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1 Introduction

This paper studies Pareto efficient income taxation in a dynamic version of the classic Mirrlees

model (Mirrlees (1971)). It assumes that individuals are infinitely-lived and that their income

generating abilities vary stochastically from period to period. In the tradition of the literature

following Mirrlees (1971), the paper seeks to understand the nature of the distortions implied by

efficient taxation. It develops a tractable model that is rich enough to shed light on the dynamic

evolution of these distortions. The model assumes that, in any period, there are two ability types

- low and high - and that individuals’ abilities follow a Markov process. Thus, an individual’s

current ability is a sufficient statistic for predicting his ability in the next period. Individuals’

per period utility functions are additively separable in consumption and leisure and much of the

analysis focuses on the case in which individuals are risk neutral. Under the latter assumption,

the efficiency problem is simply one of minimizing distortions in labor supply.

When individuals’ income generating abilities are constant over time, Pareto efficient income

taxation is basically the same as in the static two-type Mirrlees model. Efficient tax systems are

stationary. Low ability individuals face a positive marginal tax rate and their labor supply is

distorted downwards. High ability individuals face a zero marginal tax rate and their labor supply

is undistorted. However, when ability types are not perfectly correlated over time, the results are

dramatically different. Efficient tax systems are non-stationary and the only individuals whose

labor supply is distorted are those who currently are and have always been low ability. All other

individuals face a zero marginal rate of taxation. Moreover, the degree to which these perpetual

low types have their labor supply distorted converges to zero, so that not only is the fraction

of individuals who face a positive marginal tax rate converging to zero, but the tax rate these

individuals are facing goes to zero. Thus, in a very strong sense, the distortions caused by efficient

income tax schemes converge to zero over time.

When individuals are risk averse, a tax system must not only account for distortions in indi-

viduals’ labor supply but also for distortions in the allocation of consumption across states and

time. We show in a two-period version of the model, that with risk aversion, individuals who are

low ability in the second period face a positive marginal tax rate even if they were previously high

ability. Thus, risk neutrality is a necessary condition for the result described above. However,

we also show that the distortion imposed on those who become low types in the second period is
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close to zero when individuals are only slightly risk averse and that the basic pattern of earnings

under an efficient tax system is the same as in the risk neutral case. Thus, the broad features of

efficient tax systems that we identify in our basic model are robust to introducing risk aversion.

A second interesting feature of Pareto efficient income tax systems in our environment is that

they can be time consistent even when the correlation in individuals’ ability types is large. As

pointed out by Roberts (1984), when ability types are constant over time, Pareto efficient income

tax systems are not time-consistent. Distortionary taxation is necessary to extract individuals’

private information. But after individuals have revealed it, the government will find it optimal

to eliminate such distortions, making the original tax system non credible. However, when ability

types are stochastic, residual uncertainty remains, because an individual may change type. Ac-

cordingly, the government must still screen types in the remaining periods. We establish a lower

bound on the correlation in types such that below it the ex post optimal distortion is the same

as the ex ante optimal distortion and the optimal tax system is time consistent. We also show

that when the correlation of types is above this bound, it is governments with higher spending

commitments and/or more ambitious redistributive objectives who find it harder to commit to

implement efficient income tax systems.

The paper contributes to a large literature on dynamic optimal taxation. The bulk of this

has studied the optimal taxation of labor income and wealth under the assumption that the

government is constrained to use linear taxes (see Chari and Kehoe (1999) for a review). This

paper follows the mechanism design approach of Mirrlees (1971) and models the informational

asymmetries that preclude the use of non-distortionary taxation. Thus, we make no a priori

restrictions on the type of taxes the government may use. Other papers in this tradition include

Albanesi and Sleet (2003), Brito et al (1991), Diamond and Mirrlees (1978), Golosov, Kocherlakota

and Tsyvinsky (2003), Golosov and Tsyvinski (2003) and Werning (2002). Of these, our paper

is closest to Golosov, Kocherlakota and Tsyvinsky (2003).1 They also consider an infinitely-

lived economy in which individuals’ income generating abilities vary over time. Their model is

much more general than ours, in the sense that it includes capital and multiple consumption

1 The other papers make different assumptions about the dynamic evolution of individuals’ unobservable types.
Brito et al (1991) assume that individuals income generating abilities are constant. Werning (2002) assumes
that individuals’ productive abilities are constant but adds in an observable technology shock which impacts
wages. Diamond and Mirrlees (1978) and Golosov and Tsyvinski (2003) assume a very specific pattern of shocks
- individuals have constant income generating abilities unless they become disabled, which is an absorbing state.
Albanesi and Sleet (2003) assume that individuals differ by their leisure preferences rather than their income
generating abilities. These preferences are uncorrelated across periods.
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goods and imposes less structure on the stochastic evolution of abilities. However, they provide

only a partial characterization of Pareto efficient allocations. In particular, they do not obtain

results about distortions in labor supply. Our more restrictive assumptions allow us to actually

provide a full characterization of Pareto efficient allocations. Moreover, they assume, along with

all the literature cited above, that the government has full commitment power, ignoring the time

consistency problem.

In fully characterizing Pareto efficient allocations and studying their time consistency, our pa-

per draws on the dynamic contracting literature. In particular, we follow the analytical approach

employed by Battaglini (2003a) to study a monopoly pricing problem with long-lived consumers

whose tastes evolve according to a Markov process. We show that his approach can be fruitfully

applied to the problem of optimal income taxation. The taxation problem is somewhat more

involved than the pricing problem, in part because it involves characterizing the entire Pareto

frontier rather than simply finding the profit maximizing solution. Among other things, char-

acterizing the entire frontier helps us understand the role of the government’s initial spending

commitments and redistributive objectives in determining the time consistency of efficient allo-

cations. Our analysis also extends Battaglini’s work by investigating the robustness of optimal

policies to risk aversion.

The organization of the remainder of the paper is as follows. The next section presents the

model. Section 3 explains how we characterize Pareto efficient allocations. Section 4 describes the

properties of Pareto efficient allocations and draws out their implications for the efficient taxation

of labor income. Section 5 studies a two period version of the model in which agents are risk averse

and explains how risk aversion modifies the conclusions. Section 6 analyses the time consistency

of Pareto efficient allocations and section 7 concludes.

2 The model

We study an economy populated by a continuum of infinitely-lived individuals. There are two

goods - consumption and leisure. In each period t, individuals get utility from consumption xt and

work lt according to the utility function xt−ϕ(lt) where ϕ is increasing, strictly convex, and twice

continuously differentiable. Individuals are endowed with l units of time in each period. To avoid

having to worry about corner solutions, we assume that ϕ0(0) = 0 and that liml→l ϕ
0(l) = ∞.

Individuals discount the future at rate δ < 1 and can borrow or lend at the exogenously fixed
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interest rate r = 1
δ − 1.

Individuals differ in their income generating abilities. In period t, an individual with income

generating ability θt earns income yt = θtlt if he works an amount lt. In each period, there are just

two ability levels, low and high, denoted by {θL, θH} where 0 < θL < θH . However, individuals’

abilities may differ across periods. Specifically, each individual’s ability follows a Markov process

with support {θL, θH} and transition matrix:⎡⎢⎢⎣ αLL αLH

αHL αHH

⎤⎥⎥⎦ .
We assume that types are correlated (i.e., that αHH ≥ αLH), but we do not make assumptions

on the degree of correlation. A fraction µ ∈ (0, 1) of individuals are high types in period one.

The economy also has a government. In each period, this government spends an amount G.

While this spending does not directly impact individuals’ utilities, the government must raise the

revenue necessary to finance it.

A history for an individual at time t consists of a list of his previous t − 1 abilities; i.e.,

ht = {θ1, ..., θt−1}. Let h1 = ∅ denote the history at time 1 and let H denote the set of all

histories. Let the notation ht+j º ht mean that ht+j follows ht (i.e., its first t− 1 components are

equal to ht).

An allocation in this economy is described by (x,y) = {(xt(θt;ht), yt(θt;ht))}∞t=1. Here

(xt(θt;ht), yt(θt;ht)) is the consumption-earnings bundle of those individuals who have ability

θt in period t after history ht ∈ H. To be feasible, an allocation must satisfy the aggregate

resource constraint2

∞X
t=1

δt−1E[xt(θt;ht) +G] ≤
∞X
t=1

δt−1E[yt(θt;ht)].

This says that the present value of consumption and government spending equals the present value

of earnings. The expected lifetime utility of an individual with high ability in period one under

such an allocation is

V (θH | h1) =
∞X
t=1

δt−1E[xt(θt;ht)− ϕ(yt(θt;ht)/θt) | θ1 = θH ],

2 Throughout the paper, we will ignore non-negativity constraints on individuals’ consumptions.
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while that of an individual with low ability in period one is

V (θL | h1) =
∞X
t=1

δt−1E[xt(θt;ht)− ϕ(yt(θt;ht)/θt) | θ1 = θL].

An allocation is efficient if, for some u, it solves the problem

max
(x,y)

V (θH | h1)

s.t. V (θL | h1) ≥ u (UL)

and
∞X
t=1

δt−1E[xt(θt;ht) +G] ≤
∞X
t=1

δt−1E[yt(θt;ht)]. (R)

Thus, it maximizes the expected utility of those who are high types in period one subject to giving

a fixed level of utility to those who are low types and the aggregate resource constraint.

It is straightforward to show that an allocation (x,y) is efficient if and only if the earnings

path y maximizes Marshallian aggregate surplus

∞X
t=1

δt−1E[yt(θt;ht)− ϕ(yt(θt;ht)/θt)],

and the consumption path x is such that UL and R hold with equality. The surplus maximizing

earnings path has the property that individuals work up until the point at which their marginal

disutility of work equals their marginal product. More precisely, in any period t after any history

ht, yt(θH ;ht) must equal y
∗(θH) and yt(θL;ht) must equal y

∗(θL) where

y∗(θ) = argmax{y − ϕ(y/θ) : y/θ ∈ [0, l]} θ ∈ {θL, θH}.

If the government can observe individuals’ abilities, it can realize any utility allocation on the

Pareto frontier through a very simple stationary tax system. All high ability individuals in any

period are required to pay a lump sum tax T ∗H and all low ability individuals must pay a tax

T ∗L. These taxes are chosen so that (i) the present value of tax receipts equals the present value

of government expenditures and (ii) those who begin period one as low types have the required

expected utility of u. Given this system, high ability individuals will choose to earn y∗(θH) in any

period and low ability individuals will choose to earn y∗(θL).

Efficient allocations will be difficult to realize when the government is unable to observe indi-

viduals’ income generating abilities and hence unable to impose ability-specific lump sum taxes.
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Accounting for this unobservability, requires ensuring that it is always in individuals’ interests to

claim the bundles intended for them. This requires that the allocation satisfy the following set of

incentive constraints. For all time periods t and histories ht,

xt(θH ;ht)− ϕ(yt(θH ;ht)/θH) + δEθHV (θt+1 |(ht, θH) )

≥ xt(θL;ht)− ϕ(yt(θL;ht)/θH) + δEθHV (θt+1 |(ht, θL)) (ICH(ht))

and

xt(θL;ht)− ϕ(yt(θL;ht)/θL) + δEθLV (θt+1 |(ht, θL) )

≥ xt(θH ;ht)− ϕ(yt(θH ;ht)/θL) + δEθLV (θt+1 |(ht, θH) ) (ICL(ht)),

where V (θt | ht) denotes the expected lifetime utility of an individual who has type θt in period

t after history ht. These constraints ensure that in any period t after any history ht individuals

are always better off with the bundle intended for them than the bundle intended for any other

individual they could credibly claim to be.

We say that an allocation is second best efficient if, for some u, it solves the problem

max
(x,y)

V (θH | h1) (PI)

s.t. UL, R, and ICH(ht) & ICL(ht) for all t & ht

In the sequel, we refer to this as the general problem. Our interest lies in understanding what

second best efficient allocations look like and how they may be decentralized via tax-transfer

systems. To make the problem interesting, we restrict consideration to cases in which G and u

are sufficiently high that any efficient allocation in which those who are low types in period one

have expected utility u violates at least one of the high types’ incentive constraints.

3 Solution procedure

To characterize second best efficient allocations, we study the following relaxed problem:

max
(x,y)

V (θH | h1) (PII)

s.t. UL, R, and ICH(ht) for all t & ht
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The relaxed problem imposes the incentive constraints after any history only for those who are

currently high types. We will first characterize the solution to the relaxed problem and then

explain the relationship between the relaxed and general problems.

Our first observation about the relaxed problem is:

Lemma 1 Let (x,y) solve the relaxed problem. Then both UL and ICH(h1) hold with equality.

The reason why the period one incentive constraint is binding is that, if it were not, then by

transferring resources forward in time as necessary, we could assure that none of the incentive

constraints were satisfied. But then the solution to the relaxed problem would be an efficient

allocation and, by assumption, must violate at least one of the high type’s incentive constraints.

Lemma 1 does not imply that all the incentive constraints are binding because the solution

may involve giving those who are high types in the future sufficient consumption that they are

strictly better off not masquerading as low types. It turns out, however, that this possibility can

be ignored.

Lemma 2 Let (x,y) be an allocation satisfying the constraints of the relaxed problem. Then there
exists x0 such that (x0,y) satisfies all the constraints and yields the same value of the objective
function as (x,y) but also satisfies ICH(ht) with equality for all periods t > 1 and all histories ht.

To understand this result, suppose that under the allocation (x,y) an incentive constraint is

not binding for individuals who are high types at some period t > 1 after some history ht =

(ht−1, θt−1). Then, we can make it bind by reducing the high types’ consumption in that period

and giving the expected present value to those with history ht−1 and ability θt−1 in period t− 1.

If θt−1 = θH then this has no implications for the incentive constraint of the high types in period

t − 1 with history ht−1. The gain in consumption in period t − 1 is exactly offset by the loss in

expected consumption should they remain high types in period t. If θt−1 = θL then the transfer

does have implications for the incentive constraint of the high types in period t− 1 with history

ht−1. On the one hand, masquerading as low types in period t− 1 now yields more consumption

in period t − 1. On the other, it yields less consumption in period t if individuals remain high

types. It turns out that because high types are more likely to remain high types than are low

types to become high types, the cost of lower future consumption outweighs the benefit of higher

current consumption so that the incentive constraint still holds. Indeed, the transfer leads the

incentive constraint of the high type in period t − 1 with history ht−1 to be satisfied strictly.

However, we can repeat the process by reducing the consumption of the high type in period t− 1
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with history ht−1 = (ht−2, θt−2) and giving the expected present value to those with history ht−2

and ability θt−2 in period t− 2. By repeating this process as many times as necessary, we find a

consumption allocation x0 that satisfies all the incentive constraints with equality except possibly

the first period constraint.

It follows from Lemma 1 and 2 that there is no loss of generality in assuming that in the

solution to the relaxed problem ICH(ht) holds with equality for all t and ht. We can use this fact

to write the expected lifetime utility of an individual with high ability after history ht as

V (θH | ht) = V (θL | ht) +Φ (yt(θL;ht)) +∆EV (θt+1 | (ht, θL)) (1)

where Φ (y) = ϕ(y/θL)− ϕ(y/θH) and ∆EV (θt+1 | (ht, θL)) is the difference in the continuation

values for the two types EθHV (θt+1 | (ht, θL))−EθLV (θt+1 | (ht, θL)). By successively using this

equation, we can write the difference in the continuation values as solely a function of the earnings

of an individual who is a low type in period t and remains one thereafter. Denote by H◦ (ht) the

set of histories following a history ht in which in all the periods including and after t the individual

has low ability. Let h◦t+j denote an element of H
◦ (ht). Then we can use (1) to show that:

Lemma 3 Let (x,y) be an allocation satisfying ICH(ht) with equality for all periods t and all
histories ht. Then, the utility of an individual with history ht who is a high type in period t can
be written as:

V (θH | ht) =
∞X
j=0

δj [αHH − αLH ]
j
Φ
¡
yt+j(θL;h

◦
t+j)

¢
+ V (θL | ht) . (2)

This result can in turn be used to establish:

Lemma 4 Let (x,y) solve the relaxed problem. Then the earnings levels y solve the problem:

max
∞X
j=0

δj [αHH − αLH ]
j Φ
¡
y1+j(θL;h

◦
1+j)

¢
+ u

s.t. G ≤ (1− δ)
∞X
t=1

δt−1E[yt(θt;ht)− ϕ(yt(θt;ht)/θt)] (3)

−(1− δ)[µ
∞X
j=0

δj [αHH − αLH ]
j Φ
¡
y1+j(θL;h

◦
1+j)

¢
+ u]

The problem described in Lemma 4 is straightforward to solve. Letting γ be the multiplier on

the revenue constraint, the associated Lagrangian can be written as

L =
∞X
t=1

δt−1E[yt(θt;ht)− ϕ(yt(θt;ht)/θt)]−G/(1− δ) (4)

−(µ− 1

γ(1− δ)
){
∞X
j=0

δj [αHH − αLH ]
j Φ
¡
y1+j(θL;h

◦
1+j)

¢
+ u}
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The first term is Marshallian aggregate surplus, while the second term represents the loss of

surplus resulting from having to meet the incentive constraints. Letting h∗t = h
◦
1+(t−1), the first

order conditions are that for all t and ht 6= h∗t

ϕ0(yt(θt;ht)/θt) = θt (5)

and for all t and ht = h
∗
t

(1− µ)[1− ϕ0(yt(θL;h
∗
t )/θL)

θL
] =

∙
1− αHL

αLL

¸t−1
Φ0 (yt(θL;h

∗
t )) (µ−

1

γ(1− δ)
) (6)

As we show in the proof of Proposition 1, the value of the multiplier γ is such that µ > 1/γ (1− δ),

so that the right hand side of (6) is positive.

Before we study the implications of these conditions, we first clarify the relationship between

the relaxed and general problems.

Lemma 5 Let (x,y) be an allocation with the property that the earnings levels solve the problem
described in Lemma 4 and the consumption levels are such as to make UL and ICH(ht) (for all t
and ht) hold with equality. Then, (x,y) is a second best efficient allocation. Conversely, if (x,y)
is a second best efficient allocation, then the earnings levels must solve the problem described in
Lemma 4.

It follows from this result that if (x,y) is a second best efficient allocation then the earnings levels

satisfy the first order conditions (5) and (6). In the next section, we use this to derive some results

about the nature of second best efficient allocations. Before doing that, it is worth noting that the

relationship between the relaxed and general problems is somewhat non-standard. In a standard

problem, it is the case that any solution to the relaxed problem solves the general problem. In

our problem, only those solutions that satisfy the constraints with equality necessarily solve the

general problem.

4 Second best efficient allocations

To set the stage for our first main result, we briefly describe the nature of second best efficient

allocations in which ability types are perfectly correlated over time, so that αHH = αLL = 1.

Under this assumption, the model is a replication of the Mirrlees model with two ability types.

The following proposition will therefore come as no surprise.

Proposition 1 Suppose that ability types are perfectly correlated over time. Then, in any second
best efficient allocation, the earnings of individuals are constant over time. The earnings of those
with high ability are undistorted (i.e., they earn y∗(θH) each period), while the earnings of those
with low ability are distorted downward (i.e., they earn less than y∗(θL) each period).
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Proof: In any period t, high ability individuals have history ht = (θH , ..., θH). The first order

condition (5) then implies that yt(θH ;ht) = y
∗(θH). Low ability individuals, on the other hand,

have history ht = (θL, ..., θL) = h
∗
t so that (6) implies their earnings satisfy

(1− µ)[1− ϕ0(yt(θL;h
∗
t )/θL)

θL
] =

∙
1− αHL

αLL

¸t−1
Φ0 (yt(θL;h

∗
t )) (µ−

1

γ(1− δ)
).

Since αHL = 0, the latter implies that:

(1− µ)[1− ϕ0(yt(θL;h
∗
t )/θL)

θL
] = Φ0 (yt(θL;h

∗
t )) (µ−

1

γ(1− δ)
). (7)

Assuming that µ > 1/γ(1 − δ), (7) implies that low types earn a constant amount each period

which is less than y∗(θL).

It only remains to prove that µ > 1/γ(1 − δ). Assume, first that µ = 1/γ(1 − δ). Then (7)

implies that for all t, yt(θL;h
∗
t ) = y∗(θL). This means that the earnings levels that solve the

problem described in Lemma 4, denoted ey, are first best efficient. But we know by assumption
that if (x,y) solves the relaxed problem then y is not first best efficient and hence cannot equal

ey. This contradicts Lemma 4.
Next suppose that µ < 1/γ(1 − δ). Let ey denote the associated optimal earnings levels. Let

ex be such as to make ICH(ht) (for all t and ht) and UL hold with equality given ey. Then, we
will show that (ex, ey) cannot solve the relaxed problem - a contradiction. To see this, consider a

marginal reduction dy in ey1(θL;h1) and choose dx so as to keep the period one low type’s utility
constant; i.e., so that

ex1(θL;h1)− dx− ϕ(
ey1(θL;h1)− dy

θL
) = ex1(θL;h1)− ϕ(

ey1(θL;h1)
θL

).

Clearly,

dx =
ϕ0(ey1(θL;h1))

θL
dy.

Note that ICH(h1) is now still satisfied, because the high type now finds the low type’s bundle

less attractive because it involves less earnings. However, the change in revenues is

dR = (1− µ)[dx− dy] = (1− µ)[ϕ
0(ey1(θL;h1))

θL
− 1]dy > 0.

This change is positive since µ < 1/γ(1 − δ) implies that 1− ϕ0(ey1(θL;h1)/θL)
θL

< 0. Now take this

revenue increase and divide it among those who are high types in period one; i.e., raise ex1(θH ;h1)
10



by dR/µ. Clearly, this change makes the high types strictly better off, which since it violates none

of the constraints, means that (ex, ey) cannot solve the relaxed problem. Q.E.D.
Thus, the labor supply of high ability individuals is undistorted, while the labor supply of

low ability individuals is distorted downwards. This is to counteract the incentives of high ability

types to masquerade as low ability types. Any utility allocation on the (second best) Pareto

frontier can be realized through a very simple stationary tax system. Let y∗∗L denote the amount

earned by low ability individuals in the utility allocation in question. Let x∗L be the constant level

of consumption just sufficient to give low ability individuals utility level u given that they are

working y∗∗L /θL in each period; i.e.,

x∗L − ϕ(y∗∗L /θL)

1− δ
= u.

Let x∗H be the constant level of consumption just sufficient to prevent high ability individuals from

claiming to be low ability individuals given that they are working y∗(θH)/θH in each period; i.e.,

x∗H − ϕ(y∗(θH)/θH)

1− δ
=

ϕ(y∗∗L /θL)− ϕ(y∗∗L /θH)

1− δ
+ u.

Then if the government requires that in each period individuals pay taxes according to the schedule

T (y) where T (y∗H) = y∗(θH) − x∗H and T (y∗LL) = y∗LL − x∗L, it can achieve the utility allocation

in question. This tax schedule has a zero marginal rate in the neighborhood of the income level

y∗(θH) but a positive marginal rate in the neighborhood of y
∗
LL.

3

With this as background, we now present our first main result.

Proposition 2 Suppose that ability types are not perfectly correlated over time. Then, in any
second best efficient allocation, the earnings of individuals who are currently, or have at some
point been, high types are undistorted (i.e., they earn y∗(θt) in period t when they have ability
θt). The earnings of individuals who are currently and have always been low types are distorted
downwards (i.e., they earn less than y∗(θL)). However, the extent of this distortion decreases over
time converging to 0 as t→∞.

Proof: The first order conditions tell us that for all t and ht 6= h∗t

ϕ0(yt(θt;ht)/θt) = θt (8)

3 Suppose that the government is employing a smooth tax schedule T (y) with the property that T (y∗H) =
y∗(θH)−x∗H and T (y∗LL) = y

∗
LL−x∗L. The schedule must be such that y∗LL maximizes y−T (y)−ϕ(y/θL) and y

∗
H

maximizes y−T (y)−ϕ(y/θH). Since T (y) is smooth, this requires that T
0(y∗LL) equal 1−ϕ(y∗LL/θL)/θL which is

positive and that T 0(y∗H) equal 1−ϕ(y∗H/θH)/θH which is zero. Of course, there is no reason that the government
need use such a smooth schedule. It could, for example, set T (y) equal to infinity for any y other than y∗LL or y

∗
H .

In this case, the notion of a marginal rate of taxation is not well defined.
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and for all t and ht = h
∗
t

(1− µ)[1− ϕ0(yt(θL;h
∗
t )/θL)

θL
] =

∙
1− αHL

αLL

¸t−1
Φ0 (yt(θL;h

∗
t )) (µ−

1

γ(1− δ)
) (9)

If an individual is currently or has at some point been a high type, then ht 6= h∗t and, from (8), it

can be seen that the first order conditions imply that they work up until the point at which their

marginal disutility of work ϕ0(y/θt) equals their wage θt. If an individual is currently and has

always been a low type then ht = h
∗
t and, from (9), it can be seen that the first order conditions

imply that they work less than the amount at which their marginal disutility of work equals their

wage. Since ability types are not perfectly correlated over time, 1 > αHL

αLL
and

h
1− αHL

αLL

it−1
is

decreasing in t and converges to zero as t → ∞. The first order condition therefore implies that

yt(θL;h
∗
t )/θL is decreasing in t and converges to y

∗(θL)/θL as t→∞. Q.E.D.

The proposition implies that when ability types are not perfectly correlated over time, the

fraction of individuals in any period whose labor supply is distorted in any second best efficient

allocation is decreasing and converges to zero as t → ∞. Moreover, the degree to which these

individuals have their labor supply distorted also converges to zero. Thus, in a very strong sense,

the distortion caused by imperfect observability of individuals’ abilities goes to zero.

To understand the first part of the proposition, consider a group of individuals at some time

t who share the same history ht. Suppose that at some point in the past these individuals were

high ability so that ht 6= h∗t . By Proposition 2, the earnings of these individuals are undistorted at

time t. This is obviously optimal for those with high ability at time t, so consider those with low

ability. Suppose, to the contrary, that the earnings of these individuals are distorted downwards.

Then, if we were to increase their earnings slightly in period t we would make them better off. Of

course, such a change would also necessitate an increase in the consumption of those who have high

ability at time t to prevent them from masquerading as low types. This will reduce government

revenues. However, this reduction in expected revenues can be financed by a concordant reduction

in the consumption of these individuals in the period τ < t in which they were first high types.

This reduction gives individuals with high ability in period τ and history hτ ¹ ht no incentive to

masquerade as low types. The reason is that the reduction in current consumption is offset by the

increase in expected future consumption at time t. This marginal change in the allocation would

not cause any of the incentive constraints of low ability individuals to be violated since none of

these are binding.

12



To understand the second part of the proposition, it is useful to contrast it with the result in

Proposition 1. As noted, with constant types the earnings of low ability individuals are distorted

downwards and the degree of distortion is constant over time. The size of the distortion is deter-

mined by a simple marginal cost - marginal benefit argument. A lower distortion increases the

Marshallian surplus generated by an individual and therefore obviously increases welfare. How-

ever, it also increases the consumption that needs to be given to individuals with high ability.

This reduces tax revenues for the government and increases the shadow cost of taxation γ. At the

optimum, the marginal increase in surplus is exactly compensated by the marginal reduction in

revenues. With constant abilities the marginal cost/benefit ratio is constant throughout periods.

After any period t, the marginal benefit of a lower distortion is proportional to the fraction of low

types (the constant 1− µ), because types never change. Similarly, the marginal cost is constant:

it is proportional to the fraction of high types whose consumption must be raised (the constant

µ) and the shadow cost of taxation: µ− 1/γ(1− δ). When types change over time, the marginal

cost/benefit ratio is not constant, because, depending on the realized history, there is a different

composition of the population. The marginal benefit of a lower distortion in the earnings of those

individuals who at time t are and have always been low types is proportional to the fraction of

such individuals in the population: (1− µ)αt−1LL . The marginal cost, evaluated at time 1, also

depends on the time t of the change. At time t the consumption of high ability individuals who

have previously been low types increases by, say, ∆Rt. At time t− 1 the expected utility of those

who are and have always been low types increases because they can become high types at time t

and benefit from the increase in consumption at that time. Part of this extra expected utility can

be taxed away at t− 1, but not all since incentive compatibility must be satisfied at that time as

well. At time t − 1 individuals who have high ability for the first time can not receive less than

what they would receive if they chooses the option designed for those who remain low types. Even

if we completely tax away the expected increase in consumption of those who, at time t− 1, are

and have always been low types with a tax Tt−1 such that αLH∆Rt− Tt−1 = 0, those individuals

who have high ability at time t − 1 after previously being low types must receive an increase

in consumption equal to ∆Rt−1 = (αHH∆Rt − Tt−1) − (αLH∆Rt − Tt−1) = (αHH − αLH)∆Rt.

Repeating the same argument, if we try and tax away these gains at t − 2, we must provide an

increase in consumption at time t − 2 for those individuals who have high ability for the first

time equal to ∆Rt−2 = (αHH − αLH)∆Rt−1 = (αHH − αLH)
2
∆Rt. Proceeding backward, we
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arrive to an increase in the consumption of those who are high ability at time 1 proportional to

(αHH − αLH)
t−1. Since these individuals make up a fraction µ of the population, the marginal

cost of a lower distortion in the earnings of those individuals who at time t are and have always

been low types is proportional to µ (αHH − αLH)
t−1
. Accordingly, the marginal cost/benefit ratio

at time t is now proportional to µ
1−µ

h
αHH−αLH

αLL

it−1
. As the cost/benefit ratio of a lower distortion

vanishes over time,4 the distortion vanishes with it.

When ability types are not perfectly correlated, it is no longer the case that utility allocations

on the (second best) Pareto frontier can be realized through a stationary tax system. Proposition

2 implies that the marginal tax rates individuals face should depend upon their entire history of

earnings. What might such a non—stationary tax system look like? To provide a feel for this, we

will describe a particular tax system that can realize utility allocations on the Pareto frontier.

It should be stressed that this is not the only possibility. Given that individuals have constant

marginal utility of consumption, the allocation of consumption across time or states is irrelevant

for individuals’ utility and this gives a great deal of flexibility in choosing consumption paths and

hence tax systems.

Consider a particular utility allocation on the Pareto frontier and let y denote the associated

earnings levels. These must solve the problem described in Lemma 4. Thus, yt(θH ;ht) = y
∗(θH)

for all t and ht and yt(θL;ht) = y∗(θL) for all t and all ht 6= h∗t . To simplify notation, let

y∗Lt = yt(θL;h
∗
t ) for all t. Now, choose x as follows. First, let the consumption of high types in

any period be constant, so that xt(θH ;ht) = x∗H for all t and ht for some x
∗
H . In addition, let

the consumption of those who are currently low types but have previously been high types be

constant, so that xt(θL;ht) = x
∗
L for all t and ht 6= h∗t . Further, let this consumption be related

to x∗H in the following way:

x∗L = x
∗
H − (ϕ(y∗(θH)/θH)− ϕ(y∗(θL)/θH)).

4 This can be seen from the fact that the term in the square parenthesis is lower than one: indeed αHH−αLH
αLL

=

1− αHL
αLL

< 1 because types are positively correlated.
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Finally, for those who have always been low types let xt(θL;h
∗
t ) = x

∗
Lt where (x

∗
Lt)
∞
t=1 satisfy for

all t

x∗Lt = x∗L − (ϕ(y∗(θL)/θH)− ϕ(y∗Lt/θH)) + δαHL{x∗L − ϕ(y∗(θL)/θL)− (x∗Lt+1 − ϕ(y∗Lt+1/θL))}

+
∞X
j=2

δjαj−1LL {x∗L − ϕ(y∗(θL)/θL)− (x∗Lt+j − ϕ(y∗Lt+j/θL))}.

It may be verified that x so constructed is such as to make the incentive constraints ICH(ht) (for

all t and ht) bind. To ensure UL binds, let x
∗
H be chosen so that when x

∗
L and (x

∗
Lt)
∞
t=1 are defined

by the above equations, then V (θL | h1) = u.

Now consider the features of the tax system that would decentralize the allocation (x,y). In

period 1, individuals would face a schedule T1(y) that requires them to pay a tax T1(y
∗(θH)) =

y∗(θH)−x∗H if they earn y∗(θH) and a tax T1(y∗L1) = y∗L1−x∗L1 if they earn y∗L1. This first period

schedule has a positive marginal rate at income y∗L1 and a zero rate at income y
∗(θH).

In the second period, the schedule individuals face depends upon their first period earnings.

Those who earn y∗(θH) in the first period face a schedule T2(y; y
∗(θH)) that requires them to

pay a tax T2(y
∗(θH); y

∗(θH)) = y
∗(θH)− x∗H if they earn y∗(θH) and a tax T2(y

∗(θL); y
∗(θH)) =

y∗(θL)−x∗L if they earn y∗(θL). This tax schedule has zero marginal rates in the neighborhood of

both the income levels y∗(θH) and y
∗(θL). Those who earn y

∗
L1 in the first period, face a schedule

T2(y; y
∗
L1) that requires them to pay a tax T2(y

∗(θH); y
∗
L1) = y∗(θH) − x∗H if they earn y∗(θH)

and a tax T2(y
∗
L2; y

∗
L1) = y

∗
L2 − x∗L2 if they earn y∗L2. This tax schedule has a zero marginal rate

in the neighborhood of y∗(θH) but a positive marginal rate in the neighborhood of y
∗
L2. Thus,

the tax schedule T2(y; y
∗
L1) has a different marginal rate in the neighborhood of [y

∗
L2, y

∗(θL)] than

T2(y; y
∗(θH)). Since y

∗
L2 > y∗L1, the tax schedule T2(y; y

∗
L1) has a lower marginal rate in the

neighborhood of y∗L2 than the first period tax schedule.

In the third period, those who had earned y∗(θH) in the first period continue to face the

schedule T2(y; y
∗(θH)) as do those who earned y

∗(θH) in the second period. Those who earned

y∗L1 and y
∗
L2 in the first two periods, face the schedule T3(y; y

∗
L1, y

∗
L2) that requires them to pay a

tax T3(y
∗(θH); y

∗
L1, y

∗
L2) = y

∗(θH)−x∗H if they earn y∗(θH) and a tax T3(y∗L3; y∗L1, y∗L2) = y∗L3−x∗L3
if they earn y∗L3. Since y

∗
L3 > y

∗
L2, the tax schedule T3(y; y

∗
L1, y

∗
L2) involves a lower marginal rate

in the neighborhood of y∗L3 than does the second period tax schedule. As time progresses, more

and more individuals come under the tax schedule T2(y; y
∗(θH)). Moreover, the schedule faced by

those with an uninterrupted history of low earnings Tt(y; y
∗
L1, .., y

∗
Lt−1) converges to the schedule
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T2(y; y
∗(θH)).

5 Implications of risk aversion

The model studied so far has assumed that individuals are risk neutral. This implies that individ-

uals are indifferent as to the allocation of consumption across time and states. This facilitates a

clean focus on the problem of designing taxation to minimize distortions in labor supply. In this

section, we extend the model to incorporate risk aversion and investigate how this impacts the

results.

To incorporate risk aversion, we assume that:

ut = (xt)
β − ϕ(lt) (10)

where β ∈ (0, 1). As β approaches 1 individuals become risk neutral and we have the original

model. For tractability, in this section we focus on a two-period version of the model.

In the two-period model, an allocation can be fully described by

(x,y) = {(xL, xH , xLL, xLH , xHL, xHH); (yL, yH , yLL, yLH , yHL, yHH)}.

Thus, (xL, yL) is the consumption-earnings bundle intended for those individuals who have low

ability in period one; (xLL, yLL) is the period two bundle intended for those who have low ability

in both periods; and so on. As before, an allocation is efficient if, for some u, it solves the problem

max[(xH)
β − ϕ(yH/θH)] + δ[αHH((xHH)

β − ϕ(yHH/θH)) + αHL((xHL)
β − ϕ(yHL/θL))].

s.t. [(xL)
β − ϕ(yL/θL)] + δ[αLL((xLL)

β − ϕ(yLL/θL)) + αLH((xLH)
β − ϕ(yLH/θH))] ≥ u (UL)

and

[µxH + (1− µ)xL +G] + δ[µ(αHHxHH + αHLxHL) + (1− µ)(αLHxLH + αLLxLL) +G]

≤ [µyH + (1− µ)yL] + δ[µ(αHHyHH + αHLyHL) + (1− µ)(αLHyLH + αLLyLL)]. (R)

Efficient allocations now have two properties. First, individuals’ consumption levels are con-

stant across time and states. Thus, for the period one high types xH = xHL = xHH and for

the low types xL = xLH = xLL. Second, there is no distortion in individuals’ labor supply

decisions. This requires that each individual should work up until the point at which their mar-

ginal disutility of work equals the marginal utility of the consumption that work produces. Thus,

θHβx
β−1
H = ϕ0(yH/θH), θLβx

β−1
HL = ϕ0(yHL/θL), and so on.
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Again, if the government can observe individuals’ abilities, it can realize efficient allocations

with a simple tax system. Let y∗(T, θ) denote the earnings level that would maximize the static

utility of an individual with ability θ if he had to pay a lump sum tax T ; that is,

y∗(T, θ) = argmax{(y − T )β − ϕ(y/θ) : y/θ ∈ [0, l]} θ ∈ {θL, θH}.

Then, any efficient allocation (x,y) can be decentralized as follows. Individuals who are high

types in the first period pay a lump sum tax TH where y
∗(TH , θH)−TH = xH . They also pay this

tax in the second period if they remain high types. If they become low types, their tax burdens

are reduced in such a way as to maintain their consumption at the level it would be were they

high types. More precisely, they pay a tax THL such that y
∗(THL, θL)−THL = xH . In effect, the

tax system completely insures them against any consumption loss resulting from a shock in their

income generating ability. The story for those who are low types in the first period is similar. In

the first period, they pay the lump sum tax TL where y
∗(TL, θL)− TL = xL. They also pay this

tax in the second period if they remain low types. If they become high types, their tax burden is

increased in such a way as to maintain their consumption at the level it would be were they low

types. More precisely, they would pay a tax TLH such that y
∗(TLH , θH)−TLH = xL. Individuals

have no incentive to save under this tax system, as it keeps their marginal utility of consumption

constant across time and states.

An allocation is second best efficient if it solves the efficiency problem with the following

additional set of incentive constraints:

(xH)
β − ϕ(yH/θH) + δ[αHH((xHH)

β − ϕ(yHH/θH)) + αHL((xHL)
β − ϕ(yHL/θL))]

≥ (xL)
β − ϕ(yL/θH) + δ[αHH((xLH)

β − ϕ(yLH/θH)) + αHL((xLL)
β − ϕ(yLL/θL))] (IC(H))

(xL)
β − ϕ(yL/θL) + δ[αLH((xLH)

β − ϕ(yLH/θH)) + αLL((xLL)
β − ϕ(yLL/θL))]

≥ (xH)
β − ϕ(yH/θL) + δ[αLH((xHH)

β − ϕ(yHH/θH)) + αLL((xHL)
β − ϕ(yHL/θL))] (IC(L))

(xHH)
β − ϕ(yHH/θH) ≥ (xHL)β − ϕ(yHL/θH) (IC(HH))

(xHL)
β − ϕ(yHL/θL) ≥ (xHH)β − ϕ(yHH/θL) (IC(HL))

(xLH)
β − ϕ(yLH/θH) ≥ (xLL)β − ϕ(yLL/θH) (IC(LH))

(xLL)
β − ϕ(yLL/θL) ≥ (xLH)β − ϕ(yLH/θL) (IC(LL))
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The first two constraints deal with the first period and the remainder the second period. We

retain the assumption that when β = 1, G and u are sufficiently high that any efficient allocation

in which those who are low types in period one have expected utility of at least u violates one or

more of the high types’ incentive constraints. Thus, the second best Pareto frontier lies strictly

inside the first best frontier when β = 1.

To solve for second best efficient allocations we again consider the relaxed problem obtained

by ignoring the incentive constraints for low types. Thus we study the problem:

max
(x,y)

[(xH)
β − ϕ(yH/θH)] + δ[αHH((xHH)

β − ϕ(yHH/θH)) + αHL((xHL)
β − ϕ(yHL/θL))]

s.t. UL, R, IC(H), IC(HH), IC(LH).

While we are no longer able to prove generally that second best efficient allocations must solve

the relaxed problem, we can show that this is the case for β sufficiently large.

Lemma 6 In the two period model with risk averse individuals, there exist a β < 1 such that if
β ∈ (β, 1), (x,y) is a second best efficient allocation if and only if it solves the relaxed problem.

By analyzing the first order conditions for the relaxed problem, we are able to establish:

Proposition 3 In the two period model with risk averse individuals, there exist a β < 1 such that
if β ∈ (β, 1), in any second best efficient allocation, the earnings of individuals who are high types
in either period are undistorted. The earnings of individuals who are low types in either period
are distorted downwards. However, the degree of distortion in the earnings of those who become
low types in the second period converges to 0 as β → 1. Moreover, those who are low types in both
periods earn more in the second period.

This proposition shows that once we introduce risk aversion, the result that in any second best

efficient allocation only those who remain low types have their labor supply decisions distorted no

longer holds. Those who start out as high types and become low types in the second period, also

work less than the efficient amount. However, as individuals become less and less risk averse the

degree of this distortion converges to zero. Moreover, the basic pattern of earnings in any second

best efficient allocation is the same as in the risk neutral case. In particular, the earnings of those

who remain low types are increasing.

With risk aversion, the allocation of consumption across time and states is relevant for indi-

viduals’ utility and this explains why the earnings of individuals with history HL are distorted

downwards. Reducing the earnings level yHL lessens the incentive of those with history HH to
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pretend they have history HL. In the risk neutral case, this problem could be handled by in-

creasing the consumption of those with history HH and taking the expected discounted value

from high ability individuals in the first period. But because individuals want to smooth their

consumption this intertemporal reallocation is no longer without cost.

What can be established about the allocation of consumption across time and states in a second

best efficient allocation? Our next proposition addresses this.

Proposition 4 In the two period model with risk averse individuals, there exist a β < 1 such that
if β ∈ (β, 1), in any second best efficient allocation the consumption of individuals who are high
types in the first period goes up if they remain high types in the second period and down if they
become low types. Similarly, the consumption of individuals who are low types in the first period
goes up if they are high types in the second period and down if they are low types. Moreover, for
both low and high types, the marginal utility of consumption in the first period is less than the
expected marginal utility of consumption in the second period.

Thus, when compared with efficient allocations there are two distinct distortions in the allo-

cation of consumption. First, the allocation of consumption across states is distorted in the sense

that individuals are not fully insured. If they are low types in the second period, their consump-

tion is lower than if they are high types. This is obviously a necessary condition for incentive

compatibility. Second, the allocation of consumption across time is distorted in the sense that

individuals consume more than is optimal in the first period. This is a particular application of the

result first established by Rogerson (1985) and since generalized and applied to optimal taxation

by Golosov, Kocherlakota, and Tsyvinsky (2003). The intuition is the following. Because of the

incentive compatibility constraint, low types will supply less labor and enjoy lower consumption

in each period. The marginal utility of consumption of low types, therefore, is higher than the

marginal utility of high types in period two. Suppose, to the contrary, that the marginal utility

of consumption in the first period were higher than the expected marginal utility in the second

period for some type. If we reduce the second period consumption of high and low types by some

amount ∆ incentive compatibility is preserved, since the utility of low types is reduced by more

than that of high types. This reduction frees ∆ units of consumption that can be used to increase

consumption in the first period. But then, since the marginal increase in utility at t = 1 is higher

that the expected reduction at t = 2, the change creates a Pareto improvement: and we have a

contradiction.

What would a tax system that could decentralize second best efficient allocations look like?

Let (x,y) be the allocation we wish to decentralize. The first period tax schedule T1(y) is such
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that T1(yH) = yH − xH and T1(yL) = yL − xL. The marginal rate of taxation is positive in

the neighborhood of yL and zero in the neighborhood of yH . Those who earn yH in the first

period face a second period tax schedule T2(y; yH) such that T2(yHH ; yH) = yHH − xHH and

T2(yHL; yH) = yHL − xHL. The marginal rate of taxation is positive in the neighborhood of yHL
and zero in the neighborhood of yHH . Those who earn yL in the first period face a second period

tax schedule T2(y; yL) such that T2(yLH ; yL) = yLH − xLH and T2(yLL; yL) = yLL − xLL. The

marginal rate of taxation is positive in the neighborhood of yLL and zero in the neighborhood of

yLH .

It is important to note that under this tax system, individuals have an incentive to save in the

first period. As Proposition 4 demonstrates, x is such that for both types the marginal utility of

consumption in the first period is less than the expected marginal utility of consumption in the

second period. This provides individuals with an incentive to transfer consumption forward. To

prevent this, it would be necessary to supplement the tax on earnings with a tax on capital income

from savings. The tax rate on saving should be sufficient to deter individuals from saving given

the consumptions x. Obviously, there are many choices of capital tax rates that would achieve

this goal.

6 Time consistency

Imagine that at the beginning of period one the government announces a tax/transfer system de-

signed to implement a particular utility allocation on the second best Pareto frontier. Individuals’

period one earnings choices would then reveal their period one types. If the government could

use this information to design a new tax/transfer system that was better for all individuals and

raised just as much revenue, one might imagine that it would be tempted to do so. In this case,

the original tax/transfer system would not be time consistent.

Up to this point, we have ignored this time consistency problem, implicitly assuming that the

government can credibly commit to the ex ante optimal tax/transfer system. The equilibrium

characterized in Section 4, is therefore a Ramsey equilibrium (Ramsey (1927)): the government

determines the optimal policy given individuals’ reaction functions. However, it is well known

that Ramsey optimal policies are often not time-consistent in the sense that even benevolent
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governments find it ex post optimal to depart from them.5 In a model like ours, distortionary

taxation is necessary to extract individuals’ private information; after individuals have revealed it,

the government may find it optimal to eliminate such distortions: but then the original tax system

would not be credible. This type of time-inconsistency in the context of taxation with asymmetric

information was first observed by Roberts (1984).

In this section we show that when individuals’ types can vary stochastically the time-inconsistency

problem may not arise. To analyze the issue we return to the basic model with quasi-linear utili-

ties and infinite periods.6 We also impose the additional assumption that the disutility of labor

function has a positive third derivative; i.e., ϕ000(l) ≥ 0.7 This assumption guarantees that Φ00 > 0

which in turn implies that the Lagrangian for the maximization problem in Lemma 4 (4) is strictly

concave and that the efficient earnings levels are unique.

We begin by providing a more precise definition of time consistency. We will work directly with

allocations rather than the tax-transfer systems that generate them. It is to be understood that a

particular tax/transfer system is time consistent if and only if the allocation it generates is time

consistent. Consider then a particular second best efficient allocation (x∗,y∗) and imagine that

we are at the beginning of some period t ≥ 2. At that point, the government knows the histories

of all the individuals in the economy but not their period t types. Consider a group of individuals

with history ht. We are interested in whether the government can change the future allocation

intended for these individuals in such a way as to make them better off while still raising the same

revenue from them.

Let (xht ,yht) denote a future allocation for those individuals who at time t have history ht;

i.e.,

(xht ,yht) = {(xt+j(θt+j ;ht+j), yt+j(θt+j ;ht+j)) | ∀ ht+j º ht}∞j=0.

The future allocation implied by the efficient allocation (x∗,y∗) is denoted (x∗ht ,y
∗
ht
). Let R∗ (ht)

5 The classic reference is Kydland and Prescott (1977). See Chari, Kehoe and Prescott (1988) and Stokey (1989)
for general discussion and surveys of the literature.

6 Our result also holds for a finite economy. This distinguishes it from Chari and Kehoe (1990) who show that
in infinitely-lived economies Ramsey equilibria may be sustained by trigger strategies if the discount factor is high
enough.

7 This condition is satisfied by most common cost functions such as quadratic, logarithmic or exponential.
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be the expected revenues raised from those individuals under (x∗ht ,y
∗
ht
); that is,

R∗ (ht) =
∞X
j=0

δjE[y∗t+j(θt+j ;ht+j)− x∗t+j(θt+j ;ht+j) | ht].

Finally, let V ∗(θ | ht) be the expected utility of a type θ after a history ht under (x∗,y∗).

Now consider the problem:

max
(xht ,yht)

V (θH | ht) (PIht)

s.t. V (θL | ht) ≥ V ∗(θL | ht)
∞X
j=0

δjE[yt+j(θt+j ;ht+j)− xt+j(θt+j ;ht+j) |ht ] ≥ R∗ (ht)

and ICH(ht+j) & ICL(ht+j) for all ht+j º ht and j = 0, 1, ..

Thus, we seek to maximize the expected utility of those individuals with history ht who are high

types at time t, subject to the constraints that (i) those who are low types in period t with

history ht obtain at least as much utility as they obtain under (x
∗
ht
,y∗ht); (ii) the same expected

revenue is raised from these individuals as under (x∗ht ,y
∗
ht
); and (iii) the incentive compatibility

constraints for these individuals in period t and beyond are satisfied. Clearly, (x∗ht ,y
∗
ht
) satisfies

all the constraints of this problem. If (x∗ht ,y
∗
ht
) solves it, then the government cannot change the

future allocation intended for individuals with history ht in such a way as to make them better off

while still raising the same revenue from them. Therefore, we say that (x∗,y∗) is time consistent

if for all periods t ≥ 2 and all histories ht, (x∗ht ,y
∗
ht
) is a solution to PIht .

8

We now have:

Lemma 7 Let (x∗,y∗) be a second best efficient allocation. Then, (x∗,y∗) is time consistent if
and only if

αLH
αHH

≥
µ− 1

γ(1−δ)

1− 1
γ(1−δ)

(11)

where γ is the Lagrange multiplier associated with the maximization problem described in Lemma
4 that is solved by y∗.

The intuition underlying this result is the following. When ability types are perfectly correlated,

under the Ramsey tax system the government faces no residual uncertainty in period two and

8 This corresponds to the standard definition in the literature. See, for example, Kydland and Prescott (1977).
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beyond. Because of this, it could impose lump sum taxes from that point on and eliminate all

distortions in individuals’ labor supply. Accordingly, Ramsey optimal taxes can never be time

consistent. When types are stochastic, residual uncertainty remains because an individual may

change type. Thus, the government must still screen types in the remaining periods. Condition

(11) guarantees that the ex post optimal distortion is the same as the ex ante optimal distortion.

When this is the case, two competing forces offset each other. On the one hand, in order to

create a Pareto improvement, the government must introduce a new tax system that involves less

distortions than the original one. This necessitates increasing the earnings of those individuals

whose earnings are distorted who, by Proposition 2, are those who currently are and always

have been low types. On the other hand, increasing the earnings of these individuals requires

compensating increases in consumption for those individuals with the same history who have

become high types. When condition (11) is satisfied, these compensating increases in consumption

are sufficient to offset the revenue gains from the higher earnings of those who are still low types

and the net impact on revenue is negative.

From Lemma 7, we can derive our second main result:

Proposition 5 Let (x∗,y∗) be a second best efficient allocation. Then: (i) if αLH = 0, (x
∗,y∗)

is not time consistent; (ii) if αLH/αHH ≥ µ, (x∗,y∗) is time consistent; and (iii) if αLH/αHH ∈
(0, µ) there exists a threshold Ω∗ such that (x∗,y∗) is time consistent if and only if G+(1− δ)u ≤
Ω∗.

To understand how this result follows from the Lemma, recall that γ always exceeds 1/µ(1− δ) so

that the right hand side of condition (11) is positive. This yields part (i). On the other hand, note

that the right hand side of this inequality is increasing in γ and converges to µ as γ approaches∞.

Accordingly, condition (11) is necessarily satisfied when αLH/αHH exceeds µ which implies part

(ii). In the intermediate case, whether the condition is satisfied depends upon the precise value of

the Lagrange multiplier γ associated with y∗. The smaller it is, the more likely is the condition

to be satisfied. Since γ represents the marginal value of a unit relaxation in the government’s

revenue requirement, the degree to which it exceeds 1/µ(1− δ) will depend upon the tightness of

the incentive constraints. This in turn will depend on the size of the revenue requirement G and

on the amount of redistribution the government intends to do as measured by u.

This proposition has two interesting implications. First, no matter how strong the correlation

between types, if it is anything less than perfect, there are conditions under which the Ramsey

optimal policy will be sustainable. This justifies our claim in the introduction that Pareto efficient
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income tax systems can be time-consistent even when the degree of correlation in ability types is

large. Second, in the intermediate case in which αLH/αHH ∈ (0, µ), Pareto efficient tax systems

will be time consistent only when the government’s revenue requirement and its redistributive

goals are “not too large”. Thus, ceteris paribus, a government that starts with higher spending

commitments (for example, higher debt to repay) or more ambitious redistributive objectives will

find it harder to implement second best optimal policies.

This second implication suggests a theoretical reason why the classic equity-efficiency trade off

(see, for example, Okun (1975)) may be steeper than previously thought. A well-known lesson of

public economics is that achieving stronger equity objectives requires more distortionary taxation

which reduces the size of the aggregate pie. Indeed, the Mirrlees model is designed precisely to

illustrate and quantify this trade off. Proposition 6 suggests that, in dynamic economies, stronger

equity objectives might lead second best optimal policies to be time inconsistent. This will force

governments to achieve their equity objectives with third best policies.9 These will lead to greater

distortions and larger reductions in the aggregate pie than suggested by the Mirrlees model.

7 Conclusion

This paper has investigated Pareto efficient income taxation in an economy with infinitely-lived

individuals whose income generating abilities evolve according to a two-state Markov process.

The investigation has yielded two novel conclusions. First, when individuals are risk neutral, the

fraction of individuals who face a positive marginal income tax rate converges to zero and, in

addition, the tax rate these individuals face also goes to zero. Thus, in the long run, an efficient

income tax system involves no distortions in labor supply and hence no excess burden. Second,

Pareto efficient income tax systems can be time-consistent even when the degree of correlation

in ability types is large. Moreover, time consistency is more likely when governments have less

progressive policy agendas (i.e., lower spending and less redistribution). As we have argued, this

provides a theoretical rationale for believing that the equity-efficiency trade off may be steeper

9 Understanding what these third best policies look like is a challenging problem because when the government
cannot commit, the revelation principle does not hold. In a two period Principal-Agent model with variable types,
Battaglini (2003b) fully characterizes the optimal renegotiation proof contract extending the revelation principle
to this dynamic environment. He shows that when the second best optimal contract is not time consistent, the
third best optimal contract involves the agent playing a mixed strategy. The optimal contract induces the high
type agent to partially pool with the low type in the first period; and the degree of pooling monotonically increases
with the level of types’ persistence.
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than suggested by the static Mirrlees model.

It is well worth understanding how general these conclusions are. Our analysis of the two

period model shows that risk neutrality is a necessary condition for our result about distortions.

However, we also found that when individuals’ risk aversion is not too high, the basic pattern of

earnings under an efficient tax system is the same as in the risk neutral case. Thus, the broad

features of efficient tax systems that we identify in our basic model are robust to introducing

risk aversion. There are many other directions that the model could usefully be extended. For

example, it would be interesting to allow for more than two ability types. We leave this and other

extensions for future work.
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8 Appendix

Proof of Lemma 1: It is obvious that UL holds with equality, so we will just show that ICH (h1)

is binding. Let (bx, by) solve the relaxed problem and suppose that ICH (h1) is not binding. Without
loss of generality, we can assume that for all t > 1 and histories ht, the constraint ICH(ht) is not

binding. To see this, suppose that for some time period bt and some history hbt = {θ1, ..., θbt−1},
ICH(hbt) were binding. Suppose first that θ1 = θH . Then consider the allocation (x, by) in which

xbt(θH ;hbt) = bxbt(θH ;hbt) + ε; xbt(θL;hbt) = bxbt(θL;hbt);
and x1(θH ;h1) = bx1(θH ;h1)− δ

bt−1εPr ((hbt, θH) |θ1 = θH )

for ε > 0 and all the remaining consumptions are unchanged. Observe that the expected utility

of a high type in period one under this allocation is exactly the same as under (bx, by) because
E[
∞X
t=1

δt−1xt(θt;ht) |θ1 = θH ] = E[
∞X
t=1

δt−1bxt(θt;ht) |θ1 = θH ].

It follows that (x, by) satisfies ICH(h1) and yields the same value of the objective function as
(bx, by). It is also satisfies R and UL.
Next suppose that θ1 = θL. Then consider the allocation (x, by) in which

xbt(θH ;hbt) = bxbt(θH ;hbt) + ε; xbt(θL;hbt) = bxbt(θL;hbt);
and x1(θL;h1) = bx1(θL;h1)− δ

bt−1εPr ((hbt, θH) |θ1 = θL )

for ε > 0 and all the remaining consumptions are unchanged. Observe that the expected utility

of a low type in period one under this allocation is exactly the same as under (bx, by) because
E[
∞X
t=1

δt−1xt(θt;ht) |θ1 = θL ] = E[
∞X
t=1

δt−1bxt(θt;ht) |θ1 = θL ].

It follows that (x, by) satisfies UL. It also yields the same value of the objective function as (bx, by)
and satisfies R. Moreover, since ICH (h1) is not binding under (bx, by) it will not be binding under
(x, by) for ε sufficiently small.
It follows from this that (bx, by) solves the problem

max
{(xt(θt;ht),yt(θt;ht))}∞t=1

V (θH | h1)

s.t. UL, R
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This implies that (bx, by) is simply an efficient allocation in which V (θL | h1) = u. But, by

assumption, u is sufficiently high that this fails to satisfy at least one of the high types’ incentive

constraints ICH(ht). Q.E.D.

Proof of Lemma 2: Let (x,y) be an allocation satisfying the constraints of the relaxed problem.

We will show that for all t ≥ 2 we can find xt such that the allocation (xt,y) (i) satisfies all the

constraints and yields the same value of the objective function as (x,y); (ii) satisfies ICH(hτ )

with equality for all periods τ ∈ {2, ..., t} and all histories hτ ; and (iii) is identical to (x,y) for all

periods τ > t and all histories hτ . This implies the result.

We prove our claim by induction. Consider the claim for t = 2. Suppose that ICH (h2) is not

binding after some history h2. Suppose first that h2 = {θL}, so that the high type was a low type

in period 1. Since ICH (h2) is not binding, there must exist some ε > 0 such that:

V (θH |h2 ) = x2(θL;h2)− ϕ(y2(θL;h2)/θH) + δEθHV (θ3 | {h2, θL}) + ε

Now let x2 satisfy

x22(θH ;h2) = x2(θH ;h2)− ε; x22(θL;h2) = x2(θL;h2)

x21(θL;h1) = x1(θL;h1) + δαLHε; x
2
1(θH ;h1) = x1(θH ;h1)

and otherwise equals x. Thus, all we have done is to take consumption away from the high type

after history h2 and give the expected discounted value to the low type in period one. Clearly, this

does not effect the value of the objective function. Nor does it effect the (R) or (UL) constraints.

It satisfies the ICH(h2) constraint with equality by construction. We need to check that the

ICH(h1) constraint is satisfied; i.e., that:

V 2(θH |h1 ) ≥ x21(θL;h1)− ϕ(y1(θL;h1)/θH) + δEθHV
2(θ2 | {θL})

where V 2(θt | ht) is the value function corresponding to the allocation (x2,y). We have that:

V 2(θH |h1 ) = x21(θH ;h1)− ϕ(y1(θH ;h1)/θH) + δEθHV
2(θ2 |{θH} ).

= V (θH | h1)

≥ x1(θL;h1)− ϕ(y1(θL;h1)/θH) + δEθHV (θ2 |{θL} ).

= x21(θL;h1)− δεαLH − ϕ(y1(θL;h1)/θH) + δEθHV
2(θ2 |{θL} ) + δεαHH

≥ x21(θL;h1)− ϕ(y1(θL;h1)/θH) + δEθHV
2(θ2 |{θL} )
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where the third equality follows from the fact that (x,y) satisfies ICH(h1) and the fourth follows

from the fact that αHH ≥ αLH .

Next suppose that h2 = {θH} so that the high type was also a high type in period 1. Again,

there must exist some ε > 0 such that:

V (θH |h2 ) = x2(θL;h2)− ϕ(y2(θL;h2)/θH) + δEθHV (θ3 |{h2, θL} ) + ε

Again, we will show that we can find an alternative allocation that yields at least the same value

of the objective function, satisfies all the constraints of the relaxed problem and has the property

that ICH (h2) is binding. Now let x
2 be defined by:

x22(θH ;h2) = x2(θH ;h2)− ε;x22(θL;h2) = x2(θL;h2)

x21(θH ;h1) = x1(θH ;h1) + δαLHε;x
2
1(θL;h1) = x1(θL;h1)

and equals x otherwise. Thus, all we have done is to take consumption away from the high type

after history h2 and give the expected discounted value to the high type in period 1. Clearly, this

does not effect the value of the objective function. Nor does it effect the R or UL constraints. It

satisfies the ICH(h2) constraint with equality by construction and has no effect on the ICH(h1)

constraint.

Now suppose that the claim is true for τ = 2, ..., t − 1 and consider the claim for t. Since

the claim is true for t − 1, we can find xt−1 such that the allocation (xt−1,y) satisfies all the

constraints and yields the same value of the objective function as (x,y); (ii) satisfies ICH(hτ )

with equality for all periods τ ∈ {2, ..., t − 1} and all histories hτ ; and (iii) is identical to (x,y)

for all periods τ > t − 1 and all histories hτ . If (xt−1,y) is such that ICH (ht) is binding for all

histories ht then we can simply let x
t = xt−1.

If this is not the case, there must exist some history ht such that ICH (ht) is not binding.

Again, there are two possibilities, ht = {ht−1, θL} and ht = {ht−1, θH}. In either case, in the

same manner as above, we can find ex such that the allocation (ex,y) (i) yields the same value of
the objective function as (xt−1,y) (and hence (x,y)); (ii) satisfies ICH(ht) with equality; and (iii)

equals (xt−1,y) (and hence (x,y)) for all periods τ > t and all histories hτ . If ht = {ht−1, θH}

then ex will also satisfy ICH(hτ ) with equality for all periods τ ∈ {2, ..., t−1} so we can let xt = ex.
If ht = {ht−1, θL} and αHH > αLH , then ICH(ht−1) will hold strictly. However, in this case,

since the claim is true for τ = t − 1 we can find bx such that the allocation (bx,y) (i) satisfies all
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the constraints and yields the same value of the objective function as (ex,y); (ii) satisfies ICH(hτ )
with equality for all periods τ ∈ {2, ..., t− 1} and all histories hτ ; and (iii) is identical to (ex,y) for
all periods τ > t− 1 and all histories hτ . We can then let xt = bx. Q.E.D.
Proof of Lemma 3: From (1) we have that:

V (θH |ht ) = V (θL |ht ) +Φ (yt(θL;ht)) +∆EV (θt+1 |{ht, θL} ).

We have that

∆EV (θt+1 |{ht, θL} ) = δ (αHH − αLH)V (θH |{ht, θL} ) + δ (αHL − αLL)V (θL |{ht, θL} )

where V (θ |{ht, θL} ) is the expected lifetime utility of an individual who has type θ in period t+1

after history {ht, θL}. But by (1) we have that:

V (θH |{ht, θL} ) = V (θL |{ht, θL} ) +Φ (yt+1(θL; {ht, θL})) +∆EV (θt+2 |{ht, θL, θL} )

= V (θL |{ht, θL} ) +Φ (yt+1(θL; {ht, θL})) + δ (αHH − αLH)V (θH |{ht, θL, θL} )

+δ (αHL − αLL)V (θL |{ht, θL, θL} ).

Thus, we have that

∆EV (θt+1 |{ht, θL} ) = δ (αHH − αLH)Φ (yt+1(θL; {ht, θL}))

+δ2 (αHH − αLH)
2
V (θH |{ht, θL, θL} )

+δ2 (αHH − αLH) (αHL − αLL)V (θL |{ht, θL, θL} )

But again from (1) we have that

V (θH |{ht, θL, θL} ) = V (θL |{ht, θL, θL} ) +Φ (yt+2(θL; {ht, θL, θL}))

+δ (αHH − αLH)V (θH |{ht, θL, θL, θL} ) + δ (αHL − αLL)V (θL |{ht, θL, θL, θL} ).

So that

∆EV (θt+1 |{ht, θL} ) = δ (αHH − αLH)Φ (yt+1(θL; {ht, θL}))

+δ2 (αHH − αLH)
2
Φ (yt+2(θL; {ht, θL, θL}))

+δ3 (αHH − αLH)
3 V (θH |{ht, θL, θL, θL} )

+δ3 (αHH − αLH)
2 (αHL − αLL)V (θL |{ht, θL, θL, θL} ).
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Repeated application of this argument yields

∆EV (θt+1 |{ht, θL} ) =
∞X
j=1

δj [αHH − αLH ]
j Φ
¡
yt+j(θL;h

◦
t+j)

¢
.

and we have the claimed expression. Q.E.D.

Proof of Lemma 4: Let (x,y) solve the relaxed problem. Then by Lemmas 1 and 2 we may

assume with no loss of generality that x is such that (x,y) satisfies UL and all the incentive

constraints with equality. Thus, by Lemma 3 we can write the value of the objective function as

V (θH |h1 ) =
∞X
j=0

δj [αHH − αLH ]
j Φ
¡
y1+j(θL;h

◦
1+j)

¢
+ u (12)

The resource constraint can be written as G ≤ (1− δ)
P∞
t=1 δ

t−1E[yt(θt;ht) − xt(θt;ht)]. By

definition, we know that

V (θH |h1 ) =
∞X
t=1

δt−1E[xt(θt;ht)− ϕ(yt(θt;ht)/θt) |θ1 = θH ],

and

V (θL |h1 ) =
∞X
t=1

δt−1E[xt(θt;ht)− ϕ(yt(θt;ht)/θt) |θ1 = θL ].

Thus,

∞X
t=1

δt−1E[xt(θt;ht)] = µ
∞X
t=1

δt−1E[xt(θt;ht) |θ1 = θH ] + (1− µ)
∞X
t=1

δt−1E[xt(θt;ht) |θ1 = θL ]

= µ[V (θH |h1 ) +
∞X
t=1

δt−1E[ϕ(yt(θt;ht)/θt) |θ1 = θH ]

+(1− µ)[V (θL |h1 ) +
∞X
t=1

δt−1E[ϕ(yt(θt;ht)/θt) |θ1 = θL ]

= µV (θH |h1 ) + (1− µ)V (θL |h1 ) +
∞X
t=1

δt−1E[ϕ(yt(θt;ht)/θt)].

Substituting this into the resource constraint, yields,

G ≤ (1− δ)
∞X
t=1

δt−1E[yt(θt;ht)− µV (θH | h1)− (1− µ)V (θL | h1)− ϕ(yt(θt;ht)/θt)].

Using Lemma 3 and UL we can write this as

G ≤ (1− δ)
∞X
t=1

δt−1E[yt(θt;ht)− ϕ(yt(θt;ht)/θt)] (13)

−(1− δ)[µ
∞X
j=0

δj [αHH − αLH ]
j Φ
¡
y1+j(θL;h

◦
1+j)

¢
+ u]
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Thus, it follows that the earnings levels y must maximize the objective function (12) subject to

the constraint (13). Q.E.D.

Proof of Lemma 5: We know that (x,y) is a solution to Problem PII . To show that it solves

Problem PI , all we need show is that the low type’s incentive constraint ICL(ht) is satisfied for

all t and ht. For a given period t and history ht, this requires showing that

xt(θL;ht)− ϕ(yt(θL;ht)/θL) + δEθLV (θt+1 |{ht, θL} )

≥ xt(θH ;ht)− ϕ(yt(θH ;ht)/θL) + δEθLV (θt+1 |{ht, θH} )

or, equivalently, that

xt(θL;ht)− xt(θH ;ht) ≥ ϕ(yt(θL;ht)/θL)− ϕ(yt(θH ;ht)/θL) (14)

+δ[EθLV (θt+1 |{ht, θH} )− δEθLV (θt+1 |{ht, θL} )]

From the fact that ICH(ht) holds with equality, we have that

xt(θL;ht)− xt(θH ;ht) = ϕ(yt(θL;ht)/θH)− ϕ(yt(θH ;ht)/θH) (15)

+δEθH [V (θt+1 |{ht, θH})−EθHV (θt+1 |{ht, θL} ])

We can use this to prove the desired inequality. Note first that

[EθHV (θt+1 |{ht, θH} )− EθHV (θt+1 |{ht, θL} )] ≥ [EθLV (θt+1 |{ht, θH} )−EθLV (θt+1 |{ht, θL} )].

To see this, note that

[EθHV (θt+1 |{ht, θH} )−EθHV (θt+1 |{ht, θL} )]− [EθLV (θt+1 |{ht, θH} )−EθLV (θt+1 |{ht, θL} )]

= (αHH − αLH) [V (θH |{ht, θH})− V (θH |{ht, θL} )]

+(αHL − αLL)[V (θL |{ht, θH} ))− V (θL |{ht, θL} )]

Using Lemma 3, this difference equals

(αHH − αLH)
∞X
j=0

δj [αHH − αLH ]
j
(Φ
¡
yt+1+j(θL; {ht, θH}◦+j)

¢
− Φ

¡
yt+1+j(θL; {ht, θL}◦+j)

¢
).

Observe now that from the first order conditions that for all j

ϕ0(yt+1+j(θL; {ht, θH}◦+j)/θL) = θL,
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while (since γµ (1− δ) > 1)

ϕ0(yt+1+j(θL; {ht, θL}◦+j)/θL) ≤ θL.

Thus, for all j, yt+1+j(θL; {ht, θH}◦+j) ≥ yt+1+j(θL; {ht, θL}◦+j). Since Φ0 ≥ 0, it follows that the

above difference is non-negative.

It is also the case that

ϕ(yt(θL;ht)/θH)− ϕ(yt(θH ;ht)/θH) ≥ ϕ(yt(θL;ht)/θL)− ϕ(yt(θH ;ht)/θL).

To see this, note that the first order conditions imply that yt(θL;ht) < yt(θH ;ht). In addition, it

is the case that
ϕ0(y/θH)

θH
− ϕ0(y/θL)

θL
< 0.

It follows from these two claims and from (14) and (15) that ICL(ht) is satisfied.

Conversely, let (x,y) be a solution to Problem P I . We need to show that the earnings y

solve problem (3). Suppose not. Then (x,y) cannot solve the relaxed problem. Let (x0,y0) be a

solution to the relaxed problem with y0 6= y. Then by Lemma 4, we know that y0 solves problem

(3). Moreover, we can assume by Lemmas 1 and 2 without loss of generality that x0 is such that

(x0,y0) satisfies ICH(ht) with equality for all ht and that UL binds. But then it follows by the

above argument that (x0,y0) satisfies ICL(ht) for all t and ht. This is a contradiction. Q.E.D.

Proof of Lemma 6: Let (x,y) solve the relaxed problem. It suffices to show that there exists a

β < 1 such that if β ∈ (β, 1) then the eliminated constraints ICL, ICL(H) and ICL(L) are satisfied.

To do this, we must first establish some properties of the solution to the relaxed problem.

The Lagrangian for the relaxed problem is

L = (xH)
β − ϕ(yH/θH) + δ[αHH((xHH)

β − ϕ(yHH/θH)) + αHL((xHL)
β − ϕ(yHL/θL))] (16)

+λU{(xL)β − ϕ(yL/θL) + δ[αLH((xLH)
β − ϕ(yLH/θH)) + αLL((xLL)

β − ϕ(yLL/θL))]}

+λH{(xH)β − ϕ(yH/θH) + δ[αHH((xHH)
β − ϕ(yHH/θH)) + αHL((xHL)

β − ϕ(yHL/θL))]

−(xL)β + ϕ(yL/θH)− δ[αHH((xLH)
β − ϕ(yLH/θH)) + αHL((xLL)

β − ϕ(yLL/θL))]}

+λHH{(xHH)β − ϕ(yHH/θH)− (xHL)β + ϕ(yHL/θH)}

+λLH{(xLH)β − ϕ(yLH/θH)− (xLL)β + ϕ(yLL/θH)}

+λR{µ[(yH − xH) + δ(αHH(yHH − xHH) + αHL(yHL − xHL))]

+(1− µ)[(yL − xL) + δ(αLH(yLH − xLH) + αLL(yLL − xLL))]}.
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The first order conditions for the high type’s consumptions imply that

β(xH)
β−1 =

λRµ

1 + λH
, (17)

β(xHH)
β−1 =

λRµ

1 + λH + λHH/δαHH
, (18)

and

β(xHL)
β−1 =

λRµ

1 + λH − λHH/δαHL
.

Those for the low type’s consumptions imply that:

β(xL)
β−1 =

λR(1− µ)
λU − λH

, (19)

β(xLL)
β−1 =

λR(1− µ)
λU − αHL

αLL
λH − λLH/δαLL

, (20)

and

β(xLH)
β−1 =

λR(1− µ)
λU − αHH

αLH
λH + λLH/δαLH

. (21)

With respect to earnings levels, the first order conditions for the high type’s earnings imply:

ϕ0(yH/θH)

θH
=

λRµ

1 + λH
,

ϕ0(yHH/θH)

θH
=

λRµ

1 + λH + λHH/δαHH
,

and

ϕ0(yHL/θL)

θL
=

λRµ− ϕ0(yHL/θH)
θH

λHH

δαHL

(1 + λH)
. (22)

Those for the low type imply that:

ϕ0(yL/θL)

θL
=

ϕ0(yL/θH)
θH

λH + λR(1− µ)
λU

, (23)

ϕ0(yLL/θL)

θL
=

λLH
δαLL

ϕ0(yLL/θH)
θH

+ λR(1− µ)
λU − αHL

αLL
λH

, (24)
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and

ϕ0(yLH/θH)

θH
=

λR(1− µ)
λU − αHH

αLH
λH + λLH/δαLH

. (25)

We can use these conditions to establish some facts about the solution to the relaxed problem.

Claim 1: λH > 0 implies λHH > 0 and λLH > 0.

We first show that λHH > 0. Suppose, to the contrary, that λHH = 0. Then it follows from the

first order conditions for the high type’s consumptions that xHL = xH = xHH . But from the

conditions describing the high type’s earnings levels if λHH = 0, then, since λH > 0, we have that:

ϕ0(yHL/θL)

θL
=

ϕ0(yHH/θH)

θH

which implies that yHL/θL < yHH/θH . But then, since xHH = xHL, it is clear that IC(HH)

would be violated.

We now show that λLH > 0. Again, suppose to the contrary, that λLH = 0. Then it follows

from the first order conditions for the low type’s consumptions and the fact that αHH

αLH
≥ αHL

αLL
that

α(xLL)
α−1 =

λR(1− µ)
λU − αHL

αLL
λH
≤ λR(1− µ)

λU − αHH

αLH
λH

= α(xLH)
α−1.

It follows that xLH ≤ xLL. But from our analysis of earnings levels, if λLH = 0 then

ϕ0(yLL/θL)

θL
=

λR(1− µ)
λU − αHL

αLL
λH
≤ λR(1− µ)

λU − αHH

αLH
λH

=
ϕ0(yLH/θH)

θH

which implies that yLL/θL < yLH/θH . But then it is clear that IC(LH) would be violated. ¥

Claim 2: λH > 0 implies that yHH ≥ yHL and yLH ≥ yLL

We first show that yHH ≥ yHL. From the previous claim, we know that λHH > 0 and hence that

(xHH)
β − ϕ(yHH/θH) = (xHL)

β − ϕ(yHL/θH).

But the first order conditions for the high type’s consumptions together with the fact that λHH > 0

imply that xHL < xHH . Thus, yHH must exceed yHL.

We next show that yLH ≥ yLL. From the previous claim, we know that λLH > 0 and hence

that

(xLH)
β − ϕ(yLH/θH) = (xLL)

β − ϕ(yLL/θH).
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It follows that if yLH < yLL we must have that xLL > xLH . From the first order conditions for

yLH and xLH we know that

β(xLH)
β−1 =

ϕ0(yLH/θH)

θH
.

From the first order conditions for yLL, we know that

ϕ0(yLL/θL)

θL
(λU −

αHL
αLL

λH −
λLH
δαLL

) +
λLH
δαLL

{ϕ
0(yLL/θL)

θL
− ϕ0(yLL/θH)

θH
} = λR(1− µ).

Thus,

ϕ0(yLL/θL)

θL
+

λLH/δαLL
λU − αHL

αLL
λH − λLH/δαLL

{ϕ
0(yLL/θL)

θL
−ϕ

0(yLL/θH)

θH
} = λR(1− µ)

λU − αHL

αLL
λH − λLH/δαLL

.

Since
ϕ0(yLL/θL)

θL
>

ϕ0(yLL/θH)

θH
,

it follows from the first order condition for xLL that

ϕ0(yLL/θL)

θL
< β(xLL)

β−1.

Thus, if xLL > xLH we have that

ϕ0(yLH/θH)

θH
= β(xLH)

β−1 > β(xLL)
β−1 >

ϕ0(yLL/θL)

θL
.

But this inequality implies that yLH > yLL - a contradiction. ¥

Claim 3: There exists a ε > 0 and a β1 < 1 such that for all β ∈ (β1, 1), λH ≥ ε.

Observe first that there must be a κ > 0 and a β0 < 1 such that for any β ∈ (β0, 1),max{λH ,λHH ,λLH} >

κ. If this were not to be true, then the solution of the problem would be arbitrarily near to the

efficient solution for some β close to 1. But, by assumption, the second best Pareto frontier is

strictly below the first best frontier at β = 1 and, by the Theorem of the Maximum, the value

function of the maximization of a continuous function with continuous constraint correspondence

(as (16)) is continuous: therefore we would have a contradiction.

Now suppose, contrary to the claim, that for any ε > 0 and any β1 < 1 there is a β ∈ [β1, 1)

such that λH < ε. Then, since λRµ
1−λHH/δαHL

→ 1 as β → 1, there must be a sequence βn converging

to one, such that the multiplier λHH corresponding to β
n is less than κ. We can therefore assume

that the multiplier λLH corresponding to βn exceeds κ. But then we have:

βn(xLL)
βn−1 =

λR(1− µ)
λU − λLH/δαLL

>
λR(1− µ)

λU − κ/δαLL

=

µ
λU

λU − κ/δαLL

¶
λR(1− µ)

λU
.
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We know that, as βn → 1, λR(1−µ)λU
converges to one and λU converges to

1−µ
µ . Thus, we can find

an n and some ² > 0, such that for n > n,

βn(xLL)
βn−1 > 1 + ².

But this contradicts the fact that βn → 1. ¥

Claim 4: There exists a β2 ∈ (β1, 1) such that for all β ∈ (β2, 1), yH ≥ yL.

From (23) we can write:

ϕ0(yL/θL)

θL

µ
1− λH

λU

¶
+

λH
λU

∙
ϕ0(yL/θL)

θL
− ϕ0(yL/θH)

θH

¸
=

λR (1− µ)
λU

It can be verified from (23) that yL > 0 for any β. By Claim 3 it follows that there exists some

ε > 0 such that

λH

∙
ϕ0(yL/θL)

θL
− ϕ0(yL/θH)

θH

¸
> ε

for any β ∈ (β1, 1). Thus, for any β ∈ (β1, 1)

ϕ0(yL/θL)

θL

µ
1− λH

λU

¶
+

ε

λU
<

λR (1− µ)
λU

which implies that
ϕ0(yL/θL)

θL
<

λR (1− µ)
λU − λH

− ε

But we know that

lim
β→1

λR (1− µ)
λU − λH

= lim
β→1

βxβ−1L ' 1 = ϕ0(yH/θH)

θH
.

Therefore, it must be the case that for sufficiently large β

ϕ0(yL/θL)

θL
<

ϕ0(yH/θH)

θH
,

which implies that yH ≥ yL. This implies the result. ¥

Claim 5: There exists some β3 < 1 such that if β ∈ (β3, 1), then yHL ≥ yLL.

The first order conditions for the high type’s consumptions imply that limβ→1 λHH = 0. From

the first order conditions for xHL and yHL we have that

lim
β→1

ϕ0(yHL/θL)

θL
= lim

β→1

λRµ− ϕ0(yHL/θH)
θH

λHH

δαHL

(1 + λH)
= 1. (26)
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We now prove that limβ→1
ϕ0(yLL/θL)

θL
< limβ→1 β(xLL)

β−1 = 1. From the first order condition

(24) we have:

ϕ0(yLL/θL)

θL
=

λLH

δαLL

³
λU − αHL

αLL
λH

´ ϕ0(yLL/θH)
θH

+
λR (1− µ)

λU − αHL

αLL
λH

But from the first order condition (20) we also know that:

λR (1− µ)
λU − αHL

αLL
λH

= β (xLL)
β−1

⎡⎣1− λLH

δαLL

³
λU − αHL

αLL
λH

´
⎤⎦

So:

ϕ0(yLL/θL)

θL
− 1 = β (xLL)

β−1 − 1 + λLH

δαLL

³
λU − αHL

αLL
λH

´ ∙ϕ0(yLL/θH)
θH

− β (xLL)
β−1

¸
(27)

It is easy to verify that λLH must be strictly positive for any β in [0, 1] (otherwise (20) and

(21) can not be satisfied simultaneously); and, as shown above, λU and λH are also strictly

positive. If limβ→1
³
ϕ0(yLL/θH)

θH
− 1
´
< 0, therefore, (27) implies that limβ→1

ϕ0(yLL/θL)
θL

− 1 < 0.

If limβ→1
³
ϕ0(yLL/θH)

θH
− 1
´
≥ 0, then we have:

ϕ0(limβ→1 yLL/θL)

θL
− 1 =

⎛⎝ lim
β→1

λLH

δαLL

³
λU − αHL

αLL
λH

´
⎞⎠∙ϕ0(limβ→1 yLL/θH)

θH
− 1
¸

<
ϕ0(limβ→1 yLL/θL)

θL
− 1

since, from (20) and (21), limβ→1
λLH

δαLL
³
λU−αHL

αLL
λH

´ < 1. But this is obviously impossible. We

conclude that

lim
β→1

ϕ0(yLL/θL)

θL
< 1. (28)

We now show that there exists a β3 < 1 such that for any β ∈ (β3, 1) any solution of the

program implies:

ϕ0(yHL/θL)

θL
>

ϕ0(yLL/θL)

θL

Assume not. Then we can construct a sequence hβni∞n=1 converging to one such that for any

element of the sequence we have

ϕ0(ynHL/θL)

θL
≤ ϕ0(ynLL/θL)

θL
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where ynHL and y
n
HL are solutions corresponding to βn. Let y

0
HL = limβn→1 y

n
HL and y

0
LL =

limβn→1 y
n
LL be limits of the solution along this sequence (it is immediate to verify that the limits

exist without loss of generality). Then, by the continuity of ϕ0, it must be that
ϕ0(y0HL/θL)

θL
≤

ϕ0(y0LL/θL)
θL

. This implies that y0HL and y
0
LL are not solutions of the program, otherwise we would

violate (28) and (26). But it is impossible that the limit of solutions is not a solution since, by

the Theorem of the Maximum, the solution of the program is an upper-hemicontinuous correspon-

dence. ¥

Now let β = max{β2,β3} < 1. Then we claim that if β ∈ (β, 1) then IC(L), IC(HL) and

IC(LL) are satisfied. The last two follow from the standard static argument given that (by

Claims 1 and 3) IC(HH) and IC(LH) hold with equality and (by Claims 2 and 3) yHH ≥ yHL
and yLH ≥ yLL. For IC(L) to be satisfied we need that

(xL)
β − ϕ(yL/θL) + δ[αLH((xLH)

β − ϕ(yLH/θH)) + αLL((xLL)
β − ϕ(yLL/θL))]

≥ (xH)
β − ϕ(yH/θL) + δ[αLH((xHH)

β − ϕ(yHH/θH)) + αLL((xHL)
β − ϕ(yHL/θL))]

or equivalently that

(xL)
β − (xH)β ≥ ϕ(yL/θL)− ϕ(yH/θL) + δ[αLH((xHH)

β − ϕ(yHH/θH)) + αLL((xHL)
β − ϕ(yHL/θL))]

−δ[αLH((xLH)β − ϕ(yLH/θH)) + αLL((xLL)
β − ϕ(yLL/θL))]

= ϕ(yL/θL)− ϕ(yH/θL) + δ[αLH(UHH − ULH) + αLL(UHL − ULL)]

where UHH = (xHH)
β − ϕ(yHH/θH), etc.

By Claim 1, we know that IC(H) is satisfied with equality in the solution to the relaxed

problem, so that

(xH)
β−ϕ(yH/θH)+δ[αHH(UHH)+αHL(UHL)] = (xL)

β−ϕ(yL/θH)+δ[αHH(ULH)+αHL(ULL)]

implying that

(xL)
β − (xH)β = ϕ(yL/θH)− ϕ(yH/θH) + δ[αHH(UHH − ULH) + αHL(UHL − ULL)].

Thus, all we need to show is that

Φ (yH) + δ[αHH(UHH − ULH) + αHL(UHL − ULL)]

≥ Φ (yL) + δ[αLH(UHH − ULH) + αLL(UHL − ULL)]
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By Claim 4 we know that yL ≤ yH which, since Φ0 (y) > 0, implies that Φ (yH) ≥ Φ (yL). Thus it

suffices to show that

(αHH − αLH)(UHH − ULH) + (αHL − αLL)(UHL − ULL) ≥ 0.

But since

UHH − ULH = (xHH)
β − ϕ(yHH/θH)− ((xLH)β − ϕ(yLH/θH))

= (xHL)
β − ϕ(yHL/θH)− ((xLL)β − ϕ(yLL/θH))

= UHL − ULL +Φ (yHL)− Φ (yLL)

this requires that

(αHH − αLH)(UHL +Φ (yHL)− ULL − Φ (yLL)) + (αHL − αLL)(UHL − ULL) ≥ 0

or, equivalently that (αHH − αLH)(Φ (yHL) − Φ (yLL)) ≥ 0. This follows from the fact that, by

Claim 5, yHL ≥ yLL.

Now suppose that (x,y) is a second best efficient allocation. Suppose that it did not solve the

relaxed problem. Then there would exist another allocation (bx, by) that yields a higher value of
the objective function and satisfies UL, R, IC(H), IC(LH) and IC(HH) all with equality. It must

be the case therefore that it does not satisfy one or more of the eliminated constraints IC(L),

IC(HL), and IC(LL). But for β ∈ (β, 1) that cannot be true as we have just shown. Q.E.D.

Proof of Proposition 3: It follows from the first order conditions for the high types consumptions

and earnings derived in the proof of the previous Lemma and the fact that λHH > 0 that yH and

yHH are set efficiently, while yHL is distorted downwards. It is also clear from the first order

conditions that yLH is set efficiently. To prove that yL is distorted downwards, we need to show

that
ϕ0(yL/θL)

θL
=

ϕ0(yL/θH)
θH

λH + λR(1− µ)
λU

< β(xL)
β−1 =

λR(1− µ)
λU − λH

From the condition that yL satisfies, we know that

ϕ0(yL/θL)

θL
(λU − λH) + λH{

ϕ0(yL/θL)

θL
− ϕ0(yL/θH)

θH
} = λR(1− µ)

Thus,
ϕ0(yL/θL)

θL
+

λH
(λU − λH)

{ϕ
0(yL/θL)

θL
− ϕ0(yL/θH)

θH
} = λR(1− µ)

(λU − λH)
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and we have that
ϕ0(yL/θL)

θL
>

ϕ0(yL/θH)

θH
,

which yields the result since λU − λH > 0. To prove that yLL is distorted downwards, we need to

show that

ϕ0(yLL/θL)

θL
=

λLH
δαLL

ϕ0(yLL/θH)
θH

+ λR(1− µ)
λU − αHL

αLL
λH

< β(xLL)
β−1 =

λR(1− µ)
λU − αHL

αLL
λH − λLH/δαLL

From the condition that yLL satisfies, we know that

ϕ0(yLL/θL)

θL
(λU −

αHL
αLL

λH −
λLH
δαLL

) +
λLH
δαLL

{ϕ
0(yLL/θL)

θL
− ϕ0(yLL/θH)

θH
} = λR(1− µ)

Thus,

ϕ0(yLL/θL)

θL
+

λLH/δαLL
λU − αHL

αLL
λH − λLH/δαLL

{ϕ
0(yLL/θL)

θL
−ϕ

0(yLL/θH)

θH
} = λR(1− µ)

λU − αHL

αLL
λH − λLH/δαLL

and we have that
ϕ0(yLL/θL)

θL
>

ϕ0(yLL/θH)

θH
,

which yields the result since λU − αHL

αLL
λH − λLH/δαLL > 0.

We next show that the degree of distortion in the earnings of those who becomes low types in

the second period converges to 0 as β → 1. As noted in the proof of Claim 5 of Lemma 6, the

first order conditions for the high type’s consumptions imply that limβ→1 λHH = 0. From the

first order conditions for xHL and yHL we have that

lim
β→1

ϕ0(yHL/θL)

θL
= lim

β→1

λRµ− ϕ0(yHL/θH)
θH

λHH

δαHL

(1 + λH)
= 1 = lim

β→1
β (xHL)

β−1 .

Finally, we show that yLL > yL. From the first order conditions for the low type’s earnings,

we know that

ϕ0(yLL/θL)

θL
(λU −

αHL
αLL

λH)−
λLH
δαLL

ϕ0(yLL/θH)

θH
= λR(1− µ)

and that
ϕ0(yL/θL)

θL
λU −

ϕ0(yL/θH)

θH
λH = λR(1− µ).

It will be shown in the next proposition that xL > xLL. This implies from the first order conditions

for xL and xLL that [αLL − αHL]λHδ < λLH . Thus,

λR(1− µ) =
ϕ0(yLL/θL)

θL
(λU −

αHL
αLL

λH)−
λLH
δαLL

ϕ0(yLL/θH)

θH

<
ϕ0(yLL/θL)

θL
(λU − λH) +

µ
1− αHL

αLL

¶
λHΦ

0(yLL/θH)

41



Since, by (19), as β → 1 we have that (λU − λH)→ λR(1− µ), we can write:

1− ϕ0(yLL/θL)

θL
<

µ
1− αHL

αLL

¶
λH

λR(1− µ)
Φ0(yLL/θH)

Consider now (23), again (19) implies

1− ϕ0(yL/θL)

θL
' λH

λR(1− µ)
Φ0(yLL/θH)

>

µ
1− αHL

αLL

¶
λH

λR(1− µ)
Φ0(yL/θH)

Therefore:
ϕ0(yLL/θL)

θL
>

ϕ0(yL/θL)

θL

and the result follows by the convexity of ϕ. Q.E.D.

Proof of Proposition 4: For the first statement we need to show that xH ∈ (xHL, xHH) and

xL ∈ (xLL, xLH). The first claim follows immediately from the first order conditions for the high

types consumption and the fact that (as shown in the proof of Lemma 6) λHH is positive. For the

second claim, note first that since (as shown in the proof of Lemma 6) yLL < yLH the incentive

constraint IC(LH) implies that xLL < xLH . Thus, if xL /∈ (xLL, xLH), then either it is the case

that xL ≤ xLL < xLH or it is the case that xLL < xLH ≤ xL.

Suppose the former. Then, from the first order conditions for xL and xLL,

λR(1− µ)
λU − λH

≥ λR(1− µ)
λU − αHL

αLL
λH − λLH/δαLL

.

This implies that [αLL − αHL]λHδ ≥ λLH . But this means that

αHH
αLH

λH − λLH/δαLH ≥
αHH
αLH

λH − λH [αLL − αHL]/αLH = λH

and hence that
λR(1− µ)

λU − (αHH

αLH
λH − λLH/δαLH)

≥ λR(1− µ)
λU − λH

.

From the first order conditions for xL and xLH this implies that β(xLH)
β−1 ≥ β(xL)

β−1 which

means that xLH ≤ xL - a contradiction.

Suppose then that xLL < xLH ≤ xL. From the first order conditions for xL and xLH ,

λR(1− µ)
λU − λH

≤ λR(1− µ)
λU − (αHH

αLH
λH − λLH/δαLH)

.
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This implies that λLH ≤ δ(αHH − αLH)λH . But this means that

αHL
αLL

λH + λLH/δαLL ≤
αHL
αLL

λH + (αHH − αLH)λH/αLL = λH

and hence that
λR(1− µ)

λU − αHL

αLL
λH − λLH/δαLL

≤ λR(1− µ)
λU − λH

.

From the first order conditions for xL and xLL this implies that β(xLL)
β−1 ≤ β(xL)

β−1 which

means that xLL ≥ xL - a contradiction.

For the second statement, we need to show that for K ∈ {L,H}

β(xK)
β−1 < αKHβ(xKH)

β−1 + αKLβ(xKL)
β−1.

Define υ (x) = (x)β and υ(xi) = vi for i = K,KL,KH. Consider a decrease in υK by φ (which

can be positive or negative) and a contextual increase of υKL and υKH by φ
δ . After this change

the utility maintenance constraint and the incentive compatibility constraints at t = 1 and 2 are

obviously satisfied, since utilities at t = 2 change by the same amounts and the net present value

of the expected utility of reporting K at t = 1 is unchanged. It must be that this change does

not relax the resources constraint, therefore:

∂

∂φ

∙
υ−1 (υK − φ) + δ

µ
αKHυ

−1
µ
υKL +

φ

δ

¶
+ αKHυ

−1
µ
υKH +

φ

δ

¶¶¸
= 0 (29)

where υ−1(·) is the inverse of υ. By Jensen’s inequality, we have:

0 =

µ
αKH

υ0 (υKH)
+

αKH
υ0 (υKL)

¶
− 1

υ0 (υK)
>

µ
1

αKHυ0 (υKH) + αKHυ0 (υKL)

¶
− 1

υ0 (υK)

which implies β(xK)
β−1 < αKHβ(xKH)

β−1 + αLLβ(xKL)
β−1. Q.E.D.

Proof of Lemma 7: Consider a particular period t ≥ 2 and some history ht. We are interested in

knowing when (x∗ht ,y
∗
ht
) will be a solution to PIht . This is clearly the case if ht 6= h

∗
t = {θL, ...θL}

since Proposition 2 tells us that (x∗ht ,y
∗
ht
) is first best efficient. Therefore we focus attention on

the history h∗t .

Observe that the program PIh∗t is identical to P
I , but for two exceptions. On the one hand, the

reservation value of those with history h∗t who are low types at time t is their expected continuation

value V ∗(θL | h∗t ) under (x∗,y∗) instead of u. On the other hand, the revenue requirement is not

G/(1− δ), but the expected revenue generated from individuals with history h∗t by (x
∗,y∗). We
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will exploit this similarity to solve the program PIh∗t in the same way as we did the program PI .

However, a certain amount of work is necessary to show that the equivalent of Lemma 1 holds for

the relaxed program corresponding to PIh∗t .

To this end, consider first the following revenue maximization problem:

max
(xh∗t

,yh∗t
)

∞X
j=0

δjE[yt+j(θt+j ;ht+j)− xt+j(θt+j ;ht+j) |h∗t ]

s.t. V (θL | h∗t ) ≥ V ∗(θL | h∗t )

and ICH(ht+j) & ICL(ht+j) ∀ ht+j º h∗t ∀ j = 0, 1, ..

Thus, we maximize the expected present value of revenues that can be extracted from individuals

with history h∗t at time t subject to the constraint that those with low ability at time t have at

least as much utility as under (x∗h∗t ,y
∗
h∗t
) and the incentive constraints. Let (xRh∗t ,y

R
h∗t
) denote the

solution to the revenue maximizing problem. We can immediately apply Lemmata 1-5 to this

problem and conclude that the earnings path yRh∗t solves the problem

max
yh∗t

(1− δ)
∞X
j=0

δjE[yt+j(θt+j ;ht+j)− ϕ(yt+j(θt+j ;ht+j)/θt+j) |h∗t ]

−(1− δ)[Pr(θt = θH |h∗t )
∞X
j=0

δj [αHH − αLH ]
j Φ
¡
yt+j(θL;h

∗
t+j)

¢
+ V ∗(θL | h∗t )]

We can now establish:

Lemma 8 If (11) holds, then for any h∗t+j, y
∗
t+j(θL;h

∗
t+j) > y

R
t+j(θL;h

∗
t+j).

Proof: Since Pr(θt = θH |h∗t ) = αLH , for any history h
∗
t+j , y

R
t+j(θL;h

∗
t+j) satisfies the first order

condition

αLL
αLH

[1−
ϕ0(yRt+j(θL;h

∗
t+j)/θL)

θL
] =

∙
1− αHL

αLL

¸j
Φ0
¡
yRt+j(θL;h

∗
t+j)

¢
. (30)

Under our assumption that ϕ000 ≥ 0 the revenues are a strictly concave function of each yt+j ,

implying that revenues are decreasing in yt+j(θL;h
∗
t+j) on the interval [y

R
t+j(θL;h

∗
t+j),∞). From

(6) we have that y∗t+j
¡
θL;h

∗
t+j

¢
solves:∙

1− αHL
αLL

¸1−t
γ (1− δ) (1− µ)
γµ(1− δ)− 1 [1−

ϕ0(y∗t+j(θL;h
∗
t+j)/θL)

θL
] =

∙
1− αHL

αLL

¸j
Φ0
¡
y∗t+j(θL;h

∗
t+j)

¢
.

(31)
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Using (11): ∙
1− αHL

αLL

¸1−t
γ (1− δ) (1− µ)
γµ(1− δ)− 1

≥
∙
1− αHL

αLL

¸−1
γ (1− δ) (1− µ)
γµ(1− δ)− 1 >

αLL
αLH

So the right hand side of (31) is larger than the right hand side of (30), and concavity of the

revenue function implies that y∗t+j(θL;h
∗
t+j) > y

R
t+j(θL;h

∗
t+j). Q.E.D.

We can now show that the equivalent of Lemma 1 holds for the relaxed program corresponding

to PIh∗t .

Lemma 9 Let (xh∗t ,yh∗t ) solve the relaxed problem corresponding to PIh∗t in which the incentive
compatibility constraints for the low types are ignored. Then ICH(h

∗
t ) holds with equality.

Proof: Assume, by contradiction, that ICH(h
∗
t ) is not binding. Following the same argument as

in Lemma 1, it follows that (xh∗t ,yh∗t ) must be efficient starting from h
∗
t . Therefore, using Lemma

7 and Proposition 2

yt+j(θL;h
∗
t+j) > y

∗
t+j(θL;h

∗
t+j) > y

R
t+j(θL;h

∗
t+j)

for any j ≥ 0, while for all histories ht+j 6= h∗t+j

yt+j(θL;h
∗
t+j) = y

∗
t+j(θL;h

∗
t+j) = y

R
t+j(θL;h

∗
t+j).

Since revenues are strictly decreasing on the interval [yRt+j(θL;h
∗
t+j),∞), it follows that the tax

revenues generated by (xh∗t ,yh∗t ) must be strictly lower than the revenues generated by the ex

ante optimal solution (x∗ht ,y
∗
ht
) starting from h∗t : but this is a contradiction because then the

revenues constraint would be violated. Q.E.D.

Given this last lemma, we can apply Lemmata 2-5 and conclude that (x∗h∗t ,y
∗
h∗t
) will be a

solution to PIh∗t if and only if y
∗
h∗t
is a solution to the problem

max
yht

∞X
j=0

δj [αHH − αLH ]
j
Φ
¡
yt+j(θL;h

∗
t+j)

¢
+ V ∗(θL | h∗t ) (PSh∗t )

s.t. R∗ (h∗t ) (1− δ) ≤ (1− δ)
∞X
j=0

δjE[yt+j(θt+j ;ht+j)− ϕ(yt+j(θt+j ;ht+j)/θt+j) |h∗t ]

(32)

−(1− δ)[Pr(θt = θH |h∗t )
∞X
j=0

δj [αHH − αLH ]
j
Φ
¡
yt+j(θL;h

∗
t+j)

¢
+ V ∗(θL | h∗t )]
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Accordingly, to prove the result we need to show that y∗h∗t is a solution to the problem if and only

if (11) holds.

Since Pr(θt = θH |h∗t ) = αLH , the Lagrangian of PSh∗t is:

Lh∗t =
∞X
j=0

δj [αHH − αLH ]
j
Φ
¡
yt+j(θL;h

∗
t+j)

¢
(33)

+
[γS (1− δ)]

(1− γSαLH(1− δ))

∞X
j=0

δjE[yt+j(θt+j;ht+j)− ϕ(yt+j(θt+j ;ht+j)/θt+j) |h∗t ]

where we have divided through by 1− γSαLH(1− δ) and omitted the constants V ∗(θL | h∗t ) and

R∗ (h∗t ) . We denote the Lagrange multiplier γS to distinguish it from the analogous multiplier γ

for the program solved by y∗. Let ySh∗t denote the solution to this program. Under our assumption

that ϕ000 ≥ 0 the Lagrangian is a strictly concave function of each yt+j and the solution is unique.

We can now prove the Proposition:

Sufficient condition: If (11) is satisfied, then y∗h∗t is a solution to problem PSh∗t . We proceed in

three steps.

Step 1. We first show that

γS (1− δ)αLL
γSαLH(1− δ)− 1 ≤

∙
1− αHL

αLL

¸1−t
γ (1− δ) (1− µ)
γµ(1− δ)− 1 (34)

Assume, by contradiction, that this inequality is not true. The optimal solution ySt+j
¡
θL;h

∗
t+j

¢
satisfies the first order condition:

γS (1− δ)αLL
γSαLH(1− δ)− 1 [1−

ϕ0(ySt+j(θL;h
∗
t+j)/θL)

θL
] =

∙
1− αHL

αLL

¸j
Φ0
¡
ySt+j(θL;h

∗
t+j)

¢
(35)

if ht+j 6= h∗t+j ; and it would be fully efficient otherwise. If (34) is not true, then after any

history h∗t+j , concavity of the Lagrangian implies that the solution y
S
t+j(θL;h

∗
t+j) of (35) is strictly

larger than the ex ante optimal solution y∗t+j(θL;h
∗
t+j). Moreover, from Lemma 7 we know that

that the ex ante optimal solution y∗t+j(θL;h
∗
t+j) is larger than the revenue maximizing solution

yRt+j(θL;h
∗
t+j). Accordingly,

ySt+j(θL;h
∗
t+j) > y

∗
t+j(θL;h

∗
t+j) > y

R
t+j(θL;h

∗
t+j)

Since, as proven in Lemma 7, tax revenues are strictly decreasing on the interval [yRt+j(θL;h
∗
t+j),∞),

this would imply that the revenues corresponding to the earnings path ySh∗t are strictly lower than
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under the ex ante optimal solution y∗h∗t : it follows that the revenue constraint (32) is not satisfied

- a contradiction.

Step 2. Next we show that:

γS (1− δ)αLL
γSαLH(1− δ)− 1 ≥

∙
1− αHL

αLL

¸1−t
γ (1− δ) (1− µ)
γµ(1− δ)− 1 (36)

Assume, by contraction, that (36) is not true. We know by the analogue of Lemma 4 that if ySh∗t

solves problem PSh∗t and the consumption levels x
S
h∗t
are such as to make ICH(ht+j) for all j and

ht+j º h∗t and the low type’s utility constraint hold with equality given ySh∗t , then (x
S
h∗t
,ySh∗t ) must

solve problem PIh∗t . But if (36) is not true, then after any history h
∗
t+j the solution y

S
t+j(θL;h

∗
t+j)

of (35) is smaller and hence more distorted than the ex ante optimal solution y∗t+j(θL;h
∗
t+j). Since

the solution on any other history would be efficient both under y∗h∗t and y
S
h∗t
, we would have that

aggregate surplus is lower under (xSh∗t ,y
S
h∗t
) than under (x∗h∗t ,y

∗
h∗t
). But this is a contradiction since

in this case it is impossible that all the constraints of program PIh∗t are satisfied and its value is

strictly larger than V ∗(θH | h∗t ).

Step 3. From Steps 1 and 2 it follows that

γS (1− δ)αLL
γSαLH(1− δ)− 1 =

∙
1− αHL

αLL

¸1−t
γ (1− δ) (1− µ)
γµ(1− δ)− 1 .

From (35) and (31) it follows that y∗h∗t solves P
S
h∗t
as claimed.

Necessary condition: If (11) is not satisfied, then y∗h∗t is not a solution to problem PSh∗t .

If (11) does not hold, then (31) and (30) imply that after any history h∗t+j , y
∗
t+j(θL;h

∗
t+j) is

smaller than the revenue maximizing solution yRt+j(θL;h
∗
t+j). Let yh∗t be an earnings path such that

for any history h∗t+j , yt+j(θL;h
∗
t+j) ∈ (y∗t+j(θL;h∗t+j),min{yRt+j(θL;h∗t+j), y∗(θL)}) but otherwise

equals y∗h∗t . Then this earnings path raises strictly more revenue and yields a strictly higher level of

the objective function than does y∗h∗t . Accordingly, y
∗
h∗t
is not a solution to problem PSh∗t . Q.E.D.

Proof of Proposition 6: Let Ω = G + (1− δ)u. Then, if (x∗,y∗) is a second best efficient
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allocation, Lemma 5 tells us that y∗ = y∗(Ω) where y∗(Ω) solves the problem

max
∞X
j=0

δj [αHH − αLH ]
j
Φ
¡
y1+j(θL;h

◦
1+j)

¢
+ u

s.t. Ω ≤ (1− δ)
∞X
t=1

δt−1E[yt(θt;ht)− ϕ(yt(θt;ht)/θt)]

−(1− δ)[µ
∞X
j=0

δj [αHH − αLH ]
j
Φ
¡
y1+j(θL;h

◦
1+j)

¢
].

Let γ(Ω) denote the associated Lagrange multiplier. Condition (11) of Proposition 5 implies that,

when αLH
αHH

∈ (0, µ), there is a threshold γ > 1
µ(1−δ) such that (x

∗,y∗) is time consistent if and

only if γ(Ω) ≤ γ. Let Ω be the maximum value of Ω such that the above problem has a solution.

Let Ω be the largest value of Ω such that there exists an efficient allocation in which those who are

low types in period one have expected utility u and none of the high types’ incentive constraints

are violated. To prove the Proposition, we will demonstrate that as Ω increases from Ω to Ω, γ(Ω)

increases from 1
µ(1−δ) to ∞.

Define the functions

Λ1 (y) =
Φ0 (y)

1− ϕ0(y/θL)
θL

which is increasing in y; and

Λ2 (t, γ) =

∙
1− αHL

αLL

¸1−t
(1− µ)
1− 1

γ(1−δ)

which is decreasing in γ. We know from our characterization of y∗(Ω) that, for any t:

Λ1 (y
∗
t (θL;h

∗
t ;Ω)) = Λ2 (t, γ(Ω)) .

For all other histories, y∗t (θL;ht;Ω) is efficient.

Now consider the pure revenue maximization problem:

max
(x,y)

∞X
t=1

δt−1E[yt(θt;ht)− xt(θt;ht)]

s.t. V (θL | h1) ≥ u

and ICH(ht) & ICL(ht) for all t & ht.

Let (xR,yR) denote the solution to this problem. As in the proof of the previous proposition, we

can immediately apply Lemmata 1-5 to this problem and conclude that the revenue maximizing
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earnings path earnings path yR solves the problem:

max
y
(1− δ)

∞X
t=1

δt−1E[yt(θt;ht)− ϕ(yt(θt;ht)/θt)]

−(1− δ)[µ
∞X
j=0

δj [αHH − αLH ]
j Φ
¡
y1+j(θL;h

◦
1+j)

¢
+ u].

It is easy to see that:

Λ1
¡
yRt (θL;h

∗
t )
¢
= lim

λ→∞
Λ2 (t,λ) = 1− µ,

while for all other histories yRt (θL;ht) is efficient. Note also that y
R is completely independent of

Ω.

Now consider two values of Ω, eΩ,Ω0 ∈ (Ω,Ω) such that eΩ > Ω0. We claim that γ(eΩ) > γ(Ω0).

Suppose, to the contrary, that γ(eΩ) ≤ γ(Ω0). Then, we have that along the history h∗t for any

time period t, °°°yRt (θL;h∗t )− y∗t (θL;h∗t ; eΩ)°°° =
°°°Λ−11 Λ2 ³t, γ(eΩ)´− Λ−11 (1− µ)

°°°
≥

°°Λ−11 Λ2 (t, γ(Ω0))− Λ−11 (1− µ)
°°

=
°°yRt (θL;h∗t )− y∗t (θL;h∗t ;Ω0)°°

so that the difference between the revenue maximizing income level yRt (θL;h
∗
t ) and the con-

strained efficient income y∗t (θL;h
∗
t ; eΩ) is not smaller than the difference between yRt (θL;h∗t ) and

y∗t (θL;h
∗
t ;Ω

0). Since these differences must have the same sign and since revenues are concave in

yt, it follows that y
∗(eΩ) cannot generate more revenues than y∗(Ω0). This is a contradiction sinceeΩ > Ω0.

To see that as Ω → Ω, γ(Ω) → 1
µ(1−δ) note that as Ω → Ω the incentive compatibility

constraints for the high types become non-binding, so taxation becomes efficient. This implies

that γ(Ω) → 1
µ(1−δ) . Similarly as Ω converges to Ω, γ(Ω) must converge to infinity, otherwise

some resources would be left to the high type and tax revenues would not be maximized. Q.E.D.
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