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ABSTRACT

This paper presents a structural model of production and inventory

accumulation based on the hypothesis of cost minimization. It differs

from previous attempts in several respects. First, it integrates the

analysis of input inventories with output inventories, treating the two

stocks separately. Second, it distinguishes between temporary and permanent

fluctuations in sales as they are anticipated by the industry. Third, it

allows for a more general structure of adjustment costs, and in particular

for a cost changing the production level rather than only for deviations

of the production level from a fixed target.

Empirically, there are three principal conclusjôns. This iodel.per—

forms much better than those with no cost of production adjustment allowed.

Disaggregation of inventories provides significant insights into the dynamics

of the adjustment process. However, the restrictions on our model implied by

the continuous—time stochastic control theory that we utilize are rejected

by the data. We believe that a more disaggregated specification or a more

detailed econometric treatment of the discrete—time nature of the observations

would avoid this difficulty.
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1. Introduction

Investment in inventories is central to most theories of aggregate

economic fluctuations, even though it comprises a very small part of total

output. In the U.S., on average, only 0.7% of GNP is devoted to this use.

Nevertheless its crucial role in the business cycle is apparent from the

fact that it accounts for over 18% of the standard deviation of output

*

growth since 1947.

Inventory investment has proved to be very difficult to satisfactorily

explain. Most theoretical work, following the justifiably celebrated paper

by Metzler (1941), assumed that inventories were homogeneous and simply held

for resale. Part of the difficulty with studying the complex roles of in-

ventories in the economy may be that there is a great heterogeneity in the

components of aggregate inventory investment. Input inventories are different

from output inventories; and different industries have characteristically

different responses of inventories to exogenous shocks.

Although there have been several excellent empirical studies of inventory

**
behavior by type of inventory and by industry , most econometric work has also

followed Metzler. Either all types of inventories were lumped together for

purposes of estimation, or only finished goods inventories were-considered.

In fact, more than two thirds of the inventory by U.S. manufacturers is in

materials and supplies or work in process, not finished goods. A further

*
This is based on data from 1947—1979. We took the ratio of the standard

deviation in the first differences of real CNP minus the first differences
of inventory investment, to the standard deviation of the former series alone.

**
See Abromovitz (1950) and Mack (1967).
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disturbing omission is the role of unfilled orders as "negative inventories,"

which is of great importance in durable goods manufacturing. In durable goods

manufacturing unfilled orders are on average, about four times the finished

*

goods inventories.

In recent years, macroeconomicshas emphasized the roles of expectations

formation and optimization by economic agents. Inventories have been recon—
**

sidered from this point of view. However, as in the microeconomic analyses

mentioned above, the heterogeneity of inventories by stage of fabrication

has not been considered. We believe that our understanding of the role of

manufacturing inventories in economic fluctuations will benefit from such a

disaggregated approach in an optimizing framework.

In this paper we attempt to give a theoretical model of inventory holding

based on cost minimizing behavior. Our goal is to allow for a variety of

costs in the theoretical model and to see which of these are empirically

important. We also want to study the interaction between inventories at

different stages of fabrication and to see whether these decisions are inter-

related as the theory predicts.

Our principal empirical results are two—fold: First, we find strong

evidence for costs of variable production rates; that Is costs of changing

the rate of production, as opposed to costs of operating steadily above

minimum average cost. Second we find significant evidence, though somewhat

weaker, for the interaction between inventories at different stages of

fabrication. Both of these phenomena have, to our knowledge, received little

mention and no empirical analysis previously.

*
In 1976 inventories of finished products in durable goods industries were

$22.5 billion while unfilled orders, deflated by the wholesale price index
for durable manufactured products were $91.2 billion.
**

See Blinder—Fischer (1979).
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Our model is similar to most previous work in assuming that sales are

exogenous. Inventory holders develop expectations about the future time

pattern of demand. One of our secondary goals was to use the statistical

characteristics of the innovations in the sales process in the behavioral

model. Specifically, increases in demand that are perceived as temporary

may evoke much different responses than those perceived as permanent.

The contrast between temporary and permanent sales fluctuations can be

seen most easily by considering two industries with identical cost structures

and facing random sales with different time series characteristics. Industry

A experiences primarily temporary variations in sales while in industry B,

the variations are longer—lived, inducing the same overall variance. Suppose

there is an excess of sales beyond the expected. Industry A can meet the

demand out of stocks and, gradually make up for this shortfall with only a

slight increase in production. There is relatively little risk that such a

gradual response will find the industry with its stocks running dangerously

low. Industry B, on the other hand, must respond more drastically to sales

variation since it is a signal of stronger demand in the future. How would

an outside observer know that the different responses of firms A and B stem

from the differences in their sales expectations rather than from lower

adjustment costs in industry B than in industry A?

The remainder of the paper is organized as follows: Our data is

described in Section 2. Section 3 gives a brief overview of the methodology

and sets up the basic framework of both the construction of the model and

its implementation. The nature of the costs faced by firms is described

in Section 4. Section 5 applies the theory of optimal control to the cost

minimization problem under conditions of certainty. Since this method

utilizes the principal of first—period certainty equivalence, the stochastic
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structure of the model and its relation to the data are discussed separately,

in Section 6. In Sections 7 and 8 we derive the optimal controls
explicitly,

for two different specifications of costs, in terms of the underlying parameters.

Section 9 contains a description of the implementation of these methods and

the empirical results.
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2. The Data

Much of the shortcomings in earlier empirical work may be traced to

problems in the available data. Until recently, the only manufacturing

inventory data available by stage—of—fabrication was measured at book value.

But this book value data is practically meaningless. Rapid price increases

and the resulting changes in accounting method from FIFO (first—in, first—out)

to LIFO (last—in, first—out) in an attempt to avoid taxation of illusory

inventory profits, cause severe distortions. However, recent work by the

Bureau of Economic Analysis has provided corrected, constant dollar inven-

tories, by stage of fabrication, for durables and nondurables manufacturers,

at the two—digit SIC level. Given this data, which extends from the last

quarter of 1958 to the end of 1976, there is some hope of implementing

theoretical models of heterogeneous inventory investment.

While data is available for many two—digit industries, we have chosen to

study only four of them. We limit our sample because the other industries

were obviously at variance with the theoretical model we posit, or had

obviously erroneous data. First, although we consider the stock—order

distinction to be an important part of inventory behavior, our model cannot

accomodate unfilled orders. We thus are compelled to drop industries main—

taming unfilled orders. Of thom industries which produce chiefly or entirely

to stock, only two (Stone, Clay and Glass — SIC 1132, and Instruments — SIC #38)

are durables manufacturers.

Second, we were forced to omit two other industries for specific reasons

concerning the data. Tobacco (SIC #21) has very little finished goods or

work—in—process inventories which together compose only 8% of total inventories.
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Given the special nature of tobacco products, it is questionable whether the

remaining 92%, which probably consists mainly of aging tobacco leaves, should

really be classified as materials and supplies. The other industry omitted

here is Petroleum (SIC #29) which, for some unknown reason, possesses (according

to our data) large but essentially constant work—in--process inventories. Our

inability to determine the reason for this has led to the omission of this

industry.

The remaining seven industries were all suitable candidate for study.

Computational difficulties (described below) made it infeasible to consider

*
three of the seven industries whose detrended sales series were not best described

by either an ARNA (1,1) or a pure Markov process.

The remaining four industries are Food (SIC #20), Chemicals (SIC #28),

Rubber and Plastics (SIC #30) and Stone, Clay and Glass (SIC #32). Stone,

Clay and Glass is the only durable goods industry of the four. Table 1 presents

relevant summary statistics for these industries for the sample period.

Though these industries differ markedly in the types of products they produce,

their inventory—sales ratios and composition of total inventory stock are

rather similar. One other result worth pausing to contemplate is the size

of the standard deviation of inventory investment relative to average
sales ——

about one percent. While this does not imply that inventory investment is

unimportant, it does suggest a fallacy in the image one may get from the

**

literature, of wildly fluctuating buffer stocks.

*
These were Textiles (SIC 1122), Paper (SIC #26), and Instruments (SIC #38).

See section 9 for the details of this construction.

**
On this point, see the similar conclusions reached by Auerbach—Feldsteifl

(1976).
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Table 1

Industrial Data
(in billions of 72$)

Food
20

Chemicals
28

Rubber &
Plastics

30

Stone, Clay
& Glass

32

(%)
(57)
(7)

(35)

5.34
2.55
0.80
1.99

3.41 1.12 1.25

10.19
5.85
0.75
3.59

1.93
0.97
0.31
0.65

(%)
(50)
(16)

(34)

2.45
1.27
0.35
0.83

1.72 1.961.45 1.57

.242

(%)
(52)
(14)

(34)

Industry
SIC 1/

Average Monthly Sales (S)

Average Inventory Stock (I) (%)
Finished Goods (48)
Work in Process (15)
Materials & Supplies (37)

I/S

Standard Deviation of (c1)
Inventory Investment

GAl/S

ARNA process describing sales

Notes

Percentages may not add to 100 due to rounding.

IS is ratio of standard deviation of quarterly inventory investment
to quarterly sales.

.084

.012

.045

.008

1,1

.047

.013

1,1

013

1,0 1,0
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3. Basic Approach

Our method assumes that observed inventory behavior represents the

industry's optimal actions given the available information. More specifically,

we will be assuming that each industry solves a stochastic control problem.

The objective is to maximize expected discounted net revenues. There are two

controls: the rate of production and the rate at which raw materials are

received. Sales are treated as exogenous, and are assumed to follow a known

stochastic process. Therefore, with the passage of time, observations of

sales alter the industries' beliefs about future sales.

We are interested in using observations of sales, production and deliveries

of materials to infer the structure of adjustment costs that are fundamental

determinants of the system. We first show how the optimal controls depend

upon these unobserved parameters. Thus we use the empirically observed

behavior to reconstruct what they must have been.

This modelIs grounded in a particular view about the use of inventory

stocks to smooth out the activities of the firm over time. We imagine that

the inventory adjustment process is somewhat "intermediate—run" in nature.

In principal, a divergence of inventories from desired values could be

mitigated by adjustments of a longer run nature, such as planned fixed invest—

*

ment, or of a shorter—run nature, such as cash management of the industry.

**
Prices could also be varied. All these possibilities are ruled out; by

assumption production and deliveries are assumed to be the only elements

in the industries' plans that are responsive to undesirable inventory levels.

*
Caves , Jarrett and Loucks (1979) take an approach like this and relate the

flexibility of the firm's operations to seller concentration at the 3—digit

industry level.
**

And likewise advertising and all other.potential manipulators of demand.
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A second aspect of the "intermediate—run" nature of these responses

relates to our empirical method. The data are quarterly. Information about

sales and inventories is surely available to plant managers on a more frequent

basis than that. We will be implicitly viewing the quarter to quarter

responses as the optimizing values. If much faster adjustment were possible,

and if information could be utilized much more quickly, our data would not

correctly describe the workings of the system. On the other hand, if infor-

mation were not received and processed within one quarter, our presumption

that the industry is responding optimally given all lagged observations would

*
be erroneous. While we have no evidence to bring to bear at all, one quarter

seems about right with respect to both of these considerations.

Because our data are at the industry level, it is appropriate to measure

sales and inventories relative to capacity, or trend. The idea is that it

is departures above or below the trend that cause costs to depart from their

theoretical minimum values. These values could never really be maintained, being a—

cheived only in the :ilealized state of smooth steady growth of capacity matched

by a corresponding non—stochastic evolution of demand.

In each industry we have data on sales and on inventories in three stages,

finished goods ,work in process and materials. Each of these series are

**
detrended separately. The reason for this is that the ideali-zd cost

minimizing levels may not be following precisely the same patterns of growth.

For example, as new plants in the industry are brought "on line" and old ones

are "retired" the optimal level of inventories relative to production may not

*
This may seem farfetched at the plant level, but if different firms within

an industry face similar market conditions and if they are imperfectly in-

formed about each other's status, then we may be closer to this danger at

the industry level.

**
We tried various specifications, these are described in section 9.
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remain constant. An equally important example is the evolution of superior

inventory management techniques, often accelerated by the computer. These

are exogenous to our study in that they are assumed to affect the optimal

inventories relative to sales, but not the quarter to quarter movements

*
relative to this level.

Production should, in principle, be separated into two distinct activities:

the act of taking materials and converting them into work in process, and the

act of taking work in process and converting it into finished goods, either

for immediate sale or addition to stocks. Such a system seemed to be too

complex, so we have taken a pair of similar approaches. In the first one,

which we will call the WP system, materials stocks are ignored. What we

will call "production" in this system is the act of converting work in

process (14P) into output. "Deliveries" of inputs are to be understood

as the act of putting goods in the (WP) stage. Within this formalization

therefore, we cannot distinguish between "true deliveries" from outside the

industry and "deliveries" that describe the initiation of work on materials

previously held as stocks within the industry.

The second approach identifies deliveries as the inputs that enter from

outside the industry, either into stocks of materials or work in process.

We simply sum up these two series, calling the composite WM. In this system

production is defined as taking WM and converting it into finished output.

In the empirical section of the paper, we present estimates for only

**
the WM system.

*
To the extent that this factor has influenced the structure of costs of

adjustment as well as the ideal cost minimizing levels our model is inadequate.
These parameters, in real terms, are assumed to be constant.

The rcult for the UP ode1 arc available from the authors upon request.
Thcv tire ou.i1iative1v sLriilar.
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The same theoretical model underlies both the WP and WM systems.

The basic variables of this model, all deviations from trend levels, are denoted:

S = shipments

F = finished goods inventories

W = work in process, or work in procesS plus raw materials, according

to the context.

As mentioned above, there are two activities under the control of the de-

cision—maker, production (P) and receiving
deliveries CD). In our model it

is perfectly possible that the same physical goods are received as deliveries

and sold as output entirely within one quarter. We do not place any restric-

tions on the intensity with which the P and D activities can be operated; in

particular their values are not constrained by the beginning of quarter levels

of the stocks of work in process and materials. Stock—outs are not regarded

as a problem, since all variables are deviations around trend; P and

D can be negative while actual produccion is continually undertaken. We take

S to be exogenous. As there are no unfilled orders, it is assumed that all

shipments are made immediately out of stocks. The value of S together with

the choice of P and D determines the changes in the stocks of inventories;

and thus, over time, the evolution of the entire system.
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4. Types of Costs

Our theoretical model utilizes a Continuous time structure even though

observations are made at discrete intervals. This is purely because a dis-

crete time version of the optimization problem would have been much more

complicated, and well beyond analytica. tractibility. Our approach can

perhaps be defended as an approximation.

We have t1identities

P — S

WED - P - D -F - S

where all variables are measured in physical terms —— that is, in units of

equivalent final output. The data are in terms of the value of

the goods. However, as long as the share of value added at each stage of the

process is a constant, the neglect of value added will not affect our results.

It will be convenient for us to use F and W as the decision variables

rather than P and f, so these identities are equivalently the definitions

of P and D in terms of S, F and W,

P ES+F
(4.1)

.DES+F+W

Notice that these definitions allow an increment in S to be instantaneously

accomodated with no change in inventories by an equal simultaneous increase

in P and D.

We take four kinds of costs into
account: production, deliveries, and

holding the two kinds of inventories. Each of these costs is assumed to be

quadratic. We will also allow for a quadratic "interaction" term between
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holding the two kinds of inventories. Trend levels, if tracked exactly, are

assumed to result in the least—cost method of production. Operating the

basic activities, or holding the stocks, at levels above trend entails the

use of less efficient techniques, for example overtime labor, supplies of

materials that do not exactly match normal specifications,or less easily

accessible storage locations. Operating below trend saves resources, but

for the usual reasons these economies are limited by returns to scale consid-

erations.

In addition to quadratic terms in the deviations from trend levels,

we can also consider quadratic terms in the rates of change of these four

variables. It may be more expensive to be alternatively above and below

trend than to remain above trend by a fixed amount for some time, and then

steadily below trend for an equal interval. Costs of this type include

labor force adjustment costs, costs of seeking out new sources of supply

which will not be used on a steady basis, or the higher prices which might

be charged by a usual source to whom a steady commitment for orders

(implicit or explicit) is not made. Similarly quadratic terms in the rates

of change of inventories represent the costs of putting goods in or taking

them out.

There are two reasons for allowing an interaction between inventory

levels, but not elsewhere. First, economically, we envision production,

deliveries and storage as separate activities and so no interactions are

allowed between them. The two kinds of storage may

share facilities or equipment and therefore we might imagine, for example,

that the marginal cost of holding extra finished goods is higher if a larger

amount of work in process is preempting the most easily accessible storage

space.
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Our second reason is more practical. Were more interaction terms allowed

the model would be underidentif led. But if the interaction between the two

inventory holding costs were omitted from the specification, an additional

complex, highly non—linear, constraint on the parameters would have been

introduced. Overidentifying restrictions of this type would have rendered

estimation impossible. The specification we did use imposes a single linear
J.

cross—equation restriction.

The quadratic nature of costs is necessary in our approach for a technical

but very important reason. The stochastic dynamic programming problem whose

solution we assume governs observed behavior is solved by looking at the

"certainty-equivalent" problem —— that is the deterministic program in which

all disturbances have been set equal to zero. We utilize the principle of

?tfirst_period_certainty_equivalencelt which will be discussed in much more

detail below. This principle is valid only when the objective is quadratic,

**
and the equations of motion are linear , in the states and controls. Quadratic

costs can of course be viewed as an approximation to more general functions,

but other equally valid approximations would not have this certainty—equivalence

property. On the other hand, there seems to be little hope for any practical

alternative.

Summarizing this discussion we can write the instantaneous cost of

operating at levels P and D as

*
See below, equations (7.7) in section 7 and (8.2) in section 8.

**
We will discuss the equations of motion in more detail shortly.
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b P+b P2+b P2
o 1 2

+m D+m D +m D2
o 1 2

(4.2)

+h F+h F2+h F2
o 1 2

+ g w+
g1

+ g2 2 +

In some parts of the paper quadratic terms in rates of change are not

used and we can just set b2 m2 = h2
=

g2
= 0.
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5. Control Theory Applied

The objective function in stochastic control theory is written as the

minimization of an integral. In the present case, discounted profit maximi-

zation means minimizing the integral of ( t:.2) minus shipments (S), all

of which can depend on time, multiplied by e_rt, where r is the instantaneous

discount rate. We will assume that r is constant. Therefore, still neglecting

uncertainty, we have from (4.2) and the identities (4.1), the objective function

mm fWe
rt

{b (S+F) + b1(S+F)2
0

°

+ b2(S+F)2 + m(S+F+W)

(5.1)
+ m1(S+F+W) + m2(S+F-H)

+h F+h F2+h 2
o 1 2

+ g w + + g2 2 + FW — s} dt

We now describe the way in which the system evolves over time.

Here our discussion must be divided into two parts since the choice of the

control variables depends upon whether or not we admit costs that are quadratic

in the rates of change of D, P, F, and W in the objective. These differences

are primarily formal; the same basic assumptiors will be maintained.

Let us begin with the simpler problem where such costs of adjustment

are absent. It is natural to take S, F and W as state variables since they

define the initial conditions facing the industry at any moment. The control

variables are F and W. From any given initial levels of S, F and W, and given

any path which the exogenous future of S will follow, the use of F and W

can control the paths of F and W, or, equivalently, of P and D.
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In order to apply the first—period certainty equivalence principle we

must insure that the evolution equations are linear. The assumptions used

to guarantee this linearity and the relationship between these assumptions and

the data are crucial elements of the analysis.

Because of linear terms in the objective it will be notationally con-

venient to add a constant to the list of the state variables. We thus

denote the state variable vector as

(5.2) x = (1, S, F, W)'

and the control vector as

u (f',w)'

We want to write

xHx+Gu

for some matrices of cotistants H and C. It is clear that the only problem

can arise with S which is exogenous and therefore must be written as a

function of its own level, S, and perhaps the constant. Recall that all

our state variables are deviations from trend. Therefore the constant can

have no effect. We are left with only one possibility,

= ss

for some 5. We assume iS < 0 to ensure that the system is not explosive. To

summarize, under complete certainty S is an exogenous function of time and is,

in theory, arbitrary. But to apply the principle of first—period certainty
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equivalence it is necessary to assume that S is a very special kind of

function, namely a simple exponential return to trend.

The evolution equation (5.2) is fulfilled by the matrices

o o 0 0

o (S 0 0

11=0 o o o

o 0 0 0

(5.3)
o o\

o 1/

We now turn to the more complicated model where costs are allowed to

depend on rates of change. The specification of states and controls must

be modified since quadratic terms in F and W enter the instantaneous objec-

tive. It is natural to regard these as the controls and take both inven-

tories and their rates of change into the state vector. Initial values of

all of the state variables will be necessary for the system to be well—

defined.

Writing

x = (1, S, F, W, F, W)

u = (F', W)

and

x=Hx+Gu

we have
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o 0 0 0 0 0

o 0 0 0 0

H= o 0 0 0 1 0

o 0 0 0 0 1

o o 0 0 0 0

o 0 0 0 0 0
5.4)

o o

o 0

0 0

o 0

1 0

o i

As above, the second row in each matrix is a consequence of the exogeneity

of S and our necessity to maintain linearity in this evolution equation in

order to apply the certainty —equivalence principle.
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6. First—Period Certainty EQuivalence and the Sal Process

It is the raison d'tre for our model that S does not follow

a known path. Uncertainty about the future of S is of two kinds. If the

average level of S were a known function of time, there might still be

fluctuations around it. In addition as we move through time some of the

initial uncertainties about future values of S may be partially resolved.

Thus the sequence of expected values of S will change as new information

is gathered.

Both of these issues are dealt with in the principle of first—period

*
certainty equivalence. If the objective is quadratic and the equations

of motion are linear, the controls that maximize the objective when all

random variables are set equal to their expected values at the initial date

are the same as the controls that solve the full stochastic dynamic optimization

**
problem. (Of course, after the initial date the controls of the original

certainty—equivalent problem bear no relation to those of the full optimi-

zation. One must write the new certainty equivalent problem and solve again.

It is precisely the idea of first—period certainty equivalence that a sequence

of simpler problems can be used to replace a single, but much harder,one.)

To make use of the thoery outlined above, we must have a stochastic

process for sales that has its expected deviation from trend converging geo-

metrically to zero. We now consider how such a situation could arise and

*
We are greatly indebted to Richard Clarke for discussions on this point.

** If it is possible to learn about the uncertainties earlier, or more accurately,
by varying the level of the controls then this principle does not apply. In
our case this is not a problem since sales are completely exogenous.
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whether our data on sales could justify assuming such a process.

Our first idea did not fit the data well, hut is nevertheless a useful

point to begin describing the basic method. It is based on our desire to

distinguish between permanent and temporary innovations in the salprocess.

Suppose that actual sales S are distributed around their permanent level S
act perm

(6.1) Sactt perm,t
+

where c is white noise, and that the underlying permanent component evolves

according to

(6.2) S =
perm,t perm,t—l t

Only S is observed; the entire past history of S Is used to form an
act act

estimate of S and ri• We will assume that is known precisely and is
perm, t

not itself part of the Baysian revision process. Residual uncertainty about

S will always remain present. Given our unbiased estimate of S , tperm,t perni

the sequence of expected future values of Sact does converge to zero

exponentially, as required. Therefore, subject to the proviso that there

are sufficiently many past values of Sact for uncertainty about 11 to have

been eliminated, this model of the sales process would allow us to proceed

with the application of control theory.

To test whether the data followed such a process we proceeded as follows:

Lagging ( 6.1) we find that

(6.3) St = — t—I + u +

This equation was estimated by ordinary least squares, and by the standard

bias formula we have
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2
a

plim oLs = —

12
since tl is correlated with S1.

However S2 is not correlated with cr1, and thus we can estimate

( 6.3) using S2 as an instrument. Here

plim TSLS

When this procedure was applied to all seven of our industries, we found

that

plim TSLS < plim OLS

contradicting our maintained hypotheses. Of course it could be the case that

is itself a moving average process. In this case the observed relationship

could arise even though the temporary—permanent distinction and the auto-

regressive nature of S are valid. We tried using further lagged values
p e rm

of St as instruments, but the loss of precision precluded any decisive test

on this basis.

In light of this we tried another formulation, one which did not manifest

the temporary vs. permanent distinction so sharply but nevertheless admits

a similar interpretation. We fit the deviations from trend to an ARMA

process of varying structure, seeking the most descriptive, statistically

significant form. In three of our industries a second order autoregressive

process APNA (2,0) clearly fit the data better than ARNA (1,1). But for



two of them, ARNA (1,1) was at least as good, or better,
and for two, ARMA (1,0) fit

best.

We will now
show how the (1,1) process

gives rise to expected future

values that converge
to zero exponentially.

It therefore gives
rise to a cer-

tainty—equivalent problem
of the form required

inthe previous section.

We have

S S +u —80
t t—1 t t—1

so that expected
sales at t+l viewed

from time t is

* 0
s1 = q(S u)

Further into the future,

* k—l *

S÷ ( S) for all k = 2

Therefore the expected
future sales sequence

behaves precisely as required.

To specify its
initial value, however,

one first must
apply a correction to

current sales
based on the current moving average

component. This is observable

at t because of the simplicity
of the (1,1) process:

it
= St

—
cSt_i + 8°t—l

Empirically, some
initial period may not

be useful since we
don't know where

to start the o sequence. But
setting o= 0 for a period somewhat farther

back into the future, a good approximation to ' can be obtained,
and on this

basis t+k can be computed.

Higher order processes
are, in principle,

possible to handle by the

same method. However they would
entail a higher

dimensional state vector
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in the control
theory application, and we did

not, therefore, pursue this coursefor the industries
that appeared to be ARMj. (2,0).
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7. Solution of the Certainty Equivalent Model: No Adjustment Costs

We now return to the analysis of the certainty equivalent model under

the hypotheses described above. In this section we present the case of no

adjustment costs, and in the next section the more general cost function is

analyzed. We will describe the optimal control for this problem. Then we

will show how this solution imposes a constraint on the parameters of our

estimating equations and how one can recover the underlying cost parameters

from these estimates.

We write the instantaneous set cost function, whose integral is to be

minimized, as a quadratic form in the states x = (l,S,F,W)' and controls

*
u = (F,W)', with the following notation

(A N'\
(x,u) ' — - -.

/ (x,u)

where the submatrices A, N and B are of dimensions compatible with x and u,

as shown.

it is important to note in our problem that these matrices are time—

dependent because of the discount factor e_rt.

Thus we have

/ l-b-m h0

f

0 —

2 2 2

I 1—b-rn

I—

0 0
b1+rn1 0 0

rt Ie A= h0 0 h
k1

g0 /

0 0 g1

We follow the solution of Bryson and Ho (1975), chapter 5, section 2, problem 4.



(±mO

ert N=
b1±m1

:1
/

/

ert B = (
b1 +m1

::

The key feature of solutions to this type of control problem is the

introduction of a matrix T, which is used to define the optimal control

implicitly. I is a time—dependent square matrix with the dimensionality

of the state vector: 4 x 4 in the present case. It is known that T satis-

fies the following matrix differential equation , called the Riccati equation.

T = —TB - H'T+ (TG + N) B1 (N' + G'T') — A

The optimal control is defined from T by

u = —B' C N'+G'T') x

Employing this method in our problem is made much simpler by two observations.

First, if we choose A and B to be symmetric, then T will be symmetric. This

reduces the number of variables in the Riccati equation. Second, the station—

arity of our problem insures that optimizing the coefficients of the state

variables, —B1 (H'T + N'), are not time dependent. Thus we know that, as

a function of time, T(t) = T e_rt for some fixed matrix T, and hence in the
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Riccati equation we can write the left hand side as —rT, evaluating at t = 0.

This converts the Riccati equation to a system of polynomial (quadratic)

equations for the unknown elements of T, rather than a system of differential

equations for unknown functions of time.

*Applying this method in our problem we find that the controls are

given by:

(7.1) = -
(T3

-
T24)

- 1

(7.2)
=

k (T23
-

T24)

a =— — (T -T )(7.3) FF
b1

33 34

(74)
=

(T.3
-

T34)
-

k T34

(75) aFW =.T k (T34
-

T44)

(7.6) =
(T3

—
T44)

—

m1
T4,

where the first subscript (F or W) denotes the control (F or W).and the

second subscript (S, F or W) denotes the state variable being considered.

*
We do not present the constant terms in the controls because our method

in the empirical section works with detrended data (see above section 3 ).This amounts to choosing a reparameterization of the linear terms
b0,xn0,g,h0in cost function so that the associated constants in the optimal control re

necessarily zero.
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* **
The Riccati equations are

(7.22) -rT22 = -2T22
-

(T23 + b1 + m) FS - (T24
—

m1)
—

(b1 + m1)

(7.23) —rT23 —(ST23 — (T23 + b1 + m1) tFF — (T24 + m1) ct

(7.24) —rT24 —(ST24 — (T23
+ b1 +

m1) a — (T24 + m1)

(7.33) -rT33 -T33 FF - T34
-

h1

(7.34) -rT34 =-T33 a —T34
-

(7.44) -rT44 =I34
— T -

g1

Let us note, first of all, that there are 6 observable cs, and 6 under-

lying parameters to be estimated b1, m1, g1, h1, k1
and r. The value of p

is assumed to be known with certainty from the estimation of the ARMA sales

process as described above. There are, in addition, 6 auxilliary variables

T22, T23, T24, T33, T34 and T44,
and 6 Riccati equations that govern them.

A priori the case for exact identification looks good.

However, examining the system of 12 equations, and dividing each of them

by b1, we see that b1 can be eliminated. The underlying parameters of the

system are really, m1/b1, g1/b1, h1/b1, k1/b1, r
and the ratio of the six T's

to b1. Correspondingly there is one overidentifying restriction imposed by

the model. From (7.1) and (7.2) we see that

*
Again, those involving the constant are not shown; they form an entirely

separate subsystem.
** These equations are numbered mnenonically to facilitate future

reference.
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(77) FS + WS =

To recover the 5 underlying parameters from estimated values of the a's

that are constrained to satisfy (7.7) we can use the following procedure:

i) From the estimates of aFF a,, a and we can solve for

T33 T34 T44 and

b1 b1 b1 b1

ii) Dividing the Riccati equations (7.33), (7.34) and (7.44) by b1 we

can substitute in from step 1) and solve for 'l, k1, g1, as linear functions

b1 b1 b1

of r, which is retained as a variable at this stage.

iii) Solve the pair of stationarity conditions (7.23) and (7.24) for

T23 T94
and —f--- as functions of r.

1 Ui

iv) Use the reduced form equation for a and the results of step iii)

to solve for r, and compute T23 and

b1 b1

v) The value of T22 can be obtained f'om (7.22) using the results of

step iv), but it is not really needed.

Note that in this procedure we did not use the reduced form for
aPS

anywhere, its value being constrained in the estimation. All the other

equations are satisfied by construction of our solution.
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8. Solution of the Certainty Equivalent Model: Adjustment Costs

In this section we give a brief description of the more general model.

The basic method is exactly the same as that in the previous section, but

there are several differences in the recovery of the parameters and in the

constraint on the controls that the theory imposes.

The state vector is x (1,S,F,W,F,W)' and the controls are u = (F, k)'.

*
The A, B and N matrices are now

/ l-b0-m h0 g0 b0+ m0

/

2 2 2 2 2

b11+2(b2+m2) 0 0
b1 + m1 ml

h1
0 0

A=
0 0

(m1-Fh2+b1) m1

I

\ /
m1+g2

/

=

((m
+

b2)•

m2

A and B being symmetric, only the upper triangular matrix is shown.
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m2)

The optimal controls are given by

// / -
CT51

-
T61)

- (T52 -
T62)

- - - T61)
(8.1) (

w
T61 (T - T62) (T5.-T6)- T6

i = 3, 4, 5, 6

Note that now the constraint on the parameters is that

(8.2) FS + WS

whereas the simpler model had the
corresponding coefficients summing up to

—1. The reason for this is that the controls are now the second derivatives

of inventories. This change is explained as follows. On impact, F + W goes

down by "dt unitstt after a unit increase in S. But since S = 5S, in the next

small interval of time it continues to fall by (1 + 5)dt. Thus the second

derivative would be computed as —6.

*
This is not really rigorous because S cannot change by discrete jumps

in a continuous time model.
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*

The Riccati equations are,

(8.22) -rT22 —2T22 — s(T2s + 5(b2 + m2)) — 8w8(T26 + dm2)
—

(b1
+ m1) + + m2)

(8.23) —rT23 -T23 — (T25 + (b2 + m2)) - (T26 + dm2)

(8.24) -rT24 = —T24
- (T2s 5(b2 + m2)) - (Tz6 + 6m2)

(8.25) -rT25 = -T25
- T3 (T85 + (b2 + m2)) - 8(T26 + m2) - (b1 + m1)

(8.26) -rT26 = -T26
-

T24
- (T25 ÷ (b2 + m2)) - 7(T26 + dm2)

-

(8.33) -rT33 = FF T35 - T T36
-

h1

(8.34) -rT34 = T35
- 8 T36 -

(8.35) —rT35 =,—T33 — FF T35 — T36

(8.36) —rT36
—T34 — 8FW

T35 — T36

(8.44) —rT44 = —
T45

— 8 T46 — g1

(8.45) —rT45 = —T34
— T45 — T46

(8.46) —rT46 = —T,4
—

T45
—

T46

1
Again, mnenonicallY numbered.
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(8.55) —rT55 =
-2T35

-
FF T55 - T56

-
(b1 + m1 + h2)

(8.56) —rT56 =
—T45

—
T36

—
T55

—
T56

—
m1

(8.66) -rT66 =
-2T46

-
FW T56 - T66 -

(m1 + g2)

To recover the parameters from the estimated coefficients of the control

equation we can proceed as follows:

i) Normalize by setting b2 = 1.

ii) Use the reduced forms for
F' FW' and to find T55, T56,

T66 and m2 paralleling the method of step i) of the previous section.

iii) Use the reduced forms of
FF' Fw' T and to find T35, T36,

T45 and T46.

iv) Solve the Riccatj equations (8.) and (845) for r and
T34 given

the results of previous steps. This is a pair of linear equations in these

two unknowns.

v) Use (8.3, (8.4), (8.34), (8.33) and (8.44) to obtain, successively

T33, T44, k1, h1 and g1.
vi) Use (8.56), (8.66), (8.55) to get m1, g2, and b1 + h2. Note that b1

and h2 are not separately identified at this stage.

vii) Use (8.23), (8.24), (8.25) and (8.26) together with the estimated value of FS
as a system of 5 equations in the 5 unknowns,

T23, T24, T25, T26 and b1. Note that

this identifies h2 as well.

viii) The remaining Riccati condition (8.22) determines T22.
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While the foregoing procedure would, in principle, allow us to recover

the model's structural parameters from its reduced form estimates, the

solution is quite messy and does not allow a clear understanding of the

relationship between the reduced form coefficients and the parameters of the

underlying model. Such an understanding would be helpful, since most previous

empirical work on the subject has started with the reduced form and estimated

it directly. We would like to know what their previous reduced form estimates

suggest about the firm's cost function, given the stochastic process des—

cribing sales.

Fortunately, if we focus on finished goods inventories for the moment,

a simpler relationship between reduced form and structural parameters obtains.

In particular, if we ignore the costs related to deliveries (m0, m1, and m2)

and work—in—process inventory stocks (g0, g1, g2,
and k1) and, further,

assume that there is no cost in changing production (b2
= 0), we obtain a

model with F as the lone control variable with the state vector equal to

*

(l,S,F). It is a straightforward exercise to show that such a model leads

to the following two equations relating
the control, F, to the state variables

S and F:

1
T 1FS — —

b1+h2
23

—

FF = —

b1+h2
T33

where the matrix T is defined as before. The Riccati equations are:

*
This model is a special case of the model presented above without adjust-

ment costs, except we allow for the presence of a positive cost of changing

stocks of finished goods inventories (h2 > 0).
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—rT22 = —25T22
—

(T23
+ bl)cFS —

b1

-rT23 = — 6T23 -
(T23 + b1) FF

=
_T33FF

-
h1

From these relations, we obtain solutions for andFF FS

-Jr2 + 4b +h
FF

2

1 2

h
(r — — b + h cLFF

FS 1 2

(r —5) — FF

There are a number of things to be seen right away. If h1 = 0 so that there

are no quadratic costs involved in holding
inventories, = 0 and aFS =

inventories are passive, activing entirely as a buffer stock. At the other

extreme, as h1 becomes large,
aFF increases in absolute value, and aFS de-

creases: as being away from the target inventory level increases, inventory

investment responds more quickly to an inventory stock disequilibrium, and

production changes, as well as changes in F, are used to respond to antici-

pated increases in sales. The general effects of
the parameters r,45,

b1,

h1 and h2 on and aFF are shown in Table 2.

Table 2

Sign of Effects of Parameters on Controls

0 aFS aFF

r +
6 + 0

+ +

+

h2 + +

*
We choose the negative root here. It is clear that the positive root cannot

correspond to an optimal path, since it would give usc > 0, in violation ofsecond—order conditions. F
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Because this model is underidentified, it is impossible to recover any of the

underlying structural parameters from the reduced form regressions. However,

we can derive certain inequality restrictions. In particular, FF < 0, and

(r—S) .

—

r—S'—c
. Our estimates of this simple model suggest that the

/ FF
second restriction will be violated unless r is negative, given our estimates

of ' and aFF. This certainly casts some doubt on whether such a model

is sufficient to explain inventory behavior, and provides evidence that the

richer structure introduced above is indeed necessary.
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9. Empirical Methodology and Results

Before estimating the linear decision rules for inventory behavior

suggested by the discussion above, we must transform our data to conform

to the assumptions of the model. Since our model is concerned with deviations

from trend, our first task is that of detrending the data.

We need to preserve the identities
relating inventories, sales, production

and deliveries in the detrended data, hence we are limited to a procedure that

estimates trends for each series and subtracts it from the original series thus

obtaining the detrended version. Given this approach, there are many

ways to estimate the trends; our experiments suggest that the particular esdionmethod

used is of minor importance. Our chosen detrending technique consists of

regressing sales, finished goods stocks, and work—in—process stocks (for

the "WP" version of the model) or the sum of work—in—process and materials

and supplies stocks (for the "WN" version) individually on a constant, time,
*and higher moments of time. These higher moments are included to pick up

any non—linearities (as would be present if the underlying trend were

exponential rather than linear). To test the sensitivity of our results, we

also detrended the inventory series by regressing them on the sales trend

directly, rather than on the moments of time. The resulting regressions

using these two sets of data are virtually identical, and only the first set

is presented. Since we estimate time trends separately for each series, our

procedure allows for advances in technology over time which induce changes in

the long—run inventory—sales ratio or the composition of inventory stocks.

*

Actually a third degree polynomial was used.
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Having detrended the series, our next task is to determine for each

industry the ARNA process best describing
the evolution of its sales. A

second order autoregressive process provides
the best fit for three industries

(Textiles — SIC #22, Paper — SIC #26, and Instruments — SIC #38). For the

remaining industries, sales appear to be either AR1A (1,1) or just AR (1).

The estimates of and 8, the autoregressive and moving average parameters

are listed in Table 3.

Table 3

AINA Processes — Shipments

s =s +u —et t—l t t—l

Industry (SIC #)
0

Food (20) .61
— .45

Chemicals (28) .64 —.44

Rubber and Plastics (30) .84

Stone, Clay and Glass (32) .83

As discussed above, the sales term relevant for the certainty_equivalent

problem of cost minimization, and hence the linear decision ru1s, is not

St but S, where

(9.1) S = S -

The term S may be thought of as the permanent
component of sales, the tem-

porary component being S = - u. This distinction is obviously of no

relevance unles 0 0. For the two industries where sales do have a moving

average component, it is important that we include S*, and not S, in the final

regressions.



Given perfect knowledge of , e and all past realizations of sales,

0
o(and hence may be calculated once s is observed. This is precisely

the behavioral assumption we apply to the firms themselves. In practice,

our sample of S's is finite and 4 and 0 are estimated with error. Ignoring

the latter problem, we can deal with the former one by assuming all values

of to be zero prior to our first observation of sales, then recursively

generating subsequent values of u from (9.1) and finally omitting the first

several such values. In practice, our first observation of sales is for the

first quarter of 1958, and we have estimated our final regressions for the

sample period 1960:1 to 1976:4.

In replacing St with S* in our behavioral regressions, we must remember

that actual sales in the current period are still and some compensating

adjustment for this must be made. Intuition suggests that an increase in

temporary sales should be equivalent from the firm's viewpoint to a decline

in initial stocks of finished goods, and indeed this proves to be true; in

other words, the firm's costs depend on the sum of current sales and on the

of period stocks of finished goods. Holding future expectations constant an

increase in current sales is indistinguishable from a drop in initial

stocks. Thus, we can correctly represent the future sales expectations and

at the same time account for the fact that current sales contain a temporary

component by subtracting this component, S = --u, from initial finished

goods inventories.

While our decision rules apply to a continuous time process, our data

is quarterly. We approximate the above equations by setting the sales decay

rate—5 equal to (1 — ), and replacing inventory stocks at time t with the

beginning of quarter stocks, Ft_i and W1. We represent the rates

and rates of change of inventory investment by the first and second differences

—39—

beg inning
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of these stocks, AFt, MFt, AW and AAWt, respectively, where:

Al = I — I
t t t_l

(9.2) I = F, W

MI = Al — Al
t t t—l

With these approximations, the model in which adjustment costs are

ignored is

AF =a S*+a F* +c W
t FS t FF t—l FW t—l

(9.3)

ct S*+aF* +a Wt WS t W t—l WW t—i

where S = S — s and F1 = Ft_i
— S

, and the sum of aFS and is constrained

to equal —1.

The model with adjustment costs is:

=
FSSt +FFFl + FWWt_l + FF't—l +

(9.4)

+ F1 + + ØFi +
where FS + = (1 —

T
Note that no adjustment for S is made to AFi. Such an adjustment

would implicitly change the value of lagged production, and hence the

cost of setting current production, which we would not want to do.

Also observe that, though the models with and without adjustment costs are nested

in that setting the parameters by b2, m2, g2 and h2 in this model with adjustment

costs equal to zero yields the simpler model, the discrete approximations we

estii1ate are not nested. This follows frorn the different specification of

the cross—equation constraint on the sale coefficients in the two models, and

is a result of the approximation error involved in using discretely observed

data to describe a continuous time process.
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In practice, of course, neither of these models will hold exactly,

giving rise to a stochastic error term in each of the above regressions.

This error term may be thought of
as describing the failure of firms to

successfully implement their intended
production and delivery plans.

Several explanations might be offered
for such errors, ranging from the

firm's own inability to perfectly monitor its own production activity to

stochastic delivery behavior on the part of its suppliers. These errors need

not be uncorrelated over time; for
example, information about the errors being

made may take more than a quarter to be completely discovered and corrected.

Because of the presence of lagged
dependent variables in our equations, we

have estimated all regressions
with a correction for first—order autocorrelation

of the errors.

In order to test whether either of the
models describes well tbe data

we estimate equations (9.3) and (9.4) both with and without the

implied cross—equation restrictions and test whether these restrictions can

be accepted. In Tables 4,5,6 and 7
we present the results for the constrained and

unconstrained versions of the models with and without adjustment

costs. In all cases, we use the "WN"
specification, where the stock of inven-

tories W is taken to be the sum of
work—in—process and materials and supplies

inventories.

A salient feature of our results is that the constraints on the sales

coefficients do not seem to be satisfied. In all cases for the simpler model,

the sum of
and FS is significantly different from —l (according to a

likelihood ratio test), ranging between —.005 and .092. The constraint is

*always rejected in the adjustment—cost model,
though much less strongly.

*
We also performed these hypothesis tests on the constraints when correctionsfor heteroscedasticity are introduced. The F equation always contributed moreto the SSR in the stacked

regression than the W equation. The equations werere—estimated without significant
changes in any coefficient or in the test statistic.
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Aside from the obvious explanation that the models may be misspecified,

there remain other possible reasons for these negative results. First of all,

our use of quarterly data to approximate a continuous time process may be

inappropriate. Barring an attempt to rederive the model in a discrete—time

framework (which would be very difficult) we might approach this problem

by estimating the models ung monthly data. At present, however, data of

the same quality as ours is not available at monthly intervals. Another

plausible explanation might be that the error process is not first—

order autoregressive. Again, this could be tested by using alternative

specifications.

Despite our findings concerning the validity of these models, there

are still a number of interesting results present in the regressions. Looking

first at the unconstrained version of the simple model, where changes in

inventories are regressed on lagged stocks and sales, we see that the implied

adjustment speeds of changes to own stocks are large in comparison to those

found by previous researchers.
For example, in SIC #20 (Food), the coefficient

of F*1 in the finished goods equation is -.558, implying
that 56% of a surplus

in initial stocks of finished goods will be run down within a quarter. The

corresponding coefficient for W1 in the W regression is —.648. These

adjustment speeds are lower in SIC industries #28 (Chemicals) and #30 (Rubber

and Plastics), but higher in SIC 1/32 (Stone, Clay and Glass). Part of the

explanation for these faster implied adjustment
speeds may come from our use

of detrended data. In addition, in contrast to many past studies, we have

allowed for cross—effects in our regressions. We would expect these coefficients,

*
For example Lovell (1961) and Auerbach—FeldStelfl (1976).
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of F on and W on F1, to be positive: an unwarranted level of work—in—

process inventories can be partially lowered by stepping up production;

production can be lowered to reduce finished stocks, keeping more goods

"in the pipeline". Some evidence that such effects are present appears in

these regressions. Six of the eight cross—effect terms in the four indus-

tries are positive, though only two are significant.

Turning to the more complicated model which includes adjustment costs,

we continue to focus on the unconstrained estimates, in light of our rejection

of the cross—equation constraints. Note that because the dependent variables

are now MF and the assumption of the simpler model that lagged changes

in stocks have no effect on current changes would imply that the coefficients

of own changes equal —l in the current regressions. In all four industries,

at least one of the four lagged change terms introduced by the assumption of

adjustment costs is significant. In all, seven of the sixteen new coefficients

(in the four industries) are significant. Only the effect of lagged changes

in W on current changes in F is never significant. This suggests that the

richer specification is necessary to adequately model inventory behavior.
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Table 4

Estimated Decision Rules
('tWM" Specification)

SIC #20 (Food)

Model

No Adjustment Costs Adjustment Costs

Constrained Unconstrned Constrained Unconstrained

Dependent Variable:

Independent Variable:

F W t.F W MF MW MW

SSR

.074 .018 .232 .158
(.050)(.035) (a) (.033)

* * * *
—.558 .237 —.741 .318
(.218) (.092) (.166) (.117)

—. 015
(.038)

—. 195
(.105)

* *
.115 —.648 —.058 —1.074 —.153
(.16l)(.286)(.216)(.281) (.163)

1.603 .926 1.560 .820

(standard errors in parentheses)

* significant at .05 level

a constrained parameter

b from stacked regression

1

*S —.464—.536
(a) (.057)

F* —.313—.014-1
(.180)(.200)

W .235 .092-1
(.272)(.262)

RHO

*
.046
(.022)

.116

(.051)
J.

—.496
(.103)

*
.171
(.086)
475*

(.157)
—.211

(.191)

— — - - .035 .018

(.149) (.135)
*

— — — — .202—.121
(.163) (.298)

* * * *
.550 .778 .757 .503 .819 .408
(.122)(.097) (.157)(.269) (.077)(.210)

— — .173 .247

8•638b 2776b

—.711

(.302)

.291

(.181)

.047

(.377)

— .436 .559
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Table 5

Estimated Decision Rules

("WM" Specification)
SIC 1/28 (Chemicals)

Mo del

No Adjustment Costs Adjustment Costs

Dependent Variable:

Constrained Unconstrained Constrained Unconstrained

Independent Variable:

SSR .164

(standard errors in parentheses)

.150 .138

* significant at .05 level

a constrained parameters

b from stacked regression

W LF MF MW MF MW

W_1

RHO

12

—.519
*

—.481 .007 —.009 .399
*

.161 .009 —.000
(a) (.045) (.022) (.021) (a) (.025) (.013) (.011)*
.729

*
.615

*
—.122

*
.011 —.441

*
—.226

*
—.123 —.007

(.126) (.127) (.052) (.048)(.075) (.074) (.037) (.030)

—.115 .440
*

—.381
*

—.449 —.631
* *

—1.050 —.252
*

—.294
(.330) (.333) (.115) (.725)(.224)

*
— —.140

(.185)

— .303
(.204)

(.232)

—.097

(.178)
*

.169
(.221)

(.103)
*

—.445
(.145)

—.075

(.142)

(.077)

.027

(.084)
*

—.319
(.164)*

.875
*

.828
*

.459
*

.534 .728
*

.735 —.116 —.290
(.067) (.074) (.123) (.725)(.088) (.098) (.203) (.171)

— .415 .431— . 366

2.21

.208

.149 0598b
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Table 6

Estimated Decision Rules
(;Itt Specification)

SIC #30 (Rubber and Plastics)

Model

No Adjustment Costs Adjustment Costs

Cons trained Unconstrained Constrained Uncons trained

Dependent Variable: MW MF

Independent Variable:

* *
s* —.526 —.474 .019 .040 .083 .077 .017 .018

(a) (.051) (.019) (.024) (a) (.022) (.020) (.014)

*

F* .447 .425 —.251 .078 —1.08 .089 —.211 .056
-l

(.314) (.321) (.131) (.103) (.153) (.135) (.138) (.051)

* *
w .178 .859 —.115 —.299 —.146 —.623 —.091 —.238
—l

(.294) (.298) (.075) (.231) (.130) (.132) (.085) (.050)

*
— .222 — .164 —.812 — .098

(.141) (.135) (.399) (.118)

* *
— .048 —.053 —.024 —.348

—1
(.138) (.189) (.134) (.135)

* * * * *
RhO .894 .997 .286 .607 .852 .661 .105 —.121

(.074) (.085) (.213) (.276) (.063) (.138) (.535) (.183)

— .141 .413 —- .425 .405

SSR 0•714b .058 .046 108b .057 .040

(standard errors in parentheses)

* significant at .05 level

a constrained parameter

b from stacked regression
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Table 7

Estimated Decision Rules
("WM" Specification)

SIC #32 (Stone,Clay and Glass)

Model

(standard errors in parentheses)

* significant at .05 level

a constrained parameter

b from stacked regression

No Adjustment Costs Adjustment Costs

Cons traiped Unconstrained Constrained Unconstrained

Dependent Variable:

Independent Variable:

S*

F*1

W_l

W_l

RHO

12

SSR

tF LW MF MW MF MW

—.504

(a)

*
—.496
(.050)

—.000
(.030)

—.005

(.027)

.073

(a)

*
.097

(.023)

—.010

(.016)

—.009

(.012)

—.110
(.228)

.226

(.223)

*
—.850
(.419)

*
.237
(.086)

*
—1.339
(.248)

*
.406

(.179)

*
—.485
(.112)

—.033

(.075)

—.156
(.363)

—.363

(.356)

.252

(.168)

*
—.798
(.202)

*
.579

(.208)

*
—1.073
(.244)

.042

(.113)

*
—.156
(.076)

.

—
*

—.073
(.229)

—.134
(.116)

*
—.570
(.157)

*
.261

(.080)

— —.225

(.146)

*
—.035
(.181)

.298

(.195)

*
—.731
(.174)

*
.909

(.072)

*
.955

(.075)
.443

(.168)

*
.701

(.180)

*
.533

(.146)

**
.841
(.082)

*
—.288
(.175)

—.319
(.181)

— — .204 .180 — .637 .585

.062 .027 0.098 .056 .023
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10. Conclusions

We have tried to give a structural account of inventory investment in

manufacturing industries that produce to stock. Although our results must

be viewed with caution because of technical problems such as the use of dis-

crete data in estimating a continuous—time model, we still feel justified in

asserting several results. First, the model with production adustment costs

obviously describes the data much better than without them. These previously

neglected costs should be given a prominent role in future work. Second,

disaggregating inventories by stage of fabrication we have seen how the inter-

actions between production and deliveries give rise to important "feedback"

and "feedforward" effects that are neglected in more aggregative analyses.

Third, we have shown how a careful distinction between "temporary" and

"permanent" innovations in sales can be important in the implementation of

inventory investment models.
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