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ness to pay. This discussion is related to the concepts of statist-

ical and identified lives. Methods of financing health expenditures

are considered. We show that risk averse individuals may reject

actuarially fair insurance for treatments of fatal diseases even if

they plan to pay for the treatment if they get sick. This result

has implications regarding the choice of treatment or prevention.

Finally, we examine the importance of the timing of life-saving

decisions. A conflict arises between society's preferences before

it is known who will be sick and after, even if it is known in

advance how many people will be sick.
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INTRODUCTION

Economists who have worked in the area of health economics have

generally offered policy—makers two pieces of advice. First, policy—

makers have been urged to equate the productivity of various expendi-

tures at the margin. In this spirit economists have frequently pointed

to large discrepencies in costs per lTe saved among different govern-

ment programs as an example of serious misallocations of resources.

A reallocation, it is argued, could increase lives saved while holding

expenditures constant.

A second frequent bit of advice is to try to allocate resources

in a way which approximates the allocation which would occur in a

market setting. Thus consumers' willingness to pay should be used as

an indicator of their valuation of government programs.

In recent years, economists have forged a link between these

two pieces of advice. They show that there Is a well—defined concept

of the "value of life" based on the willingness to pay approach and

that the use of this concept in project evaluation leads to an allocation

of expenditures across programs so as to maximize the number of lives

saved

This value of life concept is based on the amount of money an

individual would be willing to pay to reduce his chance of death by a

small amount. For example, suppose that an individual is willing to

pay $500 for an increase in his survival chances of 1/1000.

A thousand such individuals would be willing, collectively, to pay

$500,000 for a project that increased the survival chances of each person

Note: The research reported here is part of the NBER's research program
in health economics. Any opinions expressed are those of the authors
and not those of the National Bureau of Economic Research.
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by 1/1000. If implemented, the project would be expected (in a statisti-

cal sense) to reduce the number of deaths by one among the group of one

thousand people. In this sense, the value of a "statistical life" is

said to be $500,000. The willingness to pay approach would then suggest

that the project be adopted if its cost is less than $500,000 and be

rejected if its cost is more than $500,000. More broadly, this approach

suggests that expenditures on each health or safety program be increased

or decreased until the marginal cost of an additional (statistical) life

saved is equal to the value of a (statistical) life. Such a policy

would maximize the expected number of lives saved, given the level of

aggregate expenditures on health and safety.

There is considerable appeal to this approach both because of

its theoretical basis and the relative simplicity of using it in

practice. For example, a glance at Table 1 shows radically different

costs per life saved for various governmental health and safety programs.

Ignoring possible discrepancies between average and marginal costs and

certain other qualifications, it is clear that survival rates could be

increased by reallocating resources away from cancer diagnosis toward

safety belts and other safety devices. Moreover, this approach seems

to be gaining acceptance among noneconomists. For example, Dr. Robert

Grossman, acting director of the dialysis program at the University of

Pennsylvania Hospital, has stated:

I can see us in the next few years having programs for people
with heart disease, people with cancer, and it's something we
can't afford. I don't even know if we can afford this [the
dialysis programj. The question is, how much is a life worth?
We're seeing a resurgence of polio (and other diseases) because
children are not getting their shots. Can we afford this at a
time when we could be spending the money on basic health care

to keep the general population healthy?2
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Table 1. "Cost" of a life.

Cost of program

Program per death avoided
(Thousands of dollars)

Safety belts 87

Other safety devices 103

Pedestrian education 666

Motorcycle helmets 3,300

Cancer of the uterus treatment 3,500

Campaign against drunken driving 5,800

Lung cancer treatment 6,400

Breast cancer treatment 7,700

Physical checkup upon application for license 13,800

Syphilis treatment 22,300

Tuberculosis treatment 22,800

Head and neck cancer treatment 29,100

Cancer of the colon and rectum treatment 42,900

Source: W. Gorman, "Deux années d'exprience dans l'application du
PPBS on comment a mliorer le partage du gâteau public?"
Analyse et Prvision, Vol. V, No. 6, June 1968, pp. 403—416.
Cited in The Price of Health, Jean—Luc Migu and Grard

Blanger, Macmillan Company, Canada, 1974.
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In this paper, we argue that the link between the willingness

to pay criterion and the goal of maximizing lives saved is neither so

secure nor so simple as much of the recent economic literature has

portrayed it to be. Is it really true that we can tell at a glance

that the governmental health and safety programs listed in Table 1 are

grossly inefficient because they fa4i to equate the cost per life saved

across programs? If so, how can we rationalize the fact that many

individuals in their private decisions appear to display large variations

in the marginal cost per unit increase in survival probability across

different activities? Our impression is that many of the same people

who refuse to purchase or use seat belts are also willing to pay large

sums for apparently ineffective treatments such as laetrile should

they get cancer. Indeed, the private preference for treatment over

prevention is frequently decried by physicians and policy—makers.

The main thrust of our paper is to re—examine the value that

private individuals place on their own lives in various kinds of

situations. We then attempt to use this analysis to shed light on the

uses of the willingness to pay criteria for public policy problems and

the circumstances under which maximization of lives saved is a rational

policy goal.

The plan of the paper is as follows: Section I examines indi-

viduals' demand for life—saving programs. We show that those individuals

with low survival chances will pay more for a given increment in

probability of life than an otherwise identical but healthy individual.

This is shown to be a result of the inability to trade life—saving

chances among different people.



5

Section II investigates the effects of information on

willingness to pay. We find that certain types of information will

increase the divergence between willingness to pay and maximizing

lives saved.

Section III considers the financing of health expenditures.

We see that risk averse individuals may reject fair insurance for

treatments of fatal diseases even if they plan to pay for the treat-

ment if they get sick. This result has important implications regarding

the choice of prevention or treatment.

Section IV looks at the timing of life—saving decisions. We

show that while willingness—to—pay may be inconsistent with maximizing

lives saved after some people are sick, if all decisions were made

before it was known who would get sick the two criteria would be

identical. We then briefly discuss how such a policy could be

implemented.
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I. INDIVIDUAL DEMAND FOR LIFE-SAVING

Before beginning our analysis a few caveats and disclaimers

are in order. First, the term "lifesaving" is really a misnomer.

Lives cannot really be saved; they can only be prolonged. Nevertheless,

we will maintain the usual nomenclature. Dealing with lives saved

allows us to keep our formal analyses reasonably simple, without exces-

sive loss of generality. Essentially we collapse an intertemporal

stochastic choice problem into a single period problem.3

Another issue we will ignore for the most part is variation in

the quality of lives saved. Saving young people may be more valuable

than saving old ones, saving the healthy more valuable than the crippled,

etc., but we will model societies with identical people, and thus avoid

such issues. These issues have been discussed at length by Zeckhauser

and Shepard [19761.

Finally, we ignore the bequest motive. If bequests are treated

in models, the usual way is to introduce an additional bequest function;

thus expected utility is given by

(1) pU(X) + (l—p) i(B),

where p is the probability of survival, X is consumption conditional

upon the individual living, B is the bequest left to one's heirs.

This is a very special form of additive separability in which the

weights applied to the utility of consumption and bequests are just

the survival and death probabilities. In particular, this specifica-

tion assures that the contribution to expected utility from bequests
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is proportional to the probability of death. We know of no empirical

support for this hypothesis. One alternative would be to adopt a more

general formulation such as

(2) EU = U(p, X, F)

(3) F = f(p, X, B),

where f is the group utility function of other family members and

depends on the probability of survival, the individual's family

wealth CX) conditional upon living, and bequests (B). One might

additionally assume that f is additively separable of the form

F = pf1(X) + (l—p) f2(B), where f1 and f2 are the family's utility

functions in the states in which the individual is alive or dead

respectively. Without empirical evidence to suggest constraints, the

above specification yields few theoretical results. Furthermore, there

is no theoretical rationalization for bequests being a one—way street.

While a sick individual may obtain utility from increasing bequests, his

heirs may simultaneously obtain utility from increasing either his con-

sumption or chances for survival. Without empirical evidence it is

impossible to predict which effect will dominate.4 Thus we adopt the

simplification of ignoring bequests and expected utility is simply EU =

pU(X).

1.1 The Value of Life Saving

We now investigate the individual's demand for life—saving. The

rate at which the individual will trade X for p (holding utility constant)

is
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dX - U(X) v—

dp
—

pU'(X)
—

Thaler and Rosen [19761 empirically measured V by examining wage differ-

entials in hazardous occupations and found V to be roughly $200,000 in

1967 dollars.

Given a single measure of the v1ue of a life, the implications

are that a government that wishes to maximize the benefits of adopting

life—savingprograms should maximize lives saved. In addition, if we

can agree that V is roughly $200,000 then we have a convenient cut—off

point: All life—saving projects that are undertaken should be operated

at the level where the last life saved cost just $200,000.

But what if some lives are worth more than others, either to

their owners or to society? Then saving 50 more valuable lives may be

considerably more efficient than saving 100 less valuable lives. Why

might the value of lives differ? First, we've said nothing about the

income distribution in society. Assuming that some individuals are

wealthier than others, and that life—saving is a normal good, the more

wealthy will clearly be desirous of purchasing more life—saving for

themselves, just as they purchase more of everything else.

Even in an egalitarian society where all members

have identical wealth, some lives may still be more valuable than

others. Much like a wealth distribution, there exists a distribution

of survival probabilities——some people are more likely to die than

others. Again assuming that life—saving is like any other normal

economic good,, individuals with lower survival probabilities should

be willing to pay more than individuals with higher survival proba-

bilities for a life—saving project.
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A game of Russian roulette illustrates this point.5 Suppose

an individual is forced to play a single game of Russian roulette.

Before the game is "played" he is ailowed to purLhase the removal of

one bullet. How does his willingness to pay for this bullet removal

depend on the proportion of the chambers that are full?

Proposition 1: The amount an individual will pay for a given increase
in the probability of survival, p, is inversely
related to the level of p.6

Proof: Since

dV = — U(x) <0
dp

p2U'(X)

this proposition follows simply from the assumption that both
consumption and probability of survival are normal goods.

The importance of Proposition 1 can be illustrated by a simple

numerical example.

Example 1: Consider a society of 25 people where everyone has the

utility function p ln(X+l),where specifically X = 10.
Assume that the society is divided into two groups. Group I
has 10 members each with p= .2, while Group II has 15 mem-
bers each with p = .7.

A treatment can be provided to either group at the same
total cost, and will reduce the fatality rate of either
group by 0.1. Which treatment should be provided?

Table 2 displays the amount an individual with the posited

utility function will pay for a .1 increase in p as p varies from 0 to .9.

The division of society into two groups can be thought of as

two different diseases, with the Group I disease more likely to be fatal.

The specification that treatment costs are identical is mainly a

specification of extreme economies of scale; for instance, all the
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Table 2. Willingness to pay in Numerical Example 1.

Probability of survival
Maximum amount
for .1 increase
survival

individual would
in probability

pay
of

0 10.00

.1 7.68

.2 6.05

.3 4.96

.4 4.19

.5 3.62

.6 3.19

.7 2.85

.8 2.57

.9 2.35

Assumptions: Individuals maximize pU(X), U(X) = ln(x+l) over an

initial endowment of $10.00.
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costs may be in research. Finally, since the treatment reduces the

fatality rate of either group by .1 (i.e., yielding a Group I and Group II

survival rate of 0.3 and 0.8 respectively), the implied cure rates are

different. The treatment produces a cure only one—eighth of the time

for Group I, but one—third of the time for Group II.

If the willingness to pay c:iterion is used, then the treatment

should be provided to Group I since collectively they would be willing

to pay up to $60.50 while Group II would pay at most $42.75. The point

of interest in this example is that this choice does not maximize the

number of lives expected to be saved. Providing treatment for Group I

would save an expected 1 life, while providing treatment for Group II

would save an expected 1.5 lives. We do not save the maximum number of

lives because Group I values an increase in their survival chances more

than Group II.

1.2 Inability to Trade

The reason why we fail to maximize lives saved in the previous

example, and the reason why Proposition 1 is important, is that unlike

most goods, there are very sharp limitations on the extent to which

survival probabilities can be traded in the market place. For freely

traded goods we know that everyone who consumes a positive quantity of

the good values an extra unit of the good equally. In life saving,

marginal valuations differ among individuals because they cannot trade

to equate those valuations. If a man in our numerical example gets

very sick, reducing his p from .9 to .2, he would pay up to $6.05 to

increase his survival probability to .3. If it were possible to do so,
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others whose p were still .9 would be willing to give up .1 of their

survival chances for anything over $3.84 (not shown in Table 1).

Of course, current technologies (aside from some transplant operations)

do not permit such trades. Once the inability to trade is recognized,

failure to maximize lives saved seems less paradoxical.7

The reader may be troubled uy our assumption that bullets cannot

be traded. Can't individuals, in fact, adjust their lifestyles to alter

their survival probability? We wish to argue that while there are in

fact many ways an individual can regulate the safety level he faces, our

no trade assumption is reasonable on two grounds.

First, when faced with a substantial probability of death from

a disease any adjustments the individual might make would be small

relative to the risk from the disease. A healthy man aged 35 faces a

total risk of death in one year of about .002. Even if he works in a

very risky occupation his risk of dying is unlikely to increase more

than .005. (See Thaler and Rosen [19761.) Thus, compared to a risk of

death of even .05, any changes in lifestyle would be of a trivial level.

Second, even if individuals could make significant changes in

their lifestyles to lower the risk of dying when they contracted the

disease, they wouldnot choose to do so. Assume that the individual

faces two independent sources of death risk which we will call discre-

tionary and non—discretionary. The non—discretionary risk might be a

disease and the discretionary risk might stem from an occupational

choice. Let be the probability that the individual will die from

the nondiscretionary risk and 2 be the probability he will die from

the discretionary risk. The probability of death, 4, is then

=
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Will an individual's choice of 2 depend on l? Will a man with a dis-

ease which might kill him take any more or less risk in his everyday

life? One is tempted to argue both ways. On te one hand, a person

with a disease seems to have less to lose by taking a risky job. On

the other hand, he might want to '1compensate" for his disease risk by

being very careful in every way he ean. As we show in Proposition 2,

given our assumptions, the arguments cancel.

Proposition 2: The amount of money necessary to compensate an individual
for taking some risk 2 does not depend on the level of
other independent risks he faces,

Proof: (l—1)U(x) = expected utility without discretionary risk

(l—)U(x+c) = expected utility with discretionary risk,

where c is chosen such that

(1 —q1)U(x) = (1— 4)U(x+c) = (1— 4l)(l — 2)U(x+c).
Hence,

U(x) = (l—42)U(x+c),
which is independent of . Q.E.D.

This proposition simply states that independent events are treated

independently. The policy implication in evaluating a project which

alters the probability of survival for some population is that policy—

makers should ignore other sources of risk so long as those other risks

are independent of the risk associated with the project. Thus in

comparing sites for nuclear plants, it would be unnecessary to consider

the occupational risks faced by the nearby population as long as they

are independent of risks from the power plant. However, risk of earth-

quake would have to be considered since an earthquake could increase

the risks from the power plant, thus violating the independence assump—

tion.
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II. IDENTIFIED LIVES

Thomas Schelling [19681 was the first writer to make the

Important distinction between identified and statistical lives:

Let a six—year—old girl with brown hair need thousands of
dollars for an operation that iil prolong her life until
Christmas, and the post office will be swamped with nickels
and dimes to save her. But let it be reported that without
sales tax the hospital facilities of Massachusetts will
deteriorate and cause a barely perceptible increase in
preventable deaths——not many will drop a tear or reach for
their checkbooks.

The girl in the above example is an "identified" life, whereas

the lives lost due to hospital deterioration are "statistical."

There are three senses in which the girl's life differs from a sta-

tistical life. She is "identified" in the sense that (1) other

people are willing to help her; (2) she has poorer than average sur-

vival chances; and (3) a program can be named that will help her and

only her. The interesting point Schelling makes is that i is often

easier to gather popular support to save identified rather than sta-

tistical lives.

Evidently Schelling intended the term "identified life" to be de-

fined in the first of these senses.8 The girl's life is identified

because her personal plight provokes sympathy and a willingness to pay

by others that is not stimulated by the anonymous and impersonal sta-

tistical life.9

In this paper we wish to concentrate on individuals' willingness

to pay for improvements in their own survival probabilities. Thus the

last two senses of the term "identified life" will be used in this

section.
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In particular, we consider identification as synonymous with

information.10 Ultimately, some Individuals will get cancer, will get

heart disease, will be involved in automobile accidents, etc. Informa-

tion about the assignment of individuals to these health status cells

will be labeled "individual identification." Lives are "unidentified"

if each individual attributes the sie probability of assignment to each

health status cell as all other individuals. Simultaneously, programs

can be listed that will increase survival rates of cancer, heart disease,

and accident victims. Information about the distribution of (expected)

benefits across health status cells will be labeled "project identifi-

cation." A project is "unidentified" if all health status cell survival

rates are expected to be affected equally.

The framework used here centers on these health status cells.11

Each cell has associated with it a survival rate. Individuals are

assigned to cells. Prior to assignment each individual has his own

estimate of the probability he will be assigned to each cell. Individuals

form estimated probability of survival by taking cell assignment proba-

bility weighted averages of cell survival rates. Projects can be named

that affect the survival ratein various cells. Individuals form estimates

of the benefits (to themselves) of a given project by taking cell assign-

ment probability weighted averages of project Induced cell survival

probability Increments.

We basically wish to ask one question using this framework:

What kinds of Information will alter the value of a life? In section 11.1

we address this question with respect to individual Identification. In

section 11.2 the analysis is repeated for project identification.

Section 11.3 discusses the results.
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11.1. Individual Identification

Let there be K health status cells which we will denote by

k, kl,...,K. In addition, let there be N individuals denoted by 1,

i=l,...,N. There may be more or fewer cells than individuals. The

"aggregate informationt' available to individuals is denoted by

where k is the probability that a rindomly drawn individual will be

assigned to cell k. Clearly, k is nothing more than the population

rate. If the only information available to individuals is the popula-

tion rates, then each individual will view his probability of survival

as being the same, given by

(2.1) =

k

where is the probability of survival in cell k. We will refer to

this case as the no individual identification case, 1=0. In this case

the value of a life is given by

PU'(X)

Now consider any other state of information denoted by ik'

where is the probability individual i attributes to his assignment

to cell k. We require a special form of coherence: If some individual

believes that he is more likely than average to be assigned to cell k,

then other individuals taken as a group must believe that they are less

likely than average to be assigned to the cell. I.e.,

Ik
(2.3)

1
N

= k
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Thus, we consider changes in distributional information holding aggregate

information constant. Individual i now attributes probability P1,

(2.4) Pi = ikk
to his survival, and P may be interpcted as the average survival

rate.

The value of a life given this information is given by

lv U(X)
(2.5) V

P1U' (X)

= V(O) + U(X [1 (1 —

If we define individual identification, I, as the bracketed term,

Equation (2.5) may be rewritten

(2.6) v(I) = v(o) + I

Thus, I is a sufficient statistic for this problem. Information that

increases I increases the value of a life.

It is quite simple to show that, given
coherence, I is bounded

from below by zero and that any divergence from no distributional

information must increase
i)2 Further, I is additive in the sense that

moving from any state of information I
to I2 the value of a life may

be rewritten as

(2.7) v(12) = V(11)
+

where Al = 12
—

— 1v 1
— ).i 2i 11
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Other properties of I are most easily shown by example, which is done

in Table 3. We summarize the results in the following proposition.

Table 3. Examples of I values.

Distributional information I

1. P1 = P = .9

2. P. = 1 for 50 persons

= .8 for 50 persons

.01389

L = 1 for 80 persons

= .5 for 20 persons

.08889

= 1 for 89 persons

= 1/il for 11 persons

.98889

5. P. = 1 for 90 persons

= 0 for 10 persons

Assumptions: 100 persons with 90 expected to survive.

Proposition 3: More information, in the special sense of increasing I,

l (1 1
—

N 'P.
—

P
1 1

always increases the value of a life. In particular, given any level

of information I, the value of a life is given by

where

U (X)v(I) = v(0) +
U'(X)

U (x)v(O) =
PU' (X)
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11.2. Project Identification

In Proposition 3 the value of a life is determined by taking a

very specific weighted average of each individual's value of a life.

Namely, individuals gain an increase in the probability of survival of

1/N so that one life is expected to be saved. One way this could

operationally be accomplished is to increase the probability of survival

by 1/N in each health status cell. Thus the value of a life really

refers to the value of a specific project, the unidentified project

= 0, and we adopt the notation V(I, I = 0) = V(I). We now wish to

consider the value of any other projects that also expect to save one

life.

Let 6k represent the distribution of a project's benefits

across health status cells, defined so that is the absolute incre-

ment in cell k's associated survival probability. The unidentified

project corresponds to cSkl. All other projects can be summarized by

subject to the constant

(2.8) Y k6k
= 1

k

which arbitrarily scales all projects so that one life is expected to

be saved.

It is apparent that so long as there is no individual identifi-

cation then the value of all projects must be the same. No matter how

various projects distribute their benefits across health status cells,

there can be no distributional effect across individuals. All individuals

have identical cell assignment probabilities and therefore must expect

a gain of 1/N.
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If there is individual identification, however, then there may

be distributional effects. The value of the program, V, is given by

the summation of individuals' value of a life multiplied by the expected

benefits attributed to the program by the individual, or,

- — vU(x) v
(2.9) V — P.U'(x) L ik Nii k

Algebraic manipulation of equation (2.9) yields,

(2.10) V = V(I,0) + [ P. ((
—

or, defining the bracketed term as I and expanding V(I,0) back into V,

(2.11) (I,I) = V(0) + (I + I)

I in this equation may be interpreted as the covariance between the

(reciprocal of) initial survival probability and the distribution of the

expected gain. I is positive if those with the lowest initial survival

probabilities expect to gain relatively the most)3

We summarize our findings in the following proposition:

Proposition 4: Given any state of individual identification, which can

be summarized by

l. 1 1
— N . —

1 1

then the value of a project expected to save one life is given by

V(i,I) = V(0) + (I +1)

where I is the covariance of the reciprocal of initial survival proba-

bilities and relative expected survival probability gain. Ceteris paribus,
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programs that concentrate their benefits on those with the lowest

survival probability will have greater value.

11.3. Discussion

Projects to save lives have value, and merely because two projects

are expected to save an equal number of lives is not sufficient to insure

the projects have equal value. While it is sensible to refer to the

value of a life for a single individual, it is not sensible to refer

to the value of a life for a group of individuals. The criteria of

maximizing lives saved and maximizing ability to pay can clearly be at

odds with each other.

Propositions 3 and 4 provide simple rules for determining the

value of projects. As populations become better informed about the

ultimate heterogeneity of survival probabilities, the value of the

unidentified project will increase. In addition, projects that concentrate

their benefits on those with the lowest survival probabilities will have

greater value than those projects that do not.

As an example of two such projects, consider safety belt

utilization and laetrile treatment for cancer. Safety belts are likely

to be the nearest thing to the unidentified project that one can imagine.

It is well known that safety belts generate low willingness to pay.

Laetrile demand, on the other hand, concentrates its perceived benefits

on a population with known low survival probability. Apparently,

willingness to pay is quite high. Treatment is not covered by insurance

and often requires the expense of travel to a foreign country in addition

to the direct treatment cost.
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To the extent that government programs attempt to mimic the

allocation that would occur in a free market, one should not be surprised

to find variations in expenditures per life saved. Criticism of govern-

ment programs along these lines should be based upon careful analysis.
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III. TREATMENT VERSUS PREVENTION

It is commonly believed that today's health industry shows an

inordinate preference for treatment over prevention. In this section

we demonstrate that this result could be generated by individual maxi—

mizing behavior. In particular, th existence of a relatively ineffective

treatment may discourage individuals from purchasing a relatively

effective prevention.

By way of arriving at this result, we will also show that,

contrary to Bergstrom's [1974] result, individuals facing the prospect

of becoming very sick, with a resulting high demand for treatment, will

not necessarily purchase insurance.

We begin with Bergstrom's example. Aman faces a probability A that he

has a certain fatal disease. A painless treatment is available at a cost c, but

it succeedswithonly probability 0. If the treatment isnot purchasedhewill

die quickly and painlessly. Health insurance is available which will

pay for the treatment if the disease Is contracted. It Is priced at

the actuarially fair price of Ac. The man must decide whether to buy

the insurance before it is known whether or not he has the disease.

Three options are given to him:

1) Buy insurance.

2) Buy no Insurance and die if he gets the disease.

3) Buy the treatment if he gets the disease.

Bergstrom assumes as we do that the man has no bequest motive.

Further, the cost of the treatment is assumed to be less than the man's
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wealth, so he can afford to pay for the treatment himself if he chooses

to do so.

Bergstrom compared the options pairwise. First consider options 1

and 2. Purchase of the insurance adds AO to his probability of life

at a cost Ac. If AO is "small" then the insurance will be purchased

as long as the ratio of the gain in tLobability to the cost (do) is

greater than V. Let's assume the contrary (-- < V) so that the insurance

is rejected, and option 2 is preferred to option 1.

Now consider alternatives 2 and 3. If he selects option 2 he

will die for sure if he gets the disease and thus his expected utility

is E2 = (1—A) U(x). On the other hand, if he buys the treatment upon

discovery of the disease, he will get an extra survival chance AO,

although with reduced wealth. Thus his expected utility will be

= (1 — A) U(x) + AO U(x — c).

Option 3 clearly dominates option 2.

Now compare 1 and 3. Bergstrom argues that 1 should be

preferred to 3:

he realizes that he would go ahead and try the cure
even if he bought no insurance. Knowing that this is the
case he realizes that whether or not he buys insurance he
will attempt a cure if he has the disease. Whether or not
he buys the insurance, his probability of dying from the
disease is A(l—O). In either case his expected cost is
Ac, but if he buys insurance he pays Ac with certainty
and if he buys no insurance he pays c with probability A
and 0 with probability 1—A. If he is a risk averter he
will prefer to buy insurance. . . .
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While this argument seems compelling, it is wrong.14 Even if

the individual is risk—averse, he may reject the insurance, as we state

in the following proposition:

Proposition 5: If an individual has a probability X of contracting a
fatal (if untreated) disease, for which the cost of
treatment is c (less hn his current assets) and the
probability of cur' is 0, the individual may refuse to
buy the insurance for the treatment at the actuarially

fair price Xc, even though he plans to purchase the
treatment if he gets the disease.

Proof: Labeling the three options as above, the expected utility of

each is:
E1 = (l—X)U(x—Xc) + X0U(x—Xc)

E2 = (l—X)U(x)

E3 = (l—X)U(x) + X0U(x—c).

Notice that these expected utilities are just numbers so an
intransitivity is impossible. As we pointed out above, E3
must be preferred to E2 since E3 = E2 + XOU(x—c) and the

second term is positive as long as c<x, which has been assumed.
Now compare E1 and E2. Notice that if 0=0 then
E1 = (l—X)U(x—Xc) < (l—X)U(x) = E2. If the cure is completely
ineffective, then the purchase of insurance lowers the indi-
vidual's wealth without raising the chances of survival.
Clearly, there will be some 0* such that E1 = E2, but for any

0 < 0*, E1 < E2. In this case we shall have E3 > E2 >
E1. Q.E.D.

The key role of 0 is illustrated in Figure lJ5 If 0 < 0*

insurance is actually worse than the "die if sick" option 2. Not until

0 > 0* will insurance be preferred to paying for the care himself.

This result is generated by the assumption that money is worth-

less if the individual dies. Consider an analgous example. The proba-

bility of an earthquake strong enough to destroy a man's house is X.

Given such an earthquake, the probability the man will survive is 0.

Will he purchase actuarially fair earthquake insurance for his house

if 0 is small? Clearly not; since he doesn't care about his asset
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U (x— Xc)

(l-X)U(x)
÷ XU(x-c)

Figure 1. Illustration of Proposition 5.

Cure rate

Expected
utility

0*
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position when dead, he won't be interested in insurance which pays off

mainly in states of the world in which he is dead)6

Proposition 5 has implications which gc beyond the question of

financing health expenditures. The results for insurance apDly with

equal force to prevention activities. Consider a disease which has two

strains, A and B. The probability of getting the disease is A. Given

the disease has been contracted, the probability that it is strain A

is 0 while the probability it is strain B is 1—0. A cure exists at a

cost c which is 100 percent successful for strain A, but completely

unsuccessful for strain B. Similarly, an innoculation is available at

a price ir which prevents the individual from getting strain A but not

strain B. Straightforward application of Proposition 5 implies that

people may purchase the cure for c dollars rather than the innoculation,

even if ii < Xc. This implies that individuals' purchases of cures will

yield smaller increases in survival rates than will equivalent purchases

of prevention activity.

The above example was constructed so that the cure would never

be purchased if the prevention had already been purchased, since it

would be ineffective. This was necessary to apply Proposition 5 directly.

However, Proposition 5 can be generalized to the case where both the

prevention and the cure may be purchased.

Proposition 6: Given the choice of buying prevention in advance or
treatment once the disease is discovered, or both
(or nothing), an individual may choose to purchase
only the treatment, even though the prevention is more
cost effective.

Proof: See Appendix.
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An interesting implication of Proposition 6 is that the intro-

duction of an ineffective treatment can induce people to cease prevention

activities 'even though their expected outlays will go up and their

expected survival chances go down. An extreme case of such behavior can

be illustrated with another numerical example.

Example 3: Consider a single individual with utility function
p ln(x+l), with x = 10. Assume he faces a probability
A = 0.01 of contracting a fatal disease. An innoculation
exists which reduces this probability by 35 percent and
costs $.09. A treatment is available at $9, which is
effective only five percent of the time.

Even at these odds (with the prevention seven times more effective) the

individual will choose to buy just the treatment if sick, yielding a

survival probability of .9905. Yet if the treatment were not available,

he would choose the prevention and have a survival chance of .9935.

It is interesting to compare these theoretical results with the

data presented in Table 1. The table presents estimates of the cost of

various life—saving programs per life saved. The programs are ranked

from most cost effective to least. While we are not sure exactly what

each program entailed, it appears true that prevention programs such

as safety belts are much more effective than treatment programs such as

the cancer programs. This is, of course, consistent with the behavior

characterized in Proposition 6.
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IV. THE TIMING OF LIFE-SAVING DECISIONS

IV.l. Ex Ante and Ex Post

In section I we showed that the goal of maximizing lives saved

might be inconsistent with consumer sovereignty and the corresponding

willingness to pay criterion. In see ion II we examined how value of

a life varied with "information." We now examine a related question:

How do society's preferences about life saving vary with the timing of

information? We return to Example 1 to illustrate the potential importance

of the timing of life—saving decisions.

A society of 25 people was divided into two groups. Group 1

contained 10 people with survival probability p = .2, while Group 2

contained 15 people with p= .7. A program to raise p by .1 could be

adopted for only one group. We saw that while giving the program to

Group 2 saved more lives, it would not be the program adopted under

willingness to pay. Stated in the language of Section II, the covariance

of reciprocal initial survival probabilities and the distribution of

program benefits is higher for Program 1. Obviously, if individuals

did not know into which group they would be allotted there can be no

project identification, and using ability to pay, Program 2 would be

chosen.

Example 4: Assume that the 25 individuals learn of the risks described
in Example 1 today, but will not learn of the composition
of the groups until the following week.

Ex ante, Project 2 would be chosen. Ex post, Project 1 would

be chosen. When will the decision be made?17 The optimal decision, by

assumption, is the one that maximizes willingness to pay. Ex ante
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Project 1 can attract $44.75; Project 2, $67.31. Ex post the corres-

ponding amounts are $60.50 and $42.75. Project 2, chosen ex ante, will

be the decision made. A profit maximizing firm would choose to market

Project 2 ex ante and collect from the whole population. It is quite

simple to alter the numbers above so that Project 1, chosen ex post,

becomes optimal. A profit—maximizing firm would wait and market Project 1

ex post, collecting only from the members of Group 1.

The assumption that no one knows which group he will be in

corresponds to Rawls' [1971] "original position" where decisions are

made "behind a veil of ignorance." Since an individual's preferences

in the original position simply reflect in which society he would prefer

to be a random citizen, ex ante preferences have some normative signifi-

cance.

The choice made using the ex ante willingness to pay criterion

has one peculiar feature. Program 1 is selected even though the members

of Group 2 will clearly be worse off. Another criterion such as Rawls'

maximin would choose Program 2.

Example 5: Consider a society that will have two groups. Let both
groups be of the same size, have the same initial survival

probabilities, but have different wealth levels. Assume
Group H will have high wealth while Group L will have low
wealth. A program can be adopted to save one life from
either group, but it must be selected before the assignment
of individuals to groups is known.

In this example individuals will prefer the program that saves

one member of Group H. Society will choose to save the rich! This is

not due to the greater ability of the rich to pay. It is due to the

life—or—death nature of the problem. Since there is no way to make the

quality of Group L life better through the choice of either program,
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individuals will choose the program which improves their survival

chances in the richer state. This result is even more strikingly

inegalitarian than the result in Example 4.

What is the normative significance of these ex ante choices?

A logical case can be made both for and against the ex ante choice.

First consider the arguments aga1nst

1) The choices have "bad" distributional outcomes.

2) They ignore ex post willingness to pay.

3) Later decisions are based on more information and thus

should be "better."

But the arguments in favor are:

1) All choices made in the original position are in some

sense egalitarian. In this case the individuals know about the forth-

coming distributions, but prefer to act in a way which just appears

inegalitarian.

2) Ex post willingness to pay by Group 2 (with the low survival

probability) should be ignored (or, rather, discounted) because their

willingness is based, in part, on their slim chances of survival. Since

they are likely to die, the dollars they are offering are in some sense

worth less to them. It is only their inability to trade with Group 1

(and thus purchase some p directly) which allows them to outbid Group 1.

3) The "information" is purely distributional——who will lose

rather than how much will be lost. When choosing in the original

position this information is ignored by intent. Its knowledge cannot

improve the decisions.
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Three among the many possible criteria are: 1) ex ante willing-

ness to pay; 2) ex post willingness to pay; 3) maximum willingness to

pay (as would be practiced by a profit—maximizing firm). We leave to

the reader to evaluate the normative merits of each of these criteria.

IV.2. How to Maximize Lives Saved

While we do not necessarily advocate maximization of lives saved

as a goal for government policy, it is interesting to consider how it

could be accomplished. We conclude that given reasonable assumptions

about insurance and annuity markets, it could only be accomplished

through extensive government intervention.

We have shown that a pure market system will lead those who are

fatally ill to spend large amounts on ineffective, expensive treatments.

Yet in the original position everyone would prefer to spend the money

in other more productive ways. To avoid the low productivity expendi-

tures society will have to precommit everyone to the prescribed decisions.

This seems to require enforced prohibitions against ineffective treat-

ments. Private health insurance companies or prepaid health care plans

could exclude such treatments from their coverage. However, this would

not prevent those enrollees who get very sick from spending their own

(more limited) funds elsewhere. Furthermore, such contracts would be

very complex and probably too expensive to be feasible. In fact, the

existence of these institutions probably exaggerates the effect since

they provide the very sick with themeans to satisfy their nearly

unlimited desire for treatment.
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It is interesting to note that one way insurance companies

have limited such expenditures is by placing an upper limit on total

claims. This type of "shallow" coverage has been severely criticized

by most economists writing in this area (see for example Arrow [19631

or Feldstein [19711). Yet we can see that a case could be made for

these limits being socially desirable. In fact, if the government

provides "catastrophic" insurance for health care, then there may well

be a sizeable increase in expenditures on ineffective treatments.

Banning ineffective treatments, however, is a policy of dubious

value. Practically, it may be unenforceable (as the recent laetrile

experience has suggested) and politically it appears to be both cold-

blooded and meddlesome——a combination likely to anger both liberals and

conservatives.

If one is intent upon maximizing lives saved, intermediate steps

may be possible. For example, developmental research leading to new

treatments is often funded at government expense. Using expected cost

per life saved as one of many criteria by which research priorities are

established would be one such step.
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FOOTNOTES

1. See Mishan [1971], Sche.Lling [1968], Thaler and Rosen [1976],

and Zeckhauser [1975].

2. As quoted in Steven E. Rhoades [19781.

3. For analyses of "once arc1 for all" risks this is quite

reasonable. For a formal justification, see Bergstrom [1974].

4. This point was made to us by Victor R. Fuchs.

5. This example, which we believe is due to Zeckhauser, is also

discussed by Bergstrom.

6. This, and all following propositions, assume individuals

maximize the expected utility function pU(x).

7. An economy will not, for example, maximize the number of

gallons of drinking water it could produce for a given expenditure.

Since water is costly to transport, a gallon of water in Palo Alto,

California, will be valued more than a gallon of water in Rochester,

New York. A plan to provide an extra million gallons of water to Palo

Alto would not seem unreasonable just because five million gallons could

be provided to Rochester for the same price!

8. This intent was confirmed by Schelling in personal conversation

with one of the authors.

9. The importance of this effect is illustrated by the attempt

of charities to "identify" otherwise statistical lives in their fund—

raising activities. A well—known example was the annual selection of a

"poster child" in the March of Dimes drive against polio.
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10. This presentation was stimulated by H. N. Shefrin.

11. The use of health status as the basis for cell definitions

is arbitrary. Alternative bases could be age, sex, race, etc.

12. Note that I may be rewritten as the difference between the

inverse of the harmonic and arithmetic means of P.. Since the harmonic
1

mean is always less than the arithmic mean except in the special case

where all are equal, the result follows.

13. The term relative here has little meaning since the

covariance may be rewritten in terms of absolute gains f -i). The
k

interpretation of I is then N multiplied by the covariance in absolute

terms.

14. Jack Hirschleifer has also pointed out the same error in

personal communication with Bergstrom.

15. The diagram in Figure 1 is due to Robert Willis.

16. The result may be eliminated if a strong bequest motive

exists. Also, in the absence of a bequest motive it will be eliminated

by the introduction of perfect annuity markets. If the individual can

purchase a fair annuity his valuation of money becomes independent of

the probability of survival.

17. A similar formal problem has been discussed in different

contexts by Hirshleifer (1971) and Arrow (1978).
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APPENDIX A: PROOF OF PROPOSITION 6

Notation: A: probability has disease

c: cost of treatment

0c probability treatment produces cure.

p: cost of innoculation

0: probability innoculation produces cure.

Numbering the four options:

1. Purchase neither the prevention nor the treatment,

2. Purchase the treatment If sick, but not the prevention,

3. Purchase the prevention but not the treatment if sick,

4. Purchase the prevention and the treatment If sick,

the survival rates (it) the individual faces are:

if1 = 1 — A

= l—A+A02 c

3 = l—A+A03 p

it = 1—A + AU —l A(l—U )04 p p c

The expected utilities are:

E1 = (l—A)U(x)

E2 = (l—A)U(x) + A0U(xc)

E3 = (1—A + A0)U(x—p)

E4 = (1—A + AQ )TJ(x—p) + A(l_O)01J(x_P_c).

Clearly option 2 dominates option 1 (E2 > E1), and option 4 dominates

option 3 (E4 > E3). Define as the value of 0 that equates E3 and E1.
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Then,

0* = ?) — 1) >

If 0 � 0* 1, then 0* has the interpretation as that prevention

effectiveness that, given the cost of prevention p, would make the mdi-

vidual indifferent between the two dternatives: dying if sick and

purchasing the prevention. 0* need not be so bounded, however.

Now choose 0 � 0*, 0 < 0 < 1, and choose
p p p—

0 < 0 , 0 < 0 < 1.
c p

— c

Given this value 0 , E E
p 3 1

Define E =
E3 + AOU(x_c) and note that E2 can be written

E2 = E1 + XOcU(X_C)•

Hence, E E2. Proving that >
E4 is then sufficient to prove E2 > E4.

Clearly,

U(x—c) > (l—0)U(x—p—c).

Multiplying through by A0 and then adding E3 to both sides, we obtain

E3 + AOU(x—c) > E3 + A(l_0)0U(x_P_c)

or

E > E4. Q.E.D.
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APPENDIX B: ADDITIONAL PROOFS

Generalizations of Proposition 1

Proposition 1 stated and proved that the "value of a life" V.

measured by willingness to pay, falls as the probability of survival

increased for all utility functions of the form E = pU(x), U'(x) > 0.

We shall now show the conditions under which this result may be general-

ized both over utility functions that include an explicit bequest branch

and over perfect life insurance markets. To clearly differentiate between

the effects of assuming perfect markets and the effects of assuming

bequest dependent utility, we will first generalize Proposition 1 to

allow for perfect annuity markets.

Assuming perfect annuity markets, the expected utility function

is of the form

(B—i) E = pU(x/p), U' > 0

where p = the probability of survival and x = initial wealth. The term

"perfect annuity markets" simpiy means that should the individual survive

he consumes x/p, while if he dies his endowed wealth x is given over to

some third party. We draw no distinction here between human and physical

wealth, but assume that all wealth is transferable. It is worth noting

that a utility function like (B—i) may in some sense be a more reasonable

specification than the more restrictive specification used In the text.

So long as some wealth is transferable, and society does not adopt the

policy of burying physical wealth with corpses, some form of annuity

"market" must exist. The form of the distribution rule, however, need
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not be as postulated here, where the wealth of the dead is divided among

the survivors according to an inverse probability rule.

Theorem B—i

Given the utility function (B—i), the "value of a life,"

V = — is strictly positive, zero, or negative, according to whether

u is strictly concave, strictly quasi—concave, or strictly convex,

respectively.

Proof: Taking the total derivative of (B—i) we obtain

U(X\ —
x

dx 'P' p 'P
(B—2)

— — = ______________
dp

'p

and U() () U'() according to the concavity of U. Q.E.D.

Theorem B—2 (Proposition 1 variant)

Given the utility function (B—i), and assuming U to be strictly

concave, the "value of a life" V decreases with p.

Proof: Taking the derivative of equation (B—2) with respect to p,

we obtain

x

(B-3)
dp

=

U'()
+ V],

p

which is strictly negative since U" < 0 by the definition of

concavity, and V > 0 by Theorem A.i. Q.E.D.
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Thus, we have established Proposition 1 under the assumption of

perfect annuity markets for strictly concave utility functions. More

interesting, we have proven in Theorem B—i that the probability of

survival is not even a good for non—strictly concave utility functions.

We now turn to utility functions that include a bequest motive.

In particular, let

(B—4) E = pU(x) + (l_p)1p(xD),

U' > 0

0

where XL = wealth conditional upon living, and XD = (bequest motivated)

wealth conditional upon dying. For the moment we treat XL and XD as

exogenous, I.e., we assume the non—existence of insurance markets that

allow transferring wealth from one state to the other.

Theorem B—3

Given a utility function of the form (B—4), a sufficient condi-

tion to Insure that the "value of a life" V is positive is that

<
U(XL) for all values of XD and

XL•

Proof:
dx U(XL)

(B—5) V — —— — ,
dp pU (XL)

Thus, the sign of V hinges upon the sign of U(xL) — V(xD). Q.E.D.
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TheoremB—4 (Proposition 1 variant)

Given a utility function of the form (B—4), and assuming

ljJ(xD) < U(x) for all values of XD and the "value of a life" V

decreases with p.

Proof: Taking the derivative of equation (B—5) with respect to p, we

obtain

IJ(xL) — xD)
(B—6) = — <0.

dp
p2U'(xL)

Q.E.D.

Thus we have established Proposition 1 under the assumption of

no insurance markets and a bequest utility function. Sufficient, although

not necessary for the result, is that i lie everywhere below U, i.e.,

suicide is never motivated by economic reasons. Ignoring the existence

of insurance markets, however, does not seem very reasonable. But now

imagine that XL and XD are the result of a previous maximization——namely

the purchase of insurance. Further assume, as is eminently reasonable,

that the insurance contract is not contingent upon future behavior, i.e.,

XL and XD are not affected by changes in p. Then this result would take

on particular relevance if it could be proved that the ability to re—enter

the insurance market, i.e., sell back some of the previous contract or

buy more of a new contract at currently fair prices, in no way affects

the above results. In fact, it can be proved that the individual would

never re—enter the insurance market at all——i.e., insurance is a once—

and—for—all decision that once made does not affect future behavior

except in that it affected XL and
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To demonstrate this result, let us rewrite equation (B—4) as

(B—7) E = pU(x — 'uI) + (l_p)uP(xN + I)

U', uji' > 0; U", 'P" < 0

where I is the insurance sold at price ri, x is total consumable wealth,

human and non—human, conditional upon living, and is that part of

total wealth that is transferable.

Theorem B—5;

Given a utility function of the form (B—7) and assuming life

insurance is available at "fair" prices with multiplicative loading

factor k, i.e.,

(B-8) ¶ = (1)k, k � 1.

Then the optimal purchase of the insurance, 1*, is a positive function

of the survival probability p, 0 < p < 1.

Proof: We first derive 1* by

(B—9) max E = pU(x—'nI) + (l—p)uP(x+I)
{I}

The optimal 1* is given by

(B-lU) U'(x-'urI) =

And the sufficient condition for 1* to be a solution is that

U", up" < 0. Totally differentiating (B—9) with respect to I

and p yields
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(B—li) = U"k >

p (U"rr +

where the arguments for U and V have been suppressed for nota-

tional clarity. Q.E.D.

Theorem B—6

Under the assumptions of Theorem B—5 above, if after solving

(B—9) and obtaining 1* consistent with (B—b), the probability of survival

changes from p to p', and the individual is allowed to change his insur-

ance position at the new "fair" prices with the same multiplicative

loading factor, i.e.,

(B-i2) rt = (1 ,')k.

He will neither purchase nor sell insurance. I.e., 1* is a solution to

any survival probability after it has been purchased.

Proof: Given 1* consistent with (B—lU), the problem facing the individual

is given by

(B—13) max p'U(x — 111* — Tr'I) + (1 — p')lp(xN + 1* + SI).

{I}

Thus, I must be chosen consistent with

(B—14) U'(x — irl* — ir'I) = '(xN + 1* + Al).

Clearly one possible AT is AI* = 0, since in that case (B—14)

reduces to (B—b). Indeed, given the convexity of E, the

solution must be unique and so tI* = 0 is the only solution.

Q.E.D.
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The final question, then, is does Proposition 1 hold if the

life insurance and increments in survival probability are purchased

simultaneously? Unfortunately, there is no simple solution to this

problem.


