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ABSTRACT

This paper studies the effect of interest rates on investment in an environment where firms make

irreversible investments and learn over time. In this setting, changes in the interest rate affect both

the cost of capital and the cost of delaying investment. These two forces combine to generate an

aggregate investment demand curve that is always a backward-bending function of the interest rate.

At low rates, increasing the interest rate stimulates investment by raising the cost of delay. Existing

evidence supports the hypothesis that firms change the time at which they invest in response to

changes in interest rates. The model also generates a rich set of additional predictions that can be

tested empirically.
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 Macroeconomic policies to stimulate investment are frequently motivated by the

downward sloping relationship between investment demand and interest rates derived from

neoclassical models of investment.  The intuition underlying this relationship is straightforward:

Lowering the cost of capital via monetary or tax policies stimulates investment by enlarging the

set of projects that are sufficiently profitable to warrant investment.1

 This paper shows that this canonical result breaks down when firms making irreversible

investment decisions can learn over time, as in standard real options or "time to build" models.2

To see the intuition, consider a pharmaceutical company deciding how quickly to proceed with

investments in operations to produce new drugs.  The firm is uncertain about which drugs will be

successful, and can acquire further information by delaying investment via R&D.  The cost of

delaying investment is that the firm cannot retire its outstanding debt as quickly, raising its

interest expenses.   Now consider how an increase in the interest rate will affect the firm's3

behavior.  A higher interest rate reduces the set of drugs that surpass the hurdle rate for

investment, creating the standard cost of capital effect that acts to reduce the scale of investment.

But a higher interest rate also makes the firm more eager to retire its debt quickly by investing

immediately so that it has a chance to earn profits sooner.  This second "timing effect" acts to

raise current investment.  These two forces combine to generate a non-monotonic investment

demand curve.

 To formalize this intuition, I first analyze a simple dynamic model where a continuum of

profit-maximizing firms make binary investment decisions and can observe a noisy signal about

the parameters that control payoffs by postponing investment.  In this model, expected profits

grow at a rate  when firms delay investment because they acquire more information and1  !

increase the probability of investing only in successful ventures.  Profits earned in subsequent

1Haavelmo (1960) pioneered the neoclassical theory of investment and Jorgenson (1963) derived equations to
estimate the effect of the user cost of capital on investment.
2Models of the timing of investment were first analyzed by Marglin (1967, 1970) in the context of government
investment.  Pindyck (1991) and Dixit and Pindyck (1994) provide extensive reviews of the real options literature.
3This example ignores the additional cost of delay due to loss of rents in a competitive industry.  This important
issue is addressed below.
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periods are discounted at the interest rate, .  Therefore, firms invest immediately only if the<

expected profit from investment is positive  the expected growth in profits from delaying ( )and 1

is less than the interest rate.  The backward-bending shape of the aggregate investment demand

curve , arises directly from this firm-level optimality condition.  If  is low,  is likely toß MÐ<Ñ < 1

exceed , compelling many firms to delay investment rather than investing in period 1.  On the<

other hand, when  is high, the expected return to immediate investment is negative for many<

firms, making investment in period 1 suboptimal for them.  Consequently, aggregate investment

is maximized at an intermediate , and  is upward-sloping from  to and downward-<  ! MÐ<Ñ ! <‡ ‡

sloping above .<‡ 4

 The backward-bending property of the investment demand curve is robust to several

generalizations of the basic model.  First, permitting choices about the scale of investment does

not affect the result.  The aggregate economy in the basic extensive-marginal model is

isomorphic to a single firm making scale choices, so the main intuition still goes through.

Second, I study the effects of competition in a model where prices and profit rates are

determined endogenously in equilibrium to equate supply and demand.  If firms can earn

sufficiently high quasi-rents (producer surplus) from investment in the short-run, the equilibrium

level of investment remains a backward-bending function of .  Intuitively, as long as the<

marginal firm values the option to delay in equilibrium -- which will be true if entry by identical

competitors does not occur immediately -- the interest rate continues to affect both the cost of

delay and the cost of capital, thereby generating two opposing forces on investment demand in

equilibrium.  Third, in a model where firms have additional margins of choice beyond scale,

other behavioral responses such as changes in the composition of investment reinforce the

backward-bending shape that arises from learning effects.  For instance, if construction is

cheaper when firms take a longer time to build (as in Alchian, 1959), they have an incentive to

4In recent work independent of this study, Jovanovic and Rousseau (2001, 2004) and Capozza and Li (2001) point
out that interest rate changes can have non-monotonic effects on IPOs and real estate development decisions.  Their
models differ from the present analysis in several respects, which are discussed along with their empirical results in
section 4.
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switch to slower building technologies when interest rates are low, reducing aggregate

investment for reasons independent of learning.

 The unconventional relationship between  and  derived here is of interest for twoM <

reasons.  First, the model in this paper is representative of the extensive literature on irreversible

investment under uncertainty, a concept that Caballero (1999) emphasizes is "at the center of

modern theories."  From a normative perspective, it is useful to understand how interest rates

should affect investment in what is increasingly viewed as the leading theory of investment

behavior.  Second, the non-monotonic relationship is interesting from an empirical perspective

because several econometric studies have searched for a negative relationship between

exogenous changes in the cost of capital and aggregate investment demand without success.5

This paper proposes a model that could explain the lack of a clear, monotonic relationship

between  and  at least in certain high-risk sectors of the economy.M <

 A natural question in this regard is whether the timing effects that generate the non-

monotonic investment curve are empirically important.  Existing microeconomic studies,

reviewed in section 4, find that firms change the time at which they invest in response to changes

in interest rates in several industries, ranging from mining to real estate development.  In

addition, studies show that many firms in high-risk sectors explicitly or implicitly use real-

options approaches to make investment decisions, and that the timing of investment appears to

be a real choice variable.  Hence, it is clear that at least some firms follow decision rules that

generate a non-monotonic relationship between investment and the interest rate.

 While this evidence suggests that timing effects are empirically relevant, it of course does

not directly indicate the importance of these issues for aggregate investment demand.  Sharper

5Several studies have found that interest rates have  little or no effect on the level of aggregate investment; see e.g.,
the early studies of Eisner and Nadiri (1968) and Feldstein and Flemming (1971), or Chirinko (1993a,b) for a
review.  A modern literature that exploits cross-sectional variation in the user cost finds a larger role for the cost of
capital in the long run in some sectors (see e.g., Cummins, Hassett, and Hubbard 1994, who exploit tax reforms as
natural experiments).  Caballero (1999) and Hassett and Hubbard (2002) review this literature.  In interpreting these
results, note that in the model proposed here, tax changes can affect investment differently than changes in  and<
interest elasticities are more negative in the long run than the short run.  These points are discussed in greater detail
in section 5.
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tests of the relationship between interest rates are required.  The learning structure of the model

yields many predictions that could be tested in future work.  The most important is perhaps that

an increase in the interest rate is more likely to increase investment in sectors or times when the

potential to learn is greater, i.e. when signals about future payoffs are more informative and the

variance of payoffs is large.  Examples that satisfy these conditions include startups or small

businesses, especially in high-tech fields.  Intuitively, the effect of changes in  on the cost of<

learning become amplified when the potential to learn is large.  The learning effect thus

dominates the cost of capital effect for a larger range of , raising the investment-maximizing .< <‡

 Several other empirical implications are derived as well.  First, a permanent increase in <

is more likely to raise investment in the short-run than the long run, because the benefits to

additional learning diminish over time.  Second, a change in  affects not only the size but also<

the quality of investment non-monotonically.  Raising  when  expands the pool of current< <  <‡

investors and drives down average observed profits by bringing in less successful ventures;

raising  when  raises the average observed profit rate.  Finally, temporary changes in< <  <‡

interest rates create incentives to substitute investment intertemporally, in different directions

depending on whether the changes are anticipated or not.  The model predicts when the yield

curve becomes steeper, current investment should rise relative to subsequent investment.

 In interpreting these results, it is important to keep in mind that the interest rate is taken

as exogenous throughout this paper.  The determinants of the supply of capital are therefore left

unspecified.   This partial-equilibrium approach is appropriate in analyzing policy questions6

such as the effects of exogenous changes in the user cost of capital via tax or monetary policies.

This question has been the primary focus of the empirical literature, which has at least attempted

to generate exogenous variation in  using instrumental-variable and other econometric<

techniques (see Chirinko 1993b).  The relationship between investment and interest rates derived

6The supply of capital could itself be a non-monotone function of  for several reasons, including countervailing<
price and wealth effects and asymmetric information (Stiglitz and Weiss 1981).  In addition, if consumers
purchasing durables can learn more about their properties by delaying purchase, the same non-monotonicities that
arise from learning effects on the investment demand side could also affect the schedule of the supply of funds.
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here should not be expected to hold when  is endogenously determined in general equilibrium,<

as changes in  could occur because of autonomous shocks to investment demand (a simultaneity<

problem).

 The remainder of the paper is organized as follows.  The next section develops a stylized

model of investment by learning firms.  It solves for optimal investment behavior, and

aggregates the model to derive an investment demand curve.  The main backward-bending

investment result is derived for this model in section 2.  Section 3 generalizes the result to more

realistic environments.  Section 4 describes existing empirical evidence that supports the main

timing intuition, and section 5 derives additional empirical implications of the model.  The final

section offers concluding remarks.  All proofs are given in the appendix.

1   A Stylized Model of Investment by Learning Firms

 I analyze the effect of interest rates on investment in a standard discrete-time learning

model where firms are Bayesian updaters.  Firms are assumed to be residual claimants in all

states of the world and make one irreversible investment decision with the objective of

maximizing profits.  Two simplifying assumptions are made in the basic case: Firms only decide

whether to invest or not (the scale of investment at the firm level is not flexible), and competitive

forces are ignored by taking profit rates as exogenous.  The basic model thus best describes a

firm that has already obtained a patent on an idea (e.g. a chemical compound) and is deciding

when to market its innovation (e.g. a new drug) by building a factory. I first analyze the

investment decision of a single firm of this type, and then aggregate over firms with

heterogeneous expectations to characterize total investment in the economy.

1.1   Structure and Assumptions
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 Suppose a firm is deciding whether to invest in a new plant that can be built at cost .G

The economy is stationary in the sense that nominal revenues from the project and the cost of

investment are constant over time.  In a world of perfect information, the manager's decision rule

is simple: invest if the rate of return from the project is the higher than that of his best

alternative.  But the manager is uncertain about how strong demand for the firm's product will

be.  To model his uncertainty, assume that there are two possible distributions that govern the

characteristics of demand  for the product in each period.  Labeling the two distributions D 0ÐDÑ

and , index the true distribution by , where1ÐDÑ − Ö!ß "×.

. .œ ! Ê D µ 0ÐDÑ œ " Ê D µ 1ÐDÑand

The value of  determines the stream of revenues that the firm gets from investment.  Let . V.

denote the manager's expectation of total revenue from the project in state  and let  denote. . œ "

the good state, i.e. assume .  To make the problem nontrivial, assume that investment isV  V" !

unprofitable in the bad state , i.e. .  Note that the two-state assumption simplifiesa<  ! V  G!

the exposition but is not essential; the results hold with a continuous state space.

 Investing in the plant allows the firm to start production in the next period, so revenue

starts accruing one period after the investment is made.  The plant generates revenue via sales of

the product for a fixed number of periods, after which it is worthless.  The decision to invest is

irreversible -- once the plant is built, it cannot be sold at any price.   This assumption, which is7

equivalent to assuming a large non-convex adjustment cost for the capital stock, underlies most

recent investment models (Caballero, 1999).  It is motivated by evidence that investment is a

very lumpy process in practice.  For instance, Doms and Dunne (1993) document that nearly

40% of the median firm's investment over a 17 year span takes place within the span of one year

in the U.S.  More recently, Goolsbee and Gross (1997) find strong evidence of non-convex

adjustment costs in data on investment decisions of US airlines.

7Full irreversibility is not essential.  If there were a cost to investing and then liquidating the plant, the firm would
still be reluctant to plunge resources into a venture of uncertain value.  But if the investment decision were fully
reversible and all money put in could be recovered, there would be no reason not to invest immediately.
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 To model learning, assume that the manager can gain further information about the

probability distribution governing demand by delaying his investment decision and observing a

signal .  These observations can be used to update prior beliefs about the project's payoff,D

allowing the firm to make a more informed decision.  Let  denote the manager's- .! œ TÐ œ "Ñ

prior belief that the project will succeed.  By postponing his decision to the next period, he

updates his estimate of the probability of success to  after observing a- ." œ TÐ œ "lDÑ

realization of .D

 The cost of this reduction in uncertainty is that a delayed investment yields revenues one

period later, which have lower present value.  To simplify the analysis, I abstract from additional

costs of delay that the firm may incur, such as the cost of performing the research needed to

obtain the signal or the permanent loss of one period of profits.   Section 3.2 shows that the key

results hold as long as the additional interest-invariant cost of delaying is small relative to the

potential benefits of delay.

 Having outlined the basic features of the model, we can define the firm's action space and

profit functions formally.  Let  denote the decision to invest immediately,  the decision to3 6

delay, and  the real interest rate.  Assume that the investment opportunity is available for < X

periods; after  periods, the opportunity disappears, perhaps because the patent expires and allX

rents are bid away.   In the terminal period , the firm therefore must decide either to invest8 X

immediately or reject the project.  The profit function, , identifies the expected payoff (in1>Ð Ñ.

period 1 dollars), to investing in period  when the true state is : > .

1> >"
Ð Ñ œ Ö  G× Ð Ñ

"

Ð"  <Ñ "  <

V
.

. 1

To simplify the discussion below, I restrict attention to the case in which the manager must

decide whether to invest or not within  periods: here, delaying investment more than once X œ #

8Though the phrasing below refers to finite , the results apply to  as well.X X œ _
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is not possible.  However, all the results for the basic model are proved in the appendix for

general , including the limiting case of an infinite decision horizon.X

1.2 Optimal Investment Rule   

 The optimal action in each period can be computed by solving the firm's dynamic

programming problem using backwards induction.  To reduce notation, assume that the signal D

is a scalar, and that the likelihood ratio of the two densities, , is monotonically and1ÐDÑ
0ÐDÑ

continuously increasing in . his monotonic likelihood ratio property holds for manyD T

distributions, including all one parameter Natural Exponential Families.  The motivation for

these assumptions will become clear shortly.  Let  denote the expected value of investing inZ Ð3Ñ

period 1 and  the expected value of delay.Z Ð6Ñ

Lemma 1 In period 2, the firm invests iff  where  satisfiesD  D D‡ ‡

1ÐD Ñ "  G  V ÎÐ"  <Ñ

0ÐD Ñ
œ Ð Ñ

‡

‡

!-

-
0

0 V ÎÐ"  <Ñ  G"
2

  In period 1, the firm invests iff

Z Ð Ñ œ Ð  GÑ  Ð"  ÑÐ  GÑ Ð Ñ
V V

"  < "  <

 Z Ð6Ñ œ Ö ÐD ÑÐ  GÑ  Ð"  Ñ ÐD ÑÐ  GÑ×
" V V

"  < "  < "  <

3 - -

- " - !

! !
" !

! !
‡ ‡" !

3

  where and " !ÐD Ñ ´ 1ÐDÑ.D ÐD Ñ ´ 0ÐDÑ.DÞ‡ ‡
D D
_ _' '
‡ ‡

When making his period 2 decision, the manager needs to determine the relative likelihood that

the observed signal  came from the distributions corresponding to .  He refines hisD œ !ß ".

estimate of  using Bayes Rule, and compares the expected payoffs to investing and notTÐ œ "Ñ.
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investing in period 2 given his updated belief.  If the likelihood that the observed demand  cameD

from the good distribution  is high -- that is, if  exceeds some threshold value -- he invests.1 1ÐDÑ
0ÐDÑ

Hence, the firm's second period decision rule is formally identical to a likelihood ratio

hypothesis test.  The test here has power  and type one error rate , where  is chosen" !ÐD Ñ ÐD Ñ D‡ ‡ ‡

via profit maximization in period 2.  In the limiting case of noiseless signals,  and"ÐBÑ œ "

!ÐBÑ œ ! aB .  The probability that the manager will invest in period 2 when  is , while. "œ "

the probability that he will invest when  is .. !œ !
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FIGURE 1. PERIOD 2 INVESTMENT DECISION AFTER OBSERVING DEMAND SIGNAL

 If  is monotonic, this likelihood ratio test translates into a cutoff value for investment1ÐDÑ
0ÐDÑ

in the second period ( ) determined by the manager's prior odds and the profit-loss ratio.  TheD‡

cutoff  is computed as in (2) so that the expected profit from investing in period 2 conditionalD‡

on observing a signal of exactly  is zero.  Intuitively, at the optimal threshold, the managerD‡

should be indifferent between investing and not investing in period 2; if he were not, there would



10

either be a region of the state space where he is investing and earning negative expected profits

or one where he is not investing when he could have earned positive expected profits.

 In period 1, the firm again chooses the action that maximizes its expected payoff, where

possible actions are now to invest or learn by delaying.  The payoff to investing is the expected

profit in period 1, where the weight in the expectation is given by the prior belief, .  The-!

payoff to learning, , is also a weighted average of profits in each state, but there are twoZ Ð6Ñ

changes in the formula.  First, the relevant payoff outcomes are  instead of  -- revenue is1 1# "

discounted more steeply because it is earned one period later.  Second, the weights in the profit

expression are multiplied by the factors  and .  The term corresponding to the good" !ÐD Ñ ÐD Ñ‡ ‡

state, , decreases by the weight  because of the chance of rejecting the project1#
‡Ð"Ñ ÐD Ñ  ""

when it is profitable.  The test's benefit is that , placing less weight on the negative!ÐD Ñ  "‡

term corresponding to the bad state.  The sole benefit of delaying investment is to reduce the

probability of undertaking an unprofitable venture.

 The period 1 investment rule is closely linked to the results of existing real options

models.  To see this, let  denote the expected growth in profits by delaying, which is the1

undiscounted expected profit in period 2 divided by the expected profit in period 1 (minus 1):

1 œ  " Ð Ñ
Ö ÐD ÑÐ  GÑ  Ð"  Ñ ÐD ÑÐ  GÑ×

Ð  GÑ  Ð"  ÑÐ  GÑ

- " - !

- -

! !
‡ ‡V

"< "<
V

! !
V
"< "<

V

" !

" !
4  

We can rewrite the period 1 optimality condition for investment given in (0) as

Z Ð3Ñ  ! <  1 Ð Ñ and 5

 As we will see shortly, this expression is the key condition that drives the backward-

bending result.  The intuition underlying this condition is that it is optimal to invest if (a) the

expected profit from investment is positive  (b) the growth rate of profits from delaying, , isand 1

smaller than the interest rate, .  If the second condition is not satisfied, the firm will delay since<

doing so yields a higher expected rate of return than the market interest rate.
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 Importantly, the intuition in (5), and therefore the subsequent results, apply much more

generally than in the simple stylized model considered here.  The same condition characterizes

investment behavior in a large set of models in the optimal "tree-cutting" literature, pioneered in

the analysis of public investment by Marglin (1967, 1970), and developed further in the real

options literature reviewed by Dixit and Pindyck (1994).   A basic insight of these models is that9

the optimal time to cut a growing tree, once it has already been planted, is precisely when the

rate of return on the best alternative ( ) begins to exceed the rate at which the tree grows ( ).< 1

The present model gives a learning interpretation to the "growth" of the tree, which generates

several additional predictions that can be used to test the model and refine understanding of

investment behavior more generally.

 The two parts of equation (5) drive the two effects of interest rate changes in this model.

The second part shows that a reduction in  causes investors to cut trees later (postpone<

investment), because it is more likely that .  The first part shows that a reduction in  also1  < <

makes more individuals plant trees (increasing the scale of investment), because more projects

have positive expected value.  These two effects are hard to see at the firm level because there

are discontinuous jumps in investment as  changes in this extensive-margin model.  To analyze<

how changes in  affect investment more intuitively, I now aggregate the model over<

heterogeneous firms and derive a smooth aggregate investment demand curve.

1.3   Aggregation

Consider an economy populated by a continuum of firms with heterogeneous prior probabilities

of success ( s) Assume that the density of , denoted by , is continuous and places- - ( -! ! !.  . Ð Ñ

non-zero weight on all . Revenues from investment in each state and the learning-! − Ò!ß "Ó   

technology are identical across firms.  In addition, assume for now that each firm's profit

9See, for example, Cukierman (1980), Bernanake (1983), McDonald and Siegel (1986), Pindyck (1988), Demers
(1991), Leahy (1993), and Bertola and Caballero (1994).
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realization is independent of other firms' outcomes, so firms can ignore the behavior of other

firms when making investment decisions.

 Under these assumptions, it follows that each firm follows Lemma 1 in determining its

investment rule.  The period 1 investment decisions of each firm can be identified by computing

the action  that maximizes  for each .   This allows us to characterize the decisions. Ð.à ÑZ - -! !
10

of all firms in the economy by a single threshold value  that determines who invests in period-‡
!

1 and who does not, as shown in Figure 2.  The next lemma establishes this result formally.

Lemma 2 There is a unique  at which the value of investing equals that of postponing.-!
‡

  In period 1, firms with  delay their investment decision.- -! ! *

  Firms with  invest in period 1.- -! !  *

λ0

V

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

-1
0

0
10

20
30 R1= 140   

R0= 80
C=100
r =0.06
f = Ν(10,16)  
g =Ν(15,16)

V(i)

V(l)

Delay Invest

λ0
*

FIGURE 2. EXPECTED PAYOFFS AND INVESTMENT BEHAVIOR IN THE ECONOMY

 Investment behavior in the economy follows a simple pattern:  Confident firms (  high)-!

do not want to forego profits by delaying and invest immediately.  The remaining firms, who are

10Unless otherwise noted, all subsequent figures use the parameter values given in this figure.
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less certain about whether they have a profitable project, choose to wait and decide what to do in

the next period based on the information they observe.  The threshold  thus determines the-‡
!

scale of investment in the economy.

 It follows from Lemma 2 that aggregate period 1 investment is 

M œ G . Ð Ñ(
-!

*

"

! (6)( -

 Note that "period 1" investment is always equal to "current" investment; in other words,

the economy is always currently in period 1.  The reason is that the only state variable in any

firm's dynamic programming problem, irrespective of when it started learning, is its current

belief, which we call .   Firms that existed prior to the current period and already acquired-!
11

information about their projects simply have a different value of .  Hence, we use the terms-!

"period 1 investment" and "current investment" interchangeably below.

2   Interest Rates and Investment Demand

 In the model above, the level of current (period 1) aggregate investment is aalways 

backward-bending function of the interest rate.  Irrespective of the underlying parameters, MÐ<Ñ

has an upward-sloping segment from  to  followed by a downward sloping< œ ! < œ <  !‡

segment thereafter.

Proposition 1  Investment demand is a backward-bending function of the interest rate.

 (i)  and MÐ< œ !Ñ œ ! lim
<Ä!

`
`

I
r Ð<Ñ œ _

   and (ii) < ´ +<17+B MÐ<Ñ  ! < < Ê !‡ ‡
<

 
 `< 

`M 12

11With a finite decision horizon, the current period  is also a state variable, but with appropriate redefinition of > X
the current belief remains a sufficient statistic to compute investment behavior.
12More precisely, `M`< G

Vœ ! <   " for , the uninteresting case in which the interest rate is so high that investing is"

suboptimal even in the good state.
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 To see the intuition for this result, first note that if , no one invests in the first< œ !

period.  Firms certain of success ( ) are indifferent between postponing and investing-! œ "

today, and all firms with lower priors must therefore strictly prefer delay (Lemma 2).  Hence,

MÐ< œ !Ñ œ !.  In this stylized model, there is no reason to forego the free information one gets

by waiting and learning if .  Increasing  from  raises the cost of learning by delaying< œ ! < < œ !

and  aggregate investment by making the most confident firms invest immediately.  Atincreases

the other extreme, if , projects are unprofitable in both states for all firms, and hence<   "V
G
"

no one invests.  Since few firms invest when  is low or high, it follows that  is non-< MÐ<Ñ

monotonic.

 A natural concern with this result is that the prediction that investment falls to zero at low

interest rates is empirically implausible.  However, when certain unrealistic assumptions of the

stylized model are relaxed, this prediction disappears, while the backward-bending shape of MÐ<Ñ

remains intact.  Two differences between the stylized model and the real world are important in

this respect.  First, some types of investment, such as replacement of depreciating machines,

involve virtually no learning.  This component of investment has a conventional downward-

sloping relationship with .  In a more general model that allows for both non-learning and<

learning investment, total investment is positive at .  Nonetheless,  remains upward-< œ ! MÐ<Ñ

sloping at low  because  for the learning component.  Second, even within the< lim
<Ä!

`
`

I
r Ð<Ñ œ _

learning component, there are other non-interest costs to delay such as research expenditures and

loss of profits due to competition that are ignored in the model above.  Incorporating these other

costs eliminates the prediction that , because the most confident investors will notMÐ< œ !Ñ œ !

want to incur these additional costs at any interest rate.  In section 3.2, I show that  remainsMÐ<Ñ

backward-bending provided that these costs are not too large.  I proceed here with the stylized

model that abstracts from non-learning investment and other waiting costs since the main

intuitions are most transparent in this setting.



15

 Having discussed why  is non-monotonic, I now explain why it has a MÐ<Ñ backward-

bending all shape more precisely.  If a given manager has  such that ; ;  for - - -! ! !Z Ð Ñ  Ð6 Ñ3 Z

<   ! <, his behavior is unresponsive to changes in  and he does not affect the aggregate

investment demand curve.  Therefore, to understand how the shape of  emerges fromMÐ<Ñ

microeconomic decisions, restrict attention to firms that do invest for some value of .   To< 13

analyze the firm's behavior, let us examine how the two payoff functions,  and Z Ð à Ñ Z Ð6à Ñ3 - -! !

change with respect to .  Decomposing  into the NPV ( ) and learning ( )< `Ö Ð Ñ Ð6Ñ× ` Ð Ñ ` Ð6Ñ
`< ` `

Z 3 Z Z 3 Z 
r r

effects gives:

`Ö Ð Ñ  Ð6Ñ×

`<
œ RTZ  P

Z 3 Z  
(7)

where

RTZ œ Ö V  Ð"  ÑV ×  !
 "

Ð"  <Ñ

P œ ÐD ÑÖ  ×  Ð"  Ñ ÐD ÑÖ  ×  !
#V G #V G

Ð"  <Ñ Ð"  <Ñ Ð"  <Ñ Ð"  <Ñ

# ! " ! !

! !
‡ ‡" !

$ $

- -

- " - !2 2

(8)

The NPV effect makes an increase in  reduce the value of immediate investment, as in static<

investment models.  The learning effect arises because the value of delaying is also affected by

changes in the interest rate.  The two terms of  reflect the fact that an increase in  causes theP <

proceeds of investment at  to be discounted more steeply and also reduces the value of the> œ #

investment at  in period 2 dollars.  Via the  effect, a higher  reduces , creating a> œ # P < Z Ð6Ñ

force that counteracts the conventional effect by making immediate investment  attractive.more

 These expressions show that he magnitude of  diminishes relative to the magnitudet PÐ<Ñ

of  as  gets larger.  Hence, for any given , there is exactly  value at whichRTZ Ð<Ñ < <-! one

RTZ Ð<Ñ œ  PÐ<Ñ Z Ð Ñ Ð6 Ñ.  This implies that for a given firm, ;  and ;  intersect for at3 Z- -! !

most two values of , say  and .  The individual investment demand curves thus all< < Ð Ñ < Ð ÑP ! Y !- -

have the same form: invest iff , as shown in Figure 3.  The source of the< Ð Ñ Ÿ < Ÿ < Ð ÑP ! Y !- -

13Such firms exist: For -! œ "ß Z Ð3à Ñ  Z Ð6à Ñ a<  ! Ê b  " Z Ð3à Ñ  Z Ð6à Ñ <  !- - - - -! ! ! ! !
w w w  s.t.  for some  by

continuity.
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non-monotonicity with respect to  is that a small increase in  causes  to fall < < Ð6ÑZ more than

Z 3 ZÐ Ñ < Ð Ñ < Ð6Ñ at , increasing period 1 investment by firm , but an increase in  causes  toP ! !- -

fall  at , reducing the level of investment by the same firm.less than Z 3Ð Ñ < Ð ÑY !-

C. Individual Investment Demands
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FIGURE 3.  EFFECT OF INTEREST RATE ON PERIOD 1 INVESTMENT DEMAND
Notes: Firms compare  and  for each value of  (A,B) and compute their investmentZ Z 3Ð6Ñ Ð Ñ <

demands as functions of  (C).  Summing these step functions horizontally yields  (D).< MÐ<Ñ

 It can be shown that  is decreasing in  and  is increasing in  -- more< Ð Ñ < Ð ÑP ! ! Y ! !- - - -

confident firms have a larger range of interest rates for which they finding immediate investment

optimal.  At the extremes, investors with  strictly prefer  for any , whereas-!
V
Gœ " < − Ð!ß  "Ñ3 "

investors with  prefer not to invest .  There is exactly one  such that- -! !
wœ ! a<  !

< Ð Ñ œ < Ð Ñ Ð Ñ Ð6 Ñ < œ < Ð Ñ œ < Ð ÑP Y ! ! P Y! ! ! !
w w ‡ w w- - - - - -.  For this firm, ;  and ;  are tangent at .  TheZ 3 Z

- - -! !
w ‡ ‡ w

! firm invests  if .   is maximized at  because all firms who have  alsoonly < œ < MÐ<Ñ < 

invest at  by Lemma 2.<‡

 Summing the individual non-monotonic step functions horizontally generates a smooth

aggregate investment demand curve.  Aggregate investment demand is a backward-bending
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function of  because the firm-level investment demand curves are non-monotonic step functions<

that are strictly nested within each other as  falls, as shown in Figure 3.  The slope of -! MÐ<Ñ

approaches +  as  tends to  because the most confident investors have little to gain by_ < !

learning and immediately jump into the market when a small cost of delay is introduced.

 Note that in contrast to investment demand, the value of the firm is a strictly downward

sloping function of the interest rate, because both  and  rise when  falls.  LowerZ Ð Ñ Z Ð6Ñ <3

interest rates essentially lead to more investment in information rather than physical capital such

as equipment and structures, ultimately yielding higher profit rates.  If the measure of

"investment" is broadened to include the value of information, the conventional prediction that

higher interest rates lower investment still holds.  However, from a normative perspective, the

distinction between investment in information and physical capital could be important.  If a

policy maker's goal is to stimulate job creation or aggregate demand, or if physical investment

leads to spillovers that raise growth, the amount of investment in equipment and structures itself

may matter.   Therefore, while the results of this paper are in some sense empirical claims14

related to the measurement of investment, they also have real implications for economic welfare.

3   Extensions

3.1 Scale choice

 To incorporate scale choice at the firm level, assume that each firm can set investment in

periods 1 and 2,  and , at any positive value.  The restriction that investment must be positiveM M" #

captures irreversibility.  There are two states of the world, which differ in the mean price at

which the output good can be sold ( ).  Investments generate a profit stream for  periods. An: X. T

14This is particularly clear when changes in  lead to compositional effects, as in section 3.3.  If firms switch to<
slower construction methods because  is low, building permits fall.  The fact that building permits are perceived as<
an indicator of the economy's strength suggests that this change in behavior could have real economic
consequences.
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investment of  generates a profit of ( ) for  periods in state , starting in period 2 (oneM : 0 M X" " T. .

period after investment). A further incremental investment of  in period 2 changes the profitM#

stream to ( ) in periods  to . Irreversibility of investment is a meaningful: 0 M  M $ X  #. " # T

restriction only when , so assume that this condition holds below.X  #T

 The scale problem has a solution only if  is concave, i.e., the marginal return to0ÐMÑ

investment is diminishing. This concavity can arise from technological constraints or from a

downward-sloping demand curve where price falls as supply rises.  The information revelation

structure of the model is the same as in section 2: A signal  is observed at the end of period 1D

and beliefs are then updated.  Let the ex-ante probability of state 1 be given by   We can now-!Þ

generalize Proposition 1.

Proposition 2  M Ð<Ñ"  is backward-bending when firms choose scale.

 To understand this result intuitively, recall that the key step in the proof in the extensive-

margin case was to show that investment is zero at both low  and high .  This continues to hold< <

here: Since there is no non-interest cost to delay in this simple model, there is no reason to invest

immediately if .  In other words, profit-maximizing firms will rationally choose a scale of 0< œ !

investment in period 1, implying .  Similarly, if  is sufficiently high, investment isM Ð< œ !Ñ œ ! <"

undesirable.  Hence, investment-demand must be a non-monotonic function of .  More<

generally, in an environment with other costs of waiting or non-learning investment, the scale of

investment is relatively low at both low  and high , yielding a non-monotonic  curve with< < M Ð<Ñ"

M Ð< œ !Ñ  !" .

 To see why the main result does not change when scale choice is permitted, it is helpful

to consider the following alternative model of scale choice.  Suppose a firm has many projects in

which it can invest, some of which have higher probabilities of success than others.  The firm

must make a binary decision about each individual project but can choose the total number of

projects to take up.  As the firm raises investment, it is forced to choose projects with lower
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probabilities of success, making its profits a concave function of investment, as in the continuous

scale-choice model.  Since each project decision is made independently, investment decisions are

determined exactly as in Lemma 2.  Consequently, the total scale of investment by this firm,

M Ð<Ñ0 , has the same form as equation (6), the expression for aggregate investment in the original

model where several small firms make investment decisions on different projects.  Firms are

divisible, so total investment is identical if many small firms make decisions about one project

each or one big firm makes investment decisions on several projects.

 Since  has the same form as (6), it follows that it also has the same backward-M Ð<Ñ0

bending shape.  Put differently, the original aggregate model with extensive-margin choices at

the microeconomic level effectively contained a scale choice in the aggregate, so it already

contained the intensive-margin ("plant fewer trees") effect of increasing .  Modelling this effect<

at the firm level instead of the aggregate level does not change the result.

3.2 Competition

 In the stylized model, investors enjoy pure rents from their investments.  While patent

and copyright protection limit competition in some cases, in practice most firms face some

degree of competition in the long run.  Competition reduces the option value of delay, since rents

cannot persist indefinitely in equilibrium.  Hence, it is important to investigate whether the

backward-bending result holds when the returns to investment are determined endogenously in

competitive equilibrium.

 To model competition, let us return to the setting where firms with different product

concepts (e.g. different drugs to treat a specific disease) make binary investment decisions.

Firms must make a decision to invest within two periods, indexed by   Each firm enters> œ "ß #Þ

period 1 with a prior probability of success of .  There is a distribution of s to capture- -! !

heterogeneous expectations as in the basic model.  Each firm receives an independent signal

about demand for its product at the end of period 1 which is used to update beliefs.
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 Investment in period  yields revenues in period .  Each firm that invests in period > >  " >

ends up with either a good product that sells for  in period  or a bad product that is: >  ">

worthless (sells for $0).  Prices are determined by cumulative supply.  Let  denote aggregateM>

investment in period  and  denote cumulative investment up to and including period .  The> M >-
>

inverse-demand function for good products made in period  is given by an arbitrary downward->

sloping function .  This implies that the price of the product falls over time ( ).:ÐM Ñ :  :-
>

15 1 2

 To capture free entry in the long run, assume that profits are bid to zero after the first

period in which a particular product is sold.  After this point, other firms can replicate the

technology, forcing the original firm to sell at cost.  A firm that invests in period 1 thus has a

chance to earn positive profits in period 2 only; firms that invest in period 2 can earn positive

profits in period 3 only.  The one-period lag captures adjustment costs which prevent

competitors from bidding away infra-marginal quasi-rents (short run surplus) by selling an

identical product instantly.  Note that this model of competition parallels neoclassical

competitive production theory, where producer surplus is positive in the short run and falls to

zero in the long run.  The pharmaceutical industry is a good example to keep in mind for

concreteness: First-movers can earn large profits in the short run (e.g. Aspirin until generics are

introduced), while subsequent firms with slightly different products can also earn temporary

rents (Tylenol, Advil, Motrin) until their profits are bid away by generics as well.

 This setup allows us to write the expected profit from immediate investment ( ) and3

learning ( ) for a firm with prior  as:6 -!

  Z Ð Ñ œ  G3,-!
:

"<
-! "

  ,Z Ð6 Ñ œ Ö ÐD ÑÐ  GÑ  Ð"  Ñ ÐD ÑÐ  GÑ×- - " - !! ! !
"

"< "<
‡ ‡:#

I first establish the existence and uniqueness of equilibrium in this model.  In equilibrium, all

firms with ,  at the market price vector invest in period 1, and marketsZ Ð Ñ  Z Ð6 Ñ Ð: ß : Ñ3,- -! ! " #

15This model is equivalent to one where prices depend on the supply of good products rather than total investment
because there is a monotonic link between  and the supply of good products, and  is an arbitrary function.M :ÐM Ñ- -

> >
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clear in each period.  Investment behavior in the economy follows a pattern similar to that in the

base case.

Lemma 3 In period 1 equilibrium, there is a unique price vector  and threshold  atÐ: ß : Ñ" # !
‡-

  which .Z Ð3ß Ñ œ Z Ð6ß Ñ  !- -‡ ‡
! !

  Firms with  delay their investment decision.- -! ! *

  Firms with  invest in period 1.- -! !  *

 The key point of Lemma 3 is that the marginal investor in period 1 equilibrium earns

strictly positive expected profits from immediate investment.  Unlike in the neoclassical model

of competition, profits are not driven to zero at the margin in the period 1 equilibrium.  To

understand this result, first consider period 2 decisions.  Since there is no further option to delay,

a firm invests in period 2 if its expected return to investment at the market-clearing price exceeds

the cost of investment.  Consequently, there is a threshold value  such that only firms with-"
‡

updated probabilities of success  invest in period 2.  The marginal firm with belief - - -" " "
‡ ‡

earns zero profits in equilibrium.  But the infra-marginal firms who have higher s earn positive-"

profits in expectation.  These firms are able to earn short-run quasi-rents despite being in a

competitive market because they have a better technology (higher ) that cannot be instantly-"

replicated by other firms.  For example, they might have access to more fertile land, a better

chemical compound, or better human capital that gives them a short-run advantage.  However,

after one period passes, other firms are able to observe the technology of successful firms, and

free entry leads to zero profits.

 Now turn to period 1 behavior.  There is some probability that the marginal investor in

period 1 will be one of the infra-marginal investors in period 2.  Hence the value of postponing

must be strictly positive for this indifferent firm.  The reason that NPV is not driven to zero in

the period 1 equilibrium is again heterogeneity in success probabilities. Other firms are free to
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enter the market and try to capture the positive rents, but they have lower probabilities of success

than the indifferent firm, and therefore opt to delay instead.

 Since the option value of delaying is positive for the marginal period 1 investor in

equilibrium, changes in  continue to affect that firm's behavior via both an NPV and learning<

effect, as in the basic model.  The existence of these two opposing forces suggests that period 1

investment demand, , may be non-monotonic in competitive equilibrium.  This resultM Ð<Ñ"

cannot be established as easily as in the baseline model because there is now a non-interest cost

to waiting, so  is no longer .   Even at a zero interest rate, the most confident (highestM Ð< œ !Ñ !"
16

-!) firms will invest immediately to take advantage of the high initial price they can extract.

Nonetheless, one can obtain a simple condition under which the investment demand curve in this

model is upward-sloping at low .<

Proposition 3  Let  and  denote the success probabilities of the marginal (indifferent)- -‡ ‡
! "

  investors in periods 1 and 2, respectively.  Then  if at ,`M Î`<Ð< œ !Ñ  ! < œ !"

- " - -‡ ‡ ‡
! ! "Ð Ñ  (9)

This condition requires that the marginal investor in period 1 have a significantly higher success

probability than the marginal investor in period 2.  Since the marginal investor in period 2 earns

zero profits in equilibrium, this condition guarantees that the marginal investor in period 1 can

gain substantial rents by delaying and investing in period 2, since he is likely to be an infra-

marginal investor in that period.

 To understand why (9) is required intuitively, it is helpful to consider two extreme

examples.  First, suppose signals are perfect, so that .  In this case, the distribution of" -Ð Ñ œ "‡
!

-" is a degenerate two-point distribution, and if supply is sufficiently large, price is driven down

to  in the second period. Since firms cannot earn any profits if they delay investment, the: œ G2

option to delay is worthless.  The model collapses into the conventional single-period model,

16However, at very high , it remains the case that investment is suboptimal for all firms, so aggregate investment<
falls to zero as .  Hence,  must have a downward-sloping segment in the competitive model.<p_ MÐ<Ñ
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where  has only a conventional cost-of-capital (scale) effect and  is strictly downward< MÐ<Ñ

sloping.  Correspondingly, (9) does not hold in this case because .  This example-‡
" œ "

illustrates that the "timing effect" of  can emerge only if delaying is a "real option" that has<

value in equilibrium.  Condition (9) essentially guarantees that the option to delay has value.

 Now consider a second example, where signals are imperfect.  Suppose the demand curve

for the good product is

: œ 0ÐM Ñ  O>
-
>

where  is a constant and /  so that demand is downward-sloping.  Suppose the costO `0 `M  !-
>

of investment is

G œ G  O!
"
#

In this example,  controls the variance of payoffs: High  yields higher profits in the goodO O

state but a bigger loss in the bad state.  The following result establishes that (9) holds when

payoff uncertainty is sufficiently high, implying that  is upward-sloping at low :MÐ<Ñ <

Corollary to Proposition 3 For  sufficiently large, O `MÎ`<Ð< œ !Ñ  !

The mechanics driving this result are straightforward.  As  becomes large, the threshold forO

investment in period 2 approaches  because firms earn approximately the same amount in-‡ "
#1 œ

the good state ( ) as they lose in the bad state.  In period 1, increased uncertainty makes delayO
#

more attractive for each firm, raising the threshold for investment .  Therefore, as the amount-‡
!

of uncertainty grows larger,  and consequently ( ) approach  while  approaches , so- " - -‡ ‡ ‡
! !

"
#" 1

that (9) is eventually satisfied.  Intuitively, in a very risky environment, the incentive to delay

and acquire information is large, so only the most confident investors take advantage of high

equilibrium prices in period 1.  However, once there is no further opportunity to learn, many

lower-capability firms are willing to take risky but positive NPV risks, creating large infra-

marginal rents in the second period for the marginal period 1 investor.  These large rents become

less valuable when interest rates rise, compelling the marginal firm to start investing
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immediately when  rises from , and raising aggregate investment in competitive< < œ !

equilibrium.

 The model of competition analyzed here is obviously quite stark, but the results can be

extended to richer settings where entry dynamics are endogenous and prices fall gradually as

competitors enter the market.  The main conclusion to be drawn from this analysis is that  isMÐ<Ñ

upward-sloping at small  in competitive equilibrium if firms can earn significant temporary<

rents.  More generally, as long as the non-interest costs of delay -- whether from competitive

forces, research costs, or other sources -- are small relative to the rents earned by the marginal

period 1 investor,  is non-monotonic.  The shape of  thus depends on whether firmsMÐ<Ñ MÐ<Ñ

actually earn temporary rents in practice and treat delaying as a valuable option.  Anecdotal

evidence suggests that many successful firms do earn revenues far above costs at least in certain

industries with large fixed costs and substantial uncertainty, such as software, pharmaceuticals,

apparel, and media.  More systematic evidence that firms value the option to delay at the margin

is given in section 4.

3.3 Investment Composition Decisions

 We have assumed thus far that firms make a one-dimensional decision about the scale of

investment.  However, in practice, firms make many choices about projects beyond scale.  For

instance, they may choose technologies for construction, speed of delivery to market, etc.  To see

how these "investment composition" decisions affect the shape of , consider a model whereMÐ<Ñ

firms can choose between two construction methods, A and B.  Method A requires the use of

expensive building materials and is fast (e.g. 1 year to build).  Method B involves less real

investment but is slower (e.g. 2 years to build).  At , time is costless, so the firm will use< œ !

only method B.  When  is very high, time is precious, and the firm will use only method A.  For<

intermediate interest rates, the firm will use a combination of these two methods.  Since method

A involves more real investment than method B, the composition effect, holding scale fixed,
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makes  strictly upward sloping.  As the scale effect dominates at high  -- for sufficientlyMÐ<Ñ <

high , it is best not to invest with any technology --  is downward-sloping for high  when< MÐ<Ñ <

scale is endogenous.  However, composition effects lengthen the upward-sloping segment of

MÐ<Ñ < and raise the investment-maximizing  generated by the basic model with only learning‡

effects.

 In the tree-cutting and planting analogy of section 2, composition choices are the kinds of

trees one plants (oak or apple).  Increases in the interest rate have three effects in this

environment: (1) Plant fewer trees; (2) Cut trees later; (3) Plant trees that mature later.  Effects 2

and 3 act to make  upward-sloping at low interest rates.  Generalizing the model to allowMÐ<Ñ

composition choices thus reinforces the main result, and illustrates that learning is not the only

reason that firms may reduce current investment in response to an interest rate cut.

4   Evidence for Timing Effects

 

 The upward-sloping portion of  emerges only if firms actually compare the value ofMÐ<Ñ

immediate investment with the discounted value of future investment when making decisions in

practice (and do not simply follow NPV rules).  Hence, a natural place to start in assessing the

empirical relevance of this model of investment is to ask whether companies take into account

the option to delay investment.  There is now considerable evidence supporting this hypothesis.

For example, Coy (1999) describes several examples where companies such as Airbus, Hewlett-

Packard, Chevron, and Enron made investment decisions using an explicit real-options analysis.

Summers (1987) and Poterba and Summers (1995) surveyed Fortune 1,000 CEOs about their

business practices and found that hurdle rates for immediate investment are 2-3 times higher than

the user cost of capital.  McDonald (2000) argues that the hurdle rate methods used by many

companies serve as good rules-of-thumb for real-options calculations.  These studies suggest that

most firms do not simply maximize NPV, and at least implicitly value the option to wait and

acquire more information.
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 Several studies also give direct evidence that firms actively choose the  oftime

investment.  Hellman and Puri (2000) find that the mean time-to-market for startup firms in

Silicon Valley is 2.6 years, but various factors such as sources of finance affect this time

significantly.  In addition, microeconomic and macroeconomic studies have shown that firms

wait longer to invest in more uncertain environments, as the model of this paper and real options

theory predicts (e.g. Pindyck and Solimano 1993; Bulan, Mayer, and Somerville 2003).

 The very fact that the value of delay is taken into account indicates that the option to

delay is not worthless at the margin in competitive equilibrium.  In addition, interest rate changes

must affect the timing of investment at least for firms that explicitly compare the discounted

values of investment options.  To complement this reasoning, I now describe a set of recent

studies which provide direct evidence on the timing effects of interest rate changes.

 In recent work independent of this paper, Jovanovic and Rousseau (2001, 2004) construct

a model of initial public offerings (IPOs) which predicts that the time of IPO investment should

be positively related to  at low levels of the interest rate and negatively related to  at higher< <

levels of the interest rate.   They use time-series variation over the 20th century in the interest17

rate in the United States, and document a backward-bending relationship between  and time to<

IPO, precisely as the model predicts.18

 Moel and Tufano (2002) also examine the effect of time-series variation in  on<

investment decisions.  They study the timing of gold mine closures in North America between

1988 and 1997.  Since closing a mine involves a large fixed cost, profit-maximizing firms with

the option to delay should take the discounted value of expected future cashflows into account

when making such decisions.  When interest rates are high, the future matters less relative to the

17The intuition underlying the Jovanovic-Rousseau result is somewhat similar to that here, but the premises and
structure of the two models are quite different.  Given their focus on the timing of IPOs in particular, their paper
does not model learning, heterogeneity across firms, and aggregation as in the model of investment here.  The
papers also differ in the discussion of extensions and additional comparative statics.
18Jovanovic and Rousseau do not address the potential endogeneity of the interest rate explicitly. However, they
show that  has little effect on incumbent firms' investment in the time series.  Since IPOs are a small fraction of<
total investment, autonomous shocks to IPO investment are unlikely to affect .  Given that total investment is<
uncorrelated with  in the time series,  can arguably be taken as exogenous to changes in IPO investment.< <
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present, and the immediate costs of closing a mine are more likely to outweigh the potential

benefits.  Hence, if firms take interest rates into account when timing decisions, mine closures

should be less frequent when interest rates are high.  Moel and Tufano find that firms are indeed

more likely to keep mines open in periods when interest rates are high.

 Capozza and Li (2001) test a model of real-estate development where interest-rate

changes have non-monotonic effects on construction for reasons related to those described

above.   They provide cross-sectional evidence for timing effects using data on building permits19

in the United States from 1981 to 1989.  They first estimate the interest-elasticity of building

permits for each metropolitan area during this period.  The interest-elasticities vary substantially

across metropolitan areas.  The elasticities are most negative in areas in with minimal price

volatility and most positive in the most risky metropolitan areas.  Hence, timing effects -- which

drive up the interest elasticity -- seem to be most important in risky environments.  This finding

is consistent with the model's prediction that timing effects should be larger when firms face

uncertainty and the option to delay is very valuable (see section 5.1).

 In another cross-sectional study, Hellman and Puri (2000) examine variation in the time

to market for startup firms in Silicon Valley in the 1990s.  They show that firms backed by

venture capitalists, who charge a high effective rate of interest, rush their product to market

much more quickly than firms financed through other traditional means.  Hellman and Puri

conduct several tests using data on ex-ante characteristics to rule out the hypothesis that this

difference in time-to-invest is a selection effect caused by differences in the types of firms that

seek VC funding vs. other sources of funding.  They conclude that VC funding -- which comes

with a high interest rate -- has a causal effect on time to invest, again supporting the main timing

intuition of the present model.

19Capozza and Li study a continuous-time model with stochastic price that builds on Arnott and Lewis's (1979)
model of land development and other real options models.  They show that the effect of changes in  on the speed of<
investment is indeterminate in this setting.  The most important difference between these papers and the present
study is that they do not show that  has a backward-bending shape.  In addition, they do not model learning,MÐ<Ñ
aggregate over heterogenous firms, or consider the extensions such as competition and other comparative statics
studied here.
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5   Additional Empirical Implications

 This section presents a set of testable comparative statics that could be used to test the

empirical relevance of the model for aggregate investment more systematically in future work.

These predictions are derived in the basic model of section 2 for simplicity.

5.1 Potential to Learn

 I first show that an increase in  is most likely to increase investment in environments<

with a high potential to learn.  A formal definition of changes in the "potential to learn" is

necessary to operationalize the comparative statics analysis.  Intuitively, a firm can learn more

rapidly if "signal noise" is lower, i.e. if it easier to distinguish whether  is drawn from  or .D 0 1

Recall that any manager's second period decision is the outcome of a hypothesis test.  We will

say that "signal noise" rises if the power of the test,  = , falls while the type 1"ÐBÑ 1ÐDÑ.D'
B
_

error rate, , rises for  cutoff values  below the point at which  and  are!ÐBÑ œ 0ÐDÑ.D B 0 1'
B
_ all

indistinguishable.  Formally, let  denote the level of signal noise with densities  and ,=Ð0 ß 1Ñ 0 1

and  the unique point at which .  ThenB œ "w 1ÐB Ñ
0ÐB Ñ

w

w

=Ð0 ß 1 Ñ  =Ð0 ß 1 Ñ ÐBÑ  ÐBÑ ÐBÑ  ÐBÑ aB  B ß B Ñ Ð Ñ1 1 2 2  if  and min( 10" " ! !# " " # " #
w w

where  is s.t. .  Note that B œ "w
4

1ÐB Ñ

0ÐB Ñ
4
w

4
w this definition is an incomplete ordering since it does not

rank all distributions in terms of signal noise. A leading example of an increase in signal noise  

according to this definition is a rightward shift of  or a leftward shift of  in Figure 1.1ÐDÑ 0ÐDÑ

 Before turning to the relationship between signal noise and , it is useful to first`M
`<

establish the connection between signal noise and the level of  itself.M

Lemma 4    An increase in signal noise increases current investment
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=Ð0 ß 1 Ñ  =Ð0 ß 1 Ñ Ê MÐ0 ß 1 Ñ  MÐ0 ß 1 Ñ1 1 2 2 1 1 2 2 

 When signal noise rises, a firm's ability to learn about the true value of  by waiting is.

reduced.  This reduces the value of delaying investment, making aggregate investment rise.

Cukierman (1980) gives an analogous result: Increases in the variance of earnings reduce current

investment by raising the value of delay.

 How does an increase in signal noise affect the shape of ?  To build intuition,MÐ<Ñ

consider the extreme case of totally uninformative signals ( ).  In this case, the model0 œ 1

collapses into the neoclassical model and the  curve is downward-sloping, i.e. .  ThisMÐ<Ñ < œ !‡

observation suggests that the potential to learn should be positively associated with ; that is,<‡

the upward-sloping segment of the investment-demand curve should be larger in industries or

times where there is more to be learned.  The following proposition establishes that this is indeed

the case provided that the payoff in the bad state is sufficiently low, or, equivalently, the

variance of returns is sufficiently high relative to the expected return.

Proposition 4  s.t. if , a reduction in signal noise raises :bV  ! V  V <! ! !
‡

=Ð0 ß 1 Ñ  =Ð0 ß 1 Ñ Ê <  <# # " " # "
‡ ‡

 To see the intuition for this result, observe that changes in signal noise affect only ,Z Ð6Ñ

leaving unaffected for each firm.  An increase in  is more likely to raise aggregateZ Ð3Ñ <

investment if it tends to reduce  more than , making immediate investment preferable,Z Ð6Ñ Z Ð3Ñ

for a given set of parameters.  When signal uncertainty is lowered,  changes in two ways.Z Ð6Ñ

First, firms have a higher probability of investing in the good state in period 2 (  rises).  Second,"

firms have a lower probability of investing in the bad state (  falls).  The first effect makes!

expected period 2 profits more sensitive to the interest rate, since there is a higher probability of

earning revenues in the good state.  The second effect goes in the opposite direction, since there

is a  probability of earning revenues in the bad state.  If  is small, the second effect islower V!
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small in magnitude relative to the first, so  is more sensitive to  overall.  For instance whenZ Ð6Ñ <

V œ ! <! , an increase in  has no effect at all on revenues in the bad state.  Therefore, provided

that  is small, an increase in  is more likely to reduce  relative to  for each firm andV < Z Ð6Ñ Z Ð3Ñ!

thereby raise aggregate investment when signal uncertainty is lower.
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FIGURE 4.  SIGNAL NOISE AND THE SHAPE OF MÐ<Ñ
This figure shows  for four pairs of signal distributions  and MÐ<Ñ 0 1Þ

The distributions are Normal with a mean of  for  and  for  and. .! "0 1
a standard deviation of 16.  As  rises, signal uncertainty falls.. ." !

 The low  condition on the result requires that the variance of earnings be high relativeV!

to the mean profit rate, which is essentially a requirement that good information about the state

of the world is valuable.  The variance of profits is typically quite high in practice: Investments

usually either have very large payoffs or are complete failures.  Hence, the important empirical

implication is that interest rate increases are more likely to stimulate investment in industries or

times where the potential to learn is greater, as shown in Figure 4.

5.2 Short Run vs. Long Run
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 I now turn to the effects of changes in  on total investment over a longer horizon, taking<

into account changes in investment behavior beyond the current period.  In this case, it is

necessary to consider the more general  period formulation of the model instead of the twoX

period special case discussed above.  In this more general model, the firm has the option to delay

investment in every period from 1 to .   As noted earlier, the preceding results applyX  " 20

when  as well.  In the  period model, total investment from period 1 to  isX  # X >

M œ M œ"ß> =

=œ" =œ#

> >" "( (
-

-

!

!

*

*"

! !
!

" = !G . Ð Ñ  T ÐM l ÑG . Ð Ñ Ð Ñ  11( - - ( -

where  is the probability that a firm with prior  ends up investing in period .  TheT ÐM l Ñ =" = ! !- -

next proposition analyzes the relationship between and .M"ß> <

Proposition 5

  is a backward-bending function of  :(i) M Ð<Ñ < a>  X" >,

< ´ +<17+B M Ð<Ñ  ! < < Ê !"ß> "ß>
‡ ‡

< "ß>
 
 `< 

`M and "ß>

 The upward sloping portion of the  curve becomes smaller at  rises:(ii) M Ð<Ñ >" >,

 <  <" > "
‡ ‡
, ,t+1

 The first part of the proposition is driven by the same two effects that make the response

of investment demand in period 1 to a change in  non-monotonic.  For any , a decrease in< >  X

< creates two opposing forces: first, the cost of capital falls, compelling more entrepreneurs to

invest at any given time; second, the cost of waiting falls, encouraging investors to wait until

they are more certain that they will make money.  The waiting effect reduces total investment

between periods 1 and  by causing investors to postpone investment beyond .  As explained> >

above, the waiting effect dominates when the interest rate is very low and the cost of capital

effect dominates when the interest rate is higher, resulting in a backward bending curve.  One

20See Lemma 1 in the appendix for details of the  period model.X
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way of seeing why the backward-bending result emerges here as well is to observe that if 0,< œ

all the firms will postpone their decision until  and 0 0; but if , some firmsX M Ð< œ Ñ œ <  !" >,

will find it optimal to invest.

 The second part of the proposition arises from the fact that the learning effect has a

smaller impact on the interest elasticity of investment demand over longer horizons.  The growth

in profits from delay diminishes over time because the marginal return to information falls as

more knowledge is accumulated.  When  is lowered, less confident investors may delay<

investment for a few periods to acquire information.  But some of these firms will eventually

decide to invest, since there is still a non-zero cost to delay and the potential benefits for further

information have fallen.  A reduction in  thus leads to temporary delays via the learning effect,<

making investment fall more in the short run relative to the long run.  The conventional cost of

capital effect therefore starts to dominate at lower levels of  in the long run, and the investment-<

maximizing  falls.<"ß>
‡ 21

 The important implication of this result is that the long run elasticity of investment

demand is more negative than the short run elasticity of investment demand when firms learn

over time.  If the near-zero existing estimates of the short-run interest elasticity of investment

demand are due to learning effects, interest rate reductions from policies that stimulate savings

could nonetheless increase investment over a longer horizon.22

5.3 Average Profit Rates

 In the neoclassical model, a higher interest rate increases the average rate of return of

investments that are undertaken by driving out low-NPV ventures.  This result also breaks down

when firms learn over time, providing another ancillary test of the learning model.

21Unlike learning effects, which die away in the long run as firms acquire perfect information, composition effects
may never subside.  Hence, when composition effects are permitted, the long-run investment demand curve may
continue to exhibit a substantial upward-sloping segment.
22Interestingly, Caballero (1994) and Caballero, Engel, and Haltiwanger (1995) find that a higher cost of capital
reduces investment much more in the long run than the short run in the U.S.
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 To analyze the average rate of return, we must identify the level of ex-post profitable

( =1) and ex-post unprofitable ( =0) investment by specifying how frequently a project that a. .

manager expects to succeed with probability  actually does succeed.  A natural benchmark is-!

rational expectations:   In this case, the average (net) profit rate amongT Ò œ "Ó œ Þ-!
. -!

investments that are undertaken in period 1 is given by:

3
- - ( -

( -
Ð<Ñ œ Ð Ñ

ÐV  GÑ  Ð"  ÑÐV  GÑÑ. Ð Ñ

G. Ð Ñ

'
'-

-

!

!

*

*

"
! " ! ! !

"
!

12

Proposition  6   The average profit rate  is a backward-bending function of the interest rate:3

< < Ê ! 
 `< 

‡ `3

As established in Proposition 1, when , an increase in the interest rate draws the marginal<  <‡

investor with prior  into the period 1 pool of investors.  This firm has the lowest probability-‡
!Ð<Ñ

of success among the set of firms who are investing.  Consequently, it pulls down the average

rate of return in the overall pool.  Conversely, when , an increase in  eliminates the<  < <‡

marginal investor with prior , who has the lowest probability of success in the pool of-‡
!Ð<Ñ

investors, increasing the average rate of return.

 The average observed profit rate on current investment is thus a backward-bending

function of .  Building on earlier results, an increase in the interest rate is more likely to lower<

the average observed rate of return when the potential to learn is greater and in the short run

relative to the long run.

5.4 Temporary Interest Rate Changes

 The results above relate to permanent changes in the interest rate.  Variation in the

"permanent" interest rate can only be obtained cross-sectionally, e.g. by comparing across
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countries, or using low-frequency variation in the time series, as in Jovanovic and Rousseau

(2004).  In this section, I discuss a few comparative statics for temporary changes in the interest

rate that may be easier to test.  Proofs (available by request) are omitted since these results are

simple extensions of the preceding propositions.

 First consider the effect of a temporary  temporary increase in the interestunanticipated

rate.  Let  denote the per-period interest rate between periods  and .  An unanticipated< " >  X">

increase in  (holding fixed  in all other periods) is more likely to reduce current investment< <">

than a permanent increase in  because one can take advantage of lower future costs of capital by<

delaying investment.  If the potential to learn is sufficiently high, ) is backward-bending,MÐ<">

with a smaller upward-sloping segment than . When the potential to learn is low,  isMÐ<Ñ MÐ< Ñ">

strictly downward-sloping.  The longer the duration of an interest rate change, the less the

incentive to postpone investment following a temporary increase, and the larger the range of

parameters over which  is upward-sloping.MÐ< Ñ">

 Now consider the effect of a temporary  change in the interest rate that beginsanticipated

in period  and lasts until period .  An anticipated increase in  is more likely to raise=  " >  = <=>

current investment than a permanent change in  because one can take advantage of lower<

current costs of capital by investing immediately.  In fact, if the change is anticipated sufficiently

far in advance, current investment may be a strictly upward-sloping function of .  In contrast,<=>

future investment falls when  rises because of the intertemporal substitution.<=>

 Together, these results indicate that the shape of the yield curve on bonds should have a

significant effect on current and future investment patterns.  The yield curve embodies investors'

expectations of current and future interest rates.  When the yield curve becomes steeper, current

investment should rise relative to subsequent investment.  Hence, variations in the shape of the

yield curve -- especially when coupled with cross-industry variation in learning potential -- can

provide powerful tests of model beyond the basic backward-bending  result.MÐ<Ñ

 A final set of predictions relates to the effect of tax changes.  In the neoclassical model,

taxes matter only through the user cost of capital.  In the present model, both the user cost and



35

the discount rate matter, and tax policies may affect these two quantities differently.  For

example, accelerated depreciation provisions change the user cost but need not change the

discount rate (there is no additional incentive to delay from accelerated depreciation itself).

Hence, they should unambiguously raise investment.   In contrast, changes in the tax treatment23

of capital income can affect equilibrium interest rates, thereby changing the discount rate and

user cost simultaneously.  Hence, these changes could generate non-monotonic investment

responses.  A more thorough examination of the relationship between tax policies and

investment behavior is left to future work.

6   Conclusion

 One of the central questions for tax and monetary policy makers is, "How will a policy

change that increases interest rates affect real investment?"  This paper has explored this

question in an environment where firms making irreversible investments learn over time.  In this

setting, real investment is a backward-bending function of the interest rate.  At low interest rates,

an increase in  raises the cost of learning and  investment by enlarging the set of< increases

projects for which the interest rate exceeds the rate of return to delay.

 Empirical studies of firm behavior have found that interest rate changes cause some firms

to change the timing of investments as the model predicts.  However, additional tests of the

model's auxiliary predictions are needed to determine whether it can help explain why empirical

estimates of the short-run interest elasticity of aggregate investment demand are so low.  Testing

whether temporary and permanent interest rates changes affect the timing of investment in

sectors with a high potential to learn may be a promising direction for future work.

23This point is empirically relevant because the clearest evidence that the cost of capital affects investment behavior
comes from tax reforms (e.g. Cummins, Hassett, and Hubbard (1994)).  Most of the reforms are changes in
depreciation allowances and investment tax credits, which arguably do not change the cost of delay.
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Appendix A: Proofs for Basic Model

All proofs below apply for the general model with arbitrary decision horizon .  TheX
corresponding results discussed in the text are for the  case, unless otherwise noted.X œ #
Proofs for section 3 (Extensions) are given in a separate appendix.  Note that  denotes the->"

firm's prior in period .>

Lemma 1 In period , the firm invests iff  where satisfiesX D  D DX X" X" "
‡ ‡

1ÐD Ñ
0ÐD Ñ Ð"Ñ

"  Ð!ÑX X

X X X

X
‡

‡
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œ -

-
1
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  In any period , the firm invests iff .> X 3 6 Z Ð Ñ  Z Ð Ñ> >
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Proof

First,   follows from Bayes rule and  for .-
- - -
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> >
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We begin by analyzing behavior in period .  In period , the payoff to investing  isX X Z Ð3ÑX

computed using the updated belief  about the probability with which  occurs.  The- .X ÐDÑ œ "

firm invests iff ,  whereZ Ð Ñ  !X 3

 Z Ð Ñ œ Ð"  ÐDÑÑ Ð!Ñ  ÐDÑ Ð"ÑX 3 - -1 11 1# #

So the firm invests iff -
-
X X

X X

ÐDÑ  Ð!Ñ
" ÐDÑ Ð"Ñ 1

1
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By Bayesian updating, if a signal  is observed at the end of period ,D  "X

 - -
- - - -

-X X

X X X X

XÐDÑ 1ÐDÑ 1ÐDÑ
" ÐDÑ " 0ÐDÑ 1ÐDÑÐ" Ñ0ÐDÑœ ‚ Ê ÐDÑ œ"

" " "

"-X

Since  is monotonically increasing, the period  decision rule is:1ÐDÑ
0ÐDÑ X

 Invest if , where  is defined by D  D D œX" X" X"
‡ ‡ 1ÐD Ñ
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The remainder of the proof is done by backward induction starting with period , where theX  "

investor is faced with a 2 period decision problem.  We first show that the  functions haveZX"

the form claimed above.  In period , there are 2 possible actions:  and .   isX 3 3 " 6 Z Ð ÑX"

computed by taking an expectation over the  function:1
X"

 Z Ð Ñ œ  Ð"  ÑX X X" ! " ! "3 Ð"Ñ Ð!Ñ- 1 - 1

To compute , integrate the expected payoff in period  over the prior density of .  TheZ Ð6Ñ DX" X

payoff in period  depends upon the action taken in period which follows the decision ruleX X ß

derived above:
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We also need to show that the firm follows a threshold rule for investment in period :X  "

b D ÐD ß ÞÞÞ D Ñ Ð ß D ß Ñ œ Ð6ß D ß Ñ unique ,  defined by V V  s.t. that‡ ‡ ‡
# # #" $ " $ " $X X XX X X X X3 - -

investing is optimal iff .D  DX X#
‡
#

It is sufficient to show that  unique  s.t. V V  and thatb Ð ß Ñ œ Ð6ß Ñ- - -‡ ‡ ‡
# # #" "X X XX X3

- -X X#
‡
# makes investing optimal because by monotonicity of the likelihood ratio, this

implies that there is a unique  that satisfies the given expression, conditional on .DX X#
‡

$-

To see that there is a unique : rewrite-X#

 Z Ð Ñ œ ,  Ð"  Ñ+X X X" # #3 - -

 Z Ð6Ñ œ ,  Ð"  Ñ+X X X" # #
w w- -

where      , œ , œ T ÐM l œ "Ñ1 1X X X X" "
wÐ"Ñ Ð"Ñ.
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  + œ + œ T ÐM l œ !Ñ1 1X X X X" "
wÐ!Ñ Ð!Ñ.

Now, Z Ð6ß œ !Ñ œ !  Z Ð ß œ !ÑX X X X" " " "- -3

By assumption,  s.t. b Z Ð6ß Ñ Ÿ Z Ð ß Ñ- - -X X X X X" " " " "3

By the Intermediate Value Theorem (IVT),  s.t. V Vb Ð ß Ñ œ Ð6ß Ñ- - -‡ ‡ ‡
# # #" "X X XX X3

`Z Ð6Ñ
` "

‡
#

X

X

"

#-  ! Ê Ð6ß Ñ  !VX X-

` Z Ð ÑZ Ð6Ñ×
`

w{ X X

X X

" "

#
‡
#

3
- -l œ ,  +  +  ,  !

because V V  = =X XÐ ß Ñ œ Ð6ß Ñ Í3 - -‡ ‡
# #

- - - -‡ ‡ ‡ w ‡ w
# # # #X X X X,  Ð"  Ñ+ œ ,  Ð"  Ñ+  !

Therefore, at any , we must have  is unique.- -‡ ‡
# #

` Z Ð ÑZ Ð6Ñ×
`X X
3{ X X

X X

" "

#
‡
#- -l  ! Ê

Hence , ,  iff .Z Ð Ñ  Z Ð6 Ñ X XX X X X" "# # #
‡
#3 - - - -

Having characterized behavior in period , we proceed to the general step:X  "

 Given that (-) has the form claimed, we will prove that ( ) also has the same form.Z Z> >" -

First, clearly .Z Ð Ñ œ Ð"Ñ  Ð"  Ñ Ð!Ñ> > > > >3 - -" "1 1

The expected payoff to learning, , is computed by recognizing that one will maximizeZ Ð6Ñ>

profits in the next period.  By the inductive assumption, the firm will invest in period  iff>  "

D  D D> > >
‡ ‡, where  has already been computed.

Z Ð6Ñ œ Ò  Ð"  Ñ ÓÒ 1ÐD Ñ  Ð"  Ñ0ÐD ÑÓ.D > > > > > > > > > >'
D
_

" " " "‡
>
- - - -1 1Ð"Ñ Ð!Ñ

 '
_
D

" " "

‡
> Z Ð6ß ÑÒ 1ÐD Ñ  Ð"  Ñ0ÐD ÑÓ.D> > > > > > >- - -

œ 1ÐD Ñ.D  Ð"  Ñ 0ÐD Ñ.D - -> > > > > > > >" " " "D D
_ _' '
‡ ‡
> >

1 1Ð"Ñ Ð!Ñ

 - .> = > = >
= >

X

" "
œ #

_
D! '1 Ð"Ñ
‡
> T ÐM l œ "Ñ1ÐD Ñ.D 

 Ð"  Ñ T ÐM l œ !Ñ0ÐD Ñ.D- .> = > = >
= >

X

" "
œ #

_
D! '1 Ð!Ñ
‡
>

œ T ÐM l œ "Ñ  Ð"  ÑT ÐM l œ !Ñ - . - .> > > > > > > >" " " " " "1 1Ð"Ñ Ð!Ñ

 !
= >

X

> > = = > > = =
œ #

" "- . - .T ÐM l œ "Ñ  Ð"  ÑT ÐM l œ !Ñ1 1Ð"Ñ Ð!Ñ

¾ Z Ð6Ñ œ T ÐM l œ "Ñ  Ð"  ÑT ÐM l œ !Ñ> > > = = > > = =
= >

X!
œ "

" "- . - .1 1Ð"Ñ Ð!Ñ 
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Finally, to complete the induction, we need to show that  unique  s.t.b D‡">

V V  and that if  the investor will find it optimal to> > > >> > >" # # "" " "
‡ ‡ ‡Ð ß D ß Ñ œ Ð6ß D ß Ñ D  D3 - -s

invest in period .  Again, it is sufficient to show that  unique  s.t.> b -‡
">

V V  and that Invest.X X> > >>" "
‡ ‡ ‡
" " ""Ð ß Ñ œ Ð6ß Ñ  Í3 - - - -

As the proof is virtually identical to that above, we are brief:

Z Ð6ß œ !Ñ œ !  Z Ð ß œ !Ñ> > > >- -" "3

`Z Ð6Ñ
`

‡
"

>

>- "
 ! Ê Ð6ß Ñ  !V> >-

Continuity + IVT existsÊ -‡
">

` Z Ð ÑZ Ð6Ñ×
`

w ‡
"

{ > >

> >

3
>- -

"
‡
"

l œ ,  +  +  ,  ! follows from using the condition that defines -

where     , œ Ð"Ñ , œ T ÐM l œ "Ñ1 1> > = =
= >

X
w

œ "

! . Ð"Ñ

   + œ Ð!Ñ + œ T ÐM l œ !Ñ1 1> > = =
= >

X
w

œ "

! . Ð!Ñ

The combination of arguments above implies that   and consequently  are unique.  QED.-‡ ‡
" "> >D

Lemma 2 There is a unique  at which the value of investing equals that of postponing.-!
‡

  In period 1, firms with  postpone their investment decision.- -! ! *

  Firms with  invest in period 1.- -! !  *

Proof

The proof follows directly from the second step of Lemma 1.  It was shown that in any period ,>

b Ð ß Ñ œ Ð6ß Ñ  Í unique  s.t. V V  and that Invest.- - - - -‡ ‡ ‡ ‡
" " " ""> > > >> > >3

Applying this result to  gives the result.> œ "

Lemma 4    An increase in signal noise increases current investment

=Ð0 ß 1 Ñ  =Ð0 ß 1 Ñ Ê MÐ0 ß 1 Ñ  MÐ0 ß 1 Ñ1 1 2 2 1 1 2 2 

Proof

Take any ,  s.t. .Ð0 ß 1 Ñ Ð0 ß 1 Ñ =Ð0 ß 1 Ñ  =Ð0 ß 1 Ñ1 1 2 2 1 1 2 2

For the firm with ,- -w ‡
! !œ Ð0 ß 1 Ñ1 1
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Z Ð6Ñ œ T ÐM l œ "Ñ  Ð"  ÑT ÐM l œ !Ñ1 0 1 0 1
2

!
=

X

= = = =
œ

- . - .1 1Ð"Ñ Ð!Ñ

Z 3Ð ß Ñ œ Ö  G×  Ð"  Ñ  G×- - -w w w
! ! !

V
"< "<

V" !{

The shift from  to  only affects .  It follows from the definition of aÐ0 ß 1 Ñ Ð0 ß 1 Ñ Ð6ß Ñ1 1 # #
w
!Z -

reduction in signal noise that for any ,  is higher under  than under ,= T ÐM l œ "Ñ Ð0 ß 1 Ñ Ð0 ß 1 Ñ1 = . 2 2 1 1

while  is lower.  Hence,T ÐM l œ !Ñ1 = .

Z Z Z 3Ð6ß 0 ß 1 Ñ  Ð6ß 0 ß 1 Ñ œ Ð ß Ñ- - -w w w
! ! !; ;2 2 1 1

By Lemma 2, it follows that .  As , the result is established.- - -‡ w ‡
! ! !

`M
`Ð0 ß 1 Ñ  œ Ð0 ß 1 Ñ  !2 2 1 1 -‡

!

Proposition 1  Investment demand is a backward-bending function of the interest rate.

 (i)  and MÐ< œ !Ñ œ ! lim
<Ä!

`
`

I
r Ð<Ñ œ _

   and (ii) < ´ +<17+B MÐ<Ñ  ! < < Ê !‡ ‡
<

 
 `< 

`M

Proof

(i) Recall 

 Z 3 Ð"Ñ Ð!ÑÐ Ñ œ  Ð"  Ñ- -! " ! "1 1

 Z Ð6Ñ œ T ÐM l œ "Ñ Ð"Ñ  Ð"  ÑT ÐM l œ !Ñ Ð!Ñ!
=œ

! " = ! " =
2

X

= =- . - .1 1

 where 1>
V
"< "<

GÐ Ñ œ . .

( ) ( )> >"

Suppose Then< œ !Þ

Z 3Ð Ñ œ V  G  Ð"  ÑÐV  GÑ- -! " ! !{ }

Z Ð6ß Ñ œ V  G T ÐM l œ "Ñ  Ð"  Ñ V  G T ÐM l œ !Ñ" ! ! " " > ! ! " >
>œ# >œ#

- - . - .{ } { }!X X

Now, for the definitions in Lemma 2 imply that  for  and -!
‡ ‡
>œ "ß D œ _ >  D œ _X X

Ê T ÐM l œ "Ñ œ "!
>œ#

" >

X

.

- - 1 $ - -! " !!
‡
!œ " Ê Ð Ñ œ Ð  Ñ œ Ð6ß Ñ Ê œ "Z 3 Z,

¾ MÐ< œ !Ñ œ GÐ Ñ . Ð Ñ œ !'
"
" 3 3

! !- ( - 
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To establish that  , note first thatlim
<Ä!

`
`

I
r Ð<Ñ œ _

` `
` ` `<

`I I
r œ ‚-

-
‡
!

‡
! .

By the IFT, ``< ` ` `Ð `
` `<` `<-‡

! œ  Z 3 Z
Z 3 Z

Ð ÑÎ Ð6 ÑÎ
Ð ÑÎ  Ð6 ÑÎ

, ,
, ,
- -

- - - - -
! !

! ! ! !
‡
!

 ¸
Ê œ`

`<
RÐ<Ñ-‡

!

HÐ<Ñ

After some algebra, it can be shown that and .RÐ< œ !Ñ œ G V HÐ<Ñ  !a<  !"  ! 

Since  and -  it follows that HÐ< œ !Ñ œ ! œ . Ð Ñ  !` `
` `<Ä!

I I
r-‡

!
- ( -‡ ‡
! ! lim Ð<Ñ œ _

(ii) Note that  s.t. G  V Ê b< œ G"
w V

"<
"
w

Then .<   < Ê Z Ð ß Ñ  ! a Ÿ " Ê Ð<Ñ œ " Ê MÐ<Ñ œ !w ‡
! ! !3 - - -

MÐ<Ñ MÐ!Ñ œ MÐ< Ñ œ ! is continuous because it is a composition of continuous functions.  Since w

and  is compact has an interior maximum .Ò!ß < Ó ß MÐ<Ñ < − Ð!ß < Ñw ‡ w

To prove uniqueness of , recall <‡ Ð6 ÑÎ Ð ÑÎ
Ð ÑÎ  Ð6 ÑÎ

` ` `
` ` `< ` ` ` `Ð `

` ` `<` `<I I I
r œ ‚- -

-
‡ ‡
! !

‡
! = Z Z 3

Z 3 Z
, ,

, ,
- -

- - - -
! !

! ! ! !

M Ð Ñ  ! a<  ! Ê RÐ<Ñ ´ œ ! < continuous and   at any critical .` ` ` `
` `

Z Ð Ñ Z Ð6 Ñ Z Ð6Ñ Z Ð Ñ‡
! <

3 3, ,- -
-

! !

!
-

A sufficient condition for  to be unique is that  has a unique root.  We will establish this< RÐ<Ñ‡

by showing that .RÐ<Ñ œ ! Ê Ð<Ñ  !`R
`<

Since  and , , ,` `
`

Z Ð6Ñ Z Ð Ñ
<

‡ ‡ ‡ ‡ ‡
! !

3 Ð< Ñ œ ! Z Ð6 Ð< ÑÑ œ Z Ð Ð< ÑÑ- -3

 ,`R " "
`< < "< < "<

‡ ‡ ‡
!

Z Ð6Ñ Z Ð Ñ Z Ð6Ñ Z Ð ÑÑÐ< Ð< ÑÑ œ `Ò ÓÎ`< œ `Ò ÓÎ`< œ `ÒQÐ<ÑÓÎ`<- ` ` Ð"<ÑÐ` `
` `

3 3
‡ ‡

 where QÐ<Ñ œ `ÐÐ"<Ñ `ÐÐ"<Ñ
`

Z Ð6Ñ Z Ð ÑÑ
<

3

Let  and " !´ ´! !
>œ# >œ#

T ÐM l œ Ñ T ÐM l œ!Ñ
Ð"<Ñ Ð"<Ñ

X X
" > " >

>" >

. .1
1

By definition, , so we can take  as fixed when differentiating w.r.t. :`
`<

‡ ‡
!

-‡
! Ð< Ñ œ ! <-

 CQÐ<Ñ œ `Ð ÐD ÑÐ  G×  Ð"  Ñ ÐD ÑÖ  ×ÑÑÎ`<- " - !! !
‡ ‡V V

"< "<
" 0

   Ð ÐV  GÐ"  <ÑÑ  Ð"  ÑÐV  GÐ"  <ÑÑÑÎ`<- -! " ! !

 œ  ÐD Ñ  Ð"  Ñ ÐD Ñ  G- " - !! !
‡ ‡V

Ð"<Ñ Ð"<Ñ
V" !

2 2

Now differentiate  to obtain the second derivative:QÐ<Ñ

`ÒQÐ<ÑÓÎ`< œ ÐD Ñ  Ð"  Ñ ÐD Ñ  - " - !! !
‡ ‡#V V

Ð"<Ñ Ð"<Ñ `< Ð"<Ñ `< Ð"<Ñ
#V V` `" "

$ $
! !" !

2 2
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To sign this expression, note that  and <0.`
`< `<

‡ ‡`! "Ð< Ñ  ! Ð< Ñ

This is easiest to see when , whereX œ #

  and ,`
`< `< `< `<

`D ` `D‡ ‡" !œ  1ÐD Ñ œ  0ÐD Ñ
‡ ‡

  follows from  and [ ]/ z`D
`< 0ÐD Ñ V ÎÐ"<ÑG 0ÐDÑ

1ÐD Ñ GV ÎÐ"<Ñ 1ÐDÑ"‡ ‡

‡
!

"
 ! œ ` `  !-

-
0

0

   and <0.Ê  !`
`< `<

`! "

When , this last step can be established using  , which followsX  # Ð< Ñ  ! a>  "`
`<

T ÐM l Ñ ‡" > !-

from  (see proof of Proposition 4 below) and the definition of .` Ö Ð6ß Ñ Ð ß Ñ×
` `< " > !

#
! !

!

Z Z 3- -
-  ! T ÐM l Ñ-

Since  and <0, it follows that`
`< `<

`! " !

`QÐ<ÑÎ`<Ð< Ñ  ! Ê `RÐ<ÑÎ`<Ð< Ñ  !‡ ‡ .

QED

Proposition 4  s.t. if , a reduction in signal noise raises :bV  ! V  V <! ! !
‡

=Ð0 ß 1 Ñ  =Ð0 ß 1 Ñ Ê <  <# # " " # "
‡ ‡

Let  and " !´ ´! !
>œ# >œ#

T ÐM l œ Ñ T ÐM l œ!Ñ
Ð"<Ñ Ð"<Ñ

X X
" > " >

>" >

. .1
1

Take  and  s.t. .  Let  and  denote the investment-Ð0 ß 1 Ñ Ð0 ß 1 Ñ =Ð0 ß 1 Ñ  =Ð0 ß 1 Ñ < <" " # # # # " " " #
‡ ‡

maximizing values of  in each case, and let  and .< œ Ð< œ < 0 ß 1 Ñ œ Ð< œ < 0 ß 1 Ñ- - - -w ‡ ‡ ‡ ‡
! ! !" " # #!" "ß ß

ww

By Lemma 4, - -
ww

!
w
! Þ

It can be shown that ` Ö Ð6ß Ñ Ð ß Ñ×
` `<

#
! !

!

Z Z 3- -
- œ

`ÖÐ  Ñ ÐD Ñ  Ð  Ñ ÐD Ñ  ÐÐ  GÑ  Ð  GÑÑ×Î`<  !V V
Ð"<Ñ "< Ð"<Ñ "< "< "<

G G‡ ‡V V" "
# #

! !" !

Since  at , it follows that` Ð6ß à0 ß1 Ñ ` Ð ß à0 ß1 Ñ
`< `< "

‡Z Z 3- -w w
! !" " " "œ < œ <

  at ` Ð6ß à0 ß1 Ñ ` Ð ß à0 ß1 Ñ
`< `<

‡Z Z 3- -ww ww
! !" " " " < œ <"

Using logic similar to that in Lemma 4,  and =Ð0 ß 1 Ñ  =Ð0 ß 1 Ñ Ê   Þ# # " " # " # "" " ! !

Now, ` Ð6Ñ
`< Ð"<Ñ Ð"<Ñ Ð"<Ñ Ð"<Ñ! !

#V G G#VZ œ  Ö  ×  Ð"  Ñ Ö  ×- " - !"
$ # $ #

!
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If , both terms become more negative when  rises and  falls; henceV  GÎ#! " !

` Ð6ß à0 ß1 Ñ ` Ð6ß à0 ß1 Ñ ` Ð ß à0 ß1 Ñ ` Ð ß à0 ß1 Ñ
`< `< `< `<

Z Z Z 3 Z 3- - - -ww ww ww ww
! ! ! !# # " " " " # #  œ

Ê  !` `
` ` ` ` ` `

‡
# " "

` `<` `<I I
r Ð< œ < à 0 ß 1 Ñ œ ‚-‡

!

Z Ð6 ÑÎ Z Ð ÑÎ
Z Ð ÑÎ  Z Ð6 ÑÎ

, ,
, ,
- -
- - - - -

! !

! ! ! !
ww
!

3
3  ¸

¾ V  GÎ# Ê <  <!
‡ ‡
" # by Proposition 2.

Proposition 5  Let  denote total investment from periods 1 to M Ð<Ñ >" >,

 , is a backward bending function of :(i) M Ð<Ñ <" >,

< ´ +<17+B M Ð<Ñ  ! < < Ê !"ß> "ß>
‡ ‡

< "ß>
 
 `< 

`M and "ß>

 The upward sloping portion of the  curve becomes smaller at  rises:(ii) M Ð<Ñ >" >,

 <  <" > "
‡ ‡
, ,t+1

Proof

(i) For any ,  and  by the equations in Lemma 1.>  < œ ! Ê œ " D œ D œ ÞÞÞ œ D œ _X -‡ ‡ ‡ ‡
! " # >

So As above,  for  for  s.t. M Ð< œ !Ñ œ ! M" "ß> ß>.  Ð<Ñ œ ! <  <  ! < œ Gw w V
"<

"
w

By the Intermediate Value Theorem,  that is a critical point and global maximum for  b<‡"ß> ß>M" .

Uniqueness of  follows from an argument equivalent to that given in Proposition 1 to show<‡"ß>

that .<  < Í  !‡
"

`M
`<ß>
"ß>

(ii) The claim is established by showing that for any , .  Hence, if< Ð<Ñ  ! Ê Ð<Ñ  !`M `M
`< `<
" > " >", ,

M Ð<Ñ M Ð<Ñ < <" > " > "ß>
‡

, , +1 is downward-sloping,  must also be downward-sloping at that .  Given that  is

unique, it will follow immediately that  . We now calculate :<  <" > "
‡ ‡ `M

`<, ,t+1
"ß>

 M Ð<Ñ œ M Ð<Ñ œ" =
=œ" =œ#

> >

,> " = !
"

! !!
! !' '

-
-

!

!
*

*
G . Ð Ñ  T ÐM l ÑG . Ð Ñ  ( - - ( -

 1`M `
`< `< Ð"<Ñ

‡ ‡
! !

"
" =

" >
‡
!

="
, œ  G. Ð ÑÖ  T ÐM l Ñ× - ( - -!

=œ#

>

  [ ]  G . Ð Ñ'
!

T ÐM l Ñ
!

- -! " = !
* !
=œ#

>
`

`< ( -

Now, suppose , the investment-maximizing interest rate for period 1.  Then <  <  !‡ `
`<
-‡
!

implies the first term is negative in the expression above.  To evaluate the sign of the second
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term, note that  when .  This follows from `
`<

T ÐM l Ñ
!

‡ ‡
!

` Ö Ð6ß Ñ Ð ß Ñ×
` `<

" > !
#

! !

!

- - -
- ! a  <  <  !- -

Z Z 3

and the definition of .T ÐM l Ñ" > !-

Since  and  , it follows by inspection thatT ÐM l Ñ  !a>  "  ! a>  "" > !
T ÐM l Ñ- `

`<
" > !-

`M `M
`< `<
" > " >", ,Ð<Ñ  ! Ê Ð<Ñ  !.  QED.

Proposition  6   The average rate of return  is a backward-bending function of the interest rate:3

< < Ê ! 
 `< 

‡ `3

Proof

3 - - ( - ( -Ð<Ñ œ ÐV  GÑ  Ð"  ÑÐV  GÑÑ. Ð Ñ Î G. Ð Ñ' '
- -! !

* *
" "

! " ! ! ! !

` ` œ Ð  Ñ E3/ r where` G. Ð Ñ
`< Ò G. Ð ÑÓ

- ( -

( -

‡ ‡
! !

!

"
!

#'
-*

E œ Ò ÐV  GÑ  Ð"  ÑÐV  GÑÑÓ  Ò ÐV  GÑ  Ð"  ÑÐV  GÑÑÓ. Ð Ñ'
-!

*
" ‡ ‡

! !" ! ! " ! ! !- - - - ( -

Since , it follows that '
-!

*
"

! ! !Ð  Ñ . Ð Ñ  ! E  !- - ( -*

Hence < < Ê ! Ê !  
 `<  `< 

‡ ` `- 3‡
!



Appendix B: Proofs for Extensions (Section 3)

Proposition 2 (Scale Choice)

Let p = λ0p1+(1−λ0)p0 denote the expected price ex-ante. Let us first characterize the

firm’s optimal investment policy for a given interest rate r. In the second period, conditional

on observing z, the firm updates its beliefs to λ1(z). It then chooses I2 to

max{λ1(z)p1 + (1− λ1(z))p0}{
TP+1X
t=1

f(I1 + I2)− f(I1)
(1 + r)t+1

}− I2
1 + r

At an interior optimum, I2 must satisfy the following first order condition:

f 0(I1 + I2){λ1(z)p1 + (1− λ1(z))p0}
TP+1X
t=1

1

(1 + r)t
= 1

If there is no positive I2 > 0 that satisfies this condition, the concavity of f guarantees that

the optimal I2 = 0. Let I∗(z) = I1 + I
∗
2 (z) denote the optimal total level of investment

conditional on observing a signal z. Then we can write I∗2 (z, I1) = max(I
∗(z)− I1, 0).

It is easy to show that the optimal investment level I∗2(z) is monotonically increasing in

z. Hence, there is an optimal cutoff value z∗ such that z < z∗ implies I1 > I∗ (z). Let

σ(I1, z
∗) denote the ex-ante probability that z > z∗. Note that the rational expectations

condition implies Z
λ1(z)p1 + (1− λ1(z))p0dm(z) = p

where dm(z) denotes the marginal distribution of z as in the text. With this notation, the

value function in period 2 is given by

V2(I1) = p

Z ∞

z=−∞
{
TP+1X
t=1

f(I∗(z))− f(I1)
(1 + r)t+1

}dm(z)−
Z ∞

z>z∗

I∗ (z)
1 + r

dm(z)− σI1
1 + r
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Now consider the firm’s value function in period 1:

V1 = p(

TP−1X
t=0

f(I1)

(1 + r)t+1
)− I1 + V2(I1)

= p(

TP−1X
t=0

f(I1)

(1 + r)t+1
− f(I1)

(1 + r)t+2
)− (1− σ

1 + r
)I1

+p

Z ∞

z=−∞
[

TP+1X
t=1

f(I∗(z))
(1 + r)t+1

]dm(z)−
Z ∞

z>z∗

I∗ (z)
1 + r

dm(z)

Claim (i): I1(r = 0) = 0

Using the definition of V1, it follows that at r = 0,

V1(r = 0) = −(1− σ)I1 +K

where K is a term that does not depend on I1. Since σ < 1 if λ0 < 1, it follows that

I∗1 (r = 0) = 0 as claimed.

Claim (ii): lim
r→0

∂I1/∂r = +∞
Since the value function is already optimized over I∗(z) and I∗2(z) at all z, envelope

conditions imply that at an interior optimum, I1 must satisfy:

∂V1
∂r

= pf 0(I1)(
TP−1X
t=0

1

(1 + r)t+1
− 1

(1 + r)t+2
)− (1− σ

1 + r
) = 0

which implies

pf 0(I1) =
1 + r − σ

1− (1 + r)−TP
Implicit differentiation of this condition yields

∂I1
∂r

=
1

pf 00(I1)

1

1− (1 + r)−TP [1−
∂σ

∂r
− TP (1 + r − σ)

(1 + r)TP − (1 + r)]
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Note that ∂σ
∂r
remains finite as r → 0 because ∂z∗

∂r
is bounded. Hence

lim
r→0
[1− ∂σ

∂r
− TP (1 + r − σ)

(1 + r)TP − (1 + r)] = −∞

Finally, since f 00 < 0 it follows that

lim
r→0

∂I1/∂r = +∞

These two claims establish that I1(r) has an upward sloping segment at low r and a

downward-sloping segment at high r. The uniqueness of the investment-maximizing in-

terest rate r∗ can be established along the lines of part (ii) of Proposition 1, completing the

proof.

Lemma 3 (Competition)

In period 2, a firm invests if the expected return to investment at the market-clearing

price exceeds the cost of investment:

λ1p2
1 + r

> C

Assume that p2(I2=0)
1+r

> C and p2(I2=1)
1+r

< C to make the problem non-trivial. Since ∂p2
∂Ic2
< 0,

it follows that there is a unique cutoff value λ∗1 and a corresponding price p2(I
c
2(λ

∗
1)) such

that
λ∗1p2(I

c
2(λ

∗
1))

1 + r
= C

In equilibrium, all firms with λ1 > λ∗1 invest, all other firms stay out, and the market clears

at the resulting price p2 by construction. This implies that for any firm with given prior λ0,

there is a cutoff value z∗(λ0) such that the firm invests in period 1 iff z > z∗.

Now consider period 1 investment behavior. Let β(z∗(λ0)) =
R∞
z∗ g(z)dz and α(z∗(λ0)) =R∞

z∗ f(z)dz denote the unconditional probability of investment in the good and bad states,
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respectively, for a firm with prior λ0. Firms invest in period 1 if

V (i,λ0) =
λ0p1
1 + r

− C >

V (l,λ0) = λ0β(z
∗(λ0))[

p2
(1 + r)2

− C

1 + r
] + (1− λ0)α(z

∗(λ0))[− C

1 + r
]

Note that V (l,λ0) is strictly positive in equilibrium if λ0 > 0 because there is a non-zero

probability that the firm will have a posterior success probability greater than λ∗1. It follows

from Lemma 2 that for a given price vector (p1, p2), there is a unique λ∗0 such that firms

with λ0 > λ∗0 invest in period 1 and the remainder delay. Since ∂pt/∂I
c
t < 0, ∂λ

∗
0/∂p1 < 0,

and ∂λ∗0/∂p2 > 0 it follows that there is a unique price vector (p1, p2) at which all firms are

optimizing and markets clear in both periods. Thus, equilibrium investment is characterized

by a price vector (p1, p2) and a cutoff value λ
∗
0 such that

V (i,λ∗0, p1) = V (l,λ
∗
0, p1, p2) > 0

Proposition 3 (Competition)

Observe that
∂I1
∂r

=
dI1
dλ∗0

dλ∗0
dr

The implicit function theorem implies

dλ∗0
dr

= − dV (i,λ0)/dr − dV (l,λ0)/dr
dV (i,λ0)/dλ0 − dV (l,λ0)/dλ0 = −

N

D

At r = 0, the denominator of this expression is:

D = p1 − β(λ∗0)p2 + (β(λ
∗
0)− α(λ∗0))C

Since β > α and p1 > p2, it follows that D > 0.
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The numerator is

N = − λ0p1
(1 + r)2

+
λ0dp1/dr

1 + r
−{λ0β(−2 p2

(1 + r)3
+
dp2/dr

(1 + r)2
+

C

(1 + r)2
)+(1−λ0)α(

C

(1 + r)2
)}

Using the fact that V (i,λ∗0) = V (l,λ
∗
0), N simplifies at r = 0 to

N(r = 0)|p-fixed = λ∗0(r = 0)β(λ
∗
0)p2 − C

if dpt/dr is zero. I now show that N(r = 0)|p-fixed =⇒ ∂I
∂r
(r = 0) > 0 using a proof by

contradiction . Suppose that ∂I1
∂r
(r = 0) < 0. In this case,

dp1/dr > dp2/dr > 0

because ∂Ic1/∂I1 = 1 and ∂Ic2/∂I1 < 1 and ∂pt/∂I
c
t < 0. It follows that N(r = 0) > 0 when

p is variable. Since N > 0 and D > 0, dλ
∗
0

dr
< 0, which implies ∂I1

∂r
(r = 0) > 0. But this

contradicts the supposition. Therefore ∂I1
∂r
(r = 0) > 0 if N(r = 0)|p-fixed > 0.

Since λ∗1p2 = C(1 + r) in period 2 equilibrium, N(r = 0)|p-fixed > 0 if λ∗0β(λ
∗
0)

λ∗1
> 1. Hence

λ∗0β(λ
∗
0)

λ∗1
> 1 =⇒ ∂I1

∂r
(r = 0) > 0

Corollary:

At r = 0, the period 2 threshold for investment is characterized by the following condition:

C0 +
1

2
K = λ∗1(f(I

c
2) +K)

λ∗1 =
C0 +

1
2
K

f(Ic2) +K

52



Since Ic2 is bounded, it follows that

lim
K→∞

λ∗1 =
1

2

I now establish that raising K lowers period 1 investment using a proof by contradiction.

Consider the behavior of the marginal period 1 investor, with λ0 = λ∗0. At the original

equilibrium, the marginal investor has

V (i,λ0) = λ0(f(I
c
1) +

1

2
K − C0) + (1− λ0)[−(C0 + 1

2
K)] =

V (l,λ0) = λ0β(z
∗(λ0))[(f(Ic2) +K)− (C0 +

1

2
K)] + (1− λ0)α(z

∗(λ0))[−(C0 + 1
2
K)]

Suppose that increasing K raises I1. This would require that investment becomes strictly

preferable for the marginal investor, i.e. dV (i,λ0)/dK > dV (l,λ0)/dK. Recall that

∂Ic1/∂I1 = 1 and ∂Ic2/∂I1 < 1. Hence, ∂f/∂Ict < 0 implies ∂V (i,λ0)/∂I1 < ∂V (l,λ0)/∂I1.

In addition, observe that ∂V (i,λ0)/∂K < ∂V (l,λ0)/∂K because the V (l,λ0) expressions

puts more weight on the first term, where K is positive, since β > α when signals are in-

formative. Consequently, both the direct effect of increasing K and the indirect effect of

equilibrium price changes lower V (i,λ0) relative to V (l,λ0) for the marginal investor. This

makes the marginal firm drop out of the period 1 investment pool, lowering I1. But this

contradicts the supposition. Therefore increasing K must strictly lower I1.

Hence, as K → ∞, λ∗0 → 1, while implies β(λ∗0) → 1. Meanwhile λ∗1 → 1
2
. It follows

that (9) must hold as K →∞, as claimed.
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