of (λ,p) pairs specified in the contract, together 

with “no trade”.  We assume that the parties can convexify C by choosing lotteries 

over the outcomes as part of the bargaining: indeed, they cannot commit at date 0 not 

to randomize at date 1.  Thus we extend C to its convex hull C .  Given that each party 

can unilaterally select no trade, in each state of the world the parties will bargain over 

the subset of elements in C  that are individually rational, i.e., that yield non-negative 

payoffs.  Let (λ0,p0) be the outcome of Nash bargaining in state 0 and (λ1,p1) the 

outcome in state 1.  (In principle, no trade could be the outcome in one of the states.  

We consider and rule this out in the next section.) 

                                                 
14 See Nash (1950).  For discussions, see Binmore et al. (1986) and Roth (1979). 
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A further simplification is possible.  The Nash bargaining solution possesses 

the property of independence of irrelevant alternatives.  Thus the outcomes (λ0,p0), 

(λ1,p1) will still emerge from the bargaining if we replace the original contract by a 

new contract consisting just of the pairs (λ0,p0), (λ1,p1).  Of course, we have to make 

sure that this contract is “group incentive compatible”.  By this we mean that (λj,pj) 

does emerge from the bargaining in state j, j = 0,1: given that the parties can 

convexify by randomization, (λj,pj) must be the Nash bargaining solution in state j 

when all the points on the line segment joining (λ0,p0) and (λ1,p1) are available.  We 

study the incentive-compatibility constraints in the next section. 

 

3.  Analyzing the Optimal Contract 

 In this section we study the nature of an optimal contract.  We begin, however, 

by making some observations about feasibility.   

By construction, (λ0,p0) is the Nash bargaining outcome in state 0 and (λ1,p1) 

is the Nash bargaining outcome in state 1.  This fact has two implications.  First, 

(λj,pj) must give each party a non-negative payoff in state j, j = 0,1 (the individual 

rationality (IR) constraint).  Second, by the properties of the Nash bargaining solution, 

(λj,pj) must maximize the “Nash product”, the product of the buyer and seller’s 

payoffs, over all points on the line segment joining (λ0,p0) and (λ1,p1) in state j, j = 0,1 

(the group incentive compatibility (IC) constraint). 

Let us write the buyer and seller’s ex post payoffs in states 0,1 as b0,b1 and 

s0,s1, respectively.  Also let total ex post surplus in the two states be w0 ≡ b0 + s0,  

w1 ≡ b1 + s1, respectively.  Then, from (2.1) – (2.2), we have 

 



15 

(3.1) b0 ≡ v0(λ0) − p0 = v – λ0∆ − p0,     

b1 ≡ v1(λ1) − p1 = v – (1– λ1)∆ − p1,     

(3.2) s0 ≡ p0 − c0(λ0) = p0 – c + λ0δ ,      

s1 ≡ p1 − c1(λ1) = p1 – c + (1 – λ1)δ,  

(3.3) w0 ≡ v0(λ0) − c0(λ0) = v – c − λ0(∆ − δ),     

w1 ≡ v1(λ1) − c1(λ1) = v – c – (1 − λ1)(∆ − δ).  

Hence the IR constraints can be written as 

(3.4) 0 ≤ b0 ≤ w0,     0 ≤ b1 ≤ w1. 

 Before we proceed, it is worth using the IR constraints to say something about 

the case ∆ ≤ δ, which we mentioned briefly in Section 2.  In this case the low cost 

(i.e., cost c − δ) composer is efficient in each state: Shostakovich in state 0 and Bach 

in state 1.  Consider the contract λ0 = 1, λ1 = 0, p0 = p1 = c − δ.  This contract achieves 

ex post efficiency and gives all the surplus to the buyer, just satisfying the seller’s IR 

constraint.  Any other music (supplied at the common price c − δ) costs the seller 

strictly more than c − δ, and so only one point in each state satisfies individual 

rationality.  There is nothing to bargain about: (λ0,p0) is the Nash bargaining solution 

in state 0; and (λ1,p1) in state 1.  The contract achieves the first-best. 

 Let us return to our central case: ∆ > δ.  To obtain the IC constraints, it is 

useful to refer to a diagram.  Figure 2 graphs the two parties’ payoffs in state 0.   

Figure 2 here  

The contractual frontier consists of all points along the line vector joining the points 

corresponding to (λ0,p0) and (λ1,p1) -- the solid arrow in Figure 2.  In state 0 the first 

point is (b0,s0).  Let the second point be (b1', s1') , where      

(3.5) b1' +=−−= 111 bp∆λv  (1 − 2λ1)∆, 
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(3.6) s1' )2λ(1bwδλcp 11111 −−−=+−= δ. 

Note that, except for the case λ1 = ½, (b1', s1') )s,(b 11≠ ; the reason is that choosing 

composer λ1 in state 0 would yield the value-cost combination (v − λ1∆, c − λ1δ), 

whereas in state 1 (when λ1 is chosen), it yields (v – (1 − λ1)∆, c – (1 − λ1)δ).  

 In Figure 2 we have also drawn the isoquant corresponding to the Nash 

product passing through (b0,s0), and its gradient vector -- the dashed arrow.  It is clear 

that, for (b0,s0) to maximize the Nash product relative to all points on the line vector 

joining (b0,s0) to (b1', s1'), the gradient vector and this line vector must form an obtuse 

angle.  Since the gradient vector is proportional to (w0 – b0,b0), we can write the 

condition as 

(3.7) [w0 – b0]{[b1 + (1 − 2λ1)∆] – b0} + b0{[w1 – b1 – (1 − 2λ1)δ] – [w0 – b0]} ≤ 0. 

(3.7) then represents the IC constraint in state 0. 

 An exactly symmetric argument applies to state 1.  Hence we can obtain the IC 

constraint in state 1 by substituting b1 for b0, w1 for w0, and (1 − λ0) for λ1 in (3.7).  

This yields  

(3.8) [w1 – b1]{[b0 – (1 − 2λ0)∆] – b1} + b1{[w0 – b0 + (1 − 2λ0)δ] – [w1 – b1]} ≤ 0. 

(3.4) and (3.7)-(3.8) together characterize a contract that satisfies the IR and 

IC constraints in both states, i.e., a feasible contract.15   

For some purposes it is useful to write the feasibility conditions in terms of the 

outcomes λ0,λ1 and the prices p0,p1.  Thus we rewrite (3.4), (3.7) and (3.8) as: 

                                                 
15 We noted in Section 2 that in principle no trade could be the outcome in one of the states.  However, 
it is never optimal to have no trade.  To see why, note first that, since π0 ≥ ½, it is obviously better for 
the parties to trade in state 0 than state 1 if they are going to trade in only one state.  Suppose that the 
contract specifies (λ0,p0) in state 0 and no trade in state 1.  Given that trade occurs only in state 0, it is 
clearly optimal for the parties to choose λ0 efficiently and to allocate all the surplus to the buyer, i.e.,  
λ0 = 0, p0 = c.  But then it is easy to show that the contract λ0 = λ1 = 0, p0 = p1 = c does better.  This 
contract satisfies (3.4), (3.7) and (3.8) -- assumption (A.1) ensures that the buyer’s IR constraint is 
satisfied in state 1 -- and it yields a higher expected total surplus since there is trade in both states.  
Incidentally, one could also allow for fractional trade in at least one state, too, but this is never optimal.   
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(3.9) c − λ0δ ≤ p0 ≤ v − λ0∆,     c – (1 − λ1)δ ≤ p1 ≤ v – (1 − λ1)∆, 

(3.10) [p0 – c + λ0δ]{p0 – p1 + (λ0 − λ1)∆} + [v − λ0∆ − p0]{p1 – p0 + (λ1 − λ0)δ} ≤ 0, 

(3.11) [p1 – c + (1 − λ1)δ]{p1 – p0 + (λ0 − λ1)∆}  

+ [v – (1 − λ1 )∆ − p1]{p0 – p1 + (λ1 − λ0)δ} ≤ 0. 

The set over which we optimize includes all feasible contracts, together with 

all convex combinations of such contracts.  Formally, a convex combination βC + µC' 

of two contracts C and C' with weights β and µ = 1 − β, respectively, denotes the 

randomized contract: C with probability β and C' with probability µ, where the 

objective and verifiable randomization occurs ex post.   It may not be actually 

necessary to conduct a lottery: we will give alternative interpretations later in this 

section.   

 We can now define the notions of dominance and optimality.  We say that a 

convex combination of N individually feasible contracts, C1', …, CN', (strictly) 

dominates a contract C if the convex combination delivers at least as high a value (a 

strictly higher value) of expected total surplus, Ew = π0w0 + π1w1, and at least as high 

a value of the buyer’s expected return, Eb = π0b0 + π1b1.  An optimal convex 

combination of N individually feasible contracts solves the problem: Maximize Ew 

subject to Eb ≥ i.  Obviously, a necessary condition for a feasible contract to be 

optimal is that it is not strictly dominated. 

We will spend a little time exploring the feasibility conditions (3.4),  

(3.7)-(3.8), or equivalently (3.9)-(3.11).  It will simplify the exposition to work with 

the numerical example from Section 2: v = 20, c = 10, ∆ = 6, δ= 2.  However, all our 

observations apply more generally, as will be clear from Propositions 1-3 below. 

 The first point to make is that the first-best cannot be achieved for high values 

of i.  To see this, note that ex post efficiency requires λ0 = 0, λ1 = 1.  Also, to ensure 
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that the buyer invests even when i is high, the buyer must get (almost) all the surplus, 

i.e., p0 = p1 = 10.  Given that all points on the line segment joining (λ0,p0) and (λ1,p1) 

are permitted, and these points have the common price of 10, this contract can be 

interpreted as “any music at a price of 10”.  However, it is easy to check that this 

contract violates both (3.10) and (3.11).  (For future reference, note that (3.10)-(3.11) 

become the same condition whenever p0 = p1 and  λ1 = 1 – λ0.) 

 To put it simply, it is impossible both to have ex post efficiency (λ0 = 0, 

 λ1 = 1) and to allocate all the surplus to the buyer, because in equilibrium the Nash 

product is zero, while everywhere else along the line segment the Nash product is 

strictly positive.  In short, the contract consisting of (λ0,p0) = (0,10) and (λ1,p1) = 

(1,10) violates the IC constraints.   

 Another way of expressing what we’ve found is that the contract “any music at 

a price of 10” does not yield Bach in state 0 and Shostakovich in state 1.16  The 

problem arises because the buyer is getting too much surplus.  We now show that, if 

we are prepared to allocate a non-trivial fraction of the surplus to the seller, we can 

find a contract that yields the outcome Bach in state 0 and Shostakovich in state 1. 

 The contract that does the job is “any music at a price of 12½”.  To see why, 

simply substitute λ0 = 0, λ1 = 1, p0 = p1 = 12½ into (3.10) (or (3.11)), and check that it 

is satisfied (with equality).  In each state, this contract yields the maximum total ex 

post surplus of 10 (w0 = w1 = 10) and provides the buyer with a return of 7½  (b0 =  

b1 = 7½).  

It is worth observing that (3.10) and (3.11) are also both satisfied (with strict 

inequality) if λ0 = 0, λ1 = 1 and p0 = p1 > 12½.  In fact, p0 = p1 = 15 corresponds to the 

case where the parties write no contract at date 0 and bargain from scratch at date 1.  

                                                 
16 In fact, this contract yields Mozart in both states. 
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Since we want to provide the buyer with strong investment incentives, we are 

interested in a contract with low prices and so we concentrate on p0 = p1 = 12½.   

The reader may wonder whether the buyer’s return could be further increased 

by lowering the price of music below 12½.  That is, what about a contract that says 

“any music at p”, where p < 12½, and that yields some λ0 ∈ (0, ½) in state 0 and  

λ1 = 1 − λ0 in state 1?  Substituting p0 = p1 = p and λ1 = 1 − λ0 into the equality 

version of (3.10) (or (3.11)), we obtain 

(3.12) p = 12½ − 3λ0. 

Thus the buyer’s return in each state is given by  

(3.13) b0 = b1 = 20 − 6λ0 – p = 7½ − 3λ0, 

which is less than 7½ if λ0 > 0.  In other words, the buyer does less well with the 

contract “any music at a price of p” when p < 12½, than with the contract “any music 

at a price of 12½”.  Since “any music at a price of 12½” also delivers higher total ex 

post surplus, this contract dominates. 

An interesting point emerges from the last piece of analysis.  As λ0 → ½ from 

below, p →11 in (3.12).  That is, the limiting contract delivers “Mozart at a price of 

11”.  However, when λ0 = ½, Mozart can be obtained at its cost, which equals 9.  In 

other words, there is a discontinuity.  If the buyer wants music close to Mozart (but in 

the direction of Bach) in state 0, and music close to Mozart (but in the direction of 

Shostakovich) in state 1, he must pay close to 11, whereas if he wants exactly Mozart 

in both states he need pay only 9.  The source of the discontinuity is that the IC 



20 

constraint becomes vacuous in the limit when there is only one {music, price} pair in 

the contract (other than “no trade”).17   

 So far, two contracts command our attention.  The first is “any music at a price 

of 12½” and the second is “Mozart at a price of  9”.  Call the first L (for “loose 

contract”) and the second M (for Mozart).  Note that, in each state, M yields a total  

surplus of 8, which is the return to the buyer.  We see that, in each state, L yields more 

total surplus than M (10 vs. 8), while M yields the buyer a higher return than L (8 vs. 

7½). 

 Up to now, we have restricted attention to symmetric contracts.  But suppose 

π0 is close to 1.  Might not an asymmetric contract be better than either L or M? 

 The answer is yes.  For example, consider the specific performance contract 

“Bach in each state at a price of 10” -- call this B.  Then B yields an expected total 

surplus, and an expected return to the buyer, given respectively by  

(3.14) Ew = (20 – 10)π0 + (14 – 8)π1 = 6 + 4π0, 

(3.15) Eb = (20 – 10)π0 + (14 – 10)π1 = 4 + 6π0. 

For π0 close to 1, Eb exceeds 8 and so B yields a higher expected return to the buyer 

than either L or M (even though it yields a lower expected total surplus than L).  In 

contrast, if π0  = ½, B yields a lower expected return to the buyer than M, and the 

same total surplus: that is, M dominates B.   

 Before continuing, we need to deal with an important point.  The cost of 

supplying Bach is 10 in state 0, but only 8 in state 1.  Might it be possible to have two 

prices for Bach, a price p0 = 10, say, which would apply in state 0, and a lower price,  

                                                 
17 There is no discontinuity if λ0 → ½ from above (i.e., λ0 > ½, λ1 = 1 − λ0, p0 = p1).  However, any 
feasible contract λ0 > ½, λ1 = 1 − λ0, p0 = p1 (i.e., where p0 = p1 is such that IC is satisfied, as well as 
IR) is dominated by λ0 = λ1 = ½, p0 = p1 = 9 (i.e., pure Mozart).   
 



21 

p1 ∈ [8, 10), which would apply in state 1?  (Recall that in the example in the 

Introduction, price variability was possible in the loose contract.)  The answer is no.  

In particular, it is easy to check that p0 =10, p1 < 10 violates (3.10)–(3.11).  In rough 

terms, the reason that p1 cannot be reduced below 10 in state 1 is that unrestricted 

Nash bargaining in state 1 yields a price of 11, halfway between the buyer’s value 14 

and the seller’s cost 8, and this price exceeds 10.  In fact, the assumption we made in 

(A.1), that v – c > ∆ + δ, guarantees that a composer does not have two prices in an 

optimal contract. 

Lemma 1.  Assume (A.1).  If an optimal contract (λ0,p0), (λ1,p1) has λ0 = λ1, then it 

must be the case that p0 = p1 = max {c – λ0δ,   c – (1 – λ0)δ}.   

Proof.  See Appendix. 

 Lemma 1 covers the case of general specific performance contracts, for any 

common value of λ0 = λ1.  Fortunately, in our analysis of optimality, we do not have 

to consider these contracts separately from the generalized versions of B and M, 

namely, “Bach at a price of c” and “Mozart at a price of c – ½δ”.  To see this, note 

first that, given π0 ≥ ½, it is never optimal to set λ0 = λ1 > ½ in a specific performance 

contract: the contract λ0' = λ1' = 1 – λ0 < ½, p0' = p1' = c – (1 − λ0)δ dominates the 

contract λ0 = λ1 > ½, p0 = p1 = c – λ0δ.  Assume, therefore, λ0 = λ1 < ½. The next step 

is to observe that the contract λ0 = λ1 < ½, p0 = p1 = c − λ0δ is economically 

equivalent to the convex combination (1 − 2λ0)B + 2λ0M, in the sense that the convex 

combination yields the same expected (w0,w1) and (b0,b1) vectors.18     

                                                 
18 It is not true that a contract λ0 = λ1 > 0, p0 = p1 = c − λ0δ is a convex combination of B and S, where 
contract S (“Shostakovich at a price of c”) has λ0 = λ1 = 1 and p0 = p1 = c.  The reason is that contracts 
B and S have a common price c, which strictly exceeds c − λ0δ.   
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In what follows we will be interested not only in convex combinations of  B 

and M, but also in convex combinations of L and B, and L and M.  The latter are a 

little harder to interpret because they are not equivalent to a specific performance 

contract.  The simplest interpretation is that of a lottery.  For example, consider a 

convex combination of L and M.  The parties can sustain this by agreeing at date 0 to 

choose L if a particular, verifiable event occurs at date 1 and M if it does not.  A more 

attractive interpretation is the temporal one mentioned in the Introduction.  Imagine 

that the pianist will perform a series of concerts at date 1, rather than just one, and 

suppose that the parties bargain about each concert separately.  That is, when date 1 

arrives, they bargain about the first concert; then after that concert is over they bargain 

about the second concert, and so on.  Then, in our numerical example, the convex 

combination (1 − µ)L + µM is equivalent to a date 0 contract stating that Mozart will 

be performed at a price of 9 for a fraction µ of the concerts and any music will be 

performed at a price of 12½ for the remainder.19 

 For our numerical example, we may summarize our findings as follows.  We 

have identified three leading contracts: L (“any music at a price of 12½”) ; M 

(“Mozart at a price of 9”); and B (“Bach at a price of 10”).  Convex combinations of 

L, M and B may also be important.  However, we have still considered only a very 

small subset of all possible contracts, in particular, only those with λ0 + λ1 = 1 or  

λ0 = λ1.  What about more general contracts, where λ0 + λ1 ≠ 1 and λ0 ≠ λ1 (e.g.,  

                                                 
19 It is important that the parties cannot bargain about all the concerts simultaneously at date 1.  To rule 
this out, we must in effect assume that the parties’ short-run commitment ability extends over one 
concert but no further.  The reason that simultaneous bargaining won’t work is the following.  
Consider, say, ½L + ½M. This convex combination yields an average value of λ0 and λ1 equal to ¼ and 
¾ respectively, an average value of w0 and w1 both equal to 9, and an average value of b0 and b1 both 
equal to 7¾.  But it is easy to see that λ0 = ¼, λ1 = ¾, w0 = w1 = 9, b0 = b1 = 7¾ violates (3.7) and (3.8).  
In other words, it is not possible to sustain λ0 = ¼, λ1 = ¾, w0 = w1 = 9, b0 = b1 = 7¾ as part of a single 
Nash bargain.  In contrast, it is possible to sustain λ0 = 0, λ1 = 1, w0 = w1 = 10, b0 = b1 = 7½ as the 
outcome of one Nash bargain and λ0 = λ1 = ½, w0 = w1 = 8, b0 = b1 = 8 as the outcome of another. 
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λ0 = ¼, λ1 = ½)?  Can these do better?  Fortunately, the answer is no, as Proposition 1 

below shows.  This means that we can indeed focus on the three contracts L, M, B, 

and convex combinations of these. 

 Figure 3 graphs the buyer’s expected return and the expected total surplus 

from the contracts L, M and B, for different values of π0.  Since, under L or M, the 

buyer’s return and the total surplus are independent of the state, the positions of L and 

M are fixed across the three figures: only the position of B moves.  Figure 3(i) applies 

to the case ½ ≤ π0 ≤ π0
*, where π0

* = 9/14.  Figure 3(ii) applies to the case π0
* < π0 < 

π0
**, where π0

** = 2/3.  Figure 3(iii) applies to the case π0
** ≤ π0 < 1.  

Figure 3 here 

 For values of π0 close to ½, Figure 3(i) shows that the frontier consists of two 

parts.  For i ≤ 7½, the first-best is achieved with the contract L.  (For i ≤ 5, the first-

best can also be achieved with no contract at all, since unrestricted bargaining at date 

1 yields the buyer 5.)  Ex post, the buyer receives 20 − 12½ = 7½ and total surplus is  

10 (the buyer makes an ex ante transfer of 7½ – i to reallocate the net surplus to the 

seller).  For 7½ < i ≤ 8, the optimum is achieved by a convex combination of L and 

M.  Now we are in second-best, since there is ex post inefficiency whenever Mozart is 

performed (Mozart yields surplus 8 as opposed to 10).  Finally, for i > 8, the buyer 

cannot cover his costs and the project will be abandoned (in a first-best world the 

project is abandoned only if i > 10). 

In Figure 3(ii), the first-best is again achieved with the contract L if i ≤ 7½.  

For 7½ < i ≤ 4 + 6π0, the optimum is a convex combination of L and B, whereas for  

4 + 6π0 ≤ i ≤ 8, the optimum is a convex combination of B and M (again, the project 

is abandoned if i > 8). As we pointed out earlier, this latter convex combination, of B 

and M, is equivalent to a specific performance contract of some composer between 
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Bach and Mozart: Haydn, say.  In Figure 3(iii), the first-best is still achieved with the 

contract L if i ≤ 7½.  In this figure, Mozart is dominated by Bach, and so, provided 

7½ < i ≤ 4 + 6π0, the optimum is a convex combination of L and B (the project is 

abandoned if i > 4 + 6π0). 

We have milked our numerical example enough and now it is time to be more 

general.  Fortunately, everything goes through provided we are prepared to make the 

following assumption: 

(A.1') v – c ≥ ½(3∆ + δ). 

(A.1') is only a slight strengthening of (A.1); it holds as long as the variation in the 

value and cost of performance is not too great.  Note that (A.1') is (just) satisfied in 

our numerical example. 

 To state our propositions, we need the generalized version of contract L: 

(3.16) L = {(λ0,p0), (λ1,p1)|λ0 = 0, λ1 = 1, p0 = p1= (c∆ + vδ)/(∆ + δ)}. 

That is, L is “any music at a price of (c∆ + vδ)/(∆+ δ)”.  Also, to be formal, the 

generalized versions of contracts M and B are:  

(3.17) M = {(λ0,p0), (λ1,p1)|λ0 = λ1 =  ½,  p0 = p1 = c − ½δ}, 

(3.18) B = {(λ0,p0), (λ1,p1)|λ0 = λ1 = 0, p0 = p1= c}. 

That is, M is “Mozart at a price of c − ½δ”, and B is “Bach at a price of c”. 

Proposition 1.  Assume (A.1').  Then any contract {(λ0,p0), (λ1,p1)} is dominated by a 

convex combination of L, M and B. 

Proof:  See Appendix.20   

                                                 
20 Proposition 1 may fail in the absence of (A.1').  Suppose v = 20, c = 11, ∆ = 6, δ = 2, so that the 
weaker condition (A.1) holds, but (A.1') doesn’t.  Consider, e.g., the contract (λ0,p0) = (0,11), (λ1,p1) = 
(ε/6,11 − [ε/3]).  It is easy to show that this satisfies the IR and IC constraints for small ε > 0.  Also, for 
π0 close to 1 it yields a strictly higher expected return for the buyer than L, M or B.  Thus, this contract 
is not dominated by a convex combination of L, M and B. 
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In Propositions 2 and 3, we characterize an optimal contract for general values 

of the parameters satisfying (A.1').  There are three critical levels of the buyer’s cost 

of investment i: 

(3.19) iL  = (v – c)∆/(∆ + δ), 

(3.20) iM = v – c - ½(∆ - δ), 

(3.21) iB = v – c – (1 - π0)∆. 

These are the values of the buyer’s expected payoff (gross of investment), Eb, under 

L, M and B respectively.  In our numerical example, iL = 7½, iM
  = 8 and iB = 4 + 6π0.  

In general, iL < iM if and only if 

(3.22) v – c > (∆2 − δ2)/2δ. 

Further, iL < iB if and only if v – c > (1 − π0)(∆ + δ)∆/δ or, equivalently, 

(3.23) π0 > 1 − 
∆+∆

−
)(
)cv(

δ
δ . 

The critical values in (3.19) - (3.23) appear in Propositions 2 and 3 below. 

 Recall that in our numerical example, L achieves the first-best if i ≤ 7½, 

irrespective of the value of π0, i.e., whichever of Figures 3(i)-(iii) pertains.  

Proposition 2 generalizes this finding. 

Proposition 2.   Assume i ≤ iL.  Then L is optimal, with an ex ante transfer from the 

seller to the buyer of  iL – i.   

 The proof is direct.  Note that, since the first-best is achieved, Proposition 2 

does not require either assumption (A.1) or the stronger assumption (A.1').  

Incidentally, if i ≤ ½(v − c), “no contract” is also optimal, with an ex ante transfer of  

½(v – c) – i. 

 We also found in the numerical example that if  i > 7½ the first-best cannot be 

achieved: there is always some ex post inefficiency.  This too generalizes.  The three 
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cases (i)-(iii) in Proposition 3a correspond to Figures 3(i)-(iii).  The auxiliary 

condition v – c > (∆2 − δ2)/2δ is needed to ensure that M yields a strictly higher 

expected payoff to the buyer than L (if not, M would be dominated by L).   

Proposition 3a.  Assume i > iL  and that (A.1') holds.  Suppose v – c > (∆2 − δ2)/2δ. 

Then there are three cases: 

(i) ½ ≤ π0 ≤ π0
* ≡

δ
δ
+∆+−

+∆+−
c)2(v
cv . 

For i ≤ iM, a convex combination of L and M is optimal, with weights 

LM

M 

ii
ii

−
− and LM

L

ii
ii

−
− .  For i > iM, the project is abandoned. 

(ii) π0
* < π0 < π0

**
 ≡ 

∆
+∆

2
δ . 

For i < iB , a convex combination of L and B is optimal, with weights LB

 B

ii
ii

−
−  

and LB

L 

ii
ii

−
− .  For i∈[ iB, iM], a specific performance contract with  

λj = 
)i2(i

ii
BM

B 

−
−  and pj = c − 

)i2(i
)i(i

BM

B 

−
−δ , j = 0,1, is optimal.  For i > iM, the 

project is abandoned.   

(iii) π0
**≤  π0 < 1. 

For i ≤ iB, a convex combination of L and B is optimal, with weights LB

 B

ii
ii

−
−  

and LB

L 

ii
ii

−
− .  For i > iB, the project is abandoned. 

 We omit a full proof of Proposition 3a because much of it is quite mechanical 

and closely mimics our earlier discussion of the numerical example.  The proof makes 

use of the fact that the values of the expected total surplus Ew and the buyer’s 
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expected payoff Eb from a convex combination of M and L, with weights µ : 1 − µ, 

are respectively 

(3.24) µ{v – c − ½(∆ − δ)} + (1 − µ){v – c}, 

(3.25) µ{v – c − ½(∆ − δ)} + (1 − µ){v – [(c∆ + vδ)/(∆ + δ)]}.   

So in Ew/Eb space the magnitude of the slope of the frontier joining L to M is 

(3.26) 
)()]/(2)cv[(

Eb/Ew
δδδ

δ
µµ −∆−+∆−

−∆
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
− . 

Also, from a convex combination of B and L, with weights β : 1 − β, the values of Ew 

and Eb are respectively 

(3.27) βπ0{v – c} + β(1 − π0){v – c − ∆ + δ} + (1 − β){v – c}, 

(3.28) βπ0{v – c} + β(1 − π0){v – ∆ − c} + (1 − β){v – [(c∆ + vδ)/(∆ + δ)]}. 

So in Ew/Eb space the magnitude of the slope of the frontier joining L to B is 

(3.29) 
∆−−+∆−

−∆−
=⎟⎟

⎠

⎞
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⎝

⎛
∂
∂
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⎜⎜
⎝

⎛
∂

∂
−

)1()]/()cv[(
))(1(Eb/Ew

0

0

πδδ
δπ

ββ
. 

Comparing (3.26) with (3.29), we find that the frontier joining L to M is (in 

magnitude) less steep than the frontier joining L to B if π0 is less than the lower 

critical value π0
*: case (i) in Proposition 3a.  The upper critical value, π0

**, is where B 

and M yield the same value of Eb; i.e., B lies directly above M in Ew/Eb space. 

 If the auxiliary condition is not satisfied, i.e., if v – c ≤ (∆2 − δ2)/2δ, then M is 

dominated by L (for all values of π0), and so is never optimal.  For example, suppose 

δ is very small.  Then L gives the buyer almost all the surplus (the price  

(c∆ + vδ)/(∆ + δ) is just above c), as well as being ex post efficient.  In contrast, M is 

not ex post efficient, so L yields both higher Ew and higher Eb: we need consider only 

L and B. 
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 Proposition 3b deals with this possibility.  For π0 below the critical value π0
*** 

given in the proposition, B is also dominated by L and so is never optimal: case (iv).  

For π0 above this value, case (v), convex combinations of L and B are optimal (unless 

i is too high, in which case the project is abandoned).  Case (v) is akin to case (iii) 

from Proposition 3a, where Figure 3(iii) pertains. 

Proposition 3b.  Assume i > iL and that (A.1') holds.  Suppose v – c ≤ (∆2 − δ2)/2δ.  

Then there are two cases: 

(iv) ½ ≤  π0
 ≤  π0

*** ≡ 1 − 
∆+∆ )(

c)-(v
δ

δ
..   

 In this case, the project is abandoned. 

(v) π0
*** <  π0 ≤  1. 

 For i ≤ iB , a convex combination of L and B is optimal, with weights LB

 B

ii
ii

−
−  

and LB

L 

ii
ii

−
− .  For i > iB, the project is abandoned. 

 Let us sum up our findings.  Our numerical example, generalized in 

Proposition 3a and portrayed in Figures 3(i)-(iii), provides much of the insight.  At 

one extreme, if the buyer’s cost of investment, i, is not high, we can achieve the first-

best using the loose contract, L: the horizontal portion of the frontiers in Figures 3 

lying to the left of the point L.  At the other extreme, if i is very high, the project has 

to be abandoned because we are to the right of the entire frontier. 

 For values of i between these extremes, the project goes ahead but there are ex 

post inefficiencies.  Fortunately, in this second-best region, provided the variation in 

value (∆) and cost (δ) is not too great (assumption A.1')), we need consider only 

convex combinations of a pair of contracts, taken from a set of three: the loose 
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contract, L, and the two tight contracts, M and B (specific performance of Mozart and 

Bach).  Which pair depends on π0, the probability of state 0. 

 This is not the whole story, however.  As Proposition 3b shows, for certain 

parameter configurations, contracts M and/or B drop out of consideration because 

they are dominated by contract L.  That is, the point L lies “north-east” of either the 

point M, or the point B, or both.  For example, M is dominated by L if δ is small 

relative to ∆; and B is dominated by L if, in addition, π0 is close to ½.  When both M 

and B are dominated by L, the second-best region disappears (case (iv) of Proposition 

3b).  This last case is one where the ex post inefficiencies arising from a tight contract 

are so great that a loose contract is preferred on grounds of both ex ante and ex post 

efficiency. 

We close this section by returning to the question raised in the Introduction 

about which variables to include in a contract.  Propositions 2 and 3 tell us that it is 

sometimes efficient to specify price and quality, as in the B, M and other specific 

performance contracts; and it is sometimes efficient to specify price but not quality, as 

in the L contract.  (If i is small enough, “no contract” is optimal, i.e., neither quality 

nor price needs to be specified.)  It is worth saying more about this.  As we have 

noted, the Nash bargaining solution has the property of independence of irrelevant 

alternatives.  An implication is that if the parties know that some aspect of the 

outcome – the price or nature of the music – should be in a particular range, the 

contract should say this.  That is, flexibility is desirable only to the extent that 

flexibility is efficiency-enhancing. 

 In our model there is some genuine uncertainty about the efficient quality -- 

Bach is efficient in state 0, while Shostakovich is efficient in state 1 -- which is why 

quality is left open in the L contract.  In contrast, there is little uncertainty about cost 
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or price.  Cost varies between c and c − δ, and, by Lemma 1, given (A.1), this 

variation is not great enough to call for a variation in price.  Thus the parties can 

safely fix the price.  Note that, in the absence of (A.1), price may vary -- and indeed 

this is precisely what happens in the example in the Introduction. 

 While in general price will vary as well as quality, there is an asymmetry 

between the two.  Return to our numerical example.  Suppose that the set of 

composers is somewhat bigger, ranging from Albinoni (λ < 0) to Taverner (λ > 1).  

Assume, however, that these additional composers are not efficient: in particular, 

whereas the cost of Albinoni in state 0 is 10 − 2λ, its value is no greater than 20 − 2λ.  

(The value of Taverner is even less than the value of Shostakovich in state 0.)  Then it 

is easy to see that the L contract, “music at price 12½”, will still lead to the outcome 

Bach in state 0 and Shostakovich in state 1.  This is because, in state 0, the Nash 

product computed at Albinoni is no greater than (7½ − 2λ)(2½ + 2λ), and this is less 

than 75/4, the Nash product at Bach.  Hence the parties may not need to worry too 

much about constraining the choice of music in their contract.  However, this is not 

true of price.  Suppose that the parties write a contract that says: “Any music at a price 

no more than p ”.  Then, if p  > 12½, it is clear that Nash bargaining will lead to a 

price that exceeds 12½.  Thus, if the parties want to keep price low to encourage the 

buyer to invest, they must put the upper bound of 12½ into the contract.  In sum, our 

model suggests that it is more important for the parties to put constraints on price than 

on quality.   The reason is that the parties’ interests over price are diametrically 

opposed, whereas efficiency considerations will lead to some congruence of 

preferences over quality. 
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4.  Some Foundations for the Contractual Form 

 In this section we briefly describe some foundations for the contractual form 

we have been working with. 

 As noted in the Introduction we appeal to two assumptions.  The first is that, 

irrespective of any long-run promises entered into ex ante, each party can unilaterally 

prevent trade ex post by “refusing to cooperate”; moreover, it is impossible for an 

outsider to verify which party is responsible.  The second assumption is that the 

parties can engage in various forms of commitment: specifically, they can make long-

run commitments not to renegotiate their contract; and they can make short-run 

commitments either to trade or not to trade. 

We can provide two justifications for the assumption that each party can bring 

about no trade by refusing to cooperate.  The first is a technological one: in the music 

example, it is possible for the pianist not to show up, and it is also possible for the 

impresario to deny the pianist access to the concert hall, and a court cannot distinguish 

between the two (as in Hart-Moore (1988)). 

 The second justification is a contractual one.  Take the view that any date 0 

contract is irretrievably incomplete in the sense that any outcome described is open to 

conflicting interpretations at date 1 (the quality of the piano playing, the warmth of 

the hospitality, etc.).  Moreover, assume that the seller can always find an 

interpretation that makes the buyer’s value very low (even negative), that the buyer 

can always find an interpretation that makes the seller’s cost very high, and a court 

cannot resolve any disagreement.21  Finally, take the view that, if the parties fail to 

agree, no trade is the outcome.  Then, again, each party can thwart trade by 

threatening to interpret the contract in a way that is unacceptable to the other party. 

                                                 
21 For discussions of the case where courts fill in the gaps in indefinite contracts, see Ben-Shahar 
(2004) and Scott (2003). 
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 Let’s turn to the second assumption, that parties can make various long-run 

and short-run commitments.  As noted in the Introduction, the assumption that parties 

can make a long-run commitment not to renegotiate their contract is standard in parts 

of the literature; however, it is far from uncontroversial.22  While parties may want to 

commit not to renegotiate -- they do in our model -- it is not so easy for them to do so 

in practice, given that legal regimes typically enforce renegotiated contracts.  One 

justification for the assumption is that there are reputational or psychological 

impediments to renegotiation.  Suppose that we have agreed that you will play Bach 

for $15,000.  As the time approaches, you offer to play Shostakovich instead for an 

extra $5000.  I will be reluctant to agree to this, even if it is Pareto improving, unless 

it is obviously costlier for you to play Shostakovich.  I am likely to take the view that 

we already negotiated your fee (and fixed the music), that we could but didn’t write a 

contingent contract, and to adjust the fee now, in the absence of an objective change 

in circumstances, would be giving in to extortion.  (It is also true that you might be 

reluctant even to offer to play Shostakovich for an extra $5000 because you don’t 

want to appear opportunistic.) 

 Some support for no renegotiation can also be found in the law.  Although 

courts are in principle willing to enforce renegotiated contracts, there are exceptions 

to this.  Specifically, courts may strike down a renegotiated contract if they suspect 

that there is bad faith or duress, e.g., one party forced the other party to renegotiate by 

threatening to breach the original contract.23  Since bad faith and duress are hard to 

monitor, the courts may look to see whether renegotiation is justified by a “drastic 

                                                 
22 In fact, in much of our previous work we have adopted the opposite assumption. 
23 See Farnsworth (1999, pp. 276-295). 
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market shift” or an “unanticipated change in circumstances”.24  In our model there is 

no such shift or change, and so our assumption that renegotiation does not occur is 

consistent with the idea that any renegotiation would fail the courts’ (or society’s) 

“smell test”.25 

 Finally, what about the assumption that each party can make short-run 

commitments at date 1?  This is less standard.  One justification for it is the idea that, 

close to the date of trade, each party can make a statement or verbal promise to the 

other party to undertake a certain (contingent) action.  If the loss of “face” or 

reputation from breaking this promise quickly is large then the statement will sustain 

the action, at least for a short period of time.  Obviously we do not assume that this 

kind of commitment can be sustained for a long period of time, e.g., the period from 

date 0 to date 1, since then the first-best can be achieved without a contract. 

 The ability to make short-run commitments, close to the date of trade, has 

negative and positive consequences.  The negative consequence is that each party can 

credibly threaten not to trade unless he (or she) gets the outcome from the contract he 

wants.  The positive consequence is that each party can commit to uphold any 

agreement that the parties arrive at through bargaining. 

 The above assumptions have strong implications.  Suppose that the parties set 

up a mechanism or game at date 0 to be played at date 1.  Let this mechanism specify 

a (finite) strategy set {m} for the buyer, a (finite) strategy set {n} for the seller, and an 

outcome function (λ(m,n), p(m,n), p̂ (m,n)).  Here λ(m,n) is the composer, p(m,n) is 

the trade price and p̂ (m,n) is the no trade price, given that the buyer chooses strategy 

                                                 
24 See Jolls (1997, pp 228-230). 
25 Bajari-Tadelis (2001) contains an extensive discussion of contracts in the building construction 
industry.  The frequent contract renegotiations (or “change orders”) observed in that industry seem to 
correspond to cases where there is an unanticipated change in circumstances. 
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m and the seller chooses strategy n.  Recall that each party can unilaterally achieve the 

no trade outcome by “refusing to cooperate”. 

 Suppose first that the parties anticipate that no trade will occur.  Then the 

parties will play a zero sum game over the choice of p̂ (m,n).  Let the solution of this 

game be p̂̂  (this is independent of the state of the world), and without loss of 

generality normalize p̂̂  to be zero (through an appropriate choice of transfer at date 

0).  Then we may conclude that each party’s payoff must be non-negative in the 

overall mechanism since either party can achieve zero by committing not to trade and 

playing the resulting game over the choice of p̂ (m,n). 

 Next consider the set T of all composer-trade price pairs (λ,p) that can be 

achieved through the mechanism by particular buyer-seller strategy choices (m,n).  

That is,  

(4.1) T = {(λ,p)|λ = λ(m,n), p = p(m,n) for some (m,n)}. 

Let T  be the convex hull of this set.  (Note that T and T  are independent of the state 

of the world.)  Then in each state of the world the buyer can try to insist on any 

outcome (λ,p) ∈ T  that yields a non-negative payoff for the seller by threatening not 

to trade unless the seller agrees to choose the (random) strategy n~ , where 

)n~,m~( yields (λ,p) (in return, the buyer agrees to choose m~ -- note that we allow the 

parties to choose correlated strategies).  The same is true for the seller.  Note that, 

since each party can make short-run commitments, any pair of strategies )n~,m~( , once 

agreed upon, can be sustained (it does not have to be a Nash Equilibrium).   

Given this structure, the parties in effect bargain over the individually rational 

elements of T .  It is not unreasonable to suppose that they adopt the (symmetric) 

Nash bargaining solution. 
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 In summary, a contract is a list of (λ,p) pairs, together with no trade.  Nothing 

not on the list can occur (this is the no renegotiation assumption).  In each state the 

parties bargain over the individually rational outcomes on the list.  But this is 

precisely the set-up described in Section 2. 

 

5.  Discussion 

 It is worth rehearsing the main elements of the paper.  We take the view that a 

contract specifies a list of outcomes.  Ex ante, parties commit not to consider 

outcomes not on the list, i.e., these are ruled out.  Ex post, they freely bargain over 

outcomes on the list (with no trade as the disagreement point), i.e., the contract 

specifies no mechanism to structure their choice; in this sense outcomes on the list are 

not ruled in.  We have shown that, if relationship-specific investments are not large, 

the parties will write a loose contract with many outcomes on the list; e.g., in the 

music example analysed in the paper, the pianist’s fee will be fixed but the choice of 

music will be left open in the range from Bach to Shostakovich, say.  However, if  

relationship-specific investments are large, the parties may need to write a tight 

contract with few outcomes on the list: for example, the contract might specify that 

the pianist will play Mozart, even though this is inefficient ex post.  Our model also 

suggests that it is more important for the parties to put constraints on price than on 

quality.   

 We have provided some foundations for our view that contracts rule out but do 

not rule in.  The key assumptions are that, irrespective of any long-run promises 

entered into ex ante, each party can unilaterally and unverifiably prevent trade ex 

post; that the parties can make a long-run commitment not to renegotiate; and that the 

parties can make short-run commitments to trade or not to trade.  We have shown that 
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these assumptions rule out standard mechanisms.  It is also worth observing that these 

assumptions rule out more sophisticated mechanisms involving third parties or 

lotteries,26 as well as mechanisms that rely on “timing”.27 

 Some of the assumptions we have made are obviously strong.  For example, it 

would be desirable to relax the no-renegotiation assumption.  To this end, it may be 

useful to distinguish between two kinds of renegotiation: renegotiation in the presence 

of an objective change in circumstances and renegotiation in the absence of such a 

change (see the discussion in Section 4).  The latter is likely to interfere with 

investment incentives, while the former may well not. One possibility would be to 

develop a model in which only the first kind of renegotiation is allowed, e.g., a seller 

can be paid more if the cost of providing a new service is demonstrably higher but not 

otherwise. 

 The assumption of symmetric Nash bargaining could also be usefully relaxed.  

In principle, it would not be difficult to allow for asymmetric Nash bargaining (the 

terms of the left-hand side of the IC constraints (3.7)-(3.8) would no longer have 

equal weight).  Moving away from Nash bargaining altogether would be more of a 

challenge.  A very attractive property of the Nash bargaining solution is independence 

of irrelevant alternatives.  As we have seen, this has the implication that the parties 

never need to include in their contract outcomes that won’t occur in equilibrium (and 

typically the parties won’t want to include such outcomes because this makes it harder 

to satisfy the IC constraints).  Not all bargaining solutions have this property.  As a 

result, it may be optimal to include irrelevant outcomes in order to bias the bargaining 

in an appropriate way. 

                                                 
26See, e.g., Moore-Repullo (1988), Maskin-Tirole (1999).   
27See, e.g., Ellman (1999), Lyon-Rasmusen (2004), Watson (2003).   
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 There are some more routine ways in which the analysis could be extended.  

To mention a few: one could allow for seller investment as well as buyer investment; 

one could make the buyer’s investment continuous (it might affect the magnitude of 

the buyer’s value or the probability that the buyer’s value is positive rather than zero); 

one could allow for more than two states of the world.  We also think that it would be 

interesting to develop the pricing example in the Introduction further (allowing for 

many cost realizations).  As we noted, this model has the feature that inefficiency is 

caused by (aggregate) cost or supply uncertainty.  Some of the early literature on 

contracts and vertical integration emphasized this idea,28 but it has been hard to 

formalize.  The framework described here may be useful for revisiting the issue. 

 An obvious question to ask is whether there is a role for asset ownership or 

vertical integration in the type of model described here.  The answer would seem to be 

yes.  In our model, tight contracts are sometimes necessary in order to encourage the 

buyer to invest.  If the buyer owns the seller’s assets, he has stronger incentives to 

invest, and so loose contracts may be feasible over a larger parameter range.  Note 

that, in contrast to the standard property rights literature,29 ownership is not simply a 

bargaining chip, since renegotiation will not always lead to ex post efficiency.  This 

suggests that the costs and benefits of ownership may be somewhat different in the 

current model as compared with the earlier literature, but this remains to be explored. 

 It is worth saying a few words about the connection between the “loose” 

contracts studied in this paper and the “incomplete” contracts discussed in much of 

the recent literature.  Both are concerned with observable but not verifiable states of 

the world, but there are significant differences.  As noted in Hart-Moore (1999), the 

term “incomplete contract” does not have a single meaning.  It is used to refer both to 

                                                 
28See Carlton (1979), Green (1986).   
29See Grossman-Hart (1986), Hart-Moore (1990).   
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situations where a contract is “obligationally incomplete” (ambiguous) and to 

situations where it is “insufficiently state contingent” (this terminology is due to 

Ayres and Gertner (1992)).  With respect to the latter, one cannot tell whether a 

contract is incomplete just by looking at it.  For example, a contract that says that “the 

seller will supply one widget at a price of 10” may seem complete, but may be highly 

incomplete (the parties really wanted the number of widgets and price to depend on 

the state of the world).  Similarly, “no contract” may be complete because the parties 

wanted no trade; or it may be highly incomplete because the parties wanted to trade 

but could not write in the relevant contingencies. 

 In contrast, one can in principle tell whether a contract is “loose” by looking at 

it: simply see how much flexibility is built in.  From this perspective, the contract “the 

seller will supply one (carefully defined) widget at a price of 10” is very tight (there is 

no flexibility or leeway), whereas “no contract” is very loose (since the parties have 

not closed off any possibilities in the future). 

 We end on a very speculative note.  In our model parties commit not to 

renegotiate certain things -- e.g., prices -- in order to encourage relationship-specific 

investments.  As a result, they sometimes write “fixed-price” rather than “flexible-

price” contracts.  This is obviously reminiscent of aspects of Keynesian thinking.  

(The rigidities are real rather than nominal.)  In future work it might be interesting to 

explore whether the framework developed here can shed light on the role of quantity 

rather than price adjustments in the labour and other markets. 
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Appendix 

 

Proof of Lemma 1 

 In the contract C = {(λ0, p0), (λ1, p1)}, let λ be the common value of λ0 and λ1.  

In state 0, the seller’s IR constraint from (3.9) is  p0 ≥ c − λδ.  We now prove that p1 ≥ 

c − λδ too.  Suppose not; i.e., suppose p1 < c − λδ.  Then, dividing the IC constraint 

(3.11) by 2(p0 −p1) > 0, and rearranging, we obtain  

  p1 ≥  ½(v + c − ∆ − δ)  +  ½λ(∆ + δ)  

     ≥   c  +  ½λ(∆ + δ) 

     ≥  c, 

where the second inequality follows from (A.1).  But p1 ≥ c contradicts our 

supposition that p1 < c − λδ.  Hence it must be the case that p1 ≥ c − λδ.  In sum,  

(*)   min {p0,p1}  ≥  c − λδ.   

 If we use a symmetric argument in state 1, interchanging p0 and p1, 

substituting 1 − λ for λ, and using the IC constraint (3.10), we obtain 

(**)   min {p0,p1}  ≥  c − (1− λ)δ.  

 Now, if (*) and (**) were both strict inequalities, or if p0 ≠ p1, we could switch 

to another contract C' with the same music, λ0' = λ1' = λ, but with lower prices:   

  p0'  =  p1'  =  max {c − λδ, c − (1− λ)δ}.   

This new contact C' satisfies individual rationality and vacuously satisfies incentive 

compatibility.  Moreover, at least one of the price reductions, p0 − p0' or p1 − p1', is 

strict, so the buyer’s expected return under C' is strictly higher than under C, even 

though expected total surplus is unchanged.   
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 This last finding contradicts the assumption in Lemma 1 that C is optimal.  To 

see why, consider a convex combination of C' and “no contract”, with weights τ and  

(1 −τ), respectively.  Since (λ0, λ1) ≠ (0,1), contracts C and C' are (equally) inefficient 

ex post, whereas “no contract” always delivers the efficient choice of music.  Thus, 

for small enough (1 − τ) > 0, the convex combination of C' and “no contract” yields 

no lower a value of the buyer’s expected return than C, but a strictly higher value of 

expected total surplus.   

Q.E.D.  

Proof of Proposition 1 

 Take any contract {(λj,pj)|j = 0,1} for which total surplus is given by 

w0 = v – c − λ0(∆ − δ)    in state 0, 

w1 = v – c – (1 − λ1)(∆ − δ)    in state 1, 

with Ew = π0w0 + π1w1; and the buyer’s payoff is given by 

  b0 = v − λ0∆ − p0    in state 0, 

  b1 = v – (1 − λ1)∆ − p1    in state 1, 

with Eb = π0b0 + π1b1.  For a given value of λj, j = 0,1, individual rationality requires 

that 0 ≤ bj ≤ wj.  Incentive compatibility in state 0 requires that, for a given pair of 

values λ0 and λ1, 

(IC0) 0 ≥ F(b0,b1) ≡ [w0 – b0]f(b0,b1) + b0{(λ0 − λ1)(∆ − δ) – f(b0,b1)}, 

where f(b0,b1) would be the change in the buyer’s payoff in state 0 if the allocation 

were switched from (λ0,p0) to (λ1,p1): 

 f(b0,b1) ≡ b1 + (1 − 2λ1)∆ – b0. 

(Note that the change in the seller’s payoff from this switch would be the term in 

curly brackets on the right-hand side of (IC0).)  
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 Symmetrically, incentive compatibility in state 1 requires that, for a given pair 

of values λ0 and λ1, 

(IC1) 0 ≥ G(b0,b1) ≡ [w1 – b1]g(b0,b1) + b1{(λ0 − λ1)(∆ − δ) – g(b0,b1)}, 

where g(b0,b1) would be the change in the buyer’s payoff in state 1 if the allocation 

were switched from (λ1,p1) to (λ0,p0):  

 g(b0,b1) ≡ b0 – (1 − 2λ0)∆ − b1. 

 Our strategy for proving Proposition 1 is to show that the contract  

{(λj,pj)|j = 0,1} is dominated by a convex combination of L, B and M, which we will 

denote with a prime.  That is, not only is the expected total surplus higher, Ew' ≥ Ew, 

but so too is the buyer’s expected payoff, Eb' ≥ Eb. 

 We divide the proof into three cases, in increasing order of difficulty:  

(1) λ0 = λ1;    (2) λ0 > λ1;    (3) λ0 < λ1. 

Case 1: λ0 = λ1. 

 By Lemma 1, given (A.1) (which is implied by assumption (A.1') made in 

Proposition 1), if λ0 = λ1 = λ, say, then p0 = p1 = max{c − λδ, c – (1 − λ)δ} = p, say.   

 If λ ≤ ½, consider the specific performance contract {(λj' = λ, pj' = c − λδ)|j = 

0,1}, which is a convex combination of B and M.  This dominates {(λj,pj)|j = 0,1} 

because, for j = 0,1, total surplus is unchanged, wj' ≡ wj, and the price is no higher 

(c − λδ ≤ p) so the buyer’s payoff is no lower, bj' ≥ bj.   

 If λ > ½, consider the specific performance contract {(λj' = 1 − λ, pj' =  

c − (1 − λ)δ)|j = 0,1}, which is also a convex combination of B and M.  Given π0 ≥ ½, 

expected total surplus rises: 

Ew' − Ew = (π0 − π1)(2λ − 1)(∆ − δ) ≥ 0. 
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And since the price is no higher (c – (1 − λ)δ ≤ p), the buyer’s expected payoff is no 

lower, Eb' ≥ Eb.  Thus {(λj,pj)|j = 0,1} is dominated. 

Case 2: λ0 > λ1. 

 If λ0 ≥ ½ ≥ λ1, then M dominates {(λj,pj)|j = 0,1}, because, denoting M with a 

prime, total surplus rises in each state: 

 w0' = v – c − ½(∆ − δ) ≥ v – c − λ0(∆ − δ) = w0, 

 w1' = v – c − ½(∆ − δ) ≥ v – c – (1 − λ1)(∆ − δ) = w1; 

and under M the buyer gets all the surplus, bj' ≡ wj', for j = 0,1.         

 If ½ ≥ λ0 > λ1, consider the specific performance contract {(λj' = λ0, pj' =  

c − λ0δ)|j = 0,1}, which is a convex combination of B and M.  In state 0, total surplus 

is unchanged, w0' = w0, but the buyer gets it all so b0' ≥ b0.  In state 1, total surplus is 

strictly higher: 

 w1' - w1 = (λ0  − λ1)(∆ − δ) > 0. 

The remaining question is whether the buyer’s payoff in state 1 is no lower.  Suppose 

this were not true, i.e., suppose b1' < b1.  Then it would have to be the case that  

g(b0,b1) < 0, given that in state 1 we have in effect switched the allocation from  

(λ1, p1) to (λ0 , p0) and then lowered the price from p0 to c − λ0δ.  Given λ0  > λ1, (IC1) 

would hold only if w1 strictly exceeded 2b1, which by supposition is strictly more than 

2b1'.  But 

 2b1' − w1  =  v – c − ∆ − δ  +  (2λ0  − λ1)∆  +  (2λ0  + λ1)δ, 

which, using (A.1), is non-negative, a contradiction.  Thus our supposition must be 

false.  We have shown that b1' ≥ b1, and the specific performance contract  

{(λj' = λ0, pj' = c − λ0δ)|j = 0,1} dominates the contract {(λj,pj)|j = 0,1}. 
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 If λ0 > λ1 ≥ ½, a symmetric argument, reversing the roles of states 0 and 1, 

shows that the contract {(λj,pj)|j = 0,1} is dominated by the specific performance 

contract {(λj' = λ1, pj' = c − (1 − λ1)δ)|j = 0,1}.  Moreover, as we argued at the end of 

Case 1, given π0 ≥ ½, this specific performance contract is in turn dominated by the 

specific performance contract {(λj'' = 1 − λ1, pj'' = c − (1 − λ1)δ)|j = 0,1}, a convex 

combination of B and M. 

Case 3:  λ0 < λ1.   

 It cannot be the case that b0 < ½w0 and b1 < ½w1, because the contract  

{(λj,pj)|j = 0,1} would be dominated by “no contract” (which yields ex post efficiency 

and the buyer gets half the total surplus).  Suppose b0 ≥ ½w0.  Then it must also be the 

case that b1 ≥ ½w1, for otherwise p1 could be lowered so that b1 equalled ½w1 (thus 

lowering Eb without affecting Ew) -- this would not violate incentive compatibility 

because the right-hand side of (IC0) would fall and the right-hand side of (IC1) would 

equal ½w1(λ0 − λ1)(∆ − δ) < 0.  By a symmetric argument, if b1 ≥ ½w1, then it must 

also be the case that b0 ≥ ½w0.  In short, we need only consider values of b0 and b1 in 

the range {½wj ≤ bj ≤ wj|j = 0,1}.  For convenience, from now on let’s refer to this 

range as “the box”.  See Figure 4.   

Figure 4 here  

 Within the box, the locus of pairs (b0,b1) for which F(b0,b1) = 0 slopes strictly 

up: the line FF in Figure 4.  To see why, notice that in the strict interior {½wj < bj < 

wj|j = 0,1}, given λ0 < λ1, F(b0,b1) = 0 only if 

 f(b0,b1)  <  0  <  (λ0 − λ1) (∆ − δ) − f(b0,b1). 

But then, in the strict interior along FF, F(b0,b1) strictly increases with b0 and strictly 

decreases with b1: 
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0b

F
∂
∂  =  (λ0 − λ1) (∆ − δ) − 2f(b0,b1) + 2b0 – w0  >  0, 

 
1b

F
∂
∂  =  w0 − 2b0  <  0. 

 Symmetrically, within the box, the locus of pairs (b0,b1) for which G(b0,b1) = 0 

also slopes strictly up: the line GG.  In particular, in the strict interior, G(b0,b1) = 0 

only if 

 g(b0,b1)  <  0  <  (λ0 − λ1) (∆ − δ) − g(b0,b1), 

so that in the strict interior along GG, G(b0,b1) strictly decreases with b0 and strictly 

increases with b1: 

 
0b

G
∂
∂  =  w1 – 2b1  <  0, 

 
1b

G
∂
∂  =  (λ0 − λ1) (∆ − δ) − 2g(b0,b1) + 2b1 – w1  >  0. 

 Moreover, it is straightforward to show that, if FF and GG intersect, FF is 

strictly steeper than GG at the point of intersection: 
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∂
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⎠

⎞
⎜⎜
⎝

⎛
∂
∂

1010 b
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b
G    

b
F/

b
F . 

Thus they intersect at most once.  The shaded area in Figure 4 comprises the pairs  

(b0,b1) for which F(b0,b1) ≤ 0 and G(b0,b1) ≤ 0, i.e., the pairs (b0,b1) that satisfy 

incentive compatibility for given values of λ0 and λ1.  Note that the shaded area is not 

empty, since F(½w0, ½w1) < 0 and G(½w0, ½w1) < 0. 

 Without loss of generality, suppose λ0 + λ1 ≤ 1.  (If λ0 + λ1 > 1, reverse the 

roles of states 0 and 1 in what follows -- inter alia, replacing λj by 1 − λj,  

j = 0,1.  This can be done legitimately, because we will not use the assumption π0 ≥ ½ 

in the proof for Case 3.) 
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 Consider a contract comprising the convex combination (l − λ0 − λ1)B + 2λ0M 

+ (λ1 − λ0)L, which we denote with a prime.  This yields the same vector of average 

total surplus as the contract {(λj,pj)|j = 0,1}:  

 w0' = (l − λ0 − λ1)[v – c] + 2λ0[v – c − ½(∆ − δ)] + (λ1 − λ0)[v – c] 

                  = v – c −  λ0(∆ − δ) = w0, 

 w1' = (l − λ0 − λ1)[v – c − (∆ − δ)]  + 2λ0[v – c − ½(∆ − δ)] + (λ1 − λ0)[v – c] 

        = v – c − (l − λ1)(∆ − δ) = w1. 

The buyer’s average payoffs from the convex combination are 

 b0' = v – c  −  λ0(∆ − δ)  –  (λ1 − λ0)(v – c)
δ

δ
+∆

,  

 b1' = v – c  –  (1 − λ1)∆  +  λ0δ  –  (λ1 − λ0)(v – c)
δ

δ
+∆

. 

Note that b0' − b1' = (1 − λ0 − λ1)∆. 

 Our aim is to show that (b0', b1') vector dominates (i.e. lies “north-east” of) all 

points in the shaded area in Figure 4.  Note that 

 F(b0', b1') = (λ1 − λ0)δΦ, 

where Φ ≡ (1 − λ1 + λ0)(v – c) − λ0(∆ − δ) 

     ≥ (1 − λ1 + λ0)(∆ + δ) − λ0(∆ − δ)          (using (A.1)) 

     = (1 − λ1)∆ + (1 − λ1 + 2λ0)δ 

> 0. 

That is, (b0', b1') lies below the line FF.  Also 

 G(b0', b1') = (λ1 − λ0)δΓ, 

where Γ ≡  (1 − λ1 + λ0)(v − c) − (1 − λ1)2∆ + λ0(∆ + δ). 

Thus if 
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(***) v – c ≥ 
01

01

1
)(2)1(

λλ
δλλ

+−
+∆−∆− , 

we have G(b0', b1') ≥ 0, and (b0', b1') lies above the line GG.  Given (***), then, we 

have proved that (b0', b1') vector dominates all points in the shaded area.  This means 

that b0' ≥ b0  and b1' ≥ b1, and we are done. 

 It remains to deal with the case where (***) does not hold.  Our method of 

proving that, even in this case, (b0', b1') vector dominates all points in the shaded area 

is to find the value y > 0 for which G(b0' − y, b1') = 0 and to show that  

F(b0' − y, b1') > 0.  See Figure 4.  (Incidentally, towards the end of this final part of the 

argument, we will make use of our assumption (A.1'): here is the only step in the 

proof of Proposition 1 where we actually need (A.1'), rather than the weaker 

assumption (A.1).)    

 Now F(b0' − y, b1') can be expressed  

  2y2 – y(A + a) + (λ1 − λ0)δΦ, 

where a ≡ (½ − λ0)(∆ + δ),      and  

 A ≡ (v – c) ⎥⎦
⎤

⎢⎣
⎡

+∆
−−

δ
δλλ 2)(1 01   −  (½ − λ1)(∆ + δ) − λ0(∆ − δ) 

   ≥ (∆ + δ) ⎥⎦
⎤

⎢⎣
⎡

+∆
−−

δ
δλλ 2)(1 01   −  (½ − λ1)(∆ + δ) − λ0(∆ − δ)    (using (A.1)) 

   = ½(∆ + δ) + (λ1 − λ0)(∆ − δ) + 2λ0δ 

> 0. 

G(b0' − y, b1') can be written  

 y(A – a) + (λ1 − λ0)δΓ. 

Note that A – a = (v – c) ⎥⎦
⎤

⎢⎣
⎡

+∆
−−

δ
δλλ 2)(1 01   −  (1 − λ1)(∆ + δ) + 2λ0δ 
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    ≥ (∆ + δ) ⎥⎦
⎤

⎢⎣
⎡

+∆
−−

δ
δλλ 2)(1 01   −  (1 − λ1)(∆ + δ) + 2λ0δ  (using (A.1)) 

   = λ1(∆ − δ) + 4λ0δ 

  > 0. 

Hence, given that (***) does not hold, so that Γ < 0, the value of y which solves  

G(b0' − y, b1') = 0 satisfies y > 0. 

 For this value of y, the sign of F(b0' − y, b1') is the same as the sign of 

      (A – a)F(b0' − y, b1')  +  (A + a)G(b0' − y, b1')  

=    2(A – a)y2   +  (λ1 − λ0)δ[A(Φ + Γ) − a(Φ − Γ)].   

Hence a sufficient condition for F(b0' − y, b1') > 0 is that 

0 < A(Φ + Γ) − a(Φ − Γ) 

   = A ⎥⎦
⎤

⎢⎣
⎡ +∆+−+

+∆
−−+− ))(31(      )

2
3cv)(1(2 0101 δλλδλλ  

         −  a[2(1 − λ0 − λ1)∆]. 

In turn, a sufficient condition for this, given (A.1'), is that 

 (1 − λ1 + 3λ0)A  −  (1 − λ0 − λ1)(1 − 2λ0)∆  >  0. 

Again using (A.1'), 

 (1 − λ1 + 3λ0)A  −  (1 − λ0 − λ1)(1 − 2λ0)∆  

 ≥  (1 − λ1 + 3λ0)
⎭
⎬
⎫

⎩
⎨
⎧

−∆−+∆−−⎥⎦
⎤

⎢⎣
⎡

+∆
−−

+∆ )(    ))(
2
1(    2)(  1

2
3

0101 δλδλ
δ

δλλδ

  −   (1 − λ0 − λ1)(1 − 2λ0)∆ 

 =  2λ0[(3 − λ0 − λ1)∆ + (1 − λ1 + 3λ0)δ]  +  (1 − λ1 + 3λ0)(λ1 − λ0)( δ
δ
+∆

−
2 1 )∆ 

 >  0. 

The proof of Proposition 1 is complete.      

Q.E.D. 
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  Figure 4: Proof of Proposition 1, Case 3 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 




