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disappointment aversion model by allowing risk aversion to be “first order” at locations in the state

space that do not correspond to certainty. Since the lotteries being valued by an agent in an asset-

pricing context are not typically local to certainty, our generalization, when embedded in a dynamic

recursive utility model, has important quantitative implications for financial markets. We show that

the state-price process, or asset-pricing kernel, in a Lucas-tree economy in which the representative

agent has generalized disappointment aversion preferences is consistent with the pricing kernel that

resolves the equity-premium puzzle. We also demonstrate that a small amount of conditional

heteroskedasticity in the endowment-growth process is necessary to generate these favorable results.

In addition, we show that risk aversion in our model can be both state-dependent and counter-

cyclical, which empirical research has demonstrated is necessary for explaining observed asset-

pricing behavior.
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1 Introduction

The observed facts of aggregate risks and asset prices in the post-war US econ-

omy have led researchers to explore models of intertemporal preferences that

generalize the well-developed time-additive-expected-utility specification used

in the asset-pricing economy of Lucas (1978). In particular, models that al-

low for counter-cyclical risk aversion have been shown to perform much better

than the standard model (see, for example, Campbell and Cochrane (1999),

Gordon and St-Amour (2000), and Barberis, Huang, and Santos (2001)).1

While these models all seem reasonable, the lack of an axiomatic foundation

makes it difficult to assess their structural integrity and to impose a homoth-

etic structure on preferences.2 In this paper, we adopt an axiomatic approach

to the specification of risk preferences. Our axioms result in a one-parameter

extension of the Gul (1991) disappointment aversion utility function. Our

extension to Gul results in preferences that have the desirable property that,

when embedded in a dynamic asset-pricing economy, effective risk aversion can

counter-cyclical. Moreover, the state-prices that our risk-preference assump-

tions generate are precisely those that rationalize the equity-premium puzzle

of Mehra and Prescott (1985).

Melino and Yang (2002) provide a useful characterization of the need for

counter-cyclical risk aversion by directly calculating the pricing kernel that

resolves the equity-premium puzzle. Setting the first two moments of con-

sumption growth equal to their historical estimates in the U.S., E[x] = 1.018,

V [x] = 0.0362, and Corr[xt, xt−1] = −0.14, consumption growth is calibrated

as a two-state Markov process with the state space for growth rates given by

1Campbell and Cochrane (1999) capture counter-cyclical risk aversion through an exter-
nal habit with a time-varying “habit sensitivity.” Barberis, Huang, and Santos (2001) and
Barberis and Huang (2001) create this with an ad hoc utility function that features a time-
varying loss aversion (a direct disutility from negative stock market returns). Gordon and
St-Amour (2000) take a more direct approach and calibrate a time-varying risk aversion.

2To compensate for the lack of homotheticity, Barberis, Huang, and Santos (2001), for
example, introduce a time-varying scaling to the loss aversion to force stationarity. Similarly,
the non-stationarity of Gordon and St-Amour (2000) preferences restricts their application
to a finite-horizon economy.
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xL = 1.018 − 0.036 and xH = 1.018 + 0.036, and transition probabilities

Π =

[
0.43 0.57

0.57 0.43

]
. (1)

Melino and Yang then choose an asset-pricing kernel represented by a stochas-

tic process Mt, that exactly matches the historical means and variances of

equity and bond returns of E[R] = 1.07, V [R] = 0.1652, E[r] = 1.008,

and V [r] = 0.0562, and satisfies the usual arbitrage-free pricing condition,

Et[Mt+1R
i
t+1] = 1. The resulting just-identified pricing kernel is given by the

2-by-2 matrix: [
MLL MLH

MHL MHH

]
=

[
1.862 0.244

1.127 0.949

]
. (2)

The first row of equation (2) is the kernel when the current state is a recession

denoted as L (i.e., low consumption growth), the second row is the kernel

conditional on being in an expansion denoted as H (i.e., high consumption

growth). It is immediately apparent why a traditional time-additive expected

utility function will have difficulty matching historical asset-return behavior.

Note that the transition probabilities are not dramatically different in the re-

cession and expansion state (πLL/πLH = 0.75 and πLL/πLH = 1.33). However,

the pricing kernel is dramatically different across the two states. In the xt = L

state, there is a large difference in the price of $1 contingent on xt+1 = L

versus xt+1 = H, suggesting a high degree of risk aversion in the standard

model (MLL/MLH = 7.63). However, in the xt = H state the price of $1 in

xt+1 = L and xt+1 = H are very similar, suggesting a very low degree of risk

aversion in the standard model (MLL/MLH = 1.18). To capture the dynamics

of asset returns requires an effective risk-aversion that is both state dependent

and counter-cyclical (i.e., higher risk aversion in the low-growth state).

Thus far, axiomatic preferences that can accommodate experimental re-

sults have had little success in capturing the dynamic pattern of asset prices

displayed in equation (2). For example, Gul (1991) is an axiomatic characteri-

zation of preferences that allows for an asymmetric treatment of the outcomes
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of a lottery based on where the outcomes lie relative to an implicit certainty

equivalent. In essence, outcomes below the certainty equivalent are disap-

pointing and, hence, receive relatively more weight in the utility calculation

of a disappointment-averse agent. Gul’s relaxation of the von Neumann and

Morgenstern (1947) independence axiom yields preferences that are consistent

with the Allais Paradox. For portfolio choice and asset pricing, the impor-

tant manifestation of these preferences is “first-order” risk-aversion (Epstein

and Zin (1990), Ang, Bekaert, and Liu (2002)). That is, for gambles local

to certainty, risk aversion is first-order and indifference curves in state-space

have a kink at certainty. Unfortunately, Gul preferences have little success in

explaining asset returns. In a Lucas-tree endowment economy in which the

representative agent has disappointment aversion the first-order risk aversion

is not of first-order importance since the endowment, and hence the equilib-

rium optimal consumption plan, is not local to certainty. Analogous to the

conclusion of Mehra and Prescott (1985), the calibrated disappointment aver-

sion needed to generate a large equity premium seems unreasonably high and

the model is still unable to capture many of the important patterns in the

historical asset returns (see Epstein and Zin (2001)).

In this paper, we provide an axiomatic model of preferences over atempo-

ral risks that generalizes the disappointment aversion model. We extend the

Gul (1991) model by modifying the definition of a disappointing outcome to

allow for a focus on more extreme outcomes (i.e., generalized disappointment

aversion). That is, an outcome is disappointing only when it is sufficiently

far from the implicit certainty equivalent.3 This moves the locus of first-order

risk aversion away from certainty. The advantage of these preferences is that

we can disentangle the slope of preferences at the endowment from the level

of the certainty equivalent. The slope of the indifference curve determines the

price of risk while the level of the certainty equivalent drives the risk-free in-

terest rate. Because our approach is axiomatic, we can maintain the analytic

3In Gul (1991) and our extension, the reference point that defines disappointment is
internal to the gamble being considered. In contrast, Sagi (2003) considers axioms that
allow an external reference point as in models of loss aversion.
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appeal of properties like homotheticity. However, the structure placed on pref-

erences by other axioms (e.g., continuity and monotonicity) restrict the degree

of first-order risk aversion. In state-space, a kink away from certainty must be

less severe. To investigate the quantitative implications of these preferences,

we embed our model of atemporal preferences in the recursive utility model

of Epstein and Zin (1989). In this setting, our preference specification yields

tractable Euler equations which facilitate calibration and empirical analysis.

Our calibration results show that the equilibrium asset returns in the Mehra

and Prescott (1985) version of a Lucas-tree economy in which the represen-

tative agent has generalized disappointment aversion, is not much of an im-

provement over Gul’s disappointment aversion, which is not much of an im-

provement over standard expected utility. That is, none of these models can

produce the Melino and Yang kernel of equation (2). On the other hand, a

small departure from the Mehra-Prescott calibration that introduces a small

amount of conditional heteroskedasticity, while maintaining all other features

of their calibration, creates an environment in which generalized disappoint-

ment aversion preferences are able to capture the state-dependent risk aversion

described above, and exactly match the pricing-kernel that resolves the equity-

premium puzzle.

The paper is organized by starting with the axiomatic foundations of gen-

eralized disappointment aversion (GDA) in Section 2. Along with the axioms,

several of the properties of the resulting GDA utility function are presented.

Section 3 presents the infinite horizon, Lucas-tree economy using the GDA

preferences along with a calibration to the Melino and Yang kernel of equation

(2). Section 3.2 explains why GDA preferences are not able to improve on ex-

isting models in replicating the observed data. We then propose a small change

in the calibration to introduce conditional heteroskedasticity and demonstrate

that GDA preferences can dramatically improve the performance of the asset-

pricing model. Section 4 points to directions for future research and concludes.
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2 Generalized Disappointment Aversion

In this section, we present the axioms which are necessary and sufficient for

a generalization of Gul (1991) disappointment aversion. Some readers may

prefer to move directly to the asset pricing model of Section 3. In that sec-

tion, we use a one-parameter extension of Gul disappointment aversion where

the functional form for risk preferences is a linearly homogeneous certainty

equivalent µ(p) for lottery p that solves

u (µ(p)) =
∑
xi∈X

p(xi)u(xi) − β
∑

xi≤δµ(p)

p(xi)
(
u (δµ(p)) − u(xi)

)
(3)

where

u(x) =

{
xα−1

α
α ≤ 1, α �= 0

log(x) α = 0

α is a risk aversion parameter and β ≥ 0, and δ ≤ 1 capture disappoint-

ment aversion. If β = 0, the preferences are equivalent to expected utility

with constant relative risk aversion parameter α. If δ = 1, the preferences are

equivalent to Gul disappointment aversion. Disappointment averse preferences

imply a penalty for outcomes below the certainty equivalence when β > 0.

We generalize Gul preferences by modifying the definition of disappointment.

Preferences with δ < 1 capture non-central disappointment aversion by mov-

ing the disappointment cut-off. Outcomes are disappointing only if they lie

sufficiently far below the certainty equivalent. As mentioned previously, this

allows for first-order-risk-aversion effects away from certainty, and is the key

feature of our calibrated asset-pricing economy. The axiomatic derivation of

this utility representation, its properties, and some extensions are developed

in the remainder of this section.
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2.1 Maintained Axioms

Let X = [x0, x
0] be the set of monetary outcomes and L be the set of finite-

support lotteries on X. Lotteries that assign probability one to a single x ∈ X

are denoted simply as x. Let � be a binary relation on L using the standard

notation of p � q means p is strictly preferred to q, p � q denotes weakly

preferred, and p ∼ q denotes indifference.

Axiom 0 – Monotonicity: For x, y ∈ X, x � y if and only if x > y

Axiom 1 – Preference Relation: � is complete and transitive.

Axiom 2 – Continuity: For all p ∈ L, the sets {q|q � p} and {q|p � q} are

closed.4

These axioms imply that the certainty equivalent µ : L → X (i.e, µ(p) ∼ p) is

a well defined function.

2.2 Disappointment Aversion

The two central axioms in Gul are Weak Independence and Symmetry. Both

axioms rely on the definition of an elation/disappointment decomposition. We

modify the decompositions used in Gul in a straightforward fashion and define

sets Bδ and Wδ as follows.

Bδ(p) = {q|x ∈ supp(q) → x ≥ δµ(p)}
Wδ(p) = {q|x ∈ supp(q) → x ≤ δµ(p)} (4)

where δ ≤ 1 is a parameter. Next, define decompositions of a lottery as

α ∈ [0, 1] and q, r ∈ L such that p = αq + (1 − α)r with q ∈ Bδ(p) and

r ∈ Wδ(p). The lottery p is decomposed into two lotteries. Lottery q has zero

probability on all elements below the threshold δµ(p) while lottery r has zero

4Using the topology generated by the L1 metric. See Gul (1991).
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probability for outcomes above the threshold. The parameter δ determines

the location of the disappointment threshold. By focusing on the certainty

equivalent, Gul’s disappointment averse preferences have a central measure of

disappointment. This is captured here with δ = 1. Our generalization allows

for a non-central, δ < 1, characterization of disappointment.

The expected utility axiom of independence states that p1 � p2 implies

λp1 + (1 − λ)x � λp2 + (1 − λ)x. This axiom is frequently violated in ex-

periments. The Allais Paradox, for example, is perhaps the most familiar

violation (see, Allais (1979) Conlisk (1989) Machina (1987)). Following Gul,

the decomposition facilitates characterizing preferences that are averse to dis-

appointment by overweighting (relative to their probabilities) outcomes below

the disappointment threshold. This asymmetric weighting is a weakening of

the independence axiom. Specifically, the independence axiom need not hold if

p1 and p2 assign different probability weight to disappointing outcomes. This

is stated in axiom 3.

Axiom 3 – δ-Weak Independence: For all p ∈ L and λ ∈ (0, 1) µ(p) ∼
λp + (1 − λ)µ(p). There exists a δ ≤ 1 such that for all p1, p2 ∈ L with

p1 � p2, λ ∈ (0, 1), and x ∈ X, λp1 + (1 − λ)x � λp2 + (1 − λ)x if (1)

Wδ(pj) ∩ Wδ(λpj + (1 − λ)x) = ∅ for j = 1, 2, or (2) there exits an α ∈ [0, 1]

and qj, rj ∈ L such that for j = 1, 2

pj = αqj + (1 − α)rj

qj ∈ Bδ(pj) ∩ Bδ(λpj + (1 − λ)x)

rj ∈ Wδ(pj) ∩ Wδ(λpj + (1 − λ)x).

(5)

The axiom is the direct analog to Weak Independence in Gul. The axiom allows

for preferences to not satisfy the independence axiom when disappointment is

a concern. As with Gul, the decompositions of pj in equation (5) place the

same probability, 1 − α, on the disappointing outcomes. The restriction that

qj ∈ Bδ(pj) and qj ∈ Bδ(λpj + (1 − λ)x) and, similarly rj ∈ Wδ(pj) and

rj ∈ Wδ(λpj + (1− λ)x) implies that mixing in the payoff, x, has not changed
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the nature of disappointment. We will refer to the Gul case of δ = 1 as

Central Weak Independence and δ < 1 as Non-Central Weak Independence.

With δ < 1, it is possible that no outcomes are disappointing, Wδ(pj) =

Wδ(λpj + (1 − λ)x) = ∅. In this case, the usual independence axiom holds.

Lastly, the axiom requires preferences to satisfy the betweenness property

µ(p) ∼ λp + (1 − λ)µ(p). This requirement is redundant in the case of δ = 1

(see Gul (1991)) and δ < x0

x0 (see Property 5 below). However, it is required for

intermediate values of δ to ensure preferences are linear in probabilities (i.e.,

linear indifference curves on a probability simplex).

The final axiom used by Gul is Symmetry. This axiom requires that out-

comes above and below the disappointment cut-off be evaluated using the same

outcome valuation function. The axiom is stated considering lotteries pj that

have the property that all outcomes in the support of pj are disappointing in

the lottery αx0 + (1 − α)pj (recall x0 is the largest possible lottery payoff)

but not-disappointing in the lottery αpj + (1 − α)x0 (x0 is the worst possible

payoff).

Axiom 4 – δ-Symmetry: Given a δ from Axiom 3, for all p1, p2 ∈ L
and α ∈ [0, 1] such that for j = 1, 2, pj ∈ Bδ (αpj + (1 − α)x0) and pj ∈
Wδ (αx0 + (1 − α)pj)

αp1 + (1 − α)x0 � αp2 + (1 − α)x0 iff

αx0 + (1 − α)p1 � αx0 + (1 − α)p2

(6)

Note the same disappointment cut-off, δµ, is used in Axiom 4 as in Axiom 3.

2.3 Preference Representation

To characterize disappointment aversion preferences, it is helpful to start with

the general class of preferences that are linear in probabilities (i.e., satisfy the
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betweenness property) and then consider the restrictions imposed by δ-Weak

Independence and δ-Symmetry. Dekel (1986) and Chew (1989) characterize

preferences that satisfy betweenness as a certainty equivalent µ(p) that solves∑
xi∈X p(xi)U (xi, µ(p)) = 0. As shown in the lemma in the appendix, we can

define functions u, Dk, and Lk (whose properties are stated in the appendix)

that re-state this characterization as the function M : L × X → R, such that

M(p,m) = u−1


∑

xi∈X

p(xi)u(xi) −
K∑

k=1

βk

∑
xi≤∆k(m)

p(xi)Lk (xi, ∆k(m))


 . (7)

Equation (7) defines the certainty equivalence of lottery p as µ(p) = M(p, µ(p))

and p � q if and only if µ(p) ≥ µ(q). The function, M(p,m), calculates the

expected utility, using u(·), of lottery p minus penalties, denoted Lk(x,m),

for outcomes that lie below the cut-offs ∆k(m). Note βk = 0 for all k is

equivalent to expected utility. Gul’s disappointment aversion has just one

cut-off (βk = 0 for all k > 1) at ∆1(m) = m, and a linear penalty function

L1(x,m) = u(m) − u(x).

Theorem: � satisfies Axioms 0-3 if and only if they are represented by

µ(p) = M(p, µ(p)) in equation (7) with: K = 1, ∆1(m) = δm, L1(x, δm) =

�(δm) − �(x) with �(·) a continuous increasing function. � satisfies Axioms

0-4 if and only if in addition, �(·) is an affine transformation of u(·) (e.g.,

�(x) = u(x)).

Proof: The Lemma in the see appendix shows that the betweenness prop-

erty implies the functional form of equation (7). In addition, ∆k(m) and

Lk(x, δk(m)) are increasing in x and decreasing in m, ensuring µ(p) = M(p, µ(p))

exists and is unique. Finally, Lk(x, ∆k(m)) = 0 if x = ∆k(m). For exposi-

tional purposes, consider u(x) = x and X = [0, 1], since extending to general

u(x) and X is straightforward.
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The δ-Weak Independence axiom can be stated as

if




(i) µ(p1) ≥ µ(p2)

(ii)
∑

xi≤δµ(p1)

p1(xi) =
∑

xi≤δµ(p2)

p2(xi)

(iii) z ∈ {x|x ∈ supp(pi) and x ≤ δµ(pi)} → z ≤ δµ (λpi + (1 − λ)x)

(iv) z ∈ {x|x ∈ supp(pi) and x ≥ δµ(pi)} → z ≥ δµ (λpi + (1 − λ)x)




then µ (λp1 + (1 − λ)x) ≥ µ (λp2 + (1 − λ)x) .

(8)

Assume p1, p2, and λ satisfy the necessary conditions of equation (8). For

notation, let µj = µ(pj) and µ̂j = µ (λpj + (1 − λ)x). Consider equation (7)

with one cut-off (K = 1).

µ̂j = λ
∑

xi∈X

pj(xi)xi − λβ
∑

xi≤∆(µ̂j)

pj(xi)L(xi, ∆(µ̂i))

+(1 − λ)x − (1 − λ)βL(xi, ∆(µ̂i))1{x≤∆(µ̂j)}

where 1{·} is an indicator function. For β > 0 and for arbitrary ∆(m) and

L(x, ∆(m)), it will not be the case that µ̂1 > µ̂2. Satisfying Weak Indepen-

dence requires that ∆(m) = δm (hence K = 1 and there can be no other

cut-offs). This implies

µ̂j = λµj + λβ

( ∑
xi≤δµi

pj(xi)L(xi, δµi) −
∑

xi≤δµ̂j

pj(xi)L(xi, δµ̂j)

)

+(1 − λ)
(
x − βL(x, δµ̂j)1{x≤δµ̂j}

) .

By parts (iii) and (iv) of (8),

µ̂j = λµj + λβ

( ∑
xi≤δµj

pj(xi) (L(xi, δµj) − L(xi, δµ̂j))

)

+(1 − λ)
(
x − βL(x, δµ̂j)1{x≤δµ̂j}

) (9)

Again, for arbitrary L(x, δm) we can construct lotteries such that µ̂2 > µ̂1

(violating weak independence). It must therefore be the case that the loss
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function is separable in x and δm. The restriction that L(x, δm) = 0 if x =

δm means that an additively separable loss function must be of the form

L(m,x) = �(δm) − �(x), where �(·) is an increasing function. Inserting this

into (9) and using, by part (ii) of (8) that
∑

xi≤µ1

p1(xi) =
∑

xi≤µ2

p2(xi) = α

produces

µ̂j = λµj + λβα [�(δµj) − �(δµ̂j)] + (1 − λ)
(
x − β[�(δµ̂j) − �(x)]1{x≤µ̂j}

)
In this form, it is clear that if µ1 > µ2 then µ̂1 > µ̂2 satisfying weak indepen-

dence.

Next consider the role of the symmetry axiom. For lotteries p1 and p2, let

µjb = µ (αx0 + (1 − α)pj) and µjw = µ (αpj + (1 − α)x0). We calculate these

certainty equivalents next, using the fact that pj ∈ B (αpj + (1 − α)x0) and

pj ∈ W (αx0 + (1 − α)pj) imply that δµjw < z < δµjb for all z ∈ supp(pj).

µjw = α

[ ∑
xi∈X

pj(xi)xi − β
∑

xi≤δµjw

pj(xi)(�(δµjw) − �(xi))

]

+ (1 − α) [x0 − β(�(δµjw) − �(x0))]

= α
∑

xi∈X

pj(xi)xi + (1 − α) [w − β(�(δµjw) − �(x0))]

, (10)

and

µjb = αx0 + (1 − α)

[ ∑
xi∈X

pj(xi)xi − β
∑

xi≤δµjb

pj(xi)(�(δµjb) − �(xi))

]

= αx0 + (1 − α)

[ ∑
xi∈X

pj(xi)xi + β
∑

xi∈X

pj (�(xi)) − �(δµjb)

] .

(11)

µjw depends on pj only through the first moment (the first term of equation

(10)). However, µjb depends on the first moment of p as well as moments

generated by �(·) (note
∑

pj(xi)�(xi) in equation (11)). Symmetry requires

that µ1b ≥ µ2b if and only if µ1w ≥ µ2w. The only way this condition can be

satisfied for all lotteries is for the penalty function to be affine, e.g., �(x) = x

or more generally, �(·) = u(·)
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2.4 Properties of Generalized Disappointment Aversion

The preference representation in the Theorem suggest two directions for ex-

tending Gul’s disappointment aversion. We can consider central (δ = 1) and

non-central (δ < 1) definitions of disappointment. In addition, we can relax

the symmetry axiom by adopting a non-linear penalty function, �(·). Unfortu-

nately, as we show below, symmetry is necessary for linear homogeneity of the

certainty equivalent. To discuss the properties of generalized disappointment

aversion, consider

µ(p)α =
∑
xi∈X

p(xi)x
α
i − β

∑
xi≤δµ(p)

p(xi)
(

(δµ(p))ασ − xασ
i

)
(12)

where σ = 1 satisfies the Symmetry axiom.

Property 1: The certainty equivalent, µ(p), implicitly defined by equation

(12) is unique and is a continuous function of p.

Although this fact is a direct implication of Theorem 1, it is helpful to

note that finding the certainty equivalent is a simple fixed-point calculations.

Consider the (not implicit) function (the CRRA analog to equation (7))

M(p,m)α =
∑
xi∈X

p(xi)x
α
i − β

∑
xi≤δm

p(xi)
(

(δm)ασ − xασ
i

)
. (13)

M is a continuous function that is (weakly) decreasing in m. For continuity,

it is important to note that at the disappointment threshold of xi = δµ̂,

(δm)ασ − (xi)
ασ = 0. Suppose δM(p,m) < m for all m. In this case, p has no

disappointing outcomes and the certainty equivalent is identical to expected

utility, µ(p)α =
∑

xi∈X

p(xi)x
α
i . Alternatively, there exists a unique fixed point

µ(p) = M(p, µ(p)) which is continuous by the implicit function theorem.

Property 2: µ(x) = x.

Simply verify that M(x, x)α = xα.
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Property 3: An increase in β or δ increases risk aversion in that the

certainty equivalent falls; i.e., ∂µ(p)/∂β ≤ 0 and ∂µ(p)/∂δ ≤ 0.

This follows from equation (13). Note that ∂M(p,m)/∂β ≤ 0 and ∂M(p,m)/∂δ ≤
0 for all m.

Property 4: If σ ≥ 1, an increase in σ increases risk aversion in that the

certainty equivalent declines; i.e., ∂µ(p)/∂σ ≤ 0

Similarly, this follows from equation (13).

Property 5: The preferences characterized by equation (3) are equivalent

to expected utility if β = 0, δ ≤ x0

x0 , or σ = 0.

It is obvious from the specifications in equation (3) that β = 0 produces

expected utility. δ ≤ x0

x0 implies that for all lotteries, δµ(p) ≤ x0 so there are no

lotteries with disappointing outcomes. That is, for all p ∈ L,
∑

xi≤δm

p(xi) = 0 for

all m ≥ x0. Again, by equation (13), this implies expected utility preferences.

Similarly, by inspection of equation (13), σ = 0 is identical to expected utility.

Property 6: Preferences in (3) are identical to Gul (1991) disappointment

aversion when δ = 1 and σ = 1.

Note that axiom 1 and 2 are identical to Gul and axioms 3 is identical to

Gul’s axioms when δ = 1. Finally, axiom 4 is satisfied only if σ = 1 (or when

preferences are expected utility).

Property 7: µ(p) defined by equation (3) is linearly homogeneous only if

the Symmetry Axiom is satisfied (i.e., σ = 1).

Consider two lotteries, p and pa such that p has probabilities [p1, p2, ...]

and payoffs [x1, x2, ...] while pa has identical probabilities [p1, p2, ...] but pay-

offs [ax1, ax2, ...] for a > 0. From equation (13), note that M(pa, am)α =

[aM(p,m)]α for all m only in the case where σ = 1 or where preferences are

identical to expected utility, that is, the Symmetry Axiom is satisfied.
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Asymmetric disappointment aversion may be an interesting direction for

future research. Since it allows for a different degree of risk aversion over

disappointing outcomes, it is similar to Chew (1989) weighted utility. It also

has the potential to generate preferences that are analogous to the “S-shaped”

valuation function in Prospect Theory (Kahneman and Tversky (1979)). Un-

fortunately, the lack of homothetheticity makes the preferences difficult to use

in an asset pricing setting.

Consider the case where δ < 1 but σ = 1. In this setting, there are

several alternative ways to write the preferences. Equation (3) has a “penalty”

for outcomes below the certainty equivalence. This is the format used in

implementation of Gul disappointment aversion in Epstein and Zin (2001).

When the penalty is linear (σ = 1), one can write the preferences in a similar

fashion as used in Bekaert, Hodrick, and Marshall (1997) or Ang, Bekaert, and

Liu (2002).

u (µ(p)) = a−1
(
E

[
u(x)1{x>δµ(p)}

]
+ (1 + β)E

[
u(x)1{x≤δµ(p)}

])
, (14)

where 1{·} is an indicator function and

a = Prob {x > δµ(p)} + Prob {x ≤ δµ(p)} (1 + βδα) . (15)

In this format, preferences are similar to expected utility where the probability

of a disappointing outcome is re-weighted to capture the disappointment.

2.5 Indifference Curves

To understand the role of the axioms and resulting utility function, it is helpful

to compare indifference curves in both the probability simplex and in state-

space for expected utility, Gul disappointment aversion, and our Generalized

Disappointment Aversion. Figure 1 shows a probability simplex over the pay-

offs x1 < x2 < x3. In these examples, let X = [x1, x3]. Each line represents
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lotteries p = [p(x1), p(x2), p(x3)]
′ that have the same utility, µ(p) = x. Indif-

ference curves are extended outside the simplex only to facilitate exposition

and comparison. In Figure 1 preferences are expected utility (β = 0, δ can be

arbitrary). Notice that as implied by the independence axiom, the indifference

curves are linear and parallel.

It is also helpful to consider indifference curves in state-space where prob-

abilities of two states are fixed at p(x1) = p(x2) = 1
2

and the lottery payoffs

are varied. Figure 2 shows the familiar smooth trade-off between state 1 and

state 2 payoffs implied by expected utility.

Figure 3 displays Gul Disappointment Aversion preferences (β = 2.0, and,

by definition, δ = 1.0). The axioms imply the “betweenness” property or

that indifference sets are linear (i.e., p ∼ λp + (1 − λ)µ(p)). However, unlike

expected utility in Figure 1, indifference curves are not parallel. The main

structure of Disappointment Aversion preferences can be seen by considering

the three indifference sets defined by µ(p) = xi for i = 1, 2, 3. (For comparison,

these three indifference lines are highlighted in Figure 1 as well.) At µ(p) =

1.0, nothing is disappointing since this is the worst possible outcome and

preferences are identical to expected utility. Next consider µ(p) = x2. The

slope of the indifference curve is controlled by the parameter β. Since axiom

3 relaxes the independence axiom, the slope of µ(p) = x2 can differ from the

slope of µ(p) = x1. Below the threshold µ(p) = x2 (lower right hand portion

of Figure 3) only outcome x1 is disappointing. Therefore, Axiom 3 places

structure on preferences for lotteries p1 and p2 only if p1(x1) = p2(x1) (lie on

the same vertical plane). This produces the “fan” pattern in the lower right.

Similarly, for lotteries above the µ(p) = x2 threshold, both x1 and x2 are

disappointing. In this region, Axiom 3 influences preferences for lotteries if

p1(x1)+p1(x2) = p2(x1)+p2(x2) (lotteries lie on same horizontal plane). Again,

this produces the “fan” pattern. Finally, Axiom 4 induces the symmetry

between the two regions (reflected about the µ(p) = x2 line). For example,

symmetry implies that µ(p) = x3, where every outcome is disappointing, is

parallel to µ(p) = x1 and, hence, consistent with expected utility.
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Figure 4 shows the indifference curve for disappointment aversion in state-

space. Since disappointment is defined relative to the certainty equivalent, the

indifference curve has a kink at certainty. Below the forty-five degree line, it

is the state two outcome (vertical axis) while above the forty-five degree line,

the state one outcome is disappointing. The β parameter controls how much

extra weight the disappointing outcome receives and, hence, the sharpness of

the kink.

Finally, Figure 5 shows the indifference lotteries for GDA (β = 2.0, and

δ = 0.8) where utility is both “Gul-like” and “expected-utility-like.” Again,

there are three indifference curves to focus on, µ(p) = xi

δ
for i = 1, 2, 3. Here,

the threshold certainty equivalents are all shifted by the preference parame-

ter δ. For certainty equivalents less than x1

δ
, no outcomes are disappointing.

For lotteries below µ(p) = x1

δ
, preferences are identical to expected utility

and indifference curves are parallel. The indifference curve at µ(p) = x2

δ
is

the threshold where x2 is disappointing. As in disappointment aversion, the

parameter β determines the slope of this indifference set. As with disappoint-

ment aversion in Figure 1, axiom 3 influences preferences differently above and

below this threshold producing the “fanning” behavior. Finally, Axiom 4, the

symmetry, acts in a similar manner to generate symmetric preferences about

the µ(p) = x2

δ
threshold. Note that fictitious lotteries with µ(p) = x3

δ
(which is

a certainty equivalent above the best outcome x3), that have the property that

all outcomes are disappointing which, by the symmetry axiom, is equivalent

to expected utility and parallel to µ(p) = x1

δ
.

Figure 6 shows an indifference curve for GDA in state space. Here, dis-

appointment occurs for outcomes less than δ = 0.8 times the certainty equiv-

alence. For gambles close to certainty (shown as the center cone in Figure

6), preferences are identical to expected utility since neither outcome is dis-

appointing. This is analogous to the lower right hand portion of Figure 5.

Lotteries where state 2 payoff is very low (below the cone) are disappointing.

Similarly for low state 1 payoffs. Note that the kink in the indifference curves

is not at certainty. Here the kink occurs where the x1 or x2 is at the δµ(p)
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threshold. Finally, as long as u(x) is homothetic, GDA preferences are also

homothetic. For different utility levels, all kinks lie along the rays that define

the cone in Figure 6.

Figures 2, 4 and 6 also show the role of β and δ effect on effective risk

aversion. In Disappointment Aversion, Figure 4, an increase in β increases

the severity of the kink and makes the preferences exhibit more risk aversion.

This is also true in GDA in Figure 4. However, as δ decreases and the dis-

appointment threshold is moved further away from certainty, the kink and

effective risk aversion decreases. Monotonicity of preferences limits the kink

since preferences can, at most, be a vertical (horizontal) line. When we turn to

the empirical implementation of the model we will explore this tension further.

Locating the kink away from certainty allows the calibration to locate the kink

closer to the endowment. However, since the effect of β is less dramatic, the

effective disappointment aversion is reduced and preferences effectively look

like expected utility.

3 Intertemporal Asset Pricing with GDA

We now embed our atemporal axiomatic preference model in a standard rep-

resentative agent asset-pricing economy, as in Epstein and Zin (1990). The

representative agent consumes a single perishable consumption good in each

period. In period t, current consumption, ct, is known with certainty, but

future consumption levels are generally uncertain. The intertemporal utility

functional is recursive and has the form

Ut =

[
(1 − 1

1 + ρ
)cγ

t +
1

1 + ρ
µγ

t

]1/γ

, γ ≤ 1, ρ > 0 , (16)

where µt = µ(Ũt+1|It) as defined by equation (3) is the certainty equivalent

of random future utility using the period-t conditional probability distribu-

tion. ρ is the marginal rate of time preference, and 1
1−γ

is the elasticity of
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intertemporal substitution.

The representative agent’s economic environment is identical to that in

Mehra and Prescott (1985) and Melino and Yang (2002). In particular, the

endowment process {yt} is such that growth rates xt+1 = yt+1

yt
follow a first-

order Markov process. The ex-dividend price of the single equity asset may

be described by the time-invariant and positive function p(xt, yt). In light of

the homogeneity of preferences (Property 7 and equation (16)) it follows that

price is linearly homogeneous in current output, i.e.,

p(x, y) = p(x, 1)y = P (x)y , (17)

where P (x) is the price-dividend ratio. Denote by Rt+1 the return to equity

over the interval t to t + 1. This return depends only on the growth rate

process and on price-dividend ratios via the equation:

Rt+1 =
p(xt+1, yt+1) + yt+1

p(xt, yt)
= xt+1

(P (xt+1) + 1)

P (xt)
. (18)

In equilibrium, the agent maximizes utility, markets clear, and price expec-

tations are fulfilled. The Euler equation for utility maximization from Epstein

and Zin (1989) is given by

[
µt

(
x̃

(γ−1)/γ
t+1 R̃

1/γ
t+1

)]γ

= 1 + ρ . (19)

If we substitute the definition of the market return from equation (18) into this

Euler equation, and apply the property of linear homogeneity of the certainty

equivalent operator, then we obtain a recursive equation for the equilibrium

price function, as in Epstein and Zin (1990),

P (xt) =
1

1 + ρ

[
µt

(
x̃t+1(P (x̃t+1) + 1)1/γ)

) ]γ

. (20)

The equilibrium risk-free return is determined by the representative agent’s

portfolio choice between the risky equity return Rt+1 and a risk-free asset with
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return rt. From Epstein and Zin (1989), the individual’s portfolio choice is

determined by solving

max
ω

µt

(
(x̃t+1/R̃

ω
t+1)

(γ−1)/γ(ωR̃t+1 + (1 − ω)rt)
)

(21)

where R̃ω
t+1 = ωR̃t+1 + (1 − ω)rt is the portfolio return. The equilibrium risk-

free return, occurs when the optimum of this portfolio choice problem is ω = 1.

That is, the risk-free asset is priced such that asset demands are consistent

with zero net supply.

Of particular interest for understanding some of the simple calibration

exercises below, will be the version of our model that is linear-in-states. When

γ = 1, intertemporal substitution is perfectly elastic and (21) reduces to

max
ω

µt

(
ωR̃t+1 + (1 − ω)rt

)
.

Consider an outcome-valuation function that is homogeneous of degree one

(i.e., α = 1 in equation (3)). Given the linear homogeneity of µ, equation (21)

reduces further to

max
ω

[ωµt(R̃t+1) + (1 − ω)rt],

Note that in this special case the certainty equivalent is a linear operator. This

implies that, in equilibrium,

µt(R̃t+1) = rt.

From equation (20) with γ = 1

µt

(
R̃t+1

)
= 1 + ρ.

Therefore, in the equilibrium

µt(R̃t+1) = rt = 1 + ρ . (22)

Note that this linear specification with α = 1 and γ = 1 represents risk-
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neutrality only in the expected utility model. For generalized disappointment

aversion models with β > 0, (see equation (3)), the certainty equivalent will

exhibit risk aversion.

3.1 Calibration

To investigate the quantitative implications of our model of risk preferences,

we adopt the two-state calibration of the endowment-growth process described

in Mehra and Prescott (1985). As described in the introduction, the expected

value of and standard deviation of the endowment growth rate are 1.018 and

0.036, respectively. For a symmetric ergodic distribution, i.e., an unconditional

probability of 0.5, the two growth-rate states are xL = 1.018 − 0.036 = 0.982

and xH = 1.018 + 0.036 = 1.054. The first-order autocorrelation of these

growth rates is calibrated to be -0.14, which implies the Markov transition

matrix shown in equation (1).

Given this specification for the exogenous endowment process and given

values for the parameters of the utility function, we can solve the equations

described above to determine the equilibrium asset returns. Given these re-

turns, we can solve for the 2-by-2 matrix defining the equilibrium asset-pricing

kernel, M , that satisfies the 4 equations

MLLπLLRLL + MLHπLHRLH = 1

MHLπHLRHL + MHHπHHRHH = 1

MLLπLLrL + MLHπLHrL = 1

MHLπHLrH + MHHπHHrH = 1 . (23)

Our calibration approach is somewhat non-standard. We choose preference

parameters for each preference model so that the equilibrium asset-pricing

kernel, M , is as close (in a sum-of-squared-errors sense) as possible to the

matrix found by Melino and Yang (2002). That is, we ask how close can a

particular preference model get the the Melino-Yang pricing kernel given in
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equation (2). We have not tried to pre-specify preference parameters from

other empirical or experimental evidence. Of course, such evidence will be

relevant for evaluating the results of our numerical exercise.

The results of this calibration, along with the preference parameters, are

presented in Table 1. The table reports six preference models: time-additive

expected utility as in Mehra and Prescott (1985) (denoted EU), Kreps and

Porteus (1978) non-time-additive expected utility as in Epstein and Zin (1989)

(denoted KP), the Disappointment Aversion model of Gul (1991) (denoted

DA), Disappointment Aversion utility constrained to be linear in states (i.e.,

α is constrained to be equal to 1) (denoted DAL), Generalized Disappointment

Aversion (GDA), and finally Generalized Disappointment Aversion with the

constraint α = 1 (GDAL). For all models, the rate of time-preference is fixed

at ρ = 0.01.

Despite the variety of preferences considered, all six models presented in

Table 1 generate roughly the same pricing kernels. None of these pricing ker-

nels exhibits the big differences in conditional behavior depicted in Melino

and Yang (2002). In other words, although each model has the potential to

generate different risk premiums, different risk-free interest rates and different

volatility patterns in these returns, none of the models comes close to resolv-

ing the equity-premium puzzle. This is true even when the parameters of the

model are chosen with that specific goal in mind. Finally, note that the cur-

vature of u in the certainty equivalents for both disappointment aversion and

generalized disappointment aversion does not have much of a quantitative im-

pact in this two-state economy. Almost identical results obtain when a α = 1

and a linear-in-states value function is used. This is, of course, not surprising

since both α and β induce risk aversion (see Property 3 or Figures 4 and 6).

3.2 Discussion

To understand where the GDA utility calibration may be useful, it is helpful

to consider a simpler two-period two-state model. In this setting, consump-
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tion is denoted c1 and c2. Today’s endowment, y1 is known. The growth rate

for tomorrow’s endowment can be xL or xH , which along with the consump-

tion/savings plan will produce period-two consumption of c2. Figure 7 char-

acterizes the representative agent’s problem. The lower left quadrant shows

preferences over risky consumption growth rates (xL, xH). The upper right

quadrant shows the intertemporal preference between certain (or certainty

equivalent) consumption plans (c1, µ(c2)). The endowment is (y1, x̄L, x̄H). In

Figure 7, preferences over atemporal gambles (lower-left quadrant) are stan-

dard expected utility. Equilibrium is given by setting state prices pH

pL
equal to

the slope of the indifference curve at the endowment growth rates (x̄L, x̄H).

Where the indifference curve that runs through (x̄L, x̄H) intersects certainty

(where xL = xH) determines the certainty equivalence of the period-two risky

endowment. This is denoted µ(x̄). The upper-left quadrant simply maps

the certainty equivalence of risky growth-rates into period 2 consumption cer-

tainty equivalence. Since our certainty equivalence are linearly homogeneous,

µ(y2) = y1µ(x̃) where x̃ is the (xL, xH) gamble. The equilibrium interest rate

is therefore set by the slope of the intertemporal trade-off at (y1, µ(y2)).

From Figure 7, one can see why the expected utility model struggles to

match the data. Consider the comparative static exercise of changing the

probabilities of the two states in a way analogous to the two-state infinite

horizon probabilities in Melino and Yang (2002). That is, consider πH/πL =

0.75 or 1.33 (see equation (1)). Regardless of the risk aversion curvature,

one cannot duplicate the Melino and Yang (2002) state prices since small

change in probabilities cannot reproduce the dramatic variation in conditional

state prices. Note even with state-dependent risk aversion, that allows one

to match the conditional state prices (the pH/pL in the lower-left quadrant of

the figure), expected utility will produce a dramatic variation in the certainty

equivalents of the consumption growth. This translates into an interest rate

that is excessively volatile.

In contrast, Figure 8 shows the two-period economy with a representative

agent with GDA utility over growth rates. By choice of the parameters δ,

22



the kink in the utility function can be located closer to the endowment. The

effect is to separate the slope of the utility function at (x̄L, x̄H) (determining

state prices pH

pL
) from the certainty equivalence that determines the interest

rate. If we consider the same comparative static exercise as above (consider

πH/πL = 0.75 or 1.33), the β parameter allows one to overweight the dis-

appointing outcomes and effectively exaggerate the small probability change

into a larger effect on the state prices. Since the kink is near the endowment,

this exaggeration of state prices is done without generating much variation

in the certainty equivalence and hence without inducing a volatile risk-free

rate. However, as noted earlier, the continuity and monotonicity restrictions

on preferences limit the amount of the kink. As such, it is hard to gener-

ate a β that is large enough to reproduce the Melino and Yang (2002) state

prices. This is seen in Table 1. None of the preference models can reproduce

the Melino-Yang prices. Ideally, what we need is for the endowment to lie on

either side of the disappointment threshold in a state-dependent way. While

this is hard to demonstrate in a picture (since the endowment growth rates is

fixed), we explore if this is feasible in the in the infinite horizon case below.

As is shown next, Generalized Disappointment Aversion can generate the ef-

fective state-dependent risk aversion if the endowment growth process has a

small degree of heteroskedasticity.

3.3 Calibration with Conditional Volatility

Building on the intuition from the previous discussion, we consider a slightly

different calibration of the exogenous endowment-growth process than in Mehra

and Prescott (1985). Although it seems relatively innocuous to assume a sym-

metric ergodic distribution (p = 1/2), this assumption rules out conditional

heteroskedasticity the in two-state models. Since there is ample evidence

from both macroeconomic and financial-markets data that indicates condi-

tional volatility as an empirical fact, it is worth exploring in greater detail.

In particular, the emphasis Generalized Disappointment Aversion places on
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extreme tail events suggests that conditional heteroskedasticity may be im-

portant to distinguish GDA preferences from other preference models in a

dynamic economy.

The conditional means of the endowment growth process in the 2-state

model are given by

E(xt+1|xt = xL) = µx − θ

(
1 − p

p

)1/2

σx

= (1 − θ)µx + θxL

and

E(xt+1|xt = xH) = µx + θ

(
p

1 − p

)1/2

σx

= (1 − θ)µx + θxH

where µx and σx are the unconditional (ergodic) mean and standard deviation,

p is the ergodic probability of x = xL, and θ is the first-order autocorrelation

coefficient.

The conditional variances are given by

V (xt+1|xt = xL) = σ2
x

[
1 + θ

1 − 2p

p
− θ2 1 − p

p

]

and

V (xt+1|xt = xH) = σ2
x

[
1 − θ

1 − 2p

1 − p
− θ2 p

1 − p

]

Note that the difference in conditional variances is given by

V (xt+1|xt = xL) − V (xt+1|xt = xH) = 2θ
1 − 2p

p(1 − p)

As noted, the only case in which there is no conditional heteroskedasticity

in the 2-state model is precisely the Mehra-Prescott calibration with equal

ergodic probability on the two states (p = .5).
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Consider two relatively small changes to the Melino-Yang exercise. First,

we introduce a small amount of conditional heteroskedasticity into the endowment-

growth process by assuming an ergodic probability of the low growth state of

p = 0.4. This implies transition probabilities

[
πLL πLH

πHL πHH

]
=

[
0.316 0.684

0.456 0.544

]
(24)

Note the conditional standard deviation in the low state is 0.0342, and in the

high state it is 0.0366. Given the unconditional standard deviation is equal

to 0.036, this is a reasonably small amount of conditional heteroskedasticity.

Second, we set the risk-free interest rate to a constant equal to the rate of

time preference, rt = 1.01 for all t. The average equity premium we try to

match is 0.08, a slight increase over Mehra-Prescott. Re-solving the equations

in Melino and Yang (2002) with these assumptions results in a pricing kernel

given by [
MLL MLH

MHL MHH

]
=

[
2.4811 0.3013

0.9914 0.9890

]
(25)

This pricing kernel exhibits that same patterns as the Melino-Yang matrix in

equation (2) and is an equally challenging test for asset-pricing theories. Table

2 displays results for this calibration. What is striking about the results in

Table 2 is the perfect fit of the generalized disappointment aversion preferences.

This fit occurs even though we have fixed the curvature parameter in the u of

equation (3) at the value α = 1.

To understand this rather surprising result, consider equation (22) and the

gambles implied by an ownership claim to equity. The matrix of equity returns

consistent with equilibrium asset prices in this particular calibration is given

by [
RLL RLH

RHL RHH

]
=

[
0.9227 1.3420

0.9400 1.0688

]
. (26)
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whereas in the Mehra-Prescott calibration this matrix is given by

[
RLL RLH

RHL RHH

]
=

[
1.0238 1.2953

0.8631 1.0919

]
. (27)

The important difference in these two matrices lies in comparing the small-

est value in each row. In the Mehra-Prescott economy in equation (27), the

smallest return in the first row, 1.0238 in event (L,L), is larger than the

smallest value in the second row, 0.8631. In our calibration with conditional

heteroskedasticity in equation (26), the smallest value in the first row, 0.9227

is smaller than the smallest element in the second row, 0.9400. The reason this

is important is that Generalized Disappointment Aversion preferences may al-

low the conditional outcomes in the second row (expansion state) to not be

disappointing while outcomes in the first row (recession state) are potentially

disappointing. That is, there is a value of δ such that δµt < 0.9400 when

xt = xH but have δµt > 0.9227 when xt = xL. In this situation, the investor

will behave in a risk-neutral fashion when they are in the “high” state, and

a very risk-averse fashion when they are in the “low” state. GDA effectively

creates state-dependent risk aversion. Note that this is not possible for Mehra-

Prescott calibration in equation (27). In addition, effective state dependent

risk aversion is not possible if δ = 1. Standard disappointment aversion cannot

reproduce the dynamic features of asset prices. Beyond this two-state calibra-

tion, this type of state-dependent risk aversion will arise whenever there are

significantly more lower-tail events in one conditional probability distribution

than in another, hence, the important role played by conditional heteroskedas-

ticity in our calibration.

4 Conclusion

We have provided an axiomatic generalization of the disappointment aversion

preferences of Gul (1991) which allow for a more flexible definition of a “disap-

pointing” outcome. In particular, our one-parameter extension of Gul’s utility
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function allows us to characterize outcomes in a lottery as disappointing not

when they lie below that lottery’s certainty equivalent, but rather when they

are sufficiently far below the certainty equivalent. This focus on more extreme

tail behavior is consistent with real-world approaches such as “Value at Risk”

calculations in finance (see Basak and Shapiro (2001)), and with much of the

behavioral/experimental evidence, such as Kahneman and Tversky (1979).

Like Gul’s approach, our generalization maintains the key assumptions of lin-

earity of indifference curves on the probability simplex, linear homogeneity

of certainty equivalents, monotonicity (first-order stochastic dominance), and

risk aversion (second-order stochastic dominance), while allowing for depar-

tures from the independence axiom of expected utility. These features were

shown in Epstein and Zin (2001) to play a key role in formulating tractable

dynamic asset-pricing models that allow for risk-preferences that depart from

expected utility in empirically relevant ways.

When we embed our new model of risk preferences in a Lucas-tree asset-

pricing economy, we find that its quantitative importance is linked to the

existence of a small amount of conditional heteroskedasticity in the 2-state

Markov process for the endowment growth. If homoskedasticity is assumed as

in Mehra and Prescott (1985), our model offers little improvement over existing

models. On the other hand, in the presence of a relatively small amount of

heteroskedasticity, our model generates state-prices that are consistent with

the historical patterns of equity and bond returns as delineated in Mehra and

Prescott (1985). In particular, our preference specification generates effective

risk aversion that is both state-dependent and counter-cyclical. The empirical

finance literature has highlighted the importance of these two properties as

necessary features of any asset pricing model that is likely to fit the data.

Moreover, our axiomatic approach allows us to have a deeper understanding

of the origins of this time-varying risk aversion and allows us to better evaluate

the structural stability of our preference parameters.

Future research will take further advantage of the tractability of the Eu-

ler equations in our model to explore the empirical implications of our new
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preference specification using both Hansen-Jagannathan bounds and GMM es-

timation as in Epstein and Zin (2001) and general-equilibrium term-structure

puzzles as in Backus, Gregory, and Zin (1989). In addition, we will explore the

usefulness of our model for understanding partial-equilibrium portfolio-choices.
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Appendix

Lemma: Preferences satisfy axioms 0,1,2, and “betweenness,” if and only if there exists

(i) u : X → [0, 1] continuous, increasing
(ii) ∆k : X → X continuous, increasing

∆k(m) < ∆k+1(m) for all m ∈ X, k = 1, ...,K − 1,

and ∆K(m) ≥ x0 for all m

(iii) Lk(x,m) : [0, 1]2 → R continuous, decreasing in x, increasing in m

(iv) βk ∈ (−1,∞)

and

M(p,m) = u−1


 ∑

xi∈X

p(xi)u(xi) −
K∑

k=1

βk

∑
xi≤∆k(m)

p(xi)Lk (xi,∆k(m))


 (A1)

such that µ(p) = M(p, µ(p)) and p � q if and only if µ(p) ≥ µ(q).

Proof: Dekel (1986) and Chew (1989) show that preferences satisfy axioms 0,1,2, and
betweenness if and only if there exists a function U : L × X → R such that µ(p) uniquely
solves ∑

xi∈X

p(xi)U (xi, µ(p)) = 0 (A2)

with U(x,m) continuous, increasing in x, decreasing in m and satisfies U(x,m) = 0 if x = m

(and with the normalization that µ(x0) = 0 and µ(x0) = 1). Converting (A2) to (A1) is
simply notation and algebra. Rewrite (A2) as

∑
xi∈X

p(xi)u(xi) −
∑

xi∈X

p(xi) (U(xi,m) + u(xi) − u(m)) = u(m)

Let F (x,m) = U(x,m) + u(x) − u(m). Note F (x,m) is continuous and increasing in x,
decreasing in m, and F (x,m) = 0 if x = m. Since the function is continuous, we can now
partition this function (note ∆k(·) are invertible). Let

L1(x, z) = F
(
x,∆−1

k (z)
)
1{x≤z}

Lk(x, z) = F
(
x,∆−1

k (z)
)
1{x≤z} −

k−1∑
h=1

Lk(x, z) k = 2, ...,K

Let z = ∆k(m) and note L(x,∆k(m)) = 0 at x = ∆k(m). Finally, rescale the function by
βk.

31



Table 1: Mehra-Prescott Calibration Results
Matching Mehra-Prescott/Melino-Yang State Prices

Melino Risk-Preference Model
Parameter Yang EU KP DA DAL GDA GDAL

α -12.65 -10.95 -2.10 1.00 -1.95 1.00
γ 1/α -1.26 -1.51 -1.15 -1.52 -1.20
β 0∗ 0∗ 1.15 1.75 1.25 1.70
δ na∗ na∗ 1∗ 1∗ 0.98 0.995

MLL 1.8620 1.5664 1.5812 1.5542 1.5241 1.5462 1.4992
MLH 0.2440 0.5284 0.4899 0.5372 0.5665 0.5265 0.5788
MHL 1.1270 1.3733 1.3889 1.3829 1.3502 1.3708 1.3455
MHH 0.9490 0.4654 0.4323 0.4796 0.5231 0.4680 0.5222

E(R) 1.070 1.040 1.055 1.036 1.032 1.047 1.035
std(R) 0.165 0.037 0.044 0.044 0.042 0.043 0.042
E(r) 1.008 1.022 1.033 1.016 1.014 1.027 1.017
std(r) 0.056 0.004 0.010 0.010 0.008 0.009 0.009

The Melino-Yang pricing kernel is from equation (2). Six different
models are presented: EU is time-additive expected utility, KP is
Kreps-Porteus recursive non-time-additive expected utility for atem-
poral gambles, DA is Recursive Disappointment Aversion utility, DAL
is Recursive Disappointment Aversion utility with risk-aversion param-
eter α = 1 (u(x) linear), GDA is Recursive Generalized Disappointment
Aversion, and GDAL is Recursive Generalized Disappointment Aver-
sion with risk-aversion parameter α = 1 (u(x) linear). α is the risk-
aversion in u(x); 1

1−γ
is the intertemporal elasticity; β is the coefficient

of loss-aversion (see equation (3)); δ is the threshold for disappoint-
ment (see equation (3)) For all models, the rate of time-preference is
constrained to be ρ = 0.01.
∗ β = 0 implies expected utility and δ is undefined;
∗∗ δ = 1.0 implies Disappointment Aversion
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Table 2: Alternative Calibration
Conditional Heteroskedasticity State Prices

Risk-Preference Model
Parameter p = 0.4 KP DAL GDAL

α -12.02 1.00 1.00
γ -2.10 -1.09 1.00
β 0∗ 1.93 1.61
δ na∗ 1∗ 0.93

MLL 2.4812 2.0733 1.9345 2.4812
MLH 0.3013 0.4499 0.5454 0.3013
MHL 0.9914 1.0534 1.6469 0.9914
MHH 0.9890 0.3755 0.4655 0.9890

E(R) 1.090 1.053 1.029 1.090
std(R) 0.165 0.049 0.042 0.165
E(r) 1.010 1.020 1.004 1.010
std(r) 0.000 0.015 0.010 0.000

The pricing kernel for the p = 0.4 calibration is shown in (25) and (24).
Three different models are presented: KP is Kreps-Porteus recursive
non-time-additive expected utility for atemporal gambles, DAL is Re-
cursive Disappointment Aversion utility with risk-aversion parameter
α = 1 (u(x) linear), and GDAL is Recursive Generalized Disappoint-
ment Aversion with risk-aversion parameter α = 1 (u(x) linear). α
is the risk-aversion in u(x); 1

1−γ
is the intertemporal elasticity; β is

the coefficient of loss-aversion (see equation (3)); δ is the threshold
for disappointment (see equation (3)) For all models, the rate of time-
preference is constrained to be ρ = 0.01.
∗ β = 0 implies expected utility and δ is undefined;
∗∗ δ = 1.0 implies Disappointment Aversion
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Figure 1: Indifference Simplex - Expected Utility
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Figure 2: Indifference State-Space- Expected Utility
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Figure 3: Indifference Simplex - Gul Disappointment Aversion
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Figure 4: Indifference Curve: Gul Disappointment Aversion
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Figure 5: Indifference Simplex - GDA
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Figure 6: Indifference Curve: Generalized Disappointment Aversion
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Figure 7: Two-Period Equilibrium - Expected Utility
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Figure 8: Two-Period Equilibrium - Disappointment Aversion
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