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follow a random walk, it is very risky to hold for the long term even if

it is quite safe for the short term. This paper examines the effects of

different returns dynamics of assets on optimal portfolio behavior, for

Portfolios held for differing lengths of times. It then examines the evidence

°n the dynamics of stock and bill returns in the United States. The evidence

is that bill returns are more highly serially correlated than stock returns.

Thus their riskiness relative to that of stocks rises the longer they are

held. Optimal portfolios are simulated, and it is shown that optimal port-

folio proportions are not very sensitive to the length of the holding period

of the portfolio.
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The expected real monthly return on Treasury bills is serially correlated,

by some estimates following a random walk.
1

Expected real returns on stocks

have a different dynamics. This means that the relative risk characteristics

of stocks and bills differ depending on how long they are held.

For example, suppose that the expected real returns on Treasury bills

are highly serially correlated and that expectedreal returns on stocks are

less serially correlated. It is known that the variance of unexpected real

returns on stocks, looking ahead one month, is about one hundred times the

variance of the unexpected real return on bills. Stocks are of course much

riskier than bills in the short run of a month.

Now consider an investor making a long—term portfolio decision to

allocate his wealth between two mutual funds—-a bill fund and a stock fund—--

with the proceeds being automatically reinvested in the fund in which they

originate. Given the assumed serial correlation properties of asset returns,

the longer the investmnt period, the less risky are stocks relative to bills.

Three questions are taken up in this paper: 1) How does the term

structure of risk arising from differences in the dynamics of asset returns

affect optimal investment behavior? 2) 'hat is the evidence on the dynamics

of returns on stocks and bills in the United States? 3) Given the returns

dynamics estimated in the paper, how do optimal portfolios change with the

• length of the holding period?

The paper starts in Section 1 by distinguishing between the horizon of

the investor and the portfolio holding period, and by briefly reviewing



2

known results on the effects of the horizon on the investment decision.

Section 2 sets out the dynamics of asset returns and uncertainty about those

returns as a function of the length of the holding perfod of an asset.

Optimal mean—variance portfolios for investors choosing between two assets

each with returns following a first—order autoregressive process are

calculated in Section 3. The dynamics of returns on stocks and bills is

described in Section 4, using United States data since 1926. Section 5

presents the results of simulations of optimal portfolios for holding periodG

of diffeent lengths, given the dynamics described in Section 4. Section 6

contains cormnents on the applicability of the analysis to pension investing.

Concluding remarks are in Section 7.

1. The Investment Horizon and the Portfolio Holding Period

Consider an investor maximizing the intertemporal utility function

(1) V( ) = OE
J

et U(C(t))dt + (1-O)EB(W(T))

where C(t) is the rate of consumption at time t, U(C(t)) is the instantaneous

utility function, 6 is the discount rate, W(T) is real wealth at time T, 3( )

is a utility of bequests function, and 0 is a constant, 0 < 0 < 1.

Suppose first that 0 is equal to zero, so that the individual maximizes

only the expected utility of bequests E B(W(T)). In this case T is the

investment horizon. The function B( ) is also called the terminal utility

of wealth function. Research on growth and turnpike portfolios (for example,

Hakansson, 1971 and 1974; Leland, 1972; Nerton and Samuelson, 1974; and Ross,

1974) has examined the effects of the length of the investor's horizon on
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optimal portfolio composition. The main question here is whether as the

horizon lengthens all investors tend to hold the same portfolio——to which

the general answer is no. There is a further question whether investors

should or might want to maximize the expected growth rate of the value of

the portfolio (subject to no short sales), to which again the answer is in

general no.

The investor's holding period is the interval of time between successive

portfolio actions.2 At one extreme, the investor may have an arbitrarily

short holding period, engaging in Continuous trading to rebalance the

portfolio. At the other extreme, the investor may make his only portfolio

decision at time zero and thereafter not be able to adjust the portfolio's

composition. The important point is that the investor does not respond within

the holding period to changes in actual and desired portfolio composition

resulting from the behavior of asset returns. -

For any given holding period, the individual solves the optimal portfolio

problem from the recursion relations

(2) J(W(t)) = Ma* E (J(W(t+)))
,

0 < t < T

with J(W(T—)) = Max ET B(W(T))

In (2) J( ) is the indirect or derived utility function, and is the length

of the holding period. The maximization is conducted with respect to the

Composition of the portfolio.

Research on myopia in portfolio choice, by Hakansson (1969), Mossin

(1968), and Samuelson (1969), considers the circumstances under which the
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investor's optimal portfolio is, for any given holding period, independent

of the horizon. For utility functions
with constant absolute or relative

risk aversion, the investor's portfolio decision is independent of the length

of the horizon, depending only on ea1th. But, as shown by Goldman (1979),

the composition of the optimal portfolio is not independent of the holding

period, even when utility functions have constant relative risk aversion.

The holding period for an individual managing his own portfolio is

likely to be finite but not constant. Portfolio
rebalancing will be

undertakn only at discrete intervals because thy are costly. But the

interval is not fixed, because the need for rebalancing varies with the

behavior of asset prices.

An investor who saves through regular contributions to a retirement

fund for which he specifies the breakdown of his portfolio between equities

and bonds, may formally be permitted to change the composition of his

retirement portfolio only once a year or every few years. However, if such

an individual also has discretionary portfolio assets, he can effectively

rebalance his portfolio more frequently than the rules of the retirement

fund formally permit. This is done by using the discretionary funds to

offset movements in portfolio composition in the retirement funds.

When the possibility of consuming at intermediate dates, t < T, is

reinstated by setting B in (1) at a value other than zero, the notion of

the horizon loses its crispness. Date T is still the horizon in the sense

that the individual looks no further ahead than T. But now events that

occur at t < T matter not only because they affect the situation at T, but

also because consumption at t and later depends on the state of the world

at time t. Despite the ambiguity, I continue to refer to T as the horizon.
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The notion of the portfolio holding period retains its meaning, however.

Even if consumption takes place continuously, optimal portfolio behavior may

involve infrequent rebalancing of the portfolio. Inventories of goods and

liquid assets are used to finance consumption within
the holding period, while

the investment portfolio is rebalanced at discrete intervals.

The optimizing problem of the investor/consumer is again solved as in

(2), with the aid of recursion relations and an indirect utility function.

For any given frequency with which decisions are made, questions about myopia

in portflio behavior receive the same answers as they do without inter-mediate

consumption.

I do not in this paper analyze optimal investment strategy for an

individual faced with costs of portfolio management and given dynamic

properties of asset returns. Optimal strategy in such a case will involve

a finite but not constant holding period. Instead, I
study the simpler

problem in which the holding period is given. The focus of the analysis is

the effects of the length of the holding period on the optimal composition

of the portfolio, when asset returns are serially correlated.3 The assumption

is that there are a significant number of individuals for whom the portfolio

holding period is effectively of the order of months, or even years. It is

for such individuals that the distinction between the short—run and the long—

run properties of asset returns is important.
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2. Rates of Return and the Length of the Holding Period

This sction briefly examines the distribution of per period rates of

return on an asset as a function of the number of
periods for which it is

held. The returns are assumed to follow a stable first—order autoregressive

process.

Suppose the rate of return on an asset, r, is described by

(3) in (i+r) x = a + x1 + c

where is serially uncorrelated and normally distributed, with expectation

zero and variance a
C

Let WN be the amount obtained by buying one dollar of the asset at the

beginning of period 1 and reinvesting the returns for N periods. Then

(4) in in fl(1+r.)

rN=

From (3) and (4).

N N+1-iNa 8(1—8 ) rN 1—8(5) in = +
—1—a----—-

(x-cx) + ______

is therefore lognormally distributed with

(6) E[1OWNJXJ = + 8(1N)
(x—cz)

and

2

(7) var[lnWIx) = -_-- [N — ______ (2 —
)J s()2

The expectation and variance of terminal
wealth, WNJ are given by:
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(8)
E{WNIx]

+ 2 2
2m • S s.

(9) var [WNJxJ e
N Ce ' — 1)

iow define the expected rate of return per period on an N

period investment, i.i(N), by

(10) Np(N) m.

Toe variance of the per period return, c2(N), is defined by.

(11) Nc2(N) s
Asymptotically, the per period expected rate of return is just

(/(1—B)), with the additional term in (6) reflecting the effect on

expected returns of initial conditions.

The per period variance of returns goes asymptotically to

2
a

(12) lirn 2(N) =

(l_;)2

For N1, of course

(13) 2(1) =

Thus the variance of the per period rate of return on an asset

increases by a factor of (1) 2 as the number of periods for which it

is held rises from one to many. For a highly autocorrelated series,

=.9, the ratio of the asymptotic to the one period variance of the per
period return is 100.
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Table 1 shows how the variance of the per period rate of return changes

with the number of periods for a first—order
autoregressive process, for

alternative values of . The effects of the serial correlation on the

variance of the per period return are highly nonlinear in the parameter .

Table 1 to go here.

3. Minimum Variance and Optimal Mean—Variance Portfolios

In this section I examine minimum variance
and optimal mean—variance

portfolios when asset returns follow first—order
autoregressive processes

like (3). The consun-er/investor is understood to be maximizing an

intertemporal utility function with indirect utility function that is

quadratic in the portfolio return, and with portfolio holding period of

length N.

Suppose there are two assets, 1 and 2, with returns described
by

(14) x. = + .x. + c. I = 1,2i,t 1 1 i,t—1 it

with E[cltE2] = 12' and variances of c. denoted

Define the variance of the per period rate of return for each asset by

as in (11). Let w be the share of the first asset in the
portfolio

and define the variance of the portfolio rate of return as

-

(15) Q2(N) = w2(N) + 2w(1-w)G12(N) + (1-w)2(N)

where 12(N) is the covariance of the per period rates of return, given by
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1 N+1—j N+1—i
(16) N012(N) = E[1c(2 )]

012=

where

f(N)
(1—8182)[81(l_82)(1_$N+1) + 82(181)(12)J

+

The Minimum Variance Portfolio: The minimum variance portfolio is given by

o(N)
(17) w*(N)

2 2-
2a12(N)

+ (N)
In particular:

2

(18) (1) =
2

-
012

2— 2a +
02

(1Bl)2a2 - (1-8k) (1_82)012(19) =
2 2 2 2

(1_82) 01 — 2(1_81)(1_82)012
+ (1—8) 02

The difference between the one period and asymptotic minimum variance

portfolios depends largely ° —

-Y [(l_82) {o_o12) ÷ a(l-8) [o_o12)(20) w*() _w*(l)
D D
1='

where D and D are the derioinators of the expressions in (18) and (19)
1

respectively. -
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For both and 2 less tan one in absolute value, and for zero

covariance of asset returns (0,2 = 0), the minimum variance portfolio moves

towards or away from stocks as the holding period lengthens, depending only

on the sign of — en asset returns are positively correlated

(012 > 0), the direction of the shift in the minimum variance portfolio

apparently becomes less certain. Eowever, for stocks as the riskier asset

(so > o) and provided w*(1) is positive (so > 012), the direction of

shift is of the same sign as (E2 — Bi).
The.composition of the minirnun variance portfolio may be highly sensitive

to the length of the holding period. To take a simple example, in which

asset 1 should be thought of as stocks, assume that

2 2a =99a
ci c2

i=0

82 =

then

w*(1) = .01

and

= .50
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As the holding period lengthens in this case, stocks take up a larger part

of the minimum variance portfolio.
It takes a holding period of 19 periods

for the optimal share of the first
asset in the portfolio to reach 25%. The

47.5% mark is reached only after 131 periods.

Mean—Variance Portfolios: Although the usual justifications for mean—variance

portfolio analysis do not apply when portfolio decisions are made for the long

term, it is instructive briefly to consider
optima], mean—variance portfolios

as a function of the decision period. If
utility is defined as a function of

the mean and variance of the
portfolio returns, the optimal proportion of the

first asset in the portfolio is

where A is a measure of risk tolerance
and p1(N) is the expected per period

return on asset i.

In (21) we interpet the first asset as the stock, which has a higher

expected return than bills. Two forces act on the portfolio as the horizon

changes. In the first (excess return) term on the right hand side of (21),

the numerator stays constant as N increases while the denominator increases

with N. Thus the asset holder will want to hold less of the stock when the

riskiness of the excess return on stocks rises relative to the expected

return, as the holding period lengthens. Second, as seen above, the share

of the stock in the minimum variance
portfolio, w*(N), changes as the holding

period N increases.

(21) w**(N) =
— ii2(N)

÷ w*(N)
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For 82 > the two portfolio effects——that through the first, excess

return, term, and that through the minimum variance portfolio——work in

opposite directions. Thus the effects of changes in the holding period on

the composition of the portfolio will be ambiguous for this mean—variance

case, 2 > The net effect on the portfolio will depend on the

parameters of the stochastic processes describing asset returns, and on the

investor's risk tolerance. The presumption is that if 82 >> 8, the shift

in the portfolio will be towards stocks as the holding period lengthens, but

if the serial correlation properties of the returns on the two assets are

similar, it is less certain which way the portfolio will shift with the

holding period.

Constant Relative Risk Aversion Portfolios: Mean—variance portfolio analysis

is difficult to justify when the holding period is long. But it turns out

that ambiguities similar to those noted above emerge when utility functions

are isoelastic and asset returns follow diffusion processes.

Goldman (1979) has shown, for isoelastic utility functions, that

portfolios become less diversified as the holding period lengthens, when

asset returns are generated by diffusion processes with no serial correlation.

Portfolio proportions move away from one half towards undiversified positions

as the holding period lengthens.

When serial correlation of asset returns is introduced, there is an

effect additional to that of Goldman on the composition of the portfolio

(Fischer, 1982). As the relative risk of assets changes with the holding

period, the composition of the pcrtfolio changes for that reason as well as

the Goldman effect. The net effect depends on the relative strengths of the

Goldman effect and the risk—aversion effect.
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Portfolio analysis thus cannot unambiguously describe the effects of

changes in the holding period on the composition of the portfolio. The

effects depend on both the facts——the stochastic processes describing asset

returns——and the investor's preferences. In the next section we turn to the

facts.

4. Asset Returns

Although knowledge of the stochastic processes generating asset returns

is essential to portfolio behavior, there is no consensus on what these

processes are. Nor are there well—known competing estimates of the stochastic

processes. In this section I first present evidence that there is both serial

correlation in bill returns and differential returns dynamics of bill and

stock returns. Then I present three alternative estimates of the stochastic

processes generating asset returns.

Method 1 estimates a simple autoregressive model for real bill returns,

and then treats the real return on stocks as a function of the anticipated

real rate on bills and lagged stock returns. This method has been used by

Fama and Gibbons (1980).

Method 2 estimates a complete monthly vector autoregressive model of the

economy, including stock and bill returns among the variables in the model.

The vector autoregressive model implies the dynamics of stock and bill returns.

Because the rate of inflation, growth rate of industrial production, and rate

of money growth are included in the model, the dynamics of asset returns is

potentially richer than in the simpler constrained processes estimated by

Method 1.
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Both Methods 1 and 2 at times irply that the expected real return on

bills exceeds that on stocks. Metod 3 therefore imposes a constraint, of

a type implied by the capital asset pricing model, on the processes generating

the returns.

The section ends with a compa:ison of the alternative estimates of

returns.

Differential Returns Dynamics: Sinpie time series properties of realized

real rates of return on stocks and Treasury bills are suggested by Table 2.

Stock and bill returns are monthly Ibbotson—Sinquefield data from the Center

for Research in Security Prices; stock returns are from the Standard and Poor's

Composite Index. Real rates oi return are calculated from the non—seasonally

adjusted consumer price index. Returns are measured as logarithms of one

plus the return. Returns for more than one month are compounded for non—

overlapping periods.

Table 2 to go here.

The essential point nade by Table 2 is that the relative riskiness of

stock returns falls with the length of the holding period. For data covering

the entire 1926—1980 period, the per period variance of returns on stocks is

100 times that on bills over a one—month holding period; over a one—year

holding period, the variance of returns on stocks is twenty times greater

than that on bills. The ratio of ;'ariances over five—year holding periods

is only 4.4, though this number should be treated with caution since it is
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based on only 11 five—year periods. A similar though less dramatic pattern

holds over the 1948—1980 period.6 I will from this point on work with monthly

data for the period 1948—1980.

The per period variances in Table 2 suggest both that stock returns are

(approximately) serially uncorrelated and that bill returns are positively

serially correlated. If stock returns were i.i.d., the per period variance

would be independent of the length of the holding period. As it is, the per

period variance for stocks increases slightly with the length of the holding

period. The per period variance of returns on bills rises more sharply with

the length of the period.

Autocorrelation functions for real stock and bill returns are presented

in Table 3. Bill returns are significantly serially correlated, whereas

stock returns are not. The autocorrelation function for bills suggests that

the stochastic process for bill returns is something other than a first—order

autoregression.

Table 3 to go here.

I now present three sets of estimates of the stochastic processes

generating asset returns. Each method allows for correlation of stock and

bill returns; such correlations have a potentially major impact on portfolio

decisions. It will become clear below that Method 3 is the preferred esti-

mation method in this paper, but Methods 1 and 2 are included since they

have either already appeared in the literature or else are typical of methods

currently used to generate expectations.
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Method 1: The first method of estimating bill and stock returns dynamics is

that of Fama and Gibbons (1980). The method is to estimate a simple ARMA

model for real bill returns, and then to relate stock returns to expected

bill returns. The rationale for this approach is that models of capital asset

pricing imply that expected real returns on stocks are related to expected

returns on bills.

Table 4 presents estimates of a twelfth—order autoregressive process for

the real bill rate, using data from the period 1948:2 to 1980:12. The length

of the autoregression was chosen to eliminate serial correlation in the

residuals, as indicated by the Q—statistic. More parsimonious representations

using moving average as well as autoregressive parameters did not improve on

the properties of the real bill rate equation.7

Table 4 to go here.

The real return on stocks is then regressed on the expected return on

bills, as computed in regression (Ri). The real return on stocks is

significantly positively related to the ex ante real return on bills. The

share of the variance of realized stock returns accounted for by movements

in the expected bill rate is however less than 1%. The standard error of

estimate of the stock rate of return over the next month is almost 4%, at a

monthly rate. Thus actual movements in real stock returns are hardly at all

the result of changes in the expected rate, at least according to the

estimates presented in Table 4.
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As a result of the constraints under which the stock and bill returns

processes are estimated, the ex ante rates of return on stocks and bills

follow very sinilar stochastic protesses. The first—order autocorrelations

of ex ante bill and stock returns are both about 0.7.

Method 2: Method 2 estimates a monthly five—variable vector autoregressive

model of the U.S. economy, for the period 1948:2—1980:12. The five variables

are the rate of money growth (Mi—B), the rate of inflation (CPI), the rate

of growth of industrial production, the nominal bill rate, and real stock

returns. Variables are not seasonally adjusted.

A vector autoregressive nDdel (Sims, 1980) imposes a minimum of theory

n estimating dynamic equations. All variables are modeled as endogenous,

lags are made sufficiently long to eliminate any serial correlation of

residuals in estimated equatio:is, and no zero restrictions are imposed on

coefficients beyond those implied by the choice of variables to include in

the model and the length of lag.

The form of the model is

I
(22) X = A. X1 + u

1=1

where is the vector of (in this case 5) included variables, the maximal

lag length I has to be specified, the coefficients in the A matrices are to

be estimated, and u is a white noise vector of disturbances that may be

contemporaneously correlated.

In the model estinated here tie lag length was taken to be twelve, both

to eliminate serial correlation of residuals and to pick up any potential

residual seasonal patterns that 'ere not eliminated by the presence of
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seasonal dummy variables in each of the five equations. The Box—Pierce Q—

statistic was used to indicate serial correlation.8

The lag coefficients were estimated imposing a Bayes-Litterman prior

(Litterran, 1980). The prior is that the model is purely first—order

autoregressive, with each variable following a random walk. Thus priors are

that the coefficient of the first own lag in each equation is unity, and all

9
other lag coefficients are zero. Prior estimates of the standard deviations

of the lag coefficients are that the standard deviations fall geometrically,

with an imposed decay coefficient of 0.9. The standard deviation for the

first own lag coefficient is estimated from a first—order autoregression.

Standard deviations on coefficients of all other variables in an equation

follow the same decay pattern as those on the own variable, but with standard

deviations that are half those on the own variables.

The prior restrictions, which are tighter at the longer lags, reflect a

general presumption that economic systems are low—order autoregressions. The

priors typically prevent the alternation of coefficients that would be

expected in any system in which the regressors are highly collinear.

Suiimiary statistics from the five equations are presented in Table 5.

The regressions themselves contain too many parameters to be presented. The

most striking feature of the system is the inability to predict stock returns

well using the vector autoregressive approach. The F—statistic for the

regression as a whole is not significant at the 5% level, though it is

significant at the 10% level.

Table 5 to go here.
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A vector autoregressive model of the type estimated here should be viewed

as a statistically sophisticated extension of single—variable time series

forecasting methods. No attempt is made to estimate structural relations.

The hypothesis implicit in the use of such models for forecasting purposes

is that the underlying economic structure, including policy response functions,

is stable. This approach is as vulnerable as more traditional econometric

models to the Lucas policy evaluation critique that coefficients will change

f policy rules change.

The xnodel was used to form within sample on period ahead forecasts of

real rates of return on stocks and bills. These predicted rates are serially

correlated. The first autocorrelation of the real return on bills (equal to

the nominal rate of interest minus the predicted inflation rate) is 0.61.

The first autocorrelation of the predicted return on stocks is 0.34. However,

there is a seasonal pattern in stock returns, resulting in a twelfth—order

autocorrelation of 0.56. Thepredicted rates of return on stocks have a high

standard deviation, equal to 1.3% P2 month. The standard deviation of

predicted real bill returns is 0.2% per month.

The high variability of the ex ante stock rate also produces occasions

on which the expected return on stocks is lower than the expected return on

bills. Rather than attempt to correct this problem by tightening the priors

on the lag coefficients in the stock returns equation, I imposed a constraint

of a type implied by the capital asset pricing model. This leads to Method 3

for estimating bill and stock returns.
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Method 3: Method 3 estimates a vector autoregressive model to generate

expected real returns on bills, and the uses the one period ahead forecast

of the real bill rate from that model to estimate an equation for the

predicted real return on stocks. The assumption is that

(23) tlt — t—1t a +

In (23), the left—hand-side variables are the expected real returns on

stocks and bills respectively. The variable is the expected or

estimated variance of the excess return on the market. The variable e

is random, and a is a parameter to be estimated.

Equation (23) is not exact, because the capital asset pricing model

does not imply a constant value of the parameter a when the opportunity set

is changing. The error term is included to reflect such changes. The

coefficient a is estimated using the assumption that expectations of stock

returns are rational. With rational expectations,

(24) RS = + V

where V is a serially uncorrelated error term with expectation zero.

Substituting (24) into (23), we obtain the estimated equation

(25) RS t—1t a t—1 + —
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Some comments on (25). First, the structure of the error term in (25)

or equivalently the form in which (25) is estimated, is not known or

determined by a priori considerations. It is possiblethat e is

heteroscedastic,'° and that the implicit assumption made in moving from (24)

to (25) about the variance of v is inappropriate. Estimation of (25) in

the alternative form

RS - RB
(25)' t t—1

- t—1 t

hardly affected the estimate of a, to be reported in Table 6 below.

Second, (25) is constrained not to allow a constant. When a constant

is added on the right hand side, the constant is small and insignificant,

the estimate of a falls a little, but a loses its statistial significance.

Third, it is necessary i(25) to use an estimate of the variance of

11
the excess return on the market. I experimented with variances of lagged

realized stock returns over 12, 24, and 36 months. There were no major

differences in the estimates of a. The final choice was the 36-month moving

12
variance.

Table 6 contains details of the estimated vector autoregressive system

and of CR12), which is the estimated version of (25). The vector

autoregressive system contains four variables, those of the previous section

excluding the real return on stocks. Because real stock returns did not

appear significantly in other equations in the five—variable model, the

equations for the four—variable model are very similar to those estimated in

Method 2.
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Table 6 to go here

The estimate of a in CR12) is significantly different from zero. The

predictive power for real stock returns of an equation like (R12) is of

course extremely small. The iplicd value of the coefficient of relative

risk aversion is about 3, corresponding to a utility function of the form

(-WY2.

The expected real rate of return on stocks is now highly serially

correlated. This is in large part a result of the serial correlation built

into the method of creating the variance, The first autocorrelation for

expected stock returns is 0.83. That for bills is 0.62, approximately the

same as for Method 2. The standard deviation of the expected real rate on

stocks is now only 0.27% per month; that for bills is 0.18% per month.

Expected stock returns always exceed expected bill returns, though the

premium certainly varies. The highest premium is recorded in 1976, and is

equal to 1.2% per month. The lowest premium occurs in early 1966 and is

only 0.17% per month. If such variation is too large to be plausible, the

source of the difficulty is no doubt to be traced to the variance estimator.

The purpose of estimating the alternative forecasting models is to use

themin examining portfolio selection over different holding periods. In the

next section I use Methods 2 and 3 to simulate the behavior of different

portfolios, over one— and sixty—period holding periods.
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5. Simulated Portfolio Results

The stochastic processes for bill and stock returns implied by Methods

2 and 3 in the previous section were used in simulating the behavior of

alternative portfolios, over holding periods of one month and sixty months.

The utility function was taken to be isoelastic, of the form

(26) J(W) = W/y , y < 1

For y = 0, we have the logarithmic utility function. The smaller is y,

the more risk averse the individual.

Four alternative utility functions were used to evaluate portfolio

performance. They were the logarithm, y = —1.5, y = —4, and y = —10. The

last utility function has risk aversion well beyond any that is usually

estimated. It is included because the less risk—averse utility functions

show little inclination towards portfolio diversification.

The simulation procedure is to set each model off wIth starting

conditions that are equal to historical means of the relevant variables

over the estimation period. Drawings of the additive error terms in each

equation are then made and first-period values of the variables in the

simulation recorded. The process then repeats, with updated values of

lagged variables (in the sixty—period simulation), and keeps doing so to

the end of the holding period.

Portfolios are allocated between bills and stocks, on a grid of 0.05,

• running from all stocks to all bills. The total return accumulated over

the holding period by one dollar invested in each asset, and the
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terminal wealth and utility obtained from each portfolio choice for each

utility function are recorded for each simulation. There were 10,000

simulations of the portfolios generated using the stochastic processes of

Model 2, and 2500 of the portfolios generated using Model 3. The mean of

the utility level attained under each portfolio choice for each set of

simulations is calculated, and taken to be an estimate of expected utility.

Because mean asset returns initially differed over the one—month and

sixty—month holding periods, the means of the returns on both bonds and stocks

were adjusted in the one—month holding period simulations to be the same as

those in the sixty—month simulations. The identity of the reported means of

asset returns in one and sixty—month simulations in each table is thus the re-

sult of calculation and not chance.

The simulated optimal portfolios in Table 7 are heavily in stocks for

both short and long horizons. Diversification only occurs for utility

functions with high risk aversion. The most interesting result in the

table, from the viewpoint of this paper, is that lengthening of the holding

period shifts the portfolio towards bills rather than away from them, for

the highly risk—averse investors. These investors are probably reacting to

the increasing riskiness of the excess return on stocks over bills, even

though the relative riskiness of stocks is falling. A second factor that

may account for the result is that the covariance of bill and stock returns

can move investors into bills as the horizon lengthens, even if the relative

riskiness of bills is rising (Fischer, 1982).

Table 7 to go here.
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The results of 2500 simulations made using the dynamics of Method 3 esti-

mates are shown in Table 8. The levels of the optimal portfolios are very

similar to those in Table 7. This is to be expected since the interactions

between stock returns and the rest of the system in Method 2 were minimal.

However, the effects of the holding period on the optimal portfolio are

now different from those in Table 7. For all but one utility function, there

is no change in the portfolio as the holding period changes. For the utility

function (—W)4, the portfolio actually moves towards stocks as the holding

period lengthens. This is more in accord with tlie intuition suggested by the

discussion of Section 1, but it is not a strong effect. The effect is not

a quirk of rounding though. A search for optimal portfolios over a finer grid

located the optimum for a one-month holding period at a share of .745 for

stocks; for a sixty—month holding period the optimum was .795.

Table 8 to go here.

There are two main conclusions from these simulations.

1. The differential dynamics of asset returns does not cause optimal

portfolios to change dramatically with the length of the holding period. The

direction of movement depends on the stochastic process generating portfolio

returns. Since the stochastic process for Method 3 is more soundly based,

the results for this method should receive more weight. These indicate that

the portfolio moves, if at all, towards stocks as the holding period lengthens.

2. For the specified utility functions, and given the historical be—

13
havior of stock and bill returns, portfolios are heavily in stocks.

Indeed, for utility functions consistent with estimated coefficients of

risk aversion, portfolios are entirely in stocks.'4
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6. Pension Investments

Individuals investing in pension or retirement funds are investing for

a long horizon. In some cases they are also, formally, investing for a long

holding period, since the portfolio proportions may be changed only at

discrete intervals of say a year. The possibility that optimal portfolios

differ depending on the holding period is relevant to such investing.

If the investor has other discretionary assets he can use them to

offset movements in the composition of the peision or retirement portfolio

within the holding period for the latter portfolio. He may be able

effectively to rebalance the portfolio continuously. Given the composition

of the retirement portfolio, the individual's discretionary portfolio will

hedge against changes in the retirement portfolio composition. But for those

for whom the pension fund is the only asset, the holding period may be of

the order of a year or several years.

Pension funds looking to create desirable long—term stock portfolios

may also be concerned about the term structure of risk, something of which

they are of course avare in the case of bonds. It is quite possible that

some stocks may have relatively better long-term than short—term risk

characteristics——though that cannot be demonstrated at the aggregate level

of this paper.

7. Summary

This paper introduces the notion of the differential term structure of

risk between stocks and bonds, and then estimates stochastic processes for

the generation of bill and aggregate stock returns. The stochastic process

estimates are to be regarded as tentative, for it is clear that there are
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major problems in estimating these returns. Despite the difficulty,

estimates of such processes are essential for making informed portfolio

choices.

The raw data and the estimated processes show more serial correlation

of bill returns than of stock returns. But estimated bill returns are not

sufficiently highly serially correlated relative to stock returns to make

them anywhere near as risky as stocks for even long holding periods.

The estimated returns processes are then used in stochastic simulations

to estimate optimal portfolio proportions over different holding periods.

There are two interesting findings. First, optimal portfolio change little

as the holding period changes. The direction of movement depends on the

estimated dynamic process for stock returns. Indeed, one of the implicit

findings of the paper is the lack of agreed or acceptable estimates of these

dynamic processes. Second, and very striking, optimal portfolios for what

are thought of as typical utility functions are very heavily in stocks.
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Footnotes

* Visiting Scholar, Hoover Institution, Stanford University, on leave

from N.I..T., and Research Associate, National Bureau of Economic Research.

This paper is part of the Bureau's Pensions Project and was prepared for the

Conference on Financial Aspects of the U.S. Pension System, Amelia Island,

March 25—26, 1982. I am grateful to Sudipto Bhattacharya, Fischer Black,

Barry Goldman, Hayne Leland, Thomas MaCurdy and Robert Mertott for helpful

comments and/or discussions, and to Jeffrey Niron for excellent research

assistance. Financial support was provided by the National Science Foundation

and the Boover Institution.

1
The random walk hypothesis is not rejected by Nelson and Schwert

(1977), Garbade and Wachtel (1978), and Fama and Gibbons (1980).
-

2
The terminology is slightly awkward. An alternative term is the

portfolio decision period, which however is potentially misleading since for

certain utility functions the investor keeps the portfolio composition fixed,

and thus need make only one investment decision. Goldman (1979) uses the

term revision period.

Goldman has analyzed this question when asset returns are not serially

correlated.

Note that x is the logarithm of one plus the rate of return, so that

the variance is that of the logarithmic returns on the portfolio.

Use of the seasonally adjusted price index does not much affect the

results.
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6
There is one period in which the pattern seen in Table 2 is absent,

in that relative riskiness is independent of the
holding period. This is

the 1953—1971 period——the period over which Farna (1975) showed the real

interest rate on bills was constant.

There is a question about the interpretation to be placed on the

coefficients in regression (Ri). Suppose, as assumed by Fama and Gibbons,

that the stochastic process generating real bill returns is one between

expected real rates. Thus:

(Fl) t—i RB = a + b2 RBt1 + e

where a and b are constants and .RB . is the expected bill rate. Givent—i t—i+1

that, under rational expectations,

(F2) RBt = t—1t + •

where v is serially uncorrelated, there is an error in variables problem when

(Fl) is estimated using realized bill rates of return. The estimated

coefficient b is biased dornward from the true b if (Fl) is estimated as a

first—order autoregression.

If one is willing to assert a priori that the true relation is a first—

order autoregression, the coefficient b can be identified by estimating a

(1,1) ARNA model for the realized bill rate. It was by using a restriction

of this type that Fama and Gibbons concluded the ex ante bill rate follows

a random walk——they were not able to reject the hypothesis that b in (Fl)

was equal to 1.
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However, separate knowledge of the coefficient b is not needed to form

optimal forecasts of the real bill rate when there are errors in variables

and no information other than realized bill rates to identify the expected

real rate. The optimal forecast is obtained from the appropriate ARNA

regression on realized bill rates. Thus from a forecasting viewpoint the

interpretation of the coefficients in (Ri) is not important.

8
The need for a twelfth—order system arose from the presence of serial

correlation in the money growth equation residuls for shorter lags.

9An exception was made for stocks, for which the prior was that returns

were white noise plus a mean.

10
This possibility has been emphasized by Merton (1980) in his

exploratory estimation of market returns. -

Fools rush in, despite the goodexample of Black (1976). The hope

is that this foolishness will encourage those less foolish to do better.

12
The assumption that the estimated stock market variance is formed

in this way is obviously crude. In work in progress, Olivier Blanchard and

I are attempting to provide a more sophisticated model for the variance.

13The results of the simulations are consistent with typical estimates of

coefficients of relative risk aversion as being around 2. These estimates

are based on the market risk premium. In equilibrium, the desired portfolio

for the "market" must be the market portfolio, in which Treasury bills play

only a small part. Hence the simulated optimal portfolios should have only

a small share of Treasury bills.

'4tTnat about taxes, it may be asked. The assumption is that the asset

returns are untaxed. klternative assumptions about taxation could be in—

corporated in future simulations of optimal portfolios.
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Table 1: Variance of Per Pericd Returns fFirst-0rder Autoregressive

Process

N 8=0.95 .=0.9 8=0.75 8=0.5
1 1.0 1.0 1.0 1.0
2 2.4 2.3 2.0 1.6
3 4.3 4.0 3.1 2.1
6 12.5 10.4 6.2 2.9

12 36.2 25.1 10.0 3.4
24 92.7 48.6 12.9 3.7

48 186.9 71.6 14.4 3.9

120 304.5 88.6 15.4 3.9

Note: Entries show variances of per period returns for holding period

of length N relative tovariance for one period.



Table 2: Real Honthly Returns on Stocks and Bills

Period
1926—1980 1948—1980i5yj

Stocks Bills

C].) (2) Ratio
Stocks Bills (1)/(2)

Nean return .00511 —.00008 .00593 .00003

Varianceof
(1)returns per month

Holding period
in months: 1 .362 .00353 102.5 .160 .00098 164.3

2 .402 .00547 73.5 .164 .00140 117.2

4 .355 .00826 43.0 .192 .00177 108.8

12 .381 .01649 23.1 .192 .00330 58.3

60 (.188 .04322 4.4) (.326 .00683 47.7)

Notes: 1. The variances should all be multiplied by .01.

2. Stock and bill returns are from the Ibbotson—Sinquefield File,
Center for Research in Security Prices, University of Chicago.
Real returns are calculated using seasonally unadjusted CPI.

3. Parentheses in last row of table are a reminder that statistics
are based on only eleven and six data points respectively.
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Table 4: Bill and Stock Returns, Nethod 1

1. Real bill rate, RB: Real bill rate is regressed on constant, eleven
seasonal dummy variables, and twelve lags of RB. Lag coefficients
(with t—statistics) are:

1 2 3 4 5 6 7

.25 .10 .11 .04 —.03 —.06 .06
(1.89) (1.84) (2.09) (0.69) (—0.55) (—1.20) (1.27)

(Ri)

8 9 10 ii 12

.10 .07 .09 —.11 —.05

(1.95) (1.51) (1.80) (—2.30) (—1.05)

Sample period: 1948:2—1980:12

= .20 SEE = .0028 D—W = 1.92
Q=59.7

2. Real stock rate, RS:

(R2) RS = .0057 + 3.03 1RB + .019 P.S
i

(2.83) (2.33)
••••

(0.38)

= .0097 SEE = .0398 D—W = 1.99
Q=61.5

Note: t_lRt is the expectation of RB formed at the end of period t—i,

using Eq. (Ri).



Table 5: Method 2, Five—Variable onthly Vector Autoregressive Model

(R3) Real Stock Returns

.15 SEE = .0369 DW = 2.00
Q = 42.9 (Significance level = .92)

F—statistics for sums of coefficieflts on each variable are not significant at

10% level for any of the variables. F—statistics for all coefficients not

significant at 5% level.

CR4) Nomina1 Bill Returns

= .95 SEE = .00051 DW = 1.98
Q = 40.9 (Significance level = .95)

F—statistics show strong significazce of lagged bill returns; no other

variables significant at 10% level.

CR5) CPI Inflation Rate

= .59 SEE .00256 DW = 1.98
Q = 58.5 (Significance level = .42)

F—statistics show strong significaflce of lagged inflation rate; lagged nominal

bill rates are significant at 2% level, lagged money growth at 6% level. Sum

of coefficients for each of these three variables is positive.

CR6) Crowth Rate of Industrial Production

= .85 SEE = .0116 DW= 2.05
Q = 30.4 (Significance level = .998)

Lagged stock returns, lagged idus:ria1 production and lagged money growth are

all significant at 5% level. Sum of lagged coefficients is positive for all

three variables.

(Continued)



Table 5 (Cont'd)

(R7) Growth Rate of Money

= .92 SEE = .0040 DW = 1.99
Q = 49.1 (Significance level = .76)

F—statistics show sum of coefficients on lagged nominal interest rates and

lagged money growth strongly significant. Lagged stock prices have

significance level of .08. Sum of lagged coefficients positive for all

three variables. Coefficients on bill rate lagged one and two periods are

both negative.



Table 6: Method 3, Estimated Four-Variable Vector Autoregressive Model

and Stock Returns Equation

(R8) Nominal Bill Returns

= .94 SEE = .00051 DW = 1.97
Q 43.5 (Significance level = .91)

F—statistics show strong significance of lagged bill returns; significance

level for inflation variables is .11.
-

CR9) CPI Inflation Rate

= .58 SEE = .00259 DW = 1.99
Q = 56.0 (Significance level = .51)

Coefficients on lagged bill returns and lagged inflation are strongly

significant; significance level for money variables is .08.

(Rio) Industrial Production

2R = .84 SEE =0.0119 DW = 2.04
Q = 31.6 (Significance level .998)

Coefficients on lagged industrial production and money are strongly significant.

CR11) Growth Rate of Money

= .91 SEE = .00408 DW = 2.00
Q = 49.5 (Significance level = .75)

Lagged bill rates, industrial production, and money are significant at 5%

level. Sum of coefficients on bill rate is positive; first two coefficients

are large and negative. Sum of coefficients on industrial production is

positive.

(Continued)



Table 6 (Cont'd)

(R12) Real Stock Returns

RS = t—1t +3:42

= .000046 SEE = 0.0399 DW = 1.95
Q = 59.7 (Significance level = .38)

Variables are: _ilB is expected real return on bills, equal to

nominal rate minus the expected inflation

rate from (R9).

is the variance of real stock returns over the previous

36 months.

t—statistics in parentheses.



Table 7: Simulated Optimal Po:tfolios, Method 2

Statistics:

1 month

60 months

Mean bill
return per

month

.160 x

160 x

Mean stock
return per

month

.00500

.00600

(1)

Variance of
bill return
per month

.640 x

.341 x

(2)
• Variance of

stock return
per month

.00125

.00 163

(2)1(1)

195.3

47.9

Notes: 1. Entries in first two rows are shares of stocks in optimal
portfolio.

2. There were 10,000 replications.

Holding Period

Utility Function

Ln W -V-4 -w-1O

lmonth 1 1 1 .45

60 months 1 1 .85 .4



Table 8: Simulated Optimal Portfolios, Method 3

Utility Function

Holding Period 9.,n W —W15 —W4 —W1°

1 month 1 1 .75 .35

60 months 1 1 .80 .35

S i)
Mean bill Mean stock Variance of Variance of
return per return per bill return stock return

Statistics:, month month per month per month (2)1(1)

1 month .00013 .00546 .633 1O .00162 256.4

60 months .00013 .00546 .330 x 1O .00159 48.1

4,

Notes: 1. Entries in first two rows are shares of stocks in optimal
portfolios.

2. There were 2500 replications.




