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SUNMARY

S

In modelling disequilibrium macroeconomic systems which one would

want to subject to econometric estimation one typically faces the problem

of whether the structural model can determine a unique equilibrium. The

problem inherits a special form because the regimes in which the equilibria

can lie are each linear. By placing restrictions on the parameters that

insure the uniqueness of such a solution for each value of the exogenous

and random variables, we can improve the estimation procedure.

This paper provides necessary and sufficient conditions for uniqueness

——or "coherency." These conditions are applied to a variety of models that

have been prominent in the literature on econometrics with 'switching regimes'

such as those of self—selectivity (Maddala), simultaneous equation tobit and

probit (Amemiya, Schmidt) and multi—market macroeconomic disequilibrium

(Gourieroux, Laffont and Nonfort).
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Let us consider a general econometric model defined as

follows

g ' x , u , 0) = 0

where is a vector of eadogenous variables, x is a vector

of exogenous variables, u is a vector of perturbations, 0 is a

vector of unknown parameters and g is a known vector function.

If this model is to be used for econometric purposes, it

must associate a unique value of y with any admissible value of

x , u and 0 ; in other words, the model must have a well—defined

reduced form

= h (x , u ' 0)

In the sequel we shall call "coherency conditions" the condi-

tions on the parameters 0 that insure this property.

This coherency problem must be distinguished from the identi-

fiability problem which can be meaningfully stated only for a model

satisfying the coherency property. Indeed the identifiability of a

model, which is the uniqueness of the parameters of the model given the

distribution of the observable variables, presupposes the existence

of a well—defined distribution for the endogenous variables. For

instance, in the general linear model

Byt+Cxu

the coherency condition reduces to the invertibility of B (i.e.

det B 0 ) whereas the first—order identifiability amounts to the

uniqueness of B and C given B' C
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In non linear models the issue of coherency is usually

incompletely dealt with by assuming the differentiability of g and

requiring a non vanishing Jacobian
a g The latter condition
a

insures only locally the obtainability of a reduced form. Moreover,

the constraints implied on the parameters are never spelled out.

In this paper we provide an explicit solution of the cohe-

rency problem for a particular class of non linear models, namely the

class of simultaneous linear equation models with endogenously swit-

ching regimes. In this case g is piecewise linear in y and the

coherency property is the invertibility of this piecewise linear

mapping.

Recently the literature has offered a large variety of

such models, in particular the self—selectivity models (e.g. MADDALA

9]), the simultaneous equation Probit and Tobit models (e.g.

AMENIYA [1], SC1IDT [13]) or the simultaneous equation disequilibrium

models (e.g. GOURIEROUX,LAFFONT and MONFORT [3]).

In the next four sections we provide necessary and sufficient
conditions of coherency for the general piecewise linear model under
four different sets of assumptions. Each case is illustrated by various
examples borrowed from the literature.
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1- TYPE I MOVELS : CONTINLIOLIS PIECE(UISE LINEAR MAPPINGS ON CONES

VEFINEV BY ENVOGENOUS VARIABLES.

Consider the Euclidian space, , and consider a inde-

pendent linear forms, a1 , ... , a , defined on . For each

subset I of the set (i , 2 , ... , n} , let C1 be the cone

defined by

C,=CXIXG]Rn a.x0 if iEI andI 1

a.x<O if iI}

There are 2' such cones ; they coincide with the orthants

of if each linear form a. is the th coordinate projection

function : a. x = x.
1 1

Let us associate with each cone an invertible linear mapping,

a . a
A1 , from ]R into ]R . Then, consider the mapping f Z A1

I

where

• (x)=I if xEC1I
=0 if xC1

The mapping f is therefore a piecewise linear mapping from

into ]R defined by the linear mapping A1 on each cone C1 with

U CT =]Rtt Note that the mappings A,. need not be different ; in
.1.
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that case, the relevant partition of P' in cones may, have less than

elements.

We will see in the examples below that the possibility of

having a well—defined reduced form in a model where the structural

form is piecewise linear depends on the invertibility of a mapping

suchas f

In this section we assume, as it is often the case in appli-

cations, that the matrices A1 are constrained in such a way that the

function f is continuous. We can then state our first invertibility

theorem1'.

Theorem I

Suppose that the mapping f E A1 is continuous
I I

from IRtl to . A necessary and sufficient confition for £ to

be invertible is that all the determinants, det A1 ,

I C {i , 2 , ... , n} , have the same sign.

We show belowhow to use this theorem in examples presented

in a very concise form2.

1)
Fot expoLtoty pwLpo4 tha piwo ai ga..thed .Ln appendce..

2) Th ecdex nLgltt nd ptotLtthe to go XthAougk the og.r&2 pape.'z
nd see how -the. coke.'ranc.tj ae ws dwLt tti-th £n e.zth acz.Se.
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Example 1.1.

Consider the following model discussed by LEE [81

1t = 1 2t + lt + lt
y2t2y1t+2x2t12t ifyO

=6X2+u2 if

where (y , are endogenous variables, (X , X2)
are exogenous variables and (u1 , u2) are random disturbances.

The problem of the existence of a reduced form for this model

is identical to the problem of the invertibility of the mapping from

1t ' to (5 + u1 '
+ u2) defined by

4
= A. and C1 = : y 0 2t 0 }

i=1 1

C2
= { (1 y) : y 0 2t < 0

C3 = 2t < 0 2t < 0 }

C4
= { ' : y < 0 2t > 0 }

On C1 U C2 , the mapping is A1 = A2
=



—6—

11
On C3 U

C4 , the mapping is A3 = A4
=

0 1

The mapping f is clearly continuous since, on the conmion

boundary of the closures of C1 U
C2

and C3 U
C4 , A1 and A3

coincide. Indeed for any a

O 1a 0

A1
=

=A3
a a a

From theorem 1, the coherency condition is det A1 . det A3 > 0

or I — >

Example 1.2.

Consider the following demand and supply disequilibrium model

(LAFFONT and MONFORT [7])

D=YiP+Xi+ui

• Sty2P+5X2+u2

where is the price of the coniinodity and (Xiv, X2t) are exo-

genous variables. The exchanged quantity is

= mm
(Dr , S)
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and the price dynamics is defined by

P — P = P = A (D — S ) , A1
> 0 , if

t t—1 t I t t

P —P =iP =A (D — S ) , A2>0 , if Dt<Stt t—i t 2 t t

The mapping from endogenous variables (D , S) to the

random disturbances and exogenous variables (u + d' X + 'y P
It I It I t—I

u + S' X + y P ) can be written2t 2 2t 2 t—I

II t it lit

A1 [D1

r i —
y1A1 y A D u + 5'X +

=

] [S
1 = I

+ +
J

S
I — y2A1 I + Ay2 L i L.. 2t 2 2t 2t.& L

if D —S 0
t t

D I yA yA D u +'X +yPt 1 2 1 2 t It I It I t—1

]

A2

] = { -y2A2 I +
X212] { st]

= 1

Lu +X +yP2t 22t 2t—l

if D— S<O

A1 and A2 coincide for equilibrium points (D = S )t t

The coherency condition det A1 det A2 > 0 reduces here to

E I + —
'Y) ] . [ +

A2 '2 — > 0

which is in general satisfied in a supply—demand model since

11<0 , 12>0
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There is another piecewise linear Continuous mapping between

(D , S) and the observable variables, namely, P) . It is

0 1 1 0

defined by the matrices and

Al Al A2 A2

Applying again theorem 1 we see that the mapping is one to one since

AI>o, A2>0

Consequently the mapping from the random disturbances and

exogenous variables to the observables is one to one when A > 0

X2 > 0 , < 0 12 > 0 , ensuring a well defined reduced form for

this problem.

Example 1.3.

GOLDFELD and QUANDT [51 have studied a model which can be

defined as follows

R =6' X +t I It It

= 2R + 2 2t +

where defines the crop of the corriodity, E the desired

harvest ; St = mm (R , is the actual supply, i.e. the actual

harvest.

The demand is defined in the form of an inverse demand

function

13D + X3 + u3

and the price adjusts to equate demand and actual supply (D = S)
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This model can be rewritten as a two reoime model

Regime I (R <

-
1 0 0

Rt 5'j
X1 + u1

—
B2 Et

— Y3 0 1

Pt x3t
+

u3t

Regime 2 (R >

p

0 0
Rt X1 +

— B2 'SX2+u2

0
13

1 6X3+u3

The coherency condition is therefore (1 —
13 12) > 0 which

is true if 13 < 0 2 > 0 as may be expected (see footnote 6 in
GOLDFELD and QUANDT [5])

Example 1.4.

The generalization of the Tobit model leads to the following

type of system (see AMEMIYA [1]).

Yit
=

'1 2t + s; X1 + 2t + Xft + u1

= 0 if 1 '2t + + u1 < 0
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2t = '2 + 5 x2 + u2 '2
+

5! X2 + u2 0

=0 if 12Y+X+u<O

Setting = '' '2t + 6 + uj

Y2
+

x2t
+ u2

we observe that = sup (Y , 0) and = sup , 0)

and that the system can be rewritten, in terms of (Y1 ' , as

'1t = sup 2t , 0) +
X1

+ u1

sup (Y , 0) + 5 X2 +

The four relevant matrices are therefore

_Y1 I 1 0 1 0

; ;

1 0 1 0 1 1

and the coherency condition reduces to

I —
'r1 12> 0

Indeed, MIYA [1] obtained this condition by applying

directly a theorem which is closed related to the SMLS0N, THRALL and

WESLER theorem [121 that we use in proving our results (see appendix 1)
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Example 1.5.

To deal with the case of two markets in a disequilibrium

framework, QUANDT [11] has proposed the following model where prices

are exogenous

= 1 2t + lt + It
l't

= 2 + 2t +

D =v Q +' +u2t '3 It 3 3t 3t

S2t = 14
+

64 X4 + u4

and where the exchanged quantities (Q , are defined by

= mm
(D1 , S1)

= mm
(D2 , S2)

The mapping from (Die , S1 , D2 , S2) to

(uj + 5 X1 , u2 +
5! X2 u3 +

, u4 + 6 X) is
4

f = Z A. 1
1 C.

1
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C1
= { D1 , S1 , D , S / D — S 0 , — S 0 }2t It It

C2 = { D1 , S1 , , S / D — S 0 , D — S < 0 }2t It It 2t 2t

c3
= { D1 , Sj , D2 , S / D S < 0 , D — S < 0 }2t It It 2t 2t

C4 = D , S1 , , S / D — S < 0 , D — S 0 }2t It It 2t 2t

and

1 0 0
I

o 1 O_y2

o i 0
I

o 0 1

j

r o o

0 I 0

130 L 0

14 0 0 1

I 0 0-

o i 2

o 13 1

o 14 0 1

A1 =

A3
=

A2 =

; A4 =

-
1 0 0-

0 1 2 0

13 0 1 0

-
— 14 0 0 1
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It is easy to verify that the mappings (A.) coincide on

the common boundaries of the cones (C.) on which they are relevant.

Therefore theorem I can be applied ; the coherency conditions are that

the determinants (I — 2 14)
— 2 13)

—
13)

(1 — Ij 14) must be of the same sign.

It is worth pointing out the difference which exists between

the coherency conditions and the stability conditions of the "natural"

dynamic process associated with the above system.

Consider one of the four cases defined above, say case 1,

where Dit S1 and D2 S2 . The exchanged quantities are

defined by

=
S1

= 2 2t ÷ +
u2t

=
S2 =

14
+ 6 x4 +

By analogy with the Walrasian adjustment process we can

define a guantity adjustment process as follows

= F + + — Q1) , F (0) = 0 , F' > 0

=
(14 i +

+ —
, G (0) = 0 , C' > 0
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designed to converge to the (fixed price) equilibrium of type 1.

The linearization of this system around the equilibrium (Q , Q)
yields

—F' y2F'

—G' —Q

Therefore, the adjustment process is locally stable if and

only if the real parts of the characteristic values of the matrix

—F'
y2F']

are negative. The sum of the characteristic values

y4G'

is negative, since the trace — (F' + G') is negative. The product of

the characteristic values equal to the determinant F' G' (1 —2
must therefore be positive in order that the real parts of the charac-

teristic values be negative (actually the characteristic values are

real in this particular case ). The local stability of the quantity

adjustment processes in every regime is therefore equivalent to the

coherency conditions.

The generalization of this approach to the n —market case

is straightforcard. The model can be written as3):

3)
See GOURIEROUX, LAFFOJT and MONFORT [3] o't. a. p'.ectse deJrLt/on o

the no.t.Lon o a ec.tc.ve demand whi..ch Lo iinp.cLt in hLs modeL
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Di = ji 11j + 'I x1
+ u

= i + 2t +

D =Zy Q +6' x +
nt . (2n—1)j jt (2n—1) (2n—1)t U(2n_I)t

=

. 1(2n)j
+
62n X(2fl)t

+

= mm (D. , S.c)

There are 2' regimes according to which markets are

constrained on the supply side and which markets are constrained on the

demand side.

Suppose for example that in the k first markets the demand

is constrained and in the (a — k) next markets the supply is constrai-

ned. Then Q. = S. for j = I , ... , k and = for

In that regime the system of supply and demand equations

can be rewritten
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The (1..) are the spillover coefficients. To each regime

corresponds a different matrix (A1) of spillover coefficients. The

above mapping is relevant on the cone { D1 , S1 , ... , D , S
D —s o D —S O D —S <0It It ' ' kt kt ' (k+I)t (k+l)t

D —S <0}.
nt nt

The coincidence on the coon boundaries of these cones is

easily checked. The coherency condition requires therefore that the

determinants of all these matrices be of the same sign. This is a

quite messy condition. However it is much weaker than a condition of

stability of each of these matrices (A1)

Beyond the n = 2 case, stability implies coherency but not

the converse. Indeed stability requires that the real parts of the

characteristic values be negative. Since complex characteristic values

always appear in pairs of conjugate values, the determinant which equals

the product of characteristic values is, under the stability conditions,

of the sign of ( 1)fl • In particular this implies that the determinants

are of the same sign in all regimes 4)

4)
To p'wve. the exAtartce o6 welL de4.ned kadacd Oflin n -tItt

model ITO [61 £mpoie a condtort o cUagoncl dotvnanc.a on each mal't..Lx
A1 . ThL6 condit,Lon npUe4 ".&&thi2L.tij' o each. ma..'ux and the'Leo'te

cohexency.
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2 - TYPE 2 MOVELS PIECEWISE LINEAR .tAPPZMGS ON CONES

VEFINEV BY ENVOGENOUS VARIABLES.

We will now relax the assumption of continuity that we imposed

above on the mapping f = E Indeed, only weaker conditions
I I

have to be required along the boundaries of the cones.

Let a1 , ... , a be p ( n) independent linear forms

defined on , and for any subset IC {i , 2 , ... , p} let C1

be the cone defined as

C = {x I x EJRT1 , a. x 0 if i E I and a. x < 0 if i}
I 1 3

To each of the cones we associate an invertible linear

n . xi
mapping, A1 , from JR into JR

Theorem 2

If A1 Cx) is independent of I for any x in {x I x E

a. x = 0 , j = 1 , ... , p} and if, for any I containing i ,

( x j x E JR
, a. x 0 and a. x = 0 , V j # i} ) is independent of

I and ,for any I not containing i , A. ( {x I x E IRti , a. x < 0

arid a. x = 0 , V j # i} ) is independent of I , then f = I A1
3 I

is invertible, if and only if, all the determinants, det A1

I C {i , 2 , .. , p} have the same sign.



— 19 —

The first condition requires that the mappings, A1 , coin-

cide, point by point, on the intersection of the subspaces defining the

cones C1 the second condition is a global coincidence of these

mappings on appropriate facets of the cones.

Example 2.1..

The first example of application of this theorem appeared

in GOURIEROUX and alii [3] where it was proved directly for n = 4
p=2 .

The structural form of a two market disequilibrium model is

obtained, using the Clower effective demand. As in Quandt's model
(example 1.5.), four regimes are obtained, according to the signs of

the excess demands on the two markets.

For example, in regime I where there is excess demand on

both markets (the cone C1 is defined by Di — S1 > 0

D2t — S2 ) 0 ) , the structural form is

= it = 2 2t + 2t +

=s = +'X +'2t 2t '4 '1t '4 4t 4t

Di =
—

f y1 ( X4 + u4)+ X1 + u114

=
-

I
13 C2 X2 + u2) +

X3
+ u3 ]23
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where Dit and D2 are the Clower effective demands and

2t are the exchanged quantities. In this regime the Clower effective

demands coincide with the Wairasian demands (see GOURIEROtJX and alii

[3] for details).

This system can be rewritten as

Di 11J14 114 0 — Di X1t+ult

A1

0 1
sIt

0 —
13

1 — 23 23 x3t + u3t

s2t
0 —

14
0 1 s2 4x4t+u4t

Similarly, one obtains three other mappings

1 0 0

0 1 2 0
A2 =

0 13 1 0

0 14 0 1.
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1 0 0

1213 11213 0

A3

13 0 1 0

14 0 1114 11114

1 0 0 —

0 1 0

A4 =

13 0 1 0

14
0 0 1

The point by point coincidence of these mappings on the inter—

section of the closures of the cones is obtained without any restriction.

The global conservation of the boundaries àf the cones requires

(1 — Y 14) > 0 and (1 — 2 13) > 0 . Under these conditions the

determinants, det A1 have the same sign if and only if 1 — 1 13 > 0

and 1 — 12 14 > 0 . If all of these constraints are imposed, we obtain

a well—defined reduced form.
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Example 2.2.

We know from economic theory that there exists a correspon-

dence of possible effective demands and any selection in this corres-

pondence is a potential candidate. In GOURIEROUX and alii [31 we used

the Clower effective demand ; QUANDT [11] and ITO [6] use a different

notion which is Continuous on the boundaries of the regimes, and

PORTES [10] has compared these two notions with a third one inspired

from BENASSY [2].

We show below that the different notions of effective demands

are related by piecewise linear mappings.

Consider two sets of linear demand and supply functions

S1 , D2 , S2 and Dt , S , Dt , S inducing two

sets of structural forms. They define the same model if and only if

mm (Die , S1) = mm (D , Sj)

mm (D2 , S2) = mm (D , S)

and > S1 > S

D2 > S2 > S

These conditions joined to the linearity assumption imply

within each regime i

— S =
Ui (Die

—
S1) . > 0

— S' = '. (D — S ) . > 0
2t 2t i. 2t 2t
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Therefore this transformation is defined by eight parameters

, , V3 , . In all cases, the assump-

tions of the theorem 2 are satisfied since u. > 0
, . > 0

i = 1 , ... , 4 , and the coherency conditions are then fulfilled

since the determinants of the mapping from (D1 , S1, , D2t , S2)
to (D; , S , Dt , Sit) , equal to J.1. v. , have the same sign

this means that this mapping is one to one.

The continuity requires in addition 1.11 =
112

,
113

=
114

V1 ' "2 =

For example, the mapping from the vector (Die , S1 ,

S2) associated with the Clower effective demand to the vector

(D , S , Dt , S) associated with the Ito—Quandt effective

demand is defined by (see PORTES [10 ])

1 1

I1i

=
VI

= ________

11114 11213

= 1 "2 =

I I

113= 1T23 11114

1-L4

= 1
V4

=

The above continuity condition is not satisfied ; it is not

surprising since the Clower effective demand is discontinuous while

the Ito—Quandt's one is not.

On the contrary, it is by a continuous mapping that the varia-

bles of the Ito—Quandt model are transformed into the variables of the

Benassy model (see FORTES [10]). tn that case we have
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I I

UI = = _________

1 14 1

=
u2

= _________

11114 11114

113 = =

1 1114

I ______= =
I I 1213

Here the continuity condition is satisfied
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3 - TYPE 3 MOVELS PIECECUISE AFFIWE MAPPINGS

OW CONES VEFINEV BY ENVOGENOUS VARIABLES.

A natural generalization of the problem considered in section

2 is the case in which the endogenous variables are transformed by

affine mappings. Using the same notations as before, each affine map-

ping is defined on C1 by

B1 (x) = A1
(x) +

b1
x E

where A1 is an invertible linear mapping from iR into

and b1E

This kind of model appears when there are, at the same time,

truncated variables (tobit or disequilibrium models) and dunmiy varia-

bles (probit models).

SCHMIDT [13 ] studied the "pure" simultaneous probit model,

i.e. the case in which the endogenous variables are either untruncated

or binary ; mathematically this means that all the A1 matrices are

identical. The necessary and sufficient condition for coherency found

by Schmidt is essentially the recursivity •of the model solved in terms

of the untruncated variables.

In the following theorem we propose a sufficient condition

for the general case.

Theorem 3

Under the same assumptions as in theorem 2, if

b1EA1(xa.x=O, j=1,...,p) VI,
then the mapping f defined by
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f (x) = E B1 Cx) '& (x) = I A1 Cx) Cx) +
b1 c1

Cx) is inver—
I I

tible if and only if the determinants det A1 have the same sign.

Example 3.1.

Consider a slight generalization of a model due to HECKNAN [4]

lylt = 11 Y + 6' X + + u12t I it

2t = 2 it + 6'
if y 0

2t

2 2t212t

c

= l 2t + d x1 +

<0
= 2 1t + 6' +

if
2 2t 2t

The model can be rewritten as

1

i 1It I I iti It

*

21
I u

I
r j

+{
2

2t1
2t

72t>O

1! i rjI — '(
J

ylt I It

J + I if y < 0
I 16'X 1 j2J 2t

I 2 2t
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We have two regimes defined on the cones

C1 = { ' :
a1

0 } with = 2t

C2 = { y = (y :
a1

< 0 }

The af fine mappings are defined by

_Y1
=

b1
= —

I 0

A2 =

2
b2 =

0

The conditions b1 E A1 Cx a. x = 0 , j = I , , p) I

are simply :

UI
ii

b1
= — co—linear with

A1

0 —

or 112+11112 = 0
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The determinants of A1 and A2 have the same sign if f

(1 1 'r2) (1 .

In this simple two dimensional case, it is easily seen that the

condition 12 + -' 2 = 0 is also necessary. The latter condition is

also identical to the recursivity condition (see SCHHIDT [13 1) in
the "purer' probit case, i.e. when =
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4 - TYPE 4 MOVELS : CONTINUOUS PIECE/ISE AFFINE t4PPlt'!GS

ON 5ANVS VEFINEV BY Ef.iVOGENOUS VAlUABLES.

We have seen in theorems 1, 2, and 3 that the condition on

determinants is an invertibility condition if we have p n indepen-

dent linear forms defining 21' cones. In appendix 4 we give a counter—

example showing that this result breaks down if there are p > a

linear forms.

In this section we shall see that we still have an inver—

tibility theorem jf R is partitioned in q bands, q being any
n

integer (even greater than 2 ).

Let us denote by a , a non—null linear form and by k.

(i = I , ... , q — 1) q — I different numbers in increasing order.

We define q bands in ]R' by

C1 = { x a x k1 }

C. = x k. < a x k. }1 i—I 1

Cq
= { x a x> kq_1 } i = 2 , ... , q —

With each band C. we associate an affine mapping B.
, from

U . nR into IR , defined by

B. (x) = A. Cx) + b. C A. invertible).
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We have the following result

Theorem 4

Assuming that the mapping f defined by

q q
f Cx) = E A. (x) (x) + E b. (x)

i=1 1 i=1 1

is continuous, f is invertible if and only if the determinants,

det A., have the same sign.

Example 4.1.

Let us consider a single market disequilibrium model where

the systematic part of the supply function has two possible forms,

one being a quantity constraint k (for example an upper limit imposed

by the Central Bank).

St = mm 2 + 6' X2 , k) + u2

—
—1

=
(D

—
S) if S

Pt
=

X2 (D — S) if Dt < S

(A1 >0, A2>0)

= mm (D , S)
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Replacing P in terms of , St in the demand and supply

equations, we obtain a piecewise affine mapping giving (u1 , u7)
from (D , . As easily seen, this mapping is continuous. In order

to define the different regimes we have to use the numbers

k —'X —y P
t 2 2t 2 t—I

It

= k—X2—y2P_i A1

'2 2
it

A2

which have the same sign.

If > 0 (and 2t > 0 ) ,. we have three regimes defined

on the following three bands of the space (D , S)

C1 = { — S > } ( { D > 0 } = C Dt — S >

= C 0<D — Sc1 }

C3
= C Dt — S 0 } ( C — S 2t = C — S 0 }

If < 0 C and 2t < 0 ) , we also have three regimes

aefined on

= C — S > } n C — s > 0 } = { — s > 0 }

c = {ct2<D_SO }

= C — S 0 } C Dt
— s 2t = C Dt — S 2t

The different matrices A. are given below



Band Matrix Determinants

C1 and c;
—

11Lo
—

c2 ri — 11x1

[_121

+ X1 '2 —

sC 1121
0

i_[
1Y12

C3 and C P — 12
I + (y y)

The coherency conditions are in particular fulfilled under

the usual conditions

Remark

11<0, 12>0, Xl>0 , X2>0

One may wonder whether theorem 4 is still valid if we do not

assume that f is continuous but if we only assume

B. (C, ( C.) = B. (C. fl C.)i1 i1 1 1 i1 1

(where C. is the closure of C.)
1 1

i = 2 , . , q

Unfortunately, in this case, the condition on the determinants

is neither sufficient nor necessary (see appendix 4 for counterexamples).

— 32 —



— 33 —

CO1'JCLLIVING REMARKS

The approach of non linear modelling by piecewise linear

models with endogenously switching regimes, which seems to be powerful

and flexible, probably deserves specific developments.

In this paper we solved the first problem raised by this

approach, namely the coherency problem. The next problem which requires

a systematic study is the identifiability question. The maximum likeli-

hood techniques of estimation and testing are then readily implementable,

however the non differentiability of these models necessitates a

careful study of their asymptotic properties.
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APPENDIX 1 : PROOF OF THEOREM 1

Our results are derived from a theorem proved by Samelson and

alli [121 which gives a necessary and sufficient condition for a linear

space to be partitioned in cones.

First step

Let E be the linear space . Let , ... ,
• • i) be 2 n vectors of E such that any set of n vectors

(a1 , •.. , a) where a. = . or n. is a basis of 1R , and let

I be a subset of {1 , 2 , ... , n}

Let C be the positive cone generated by (ct , ... , ct)
where a. = . if i E I and a. rl. if i I , i.e.,1 1 1 1

* n
C = { x E E : x = I x. a. , x. 0 , i = I
I . 1 1 1

1=1

n *
We say that the 2 cones C1 form a partition of E , if

E = Y C and C ( C = 0 V I # J , where C is the interior
I

of C .

In order to illustrate these definitions we give in the following

figure an example of such a partition



Le=a 1
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A necessary and sufficient condition for the cones C1 to

form a partition of E is that the matrix F of the vectors

— 'n in the basis ( , ... , ) have all its

principal minors positive.

Proof

See [121.

C2

nI Ct , 2}

C{ }

'2
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We denote by , i {i , 2 , , n} , the matrix obtai-

ned from r by deleting the lines and columns with index i E I

is a n III by n — II matrix, where I is the nuirber

of elements in I The condition of the theorem can be rewritten,

V I , det > 0

Second step

Before considering the proof of theorem 1, it is convenient

to first solve the following special case.

Let us denote by e1 , •.. , e} an orthonormal basis of

For every subset I included in 1 , 2 , •.. , n} , let C1 be

the orthant of defined as

n
C = {x/x= Z x.e. with x.0 ViEI
I . 1 1 1

1=1

and x.<0 ViI I
1

There are such orthants. Let us associate with each orthant

an invertible linear mapping A1 from IR into IR . We .question the

invertibility of the mapping f = E A1 C
I I

Lemma 2:

Suppose that the mapping f = I
A1

is continuous from
I I

into ]RTl . A necessary and sufficient condition for f to be
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invertible is that all the determinants det A1 , I C {1 , 2 , ... , n}
have the same sign.

Proof

Let us define : . = A (e.)
1 {1,.. .,n} 1

From the continuity of f , we derive that the system

(a , ... , a ) where a. = . if I E I and a. = r. if i I
1 a 1 1. 1 1

is the image by A1 of the system (e , ... , e) where e = e.

if i E I and e' = — e. if I I . Since A is invertible,
1 1 I

(a1 , ... , a) is a basis for any I

f is invertible If and only if the closure of the cones

f (C1) =
A1 (C1) form a partition of . The closure of A1 (C1)

denoted by A1 (C1) , is the positive cone generated by (a1 ,... , a)

From lemma 1, a necessary and sufficient condition for f to

be invertible is that the matrix r of the system (— n1 , ... — n)

In the basis ( , ... , ) have all its principal minors positive.

Since V i : A0 A{} = — , the matrix r is equal to

AØA{}
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The matrix rCt) , obtained from F by deleting the lines

and columns with index i E I , has the same determinant as the matrix

of the system , ... , ) with . = . if i E I and =

if i I in the basis ( , ... , ) ; this matrix is equal to

AA
I {1,...,n}

Therefore : f invertible

det = det [ A A{} I > 0 I # {i ... n}

= det A1 has the same sign as det A{1
n}

V I # ., n}

all the determinants det A1 have the same sign V I

Q.E.D.

Third step

Consider now the general context of section 1, where the cones

C1 are defined by n independent linear forms a1 , ... , an

C = { x I x E.'1 , a. x 0 V I E I and a. x < 0 V I I },I 1 1

and f= EA1Ic
I I

By choosing an appropriate basis, we can assume that a1 x = x.

.th .(i coordinate of x) , 1 = I , ... , n .
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If P is the matrix of this change of basis, we know from

lemma 2 that a necessary and sufficient condition for the invertibi—

lity of f is : " det (P1 A1 P) of the same sign for any I ".

This condition is equivalent to " det A1 of the same sign
for any I "

Q.E.D.
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APPEWVIX 2 PROOFS OF THEOREMS 2 MV 3.

P'wo oS -titeo'tejn 2.

First step

Let us first consider the case in which there are p = n
independent linear forms. By choosing an appropriate basis we can assume

that these linear forms a. , I = I , ... , n are such that

a. x =
.th

coordinate of x ) ; this choice implies that the

cones C1 are the orthants associated with the canonical basis

(e1 , • , e)

The function f = E
A1 1C

is discontinuous. Let us consider
I I

* * *the function f =
A1 1, , where A1 is defined by ;

I I

* A (e.)I i
A (e.) = ______

IIA (e)I

The second assumption of theorem 2 implies that f* is continuous.

Moreover the images of the cones C1 by f and f* are the same
-

for any I , therefore f is invertible if and only if f* is inverti-

ble. Applying theorem I to f* , the coherency condition is det 4 of the

same sign for any I " Since 4 is obtained from A1 by multiply-

ing each column by a positive number, det 4 and det A1 have the

same sign and the coherency condition is also " det A1 of the same

sign for any I
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Second step

Let us consider the general case p n . Each of the 2
cones C1 , I C Ci , ... , p} is an union of orthants

j C Ci , ... , n} . On all the orthants corresponding to the same

C1 , the restrictions of f are the same and are equal to that

of A1 . f can be written

• f=EA1'fl =EA 11
I C

I j

From the first step the coherency condition is " det of the

same sign V J C Ci , ... , n} " . Since the determinant of is

equal to the determinant of the associated A1 the coherency condition

is also " det A1 of the same sign "

Q.E.D.

Piwo o tJieoM.in 3.

Under the asstunptions of theorem 3 the images of
C1 by B1

and
A1 are the same. Therefore f = I B is invertible if and

I

only if I is invertible and the result follows from theorem 2.
•

I I
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APPENVIX 3 PROOF OF THEOREM 4.

By choosing appropriate bases on the domain space and on the

rangespace we can have: a = (1, 0,..., 0) and A. (x xE W, x1
= O}

= {y y E y1
= O} for i = I,..., q

From now, we denote {x1 = O} = x xe , x1
= 0}

The latter condition can be rewritten:

0 0

T x2••• X A1
2 i =

x y

which implies that the first row of the A1ts is of the form:

(ct, 0,..., 0)

Moreover the continuity of f implies that the A.'s are identical

on 1x1 = 0); therefore the A.'s have the following structure:

A. =
1.

N

where the (n — 1) x (n I) matrix M is the same for all the A's,

Let d. be the number such that :.

B. x1 = k.} =
B.÷1 { x = k} =

{y1 d.} i =

If a. > 0, then d. < d. and
i—I 1

B.(C.) = B. Ck.1 < x1 k.} =•
Cd1_1 < y1 < di

If . < 0, then d. > d. and
1 1

B.(C) = B. {k11 <x1 k.} = d. y1 < d1_1}

i = 2,..,q—I
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(For i = I or i = q, we have similar results; for instance

if cx > 0 B1(C1) =
B1 fx1 k1} = d1}

< 0 B1(C1) =
B1 (x1 k1} = {y1 > d1}

We are now able to show that f is invertible if and only if the
ci's have the same sign. The condition is necessary because if ci. and

have different signs, say ci. > 0 and < 0, we see that:

B(C.) ' B1 (C.1) {d_,<yid1} fl (d.1y1<d.}=

therefore, f is not invertible.

The condition is sufficient because, if the ci.'s have the same

sign, say ci. > 0 Vi, the bands

B(C.) = {d1_1
<

y1
d.} (with i = 1,..., q + I and

d = —,d =+)0 q+Iiidefine a partition in iR

To complete the proof we have only to note that the
ci1's have

the same sign if and only if the determinants of the A.'s have the same

sign, since det A. = ci. det M
1.

Q.E.D.
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cones are

case).

1) The condition on the determinants is no longer valid if the

defined by more than n linear forms (even in the continuous

Consider for instance the mapping f, from into defined

as
8

f
1 C.i1 1

where the

A2=[' -J

A.'s and the C.'s are given below:
1. - 1

—1

0

A4 [ :]
= I —I

0 I

1 A=[1

L'
0

&
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All the determinants are positive, f is obviously Continuous,
however f is not invertible since f(x) = f(—x) V x E JR2

2) Theorem 4 is no longer valid if we only assume that

Bk_i (C1_1 C B. n ) i = 2,..., q

Consider the case n = 2 and the following bands(or cones)

-

1 0 1 0a)LfA = andA =

0 I 0—I
2

f E A. I is invertible but. det A and det A are notiC.
1 21

of the same sign.

b) if A1 = and
A2

0

L°
2

f A. is not invertible, however det A = dat A =1IC.
1 2i=1 1.


