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ABSTRACT

The basic form of economic exchange is a bilateral relationship between

buyer and seller. If economic conditions are common knowledge there is

no problem in principle to determine the efficient quantity to trade.

But if benefits are known only to the buyer and costs are known only to

the seller a situation of bargaining under incomplete information results.

Instead of relying on the vagaries of a bargaining outcome, which might

be quite costly to implement, economic inefficiency is likely to be im-

proved by a contractual arrangement that could be agreed upon in advance.

In such contracts various aspects of the exchange could be allocated to

the two parties involved. For example, a price per unit might be fixed

in advance and the buyer might be allowed to name his quantity in the

light of the information he has about benefits. A more complex version

would present the buyer with a non—linear price schedule. Alternatively

the. supplier might be given control.

While these solutions are fairly well understood, there are other

types of arrangements in which control is mutual. This paper studies

contracts of this nature. We examine the feasibility of implementing

various agreements and the nature of optimal bilateral contracts under

these informational circumstances. When the random influences impact

both parties significantly, full efficiency is not attainable. We show

that contracts involving mutual control might sometimes be superior to

the best contract giving one side or the other exclusive dominance.
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Introduction

The basic form of economic exchange is a bilateral relationship be—

tween buyer and seller. If economic conditions are common knowledge, there

is no problem in principle to find the efficient quantity to trade. But

if benefits are known only to the buyer and costs are known only to the

seller a bargaining situation results. In such circumstances economic

efficiency might be improved if a contract governing the transaction could

be agreed upon in advance. Such a contract would give control of various

aspects of the exchange to the two parties involved. This paper studies

contracts of this nature. We examine the feasibility of implementing var-

ious agreements and the nature of optimal bilateral contracts.

One approach to this problem is to give control completely to one party

*or the other. This is seen widely in practice as well as in theory. A

price per unit may be fixed and the buyer can name his quantity after seeing

the actual benefits that are relevant. A more complex version presents the

**
buyer with a non—linear price schedule. Alternatively, the supplier may be

given control in a contract with a specified revenue function along which he

can optimize.

These solutions are fairly well understood. When the uncertainty is

entirely or primarily on one side of the market they can duplicate the fully

efficient solution —— that is the quantity that would be traded in a full—

information world. When the random influences impact both parties signif i—

*
Weitzman (1974)

**
Spence (1977)
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cantly, full efficiency is not attainable. The choice of which side should

govern the contract is then dependent on the elasticity of benefits and costs,

and on the distribution of the random parameters.

The primary gal of this paper is to examine contracts that allow for

mutual control. While these contracts do not have the ability to achieve

the first—best, they may, in some cases, dominate one—sided governance.

In the next section the basic model is set out. It is shom that

feasible contracts lead to traded quantities which, viewed as functions of

the random parameters, have to satisfy a certain partial differential equation.

Section 3 examines the special case in which the quantity traded has a

certain symmetric dependence on the parameters. This case allows us to re-

strict the partial differential equation in Section 2, obtaining a second—

order ordinary differential equation. Because this equation is non—linear

and because its right—hand side diverges at some points, its solutions

divide naturally into several different types. These are studied inSections4

and 5, and qualitative properties implied by them for the optimal contract

are presented in Section 6.

Numerical methods are used in Section 7 to construct various solutions

and verify the theoretical calculations.
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2. The Model

The basic structure of the model follows Weitzman (1974). There is

a buyer, whose willingness to pay for the good is

(1) U(q) +a q2 + cq

where q is the quantity traded. The other party to the contract is the seller,

whose reservation value for q is the negative of

() V(q)=bq —6q

Concavity requires that a and b be negative.

All of the uncertainty in the model enters through the coefficients of

the linear terms, c and 6. It is useful to note at the outset that the

efficient quantity is that which maximizes U + V,

(3) q*(E,6) = —

*
To insure that q is positive we suppose that E > 6 with probability one.

In order to use the methods of incentive compatibility, it is convenient to

assume that (e,6) has a continuous bivariate distribution over a rectangle

2
in R

A contract is a pair of functions t,q which assign to each (c,5) the

monetary payment made by the buyer to the seller, t(c,6), and the quantity

received by the buyer from the seller q(c,6). Given any contract and given

the realized values of s and 6 the two players can be viewed as participants

in a game where the strategies are their professed values of E and 6, c,6

and their payoff functions are respectively
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(4) U(q(E,6)) - t(s,6)
and

(5) V(q(c,6)) + t(c,6)

Viewed in this way, contracts are direct Levelation mechanisms in the sense

of Green—Laffont (1979) or Laffont—Naskin (1980). Je will say that a con-

tract is self—enforç or incentive compatible if the true value of and the

true value of 6 are, respectively, dominant strategies in this game for the

buyer and seller respectively. If a contract were not self—enforcing, the

value to the two players would have to be computed at the equilibria of the

game. Multiple equilibria would typically arise. Little is known about

*this case. In this paper we examine self—enforcing contracts exclusively.

Moreover, as a technical matter it is convenient to assume that q(.,.) and

are twice continuously differentiable.

We now give a characterization of self—enforcing contracts. The optimal

strategies for players whose true parameters are E and 6 are determined by

the first—order conditions

(6) a q(c,6) q(E,6) + q(,6) — t(E,6) = 0

(7) b q(c,6) q6(E,6) — 5 q6(c,6) + t6(E,6) 0

where subscripts denote partial differentiation. Incentive compatibility

requires that these be identities in (E,6) when evaluated at = c and

o = 0.

Differentiating ( 6 ) with respect to 6 and ( 7 ) with respect to

we find (suppressing the arguments of all functions)

* It may indeed by the case that by using strategy spaces other than the
real line, we can implement discontinuous q(.,.) which nevertheless have a lower
welfare loss. This is beyond the scope of the present paper.
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(8) a q q6 + a qq + — t = 0

(9) b q q + b qq — 5q + t = 0

Using = t we can eliminate from ( 8 ) obtaining

(10) ((a+b) q + (c—cS)) + (a+b) qq6 = 0

Equation (10) is the fundamental partial differential equation of this

theory of bilateral contracts. In the risk neutral world we are considering,

efficiency and welfare losses can be determined entirely by the relationship

*
between q(c,5) and q (c,cS). Indeed the form of the benefit and cost functions

imply that the expected loss compared with full information is

1 *2
(11) (a+l2E (q—q )

In any self—enforcing contract the quantity traded must satisfy (10). Optimal

contract design can thus be viewed as the problem of minimizing expected wel-

fare losses (11) subject to ( 10).

Note that function of only one of the two variables will satisfy (10). This

is another way of seeing that one—sided contract governance can be made quite

*
flexible by choosing the non—linear price or revenue functions appropriately.

The first—best given in (3), however, is unattainable through any self—enforcing

**
scheme.

*
Second—order conditions for the individuals must be respected as con-

straints. See below.

**
This result is well known, see Green—Laffont (1979).
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Before specializing and examining the nature of the solutions to (10),

which will be the subject of the rest of this paper, two further points

should be made. The individuals' second—order conditions must hold at each

value of the parameters, and this entails some further constraints on the

functions q(.,.) that can be implemented. For the buyer, we have that

(12) q(q)2 + a q q + £ q — t < 0

To express this as a constraint on q, note that as (6) is an identity with

E = c we can differentiate it with respect to c. Taking the result and sub-

tracting it from (12) yields

(13) q>0

Similarly, the seller's second—order condition when combined with the first—

order conditions for all 6 yields

(14) q6<0

Finally, the value of the problem for contracts with one—sided governance

can be seen from the form of (11). With buyer's control, q should be set
* *at the mean of q conditional on the value of c. This results in a welfare

loss of

(15) (a±b) var (61c)

*
If the conditional mean of 6 is positively related to c with a slope

exceeding unity, then the second—order conditions cannot be satisfied in
such a solution with buyer's control, and the welfare loss (15) is not
actually attainable. We will not discuss this further, as the remainder of
the paper deals with two—sided control contracts, but we will be careful
to insure the second—order conditions throughout.
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when var (c5!E) is the conditional variance of 5 given E. And, for sellers'

control, the optimum is

(16) ab var (EI)



3. Solutions That Depend on r-a

We have sho that any seifenforcing contract entails that the quati—
tity traded satisfy (10). it Ic; therefore of interest to examine the qual-
itative characteristics of such solutions in which p is genuinely dependent
upon both random shift parameters We are not actually able to characterize
solutions in general. We focus attention here on those solutions that, like
the firstbest, depend on and 5 through their difference

(17) q(c,5)

Our focus on contracts of the fon; 17 con Pc ustifiod by an axiom
which states that equal shifts in the marginal valuations of the buyer and the
seller do not alter the quantity t:raded. Formally this can be written as

(18) q(c+h, c±h) = q(c,i)

for all (r,5) and h in the domain,"

Under the specification (17) we know that q = q5 H' q5 —if

Thus, defining

*
The assertion is proved as fellows. Difierentiate (i8 to obtain

q + qç = 0

which we can differentiate again to obtain
— q 0

which is the so—called wave equation in (sees eg,, }iail:wig (1960), p.11),Its solutions are of the form

q(c,6) =
w1(e+6) + w2(o),

where w, c C are arbitrary. A direct computation of q and q5 ano a substi-
tution show that w ' 0 so that the form (17) follows from axiom (18),
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x E
(19)

P(x) '(E—S) (a+b) (E—6) + (c5)

the basic partial differential equation ( 10) takes the form of the ordinary

differential equat4on.

(20) y'y + (1—q"2 = 0

The function Y has a straightforward economic interpretation:

(21) = (a+b) (q—q)

*2
Therefore, since the optimal contract minimizes E(q—q ) , we can consider

the problem to be

2
(22) mm E

subject to ' solving ( 20). The second—order conditions (13) and (14) impose

the constraint

(23) Y' < 1

which, as we will see below, allows us to restrict the class of solutions

to (20) corresponding to impleinentable contracts.

Equation ( 20) is an interesting sort of differential equation for several

reasons. It has one obvious family of solutions, namely

(24) P(x) = x + c
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for any real number c. In economic terms these are the trivial solutions

for, using (19 ), one can see that they correspond to q(c,S)
a±b

—— a

completely inflexible and uncontingent contract.

There are other solutions to (20 ), and it is on these that we shall

focus. The difficulty in finding some of these solutions can be traced to

the fact that it does not define a unique value of '1" when 'P = 0. As is well—known

in the theory of differential equations, the existence and uniqueness of a

solution of an equation of order n given n initial conditions is guaranteed

in a neighborhood of the initial point only if the equation is Lipschitzian

throughout such a neighborhood. The irregularity in this equation occurs

at a particularly unfortunate value, 'P 0, which is precisely where q = q*.

Because of this fact, we will have to discuss solutions other than those

given by (24 ) in two separate cases: those where 'P has one—sign througout

the range of x, and those where 'P is zero for some x. These will be called

onc—cincd and tuo—signed contracts respecitvcly, and are analyzed separately

in Sections 4 and 5.

We are looking for solutions to (20 ) over the domain of x that could

possibly arise. It is not necessary that the solution be extendable over the
*

whole real line. We will see that the solutions other than (24 ) indeed

have the character that they cannot be extended beyond a bounded interval.

*
2Indeed we have already assumed that (c,5) lies in a rectangle in R
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Let us consider, at first informally, the qualitative nature of solutions

where 'Y has one sign. Suppose we are looking for a solution on [x0, x1] and

that we set V'(x0) < 1, as required by the second—order conditions,

and 'Y(x0) > 0. From ( 19) we can see that "(x0) must be negative. There-

fore Y' decreases further with x. At some x, = 0 and 'P is at a maximum;

beyond this 'P begins to decrease. In this region 'F" is diverging towards

— because ('P'—1)2 is growing and 'P is going towards zero.

Solutions with 'P'(x0) < 1,
'P(x0) > 0 for two different

values of

xO x

Such a solution exists only on intervals where the upper endpoint is below

the point where this degeneracy occurs.

The requirement that the solution exist throughout the range of x can

be viewed as placing constraints on 'P'(x0) and 'P(x0). If, for example, the

degeneracy were to occur before x1, then the value specified for 'Y(x0) could

be increased. It is easy to see that the resulting trajectory would be every-

where higher and would have a degeneracy at a larger value of x1. In this

way the domain of the solution can be extended. It can also be extended by

raising 'P'(x0), which has a qualitatively similar effect.

'If = x —
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4. One Signed—Solutions to (20)

In order to obtain manageable expressions for the solution, which will

eventually be obtained only by numerical methods, it is useful to convert

(20 ) into a first—order equation. This can be done because (20 ) is autono-

mous —— x does not appear explicitly. Let

(25) z(1') =

so that

dz dk dz
(26) — = = = • z

Thus (20 ) can be rewritten as the following first—order equation for z:

(27) z 'P + (l—z2 = 0

This equation is separable in z and 'P and can be integrated to yield

(28) log 'P = — log (l—z) + K

where K is a constant of integration.

This can be rewritten using (25 )

—l
K 1—'P'(29) 'P = 1k? e

Thus (20 ) has been rewritten as a first—order equation, still autonomous,

but rather non—linear in 'P'. Such equations may be transformed* via differ-

entiation with respect to x

—l

—KW' 1w'
(30) 'P'

(1—'P') e 'k"

*
See Ames (1968), ch. 2.



—13—

*
or using the change of variable

—1
v(x)

(31)

Udv = dx
/1

we have

(32) dx —Kv dv

Now (32 ) can be integrated on the left hand side from x0, the lower endpoint

of the interval on which we want a solution, up to x, and from v(x0) to v(x)

on the right yielding

v (x)

(33) (x—x0) =—K (v—l) eV

v(x)

or

(34) x — =—K (v(x) — 1) e" + K
(v(x0)

1)

To simplify this further, we can use the definition of K in terms of y and

Y', ( 31), together with the definition of v, (31 ),to write K in terms of

V(x) and v(x):

+1

(35) K = (x) ( 1 '(x))e
1—

or

1 -v(x)
(36) K —'Y(x) e

Since (36 ) is an identity in x we can use it twice in (34 ) ,evaluated at x

and at x0:

*
This transformation involves dividing by F', and at q=O, this is ill—

defined, However, as '41'=O for only one value of x, this is not of consequence
when the integration is performed to yield (32), below,
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v(x )—l
(37) x - x = (x) (V(X)-l) (X)

v(x)

or, using the definition of v,

(38) x —
x0

= (x) ('(x) - 2) - (x0) (W'(x0) - 2)

or, finally,

x - {x + (x )(2 - '(x ))}
(39) 'Y'(x)

0

w(x)
+ 2

Equation ( 39) is a first—order differential equation, linear in 'Y'

although non—linear in Y and x. Actually, it really describes a family of

such equations because 1"(x0) as well as P(x0) can be specified arbitrarily.

However, although (39) snecifies the evolution of Y(.) at points x .7here

Y(x) 0, its non—linear solutions cannot be extended beyond a bounded inter-

val. The extent of this domain of Y(•) is determined by the choice of

and i"(x0). Consider (34). Since K > 0 and v(x) < 0 the first term on the

right—hand side is positive. Moreover since for positively signed solutions

v(x) converges to zero (from below) as x increases, the first term is de-

creasing in x. Thus

v(x0)(40) x —
x0

= K(l + (v(x0)
— 1) e )

serves to define the domain of x. Using (36) (at x0) to eliminate K we have

from (40) that

1

l—'Y'(x )
(41) (x —

x0) 'Y(x0)('(x0)
— 2 + (1 — "(x0)) e )

The implication of this restriction on the domain of ''() for the design

of contracts is as follows: Given any joint distribution of (E,S), we must
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choose 'Y(x0) and so that x = —5 satisfies (41) with probability one.

This constrains the expression in brackets in (39) and leads to pointwise higher

solutions the larger the required domain.
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5. Two—Signed Solutions to (19)

In this section it is demonstrated that the entire family of two—signed

solutions to (19) obeying Y' 1 can be generated as follows.

Compute a positive one—signed solution on an interval
[x1, x2J. Extend

the solution "backwards" below x1, as far as possible —— that is until '1' - 0.

Call the limit of x for which the right—hand side of (19) is well defined,
x0.

Next, compute a negative one—signed solution over some interval
[x3, x3] and

continue the solution beyond x4 until Y - 0. Let the value of x for which

this limit is reached be x5. Since (19) is autonomous, one can "shift" this

negative solution by x0 — x5, obtaining a solution over {x3 +
x0

—
x5, x0).

Finally, set (x0) = 0. Composing the positive and negative one—signed

solutions with this point we have a function defined over [x3 — — x5, x2].

We will now show that this function indeed solves (19), in particular

at x0, and that all two—signed solutions to (19) are of this form.

To show that such a procedure results in a solution to (19) it is only

necessary to show that V't(x0) exists. By construction (19) will then be satis-

fied as both terms are zero.

As a preliminary result we will establish that Y'(x) -÷ 1 as x -
x0•

Reconsider (28)

(28) log 'I' = — log (l—v') + K

The trajectories of solutions in the ('i',i") plane are thus parameterized by

K. We want to show that all trajectories satisfy 'Y' ÷ 1 as 'I' -- 0, that is,

that they all emanate from the point W = 0, XII' = 1 and not from any point

where = 0, IJ' <1.
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That is that for all K we get a trajectory like A and never like B.

If we had one like B, then take '1" > 'Y' and 'F' < 1. For any fixed K

and 'F sufficiently small, the left—hand side of (27) can be adjusted so

that it holds. Thus ailtrajectories cut every vertical line ('F' < 1) in

this plane, and hence B is not a possible trajectory.

(42)

Now to show that 'Y"(x0) exists (and is equal to zero).

At any point in a neighborhood of x0 we have

= — (1 —

'F (x)

Using (29) this becomes

(43)

—l

- (1 — 'F'(x))3 l-'F'(x)—— e
K

From the previous discussion we know that 'Y'(x) -- 1 along any trajectory.

Therefore

(44) urn W"(x) = 0

x÷xO

To show that 'Y"(x0) exists we apply the mean—value theorem. (Rudin (1964), p. 93

th. 5.10) to the function 'F'(•). We know that 'F' is continuous on

A

B
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[x0, x0 + ru and differentiable on (x0,
x0 +) for any > 0. Thus there

exists 0 < h() < n such that

'i"(x +) — ''(x )

(45)
0 0 =

Taking limits as r - 0 we find

(46) 1"(x0) = urn Y"(h()) = urn '"(x) 0.

fl0

Precisely analagous arguments apply to the left of x0 establishing

that'F"(x0) is well defined in this pieced—together function.
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6. Characteristics of the Payment Function

In the preceding sections we have analyzed the nature of possible

solutions to the fundamental equation (19) derived from (10). These results

are important in that they permit a qualitative characterization of the cost

function C(q,5) of the buyer and the revenue function R(q,c) of the seller

with respect to the traded quantity q.

Given a contract t = t(c,5), q = q(c,cS) we can, by utilizing the implicit

function theorem,solve the latter to obtain c = c(q,5), because q > 0 by the

second order conditions. Substituting this to the former we obtain the cost

function of the buyer C(q,5) = t(c(q,5),5J. By differentiating once

aC(q,) = t /q

and twice

(47)
2C(q,) = tEE

2
+

3q ()
To evaluate (47) we have t from (6), t obtained by differentiating (6), and

compute

2 q
(48) 1 - cc

q2
— q q(c(q,5),6)

—

(q)3

In total we have the result

(49) 2C(q, S) — 1
2

a+

the sign of which is in general uncertain. For the special case of solutions

dependent on (c—5) it is possible to rewrite (49) in terms of the function q'

which was analyzed in the preceding sections. The conclusion is that t[q,5]
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is convex (concave resp.) in q whenever 'F' > (< resp.) —

A similar computation for the seller's revenue function yields the

result

2

(50) R(q,E) = —b +

which in turn implies that t[q;E] is convex (concave resp.) in q whenever

'F' < (> resp.) —

These results can be interpreted easily by noting that, for example, the

convexity of C(q,5) in q means that the unit price for the buyer is rising,

i.e., quantity premia appear. In the same vein, whenever C(q,) is concave

in q the contract stipulates quantity discounts, i.e., the unit price for the

buyer is decreasing.

This analysis can be conveniently related to the different types of

solution 'F of the basic differential equation (19). Consider first a positively

signed solution discussed in Section 4 above. For then 'F' is first positive,

but as x (= E 5) increases it turns more and more negative which implies

that R(q,c) is first convex but it eventually becomes concave. Therefore in

these contracts the buyer faces quantity premia at low levels of the traded

quantity but discounts appear at high volumes of trading. In Section 7

numerical computations illustrate this phenomenon.

For negatively—signed contracts the conclusion is reversed, i.e.,

quantity discounts appear at low levels of trading.

As shown in Section 5, two—signed contracts are pieced from one—signed

contracts on subintervals so that with them quantity discounts are present at

both sufficiently low and high levels of trading while in the intermediate



range quantity premia are the rule.

diagram.

tJ
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These features are illustrated in the

Lnt premia discounts

x
I

L

Figure 1
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7. Numerical Computations

By virtue of the results in the last three sections a numerical compu-

tation of the solutions to (19) can be derived from the one—signed solutions

over fixed intervals (x0, Xmax) with the properties that

limI'lim' =0
X--X X-X

0 max

In this section we examine some qualitative properties of these solutions.

Finding second—best bilateral contracts, that is those which minimize

E'Y2, is generally a complex problem. Alternative solutions to (19) cannot

be ranked by pointwise dominance. The optimal solution in principal depends

heavily on the distribution of x = — 5.

Despite this theoretical possibility, our computations show that it is

relatively easy to find a solution to (19) that is "almost" the pointwise

minimizer of y throughout "almost" all of the domain of definition. There-

fore, except in extreme cases where the distribution of x is concentrated

close to the endpoints of [x0, XmaxJ this particular solution will serve

as a good approximation to the optimum.

We now describe the numerical method used and present an illustrative

calculation.

Let the length of the interval over which we seek a solution be fixed

at L = x — x . From (40) we have an implicit relationship between V(x )max 0 0

and that must be satisfied if the solution is to be well—defined over

this interval:
1

l—I"(x )
(51) (x0) = L/'(x0) - 2 + (1 — '(x0)) e
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Thus for fixed L we consider the one parameter family of solutions to

(39) where '(x0) is fixed arbitrarily in (0,1) and 1'(x0) is given by the

solution to (51) with equality. A standard computer program for numerical

integration was used to integrate the expression for '+"(x) from x0 to x.

Figure 2 displays the results for various choices of tY'(x0) when L = 10.

The central feature of this simulation is that the solution obtained for

= .9 is "almost" the pointwise minimizer of the family of all solutions

obtained for values of '"(x0) in steps of .02. Only for x —
x0 .2 or

x —
x0

= 9.8 were any of the other solutions below this one.

This result seems robust to the length of the interval and to step

sizes of i''(x0) used to construct the families of solutions. It is probably

a good approximation to the optimal one—signed solution over this interval

for most distributions of x.

We then computed the non—linear price and revenue functions that are

implicit in the optimal contract, using this result as an approximation for the

optimum. This computation was compatible with the results of Section 6 on

the concavity properties of these functions.

The numerical '(•) obtained above was substituted into the expressions

= (a'i' + a5 + bc)(c0 + Y — (E—cS))

(a+b)
(52)

(bW — bE — a5)(c + Y —

t5(c,6) = 20
a+b)

where c0 =
x0

—
'Y(x0)(2

—
'P'(x0)). Both a and b were set at —1. These partial

derivatives were integrated numerically over the rectangle (c,)E([5,l0} X [0,5])

so that, as required, c—cS c [0,10]. The value of t(5,0) = 0 was taken as a
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normalization without loss of generality.

From this function t(,c5) we computed the price and revenue functions

5—6 10—6as follows. For each value of 6 and each qE(——, 2
we find the value of

so that ((c—6) — = q. This gives us a function E(q,6) whose inter-

pretation is that it is the tannouncementtI of E which, when combined with the

given value of 6, would induce the given value of q to be exchanged under the

contract F. Finally, the total cost to the buyer of quantity C(q,6), is

defined by C(q,3) = t(c(q,6),6). The revenue functions of the seller facing

a buyer whose announced parameter is s, R(q,c), is given symmetrically.

Some of these cost and revenue functions are given in Figures 3 and 4.

It is noteworthy that the quantity discount/quantity premia results of Section

6 are verified in this numerical construction.

Because we cannot find the true optimum without knowing the distribution

of x, and, more importantly, because we cannot find general incentive compatible

contracts other than those in the special case q(c,6) = (c—6), these nunerical

results should be viewed as merely illustrative.
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