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Abs tract

This paper develops a dynamic programming model of the optimal refunding

strategy and the corresponding value of a callable bond. The model differs

from previous work on this subject primarily in that it explicitly admits

the possibility of differences between the issuer's expectations of future

interest rates and an investor's corresponding expectations. This generali-

zation facilitates the application of the model to determine what a specific

bond (issued, for example, by a particular corporation) is worth to any given

I investor. Additional analytical features of the model, which differ from

corresponding aspects of some previous models, include the use of a stochastic

discounting rate and the use of continuous distributions to characterize the

relevant interest rate expectations.

For the bond issuer, his own expectations (together with the bond's

coupon and call features) suffice to indicate the critical refunding yield

as well as the expected value of the bond in each time period until the

bond matures. For an investor, however, the analytical solution of the

model and the illustrative numerical examples presented in the paper show

that the issuer's expectations and the investor's own both matter if the

two differ.
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Long—term corporate bonds, in modern times the primary vehicle of corporate

external financing in the United States, are not pure bonds. Instead, the

security issued by a corporation and purchased by investors consists of a bond

less an option, retained by the issuer, to call the bond at a specified price

after some specified deferment period.1 In recent years, therefore, the bond

call option itself has understandably attracted substantial attention. As

callable debt has constituted an ever greater component of many major companies'

balance sheets, whether or not to exercise the call options on specific bonds

has come to be an important element in corporate financial decision making.

Similarly, as the volume of outstanding corporate bonds has grown to $350

billion -— in comparison, for example, with a total market value of $850 billion

for all corporate equities —— investors have had ample incentive to develop

techniques for evaluating these bonds, including their call features, as care-

fully as possible.2

Pye's [20] seminal contribution a decade ago used a dynamic programming

methodology to solve a problem which simultaneously determined the bond

issuer's optimal refunding strategy and the corresponding value of the bond.

In order to solve this problem, Pye assumed a finite time horizon, risk

neutrality, and a discrete interest rate distribution with a finite number

of states. Subsequent researchers have extended Pye's analysis in a number

of ways.3 Elton and Gruber F 9] and Kraus [16], for example, showed the
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implications of introducing an infinite horizon. In addition, they and other

writers considered the practically relevant case which constrains the issuer

to finance a refunding operation with a new issue of long—term bonds. Most

recently, Brennan and Schwartz [ 6] have applied the option—pricing methodol-

ogy of Merton [18] and Black and Scholes [ 3] under the assumption of a

specific dynamic stochastic process generating interest rates.

The object of this paper is to develop a model of the optimal refunding

strategy and the corresponding value of a callable bond which differs from

previous work on this subject primarily in that it explicitly admits the pos-

sibility of differences between the issuer'sexpectations of future interest

rates and an investor's corresponding expectations. This generalization

facilitates the application of the model to determine what a specific bond

(issued by a particular corporation) is worth to any given investor. As is

now typical in the literature of bond refunding,4 the model takes as a given

constraint that, in the event of a call, the issuer will finance the refunding

with a new issue of long—term bonds; in contrast to some familiar work on this

problem, however, the model developed here admits a stochastic discounting

rate.5 In addition, the model assumes, analogously to some previous work,

that interest rate expectations —— including both the issuer's and the

investor's, if the two differ —— are characterized by continuous, rather than

discrete distributions; continuous distributions not only are probably more

realistic but also are especially convenient in the context of applications

of the model to market data to draw inferences about market participants'

6

.
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Section I indicates the general principles and specific assumptions

underlying the optimal refunding and valuation model for callable bonds.

Section II develops the model in full for the general case involving no

specific assumption about how the issuer finances a refunding, and Section

III develops the model under the long—term refinancing constraint. Section

Iv illustrates several of the model's key properties, including the implica-

tions of differing issuer and investor expectations, by applying the model

to several hypothetical examples based on the standard call features used in

the U.S. corporate bond market. Section V briefly summarizes the paper's

principal conclusions and suggests directions for further research.
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I. Introductory Remarks

The value of a bond subject to a call option equals the value of an

otherwise identical noncallable bond less the value of the call option.

The value of the option to the option holder -— the issuer in the case

of a callable bond -- follows from a decision problem in which the option

holder maximizes an objective, subject to both the specified characteristics

of the option itself and his expectations of the relevant future prices (or

interest rates). At any moment of time, a bond issuer with callable bonds

outstanding must decide whether or not to call the bonds. In an abstraction

to a discrete-time model, the issuer must decide, at the beginning of each

time period, whether to call the bonds or to leave them outstanding until the

beginning of the next time period, Calling a bond at the beginning of time

period t implies an immediate payment of C the current call price,7 while

not calling the bond implies a payment of coupon k at the end of the current

time period t and a new decision at the beginning of the subsequent time

period t + 1.

The value of the option to the option writer —— the investor in the case

of a callable bond —— is somewhat more complicated. Even given the investor's

own objective and expectations of the relevant future prices (or interest

rates), the value of the option to the investor depends upon actions to be

taken at the sole discretion of the issuer (the option holder). To evaluate

the option, therefore, the investor must second—guess the issuers decisions,

and to perform this task the investor must in turn have beliefs about the

S
issuer's objective and expectations.

Two convenient assumptions about the behavior of the firm facilitate
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modeling the issuer's optimal decision. First, in order to abstract from

considerations relating to the firm's production, sales, and investment

decisions, it is useful to assume that the firm makes the call decision inde-

pendently of the "revenue" side of its activities. Secondly, in order to

have a decision criterion, it is useful to assume that the objective deter-

mining the call decision is to minimize the present discounted value of the

expected stream of payments associated with the outstanding bond (or its

refinancing replacement).9 The value of a callable bond to the issuer as of

the beginning of time period t is therefore

Vt = mm [k + (1)

where Pt is the time rate of discount which prevails in time period t, Et

indicates an expectation as of the beginning of time period t, and the tilde

symbol recalls that Vt+l is a random variable as of the beginning of time

period t. The appearance of V1 in one of the two alternative expressions

for V immediately suggests a recursion relation requiring solution by

dynamic progranuning.

An assumption about the investor's behavior is analogously necessary in

order to calculate the value of the bond to the investor. If the investor is

also a present value maximizer, then the value of a callable bond to the

investor as of the beginning of time period t is

= mm {c, l±p
[k + E(;1)]} (1')

where all variables are as in (1) and the prime symbol indicates the value,

discount rate and expectation pertaining to the investor, should any or all

of these differ from the issuer's.
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The importance of expectations of future yields emerges clearly in the

explicit evaluation of the expectation on the right-hand side of (1),

E;+1 = + (l.Pt+i).E[ (k + E1(V2))] (2)

l+Ptl

where is the probability, assessed as of the beginning of time period

t, that the optimal decision at the beginning of time period t+l will be to

refund the bond. Hence the expectation Et(Vt+i) equals the linear combination

of the known call price premultiplied by probability J+1' and the con-

ditional expectation of the value of the bond in the event that the optimal

decision at the beginning of time period t+l is not to refund it, premultiplied

by probability (1 - One element of that conditional expectation is

in turn E÷1(;+2) -- the expectation, as of the beginning of time period t+l,

of the value of the bond at the beginning of yet the next time period, once

again conditional on the issuer's optimal decision being not to refund the bond

in either of time periods t or t+l. The explicit evaluation of that conditional

expectation, in turn, continues the sequence analogously. A similar sequence

emerges from explicit evaluation of the expectation E(V÷1) on the right-hand

side of (1').

Finally, the model developed in Sections II and III below abstracts from

default risk, as well as from tax considerations such as the differential tax

treatment of the payment (or receipt) of interest versus call premiums.

.
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II. The General Model

For a conventional bond, the terminal condition which anchors the dynamic

programming solution to the issuer's optimal refunding problem is simply the

statement of the bond's par—value maturity property,

VT+l
1 (3)

where T denotes the final time period in the bond's term to maturity. The

solution follows as a series of critical discount rate values T' Tl'"'

such that the optimal decision is to call the bond at the beginning of period

t if and only if Pt <

At the beginning of time period T, the issuer's problem in the general

form (1) simply reduces to

VT = mm
{CT, l+pT1 + l)}, (4)

and the solution to the minimization follows from comparing the newly emerged

with the previously known coupon k and call price CT to find the critical

value

* k+1= — 1. (5)

T

which equates the two alternatives within the right-hand side of (4). If

CT = 1, as is typically the case (except for transactions costs) in U.S. cor-

10 *

porate bond indentures, the critical value in (5) reduces to the bond's

coupon rate k, so that the issuer's optimal refunding decision at the begin-

ning of time period T is to call the bond or not according to T k.

For each subsequent time period t, t = T-l, T-2,. . . (going backward),

the general problem is simply (1) and its solution is
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* k + E(V+i)
—l (6)

t

where, given the solution from the immediately prior (i.e., chronologically

later) time period of the backward induction process,

E (v+1) = c÷1
j 0

+ [k + Et÷l(vt+2)]j
* l+

(7)

t+l

and tT' T = t+l,...,T, are independent probability density functions

describing the issuerts expectations, as of time period t, about the (unknown)
— 11

future path of the stochastic discount rate p.

The T-th successive application of this procedure finally yields the

new—issue value of the bond as

V1 = mm
{c1, lp1 [k + E1(V2)]} (8)

where

(p2 -

E1(V2)
=

c2J
f1(p2)dp + [k + E2(V3)]j

1
f1(p2)dp.

(9)
* l+po

p2
2

On the assumption that bonds are issued at par, the new—issue value V1 in

(8) must presumably satisfy V1 < 1, or else the borrower would be unwilling

to issue the new bonds in the first place.

In practice, all newly issued U.S. corporate bonds bear call options

which come into effect only after some time interval, say D periods, after

the issuance of the bond. In this case, the backward solution technique is

.
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p
relevant only as far as the beginning of time period D+l, at which point

VD+l = mm {c1, l+p1
[k + ED+l(;D+2)1}. (10)

Solution of the issuer's refunding decision problem as in (1), (6) and (7)

yields the previous period's expectation of the bond's value, as of the first

call opportunity, as

1p+l

ED(VD+l)
=

fD(PD+l)dP
0

+ [k +

ED÷l(;2)IJ * fD(PD+l)dP. (11)

D+l

Since no call option is available at the beginning of time period D, however,

the value of the bond at that time is simply

VD = [k + ED(;l)]. (12)

and the previous period's expectation of that value is simply

ED1(;D) = [k +

ED(VD+l)]J

1
fD_l(P&d (13)

0

Successive application of this simple discounting procedure during the D time

periods of deferment of the call option leads to the expression of the value

12
of the bond in any time period t = 1,..., D, as

Vt = [k + Et(Vt+1)] (14)

where
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E;+1 = [k +

Et÷i(Vt+2)]J l+ ftt+1)dP. (15)

0 t+l

The D—th such successive discounting application finally yields the new-issue

value of the deferred callable bond as

V1 = l+p
[k + E1(V2)]. (16)

Once again, on the assumption that new bonds are issued at par, V1 must

satisfy V1 < 1.

It remains to consider the more complicated problem of determining the

value of the bond to an investor whose relevant discount rate p' is not

necessarily identical to discount rate p which is relevant for the bond

issuer, and whose interest rate expectations f' (p') and f' (p), may differ in

unspecified ways from the issuer's expectations f(p). Beginning the backward

induction solution procedure in period T, as above, the value of the bond to

the investor is

CT if T <

V= (4')

l+p
[k +11 if T >

where T is as in (5).

For each subsequent time period t = T—1,. . .,D+1, the general procedure for

solving the investor's valuation problem is first to solve the issuer's

decision problem (using the issuer's expectations f(p)) for the critical values

t = D+l,.. . ,T, and then to use these p values as limits of integration

in the straightforward evaluation of the expectation embracing the two

.
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alternative possibilities that the bond will or will not be called in any

13
given time period t = D+l,... ,T. For any time period t = D+l,... ,T, the

value of the bond to the investor as in (1') is therefore

C if Pt <

v= (1'')

l+p
[k + E.(;1)] -f >

where p is as in (6) and

*

- 1t+iE'(V )=ct t+l t+1
0

) + [k +
E+i ;÷2nJ c(Pt+l)dP.J 1t+l

f(p1)dp'. (7')

Finally, for time periods t = 1,... ,D, during which the call option
deferment is in effect, the investor's discounting procedure is precisely

analogous to that for the issuer in (14) and (15), substituting f' (p') for

f(p). On the assumption that new bonds are issued at par, V, the value to

the investor at the time of issue, must satisfy V > 1.

S
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III. The Case of Long-Term Refinancing

A major obstacle to empirically implementing a general model of the is-

suer's optimal refunding decision like that developed in Section II is iden-

tifying the appropriate discounting rate p to use in such calculations, and

this question has received substantial attention in the literature.'4 Some

writers, for example, have argued that bond refunding is just another capital

budgeting decision, so that p properly represents the firm's average cost of

capital. The consensus of the recent literature, however, is that p should

instead represent the currently prevailing market interest rate on the firm's

outstanding long-term debt. The rationale usually cited in support of this

choice is that the long—term debt yield properly reflects the risk of the

cash flows being discounted. In addition, a further assumption which rein-

forces this choice is that the refunding decision with respect to outstanding

long-term securities presupposes no change in the firm's liability structure

in the sense of term to maturity (apart from call features). While this as-

sumption in principle introduces some possibility for misunderstanding the

issuer's refunding decision problem, it is probably not too far off the mark

for practical purposes, since most issuers do in fact consider a refunding

situation in the somewhat limited context of replacing outstanding long-term

15
bonds with a new issue of long—term bonds (presumably bearing a lower coupon).

In the context of the relationship between using the firm's cost of long—term

debt in the optimal refunding calculation and assuming that a new long-term

bond is the choice of refinancing vehicle, the primary question is whether this

simplifying assumption introduces more or less possibility for misunderstanding

or empirical irrelevance than does an alternative assumption identifying the
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I
relevant discount rate p with some other specific observable variable.

Optimal refunding decision ndel (1) relies on an implicit two-fork

decision tree approach in which, at the beginning of any time period t, the

"terminal" (refund) fork is the immediate payment of call price C while the

"continuing" (do not refund) fork is the payment of coupon k at the end of

the time period (i.e., the beginning of the next time period) and a new

decision then. If the issuer presupposes financing of the refunding by a new

issue of long—term bonds, then the "terminal" fork is no longer an end point,

and its value is not simply the call price but rather the stream of future

payments of interest and principal on the newly issued security. It is

therefore necessary to consider the coupon rate kt which, as of the beginning

P
of time period t, is the market yield on new issues of the firm's long—term

bonds. Furthermore, since new issues of immediately callable long—term bonds

do not exist in the U.S. markets, it is appropriate to consider kt as the

coupon rate on a new issue of long—term bonds bearing call options subject to

deferral for some interval.

In the restricted context of a predetermined liability maturity structure,

then, the issuer's refunding decision involves a comparison of the present

value of two alternative streams of payments. One, as in (1), is the payment

of coupon k for all time periods until the bond is called, with a new refunding

decision possible in each successive time period. The other is the immediate

payment of call price C, which requires simultaneously issuing a new bond

in the amount of C, and subsequent payment of the new coupon kt for at least

S
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D time periods (where D is the length of the deferment period on the new

bond's call option), with refunding decisions possible only in later time

periods. The fixed-maturity analog to the issuer's refunding decision (1)

is therefore

Vt = mm
{Rt,

[k + E(V+1)]} (17)

where the value of the stream of payments associated with the refinancing

17
bond is

C T

Rt = 1+ {k[l + ( 11 )dp)]
Pt tt+l s=t+l

T
+

1
)dp}. (18)

Tt+l 1+p
T

o t

The issuer's fixed—maturity refunding decision therefore involves two

distinct sets of interest rate expectations, as is clear from considering

the conditional expectation on the right-hand side of (17),l8

Et(Vt+1) = tPt+i.Et(Rt+i) + [k + Et+i(Vt+2)]. (19)

As of the beginning of time period t, is known but k+i is not. Hence

Rt+l is random, as of the beginning of time period t, because of uncertainty

associated not only with future p, Tt+l,. .. ,T, but also with the future

.
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coupon rate kt÷i. The reason why expectations of future coupon rates enter

the problem is the "lock—in" feature associated with the noncallability (or

call option deferment) of the refinancing bonds. Refinancing with ixnmedi-

ately callable bonds is not possible, and refinancing with noncallable bonds

requires the issuer to pay coupon kt in every subsequent time period,

regardless of the potential emergence of even lower new—issue coupon rates

later on.19 Even if an issuer can refinance the outstanding k—coupon bonds

by issuing new bonds with some coupon kt which is enough lower than k to

warrant paying the current call price, therefore, he may gain even more by

waiting to refinance, say s time periods later, at the then—prevailing

coupon rate k+ which may be even less than k. It is this feature of the

problem which gives the variance, or volatility, of future long—term new—

issue yields an added importance for the optimal refunding decision and the

resulting value of the callable bond. Even if the issuer expects the long—

term new-issue yield to be high in the future on average, if he expects this

yield to be volatile he may value greatly the opportunity to refund at pre-

cisely the time when the yield has fallen below his expectation of its

long—term average.

In complete form, therefore, the solution to the fixed-maturity refunding

decision problem leads to a backward succession, from time period T, of expres-

sions involving integration over two sets of density functions —— one for the

discount rate and one for the coupon rate. Expectations about these two

interest rates, however, are unlikely to be independent. A useful simplifica-

tion which avoids altogether the need for two different sets of integrals is

simply to assume that expectations about one rate are one—for—one equivalent

I
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to expectations about the other, i.e.,

= Ft(kt÷) = F[(P)], s > 0, (19)

for some nonstochastic transformation ÷(•) for each time period t+s. Under

this covariation assumption it is possible to restate the issuer's refunding

decision problem in terms of expectations of future new—issue yields on

20long-term (noncallable) bonds, so that (18) becomes

1• CO
C T T

1 -

R = {k [1 + ( II F (k )dlc]t l+(k) Tt+l s=t+1 1+g(k)
S

Co

T
1

+ II
Ft(k)dk}, (21)

Tt+1 l+g(k)

while the analogous expectation on the right-hand side of (19) becomes

r Co r CO
-. T T

E (R+1) = c÷1
1

{k+1[1 + ( II
1

- F(k )dk}t

l+g1(k1) r=t+2 s=t+2 l+g(k)
S

, CO

T
+ II

1
_ F (k )dk} Ft(kt÷i)dk. (22)

T=t+2 l+g (k )
t T

0 T T

At the beginning of time period T, the problem is simply

VT = mm T' l+g(k)
(k + 1)} (23)

where, because kT is known, RT is the nonrandom

C

RT = l+g (k ) (kT
+ 1). (24)

T T
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The critical value kT follows, analogously to T in (4), as the new-issue

rate which equates the two alternatives within the right-hand side of (23),

and the optimal refunding decision is to call the bond or not according to

< * *

kT
>

kT. If CT = 1, then kT = kTI and the final-period refunding decision

simply involves a comparison of the current (one—period) borrowing rate with

the outstanding bond's coupon.21

For each subsequent time period t, t = T-l,... ,D+l, the problem is just

(17), where Rt is as in (21),

k1
Et(Vt+1) =

j Rt+iF(kt1)dk
0

+ Ek + Et+1(V+2)] j : l+g (k )

Ft(k+1)a]c, (25)

k+1 t+l t+l

and the critical value kt follows as the (T—t+l)—period new-issue rate which

equates the two alternatives within the right—hand side of (17). Following

this procedure backward to the solution for ED(VD+l), and then applying the

simple discounting procedure of (14) and (15) for the earlier time periods

during which the bond is noncallable, completes the solution of the issuer's

fixed-maturity refunding problem.

Finally, as in the general model of Section II, solving for the value

of the bond to the investor requires first applying the procedure developed

above (using the issuer's expectations f(p) and F(k)) to solve the issuer's

fixed—maturity refunding problem for the critical new—issue yields kt t =

D+l,... ,T. In the absence of any assumption about the investor's application
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of the proceeds of a call, the value of the bond for any time period t =

D+l,.. .,T, then follows from re-evaluating the relevant probabilities of call

on the basis of the investor's corresponding expectations V (p) and F' (k)

and the relevant discounted values on the basis of the investor's expectations

f' (p'), so that the expressions analogous to (1') and (7') are

Cifk <k
v = (17')

l±p
[k ÷ E(\r1)] if k >

i
E' V " = C F' 1k 'dk
t t+1 t+l t' t+l

0

+ [k +

Et÷i(;t+2)]J
(25')

where g' (.) is the transformation relating the investor's discount rate to the

issuer's new-issue rate. Alternatively, under the assumption that the investor

will apply the proceeds of the call to re-invest in the refinancing bond, the

analogous expressions are

R if kt < k
v = (17'')

1p [k + E'(Vt+1)] if > k

E(Vt+1) =
J

R1F' (kt+i)dk
0

+ [k +

E+l(V÷2)]J : 1+ '

1
F(kt+1)dk (25'')

•
k+i t+1
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22
where

00
C T t

=
1+ '(k ) {kt[l + E ( II 1

-. F(k )dk]
t t=t+l s=t+l l+g' (k )0 5 5

I. W
T

+ 1
F'(k )dlc}. (21'')

'rt+l l+g' (k )0 't t

For time periods t=1,... ,D, the value to the investor again follows from

the simple discounting procedure indicated in Section II.
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IV. Some Illustrations

A few hypothetical examples may serve to illustrate some of the pertinent

properties of the solutions yielded by the bond valuation and optimal

refunding decision solution procedures developed above.

Consider, for example, a 25—year bond with a coupon of 8% per annum

payable semi-annually. In addition, suppose that the relevant discounting

rate is also 8% per annum, and that both the issuer and investors expect the

market yield to continue to be 8% per annum. If the bond is noncallable,

then the initial value is simply 100.23 Since the expected market yield is

8% per annum for the next 25 years, the bondts expected price in any future

period until maturity is also 100.

If the same 25-year 8% bond is callable, however, and if either the

issuer or investors (or both) believe that the market yield fall below 8%

per annum at some point during the bond's 25—year life (i.e., there is some

non—zero variance associated with the 8% expectation), then neither the

initial value nor the expected price in any future time period before maturity

equals 100. The income stream generated by this bond (and its replacement,

in the event of refunding) will under no circumstances be greater than that

of the initial 8% coupon rate. Because of the possibility of refunding,

which in turn depends upon future interest rates and expectations thereof,

this income stream may be less than that of the initial 8% coupon rate. Given

a discounting factor of 8%, therefore, the bond's price will always be

strictly less than 100, unless interest rate expectations are such as to

preclude the possibility of refunding.

.
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The first two columns of Table 1 present the solution of the bond valua-

tion and optimal refunding decision model of Section III for the case of the

immediately callable 25-year 8% bond described immediately above. The key

assumptions underlying this solution are that both the issu?r's and investors'

expectations of future coupon interest rates, F(kt) and F'(kt), t=l:II,...,

T(25:II) are characterized by a truncated normal distribution with mean 8%

24
and standard deviation 1%, and that the expected relationship between the

issuer's and investors' discounting rates and p) and coupon rate kt as

in (19) is simply Pt = = kt t=l,.. . ,T.

The first column of the table shows, for each half-year period during

the first ten years and for alternative half—year periods thereafter, the

critical refunding yield kt which follows as the (T-t+l)—period new—issue

rate which equates the two alternatives within the right-hand side of (17).

The issuer's optimal decision, at the beginning of time period t, is to

refund the bond if kt < k and not to refund it if kt > k. The monotonically

increasing series of kt values shown in the first column of the table illus-

trates clearly the "lock—in" implication of a call—protected refinancing bond

as emphasized in Section III. In particular, it is not optimal to refund

the outstanding bond at every coupon rate which satisfies kt < 8%, even

though doing so would lead to an interest saving. Unless kt < k < 8%

(except for the final period), the present discounted value of the interest

saving achieved by refunding at kt < 8% is smaller than the present discounted

value of the expected interest saving from refunding in some later time

25period t + T at the then-prevailing coupon rate kt+ < kt. Given the

S



TABLE 1

CRITICAL REFUNDING YIELDS AND EXPECTED PRICES FOR CALLABLE 25-YEAR 8% BONDS

E(V I = E' (Vtt

.

Assumptions: E(kt)
E' (kb) = 8%, c1(k)

= a' (kt) = 1%, Pt = P = all t. .

t
Immediately
Callable

Callable After
5 Years

Callable After
10 Years

1:1 — 91.25 94.26 96.68
1:11 6.57% 90.90 94.03 96.55
2:1 6.58 90.94 93.79 96.41
2:11 6.58 • 90.99 93.54 96.26
3:1 6.59 91.05 93.28 96.11
3:11 6.60 91.11 93.01 95.95
4:1 6.60 91.17 92.73 95.79
4:11 6.61 91.24 92.44 95.62
5:1 6.62 91.32 92.13 95.44
5:11 6.62 91.40 91.81 95.26

6:1 6.63 91.48 91.48 95.06
6:11 6.64 91.57 91.57 94.87
7:1 6.65 91.67 91.67 94.66
7:11 6.66 91.77 91.77 94.44
8:1 6.66 91.88 91.88 94.22
8:11 6.67 92.00 92.00 93.98
9:1 6.68 92.12 92.12 93.74
9:11 6.69 92.24 92.24 93.49
10:1 6.70 92.38 92.38 93.22
10:11 6.71 92.52 92.52 92.95

11:1 6.72 92.67 92.67 92.67
12:1 6.74 92.99 92.99 92.99
13:1 6.76 93.33 93.33 93.33
14:1 6.78 93.71 93.71 93.71
15:1 6.82 94.12 94.12 94.12

16:1 6.85 94.57 94.57 94.57
17:1 6.88 95.05 95.05 95.05
18:1 6.92 95.56 95.56 95.56
19:1 6.96 96.10 96.10 96.10
20:1 7.01 96.67 96.67 96.67

21:1 7.08 97.26 97.26 97.26
22:1 7.15 97.87 97.87 97.87
23:1 7.24 98.47 98.47 98.47
24:1 7.38 99.06 99.06 99.06
25:1 7.63 99.59 99.59 99.59
25:11 8.00 99.81 99.81 99.81

.



—22—

assumed constant mean and nonzero variance of the distributions describing

expectations of future interest rates, the earlier is the time period t

the lower kt must be to justify refunding.

The second column of the table shows, for the same half—year periods,

the price Vt = V expected to prevail at the beginning of the period for

this (immediately) callable 25—year 8% bond. The value of the bond's call

option is the difference between this price and 100, which would be the

expected price of a noncallable 8% bond. Given the assumed parameters of

expectations of future interest rates, the immediately callable bond will

sell for only 91.25 at its initial time of issue, so that the call option

is initially worth 8.75. After the initial half—year period, the expected

price E(Vt) = E' (V) increases monotonically with time period t, at a

steadily growing rate of increase. The initial new—issue price is somewhat

greater than the expected price at the beginning of the next several time

periods because of the certainty of receiving the 8% coupon payment at the

end of the first half year; within the simplified discrete—time framework of

this paper, even the call option of an "immediately callable" bond is implic-

itly deferred for one time period.

As an illustration of more generally deferred call options, the third

and fourth columns of Table 1 present analogous solution values for the

expected prices of callable 25—year 8% bonds bearing the standard utility

and industrial call deferments of five years and ten years, respectively,

using the same assumptions about expectations of future interest rates which

underlie the solution for the immediately callable bond. Once the five- or

ten-year deferment period expires, the initially call—protected bond no longer
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.
differs from the immediately callable bond, so that the critical refunding

yield and expected price series for time periods t > D ( 5:11 or 10:11)

are identical to those shown in the first two columns of the table. For

time periods t = 1,... ,D, the critical refunding yield is undefined for a
call-protected bond, and the expected price is greater than that of the

immediately callable bond, since the coupon payments are certain to be at

the 8% rate (i.e., the upper limit for the immediately callable bond). As

the call deferment interval elapses, the expected price declines monotonically

to reflect the decreasing number of certain 8% coupon payments. Figure 1,

which summarizes the expected price relationships among the immediately

callable and two call—protected 25-year 8% bonds by plotting the three

expected price series as functions of time period t, shows clearly how the

different bonds become indistinguishable upon the expiration of the relevant

call deferments.

Next, it is useful to consider explicitly the dependence of the results

presented in Table 1 on the assumed uncertainty, characterized by standard

deviation a(k) = a' (k) = 1%, associated with expectations of future interest

rates. Table 2 shows the relationship between the assumed standard deviation

and the bond's new—issue price V1 = V for four kinds of 8% 25—year bonds:

immediately callable bonds (i.e., bonds callable after the first half year),

bonds callable after five years, bonds callable after ten years, and non—

26
callable bonds. For a given set of call provisions (except for the non—

27
callable bond ), the greater is the uncertainty the lower is the bond's

price. Conversely, for given uncertainty, the earlier the bond is callable

the lower is its price.
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TABLE 2

NEW-ISSUE PRICES OF CALLABLE AND NONCALLABLE

8% 25-YEAR BONDS UNDER HOMOGENEOUS EXPECTATIONS

.

0.2%

0.5%

1.0%

1.5%

2.0%

2.5%

Immediately
Callable

99.93

97.55

91.25

84.59

77.86

71.09

99.94

98.27

94.26

90.09

85.88

81.66

99.94

98.93

96.68

94.38

92.07

89.76

Noncallable

100.00

100.01

100.05

100.11

100.20

100.31

Assumptions: E(k) = Et(kt) = 8%, Pt = P = all t.

.

a(k) = a'(k)
Callable After Callable After

.
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Table 3 presents analogous results for the general circumstance in which

the standard deviation which the issuer associates with expectations

of future interest rates, differs from the investor's corresponding standard

deviation for the single case of a 25—year 8% bond callable after five years.

The entries along the diagonal of the table, for which a (1) = a' (k) are

identical to those in the second column of Table 2. When the issuer and the

investor disagree, however -- i.e., off the table's diagonal -— the results

differ sharply. Given the issuer's expectations, the greater is the issuer's

uncertainty the lower is the bond's price. By contrast, given the investor's

expectations, the bond's price is lowest when the issuer agrees —— i.e.,
when a(k) = a'(k); and the greater the disagreement the higher the price,

regardless of the direction of the disagreement (although the rate of increase

is asymmetrical).

Because the 8% coupon of all of the callable bonds considered in Tables

1—3 is identical to the assumed mean of the distribution of expected future

interest rates E(kt) = E' (kt), and because these expectations are not held

with perfect certainty, the expected prices of all three of these bonds are

always less than 100, even at the time of issue. By contrast, in the United

States as well as in most other countries, new long—term bonds are typically

issued at or near 100 even when they bear call options. Since a coupon rate

equal to the mean of stationary expectations of future market discount rates

results in callable bond prices less than 100, some coupon rate greater than

this mean is necessary to make the callable bond worth 100 at the time of

issue. For any given set of stationary expectations of future interest

rates, the amount by which the coupon rate must exceed the fixed mean depends



.
TABLE 3

NEW-ISSUE PRICES OF A 5-YEAR NONCALLALE

8% 25-YEAR BOND UNDER HETEROGENEOUS EXPECTATIONS

a' (kr)

a(k) 0.5% 1.0% 1.5% 2.0%

0.5% 98.27 95.26 92.60 89.97

1.0% 99.34 94.26 90.85 88.01

1.5% 99.90 95.42 90.09 86.49

2.0% 99.97 97.64 90.97 85.88

.



-25-

not only upon the bond's call features but also, following the model developed

above, upon the higher moments of the density functions describing interest

rate expectations.

Table 4 and Figure 2 summarize the implications of the bond refunding

and valuation model for bonds having the same call provisions as those

assumed in Table 1 but different coupons, under the same assumptions about

interest rate expectations as in Table i.28 The first two columns of Table 4

show the critical refunding yields and the expected prices for an immediately

callable 25—year 10.60% bond. As the first entry in the price column

indicates, 10.60% is precisely the coupon rate necessary to render the bond's

new-issue price equal to 100, given the bond's call provisions and given the

issuer's and investors' expectations of future interest rates characterized

by truncated normal distributions with E(kt) = E' (kt) = 8% and a(k) = a'
(kr)

= 1%. As in the example in Table 1, the critical refunding yield k (also

plotted as the solid line in panel (a) of Figure 2) in the first column of

Table 4 rises monotonically so that it equals 10.60%, the bond's coupon rate,

in the final half year of the bond's term to maturity. Since the mean

interest rate expectation is well below the 10.60% coupon rate, the critical

refunding yield remains far below 10.60% -- indeed below E(kt) = E' (kt) = 8%

—— until only three years before the bond's maturity. The bond's expected

price (also plotted as the solid line in panel (b) of Figure 2) declines for

seven years -- with the largest decline coming after the first half year,

when the implicit one-period call deferment expires -- then rises until

shortly before the bond's maturity, and finally declines back to 100.

S



TABLE 4

CRITICAL REFUNDING YIELDS AND EXPECTED PRICES FOR

CALLABLE 25-YEAR BONDS ISSUED AT PAR

.

1:1
1:11
2:1
2 :11
3:1
3:11
4:1
4:11
5:1
5:11

8.92% Bond
Callable After

5 Years

k E(;)

Assumptions: E(kt) = E' (kt) = 8%, c(kt) = ci' (kr)

8.40% Bond
Callable After

10 Years

kt E(;)

= 1%, Pt = P = all t.

.

t

10.60% Bond

Immediately
Callable

k E(Vt)

— 100.00
— 99.54
— 99.06
— 98.56
— 98.04
— 97.50
— 96.93
— 96.35

95.74
— 95.11

— 100.00
— 99.82
— 99.60
— 99.38
— 99.15
— 98.91
— 98.65
— 98.39
— 98.12
— 97.84

— 97.55
— 97.24
— 96.92
— 96.59
— 96.25
— 95.89
— 95.51
— 95.13
— 94.73
— 94.31

7.13%
7.14
7.14
7.15
7.16
7.17
7.17
7.18
7.19

7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.30

7.31
7.33
7.36
7.40
7.44

7.48
7.53
7.58
7.65
7.73

7.83
7.97
8.15
8.45
9.09

10.60

100.00
98.74
98.69
98.65
98.61
98.57
98.54
98.51
98.49
98.47

98.45
98.43
98.42
98.42
98.42
98.42
98.43
98.44
98.45
98.47

98.50
98.56
98.65
98.75
98.88

99.02
99.18
99.35
99.54
99.72

99.91
100.07
100.20
100.25
100.14
100. 00

.6:I
6:11
7:1
7:11
8:1
8: II
9:1
9:11

10:1
10:11

11:1
12:1
13:1
14:1
15:1

16:1
17:1
18:1
19:1
20:1

21:1
22:1
23:1
24:1
25:1

25:11

6.88
6.89
6.90
6.91
6.92
6.93
6.93
6.94
6.95
6.96

6.97
7.00
7.03
7.06
7.09

7.12
7.16
7.21
7.26
7.33

7.41
7.51
7.64
7.84
8.23
8.92

94.45
94.50
94.55
94.61
94.68
94.75
94.82
94.90
94.99
95.08

95.18
95.40
95.64
95.91
96.20

96.52
96.87
97.24
97.64
98.05

98.47
98.90
99.30
99.66
99.90
99.95

6.84
6.87
6.89
6.92
6.95

6.98
7.02
7.06
7.11
7.17

7.23
7.32
7.44
7.60
7.92
8.40

93.88
94.15
94.45
94.77
95.13

95.52
95.93
96. 38

96.85
97.35

97.86
98.38
98.89
99. 36

99.75
99.89
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The remaining columns of Table 4, and the broken and dotted lines in

Figure 2, show the analogous k and E(V) solution values for a 25-year 8.92%

bond callable after five years and a 25—year 8.40% bond callable after 10

years. Because of the series of certain coupon payments guaranteed by their

respective call deferments, the coupon rates necessary to render these bonds'

new—issue prices equal to 100 are less than for the immediately callable

bond, and the ten—year call—protected bond requires a lower coupon rate for

this purpose than does the five-year call-protected bond. The two call—

protected bonds' respective critical refunding yields, which are defined

only for time periods after the expiration of their call deferments, again

rise monotonically to equal the respective coupon rates in the final half

year of the bonds' term to maturity. In contrast to the examples in Table 1,

however, in which the three bonds depicted each have the same coupon rate and

therefore have the same k series, in Table 4 the different coupon rates on

the three bonds imply different kt series for each. The expected price

series for the five— and ten—year call—protected bonds shown in Table 4 decline

monotonically until the respective bonds become callable, and then rise

monotonically until the bonds' maturity, according to the pattern familiar

from Table 1. Once again, however, because the three bonds illustrated in

Table 4 bear different coupons, their expected price series also differ

throughout. In particular, since it has the lowest coupon (8.40%), the price

of the ten—year call-protected bond falls to the lowest level of any of the

three bonds illustrated in Table 4.

Finally, Table 5 summarizes the implications of interest rate uncertainty

for the coupon rate necessary to render a bond's new—issue price equal to 100.



S

TABLE 5

COUPON RATES REQUIRED FOR PAR NEW-ISSUE PRICE

FOR CALLABLE AND NONCALLABLE 25-YEAR BONDS

Immediately Callable After Callable Aftera(k ) = a' (kt t Callable 5 Years 10 Years Noncallable

0.2% 8.00% 8.00% 8.00% 8.00%

0.5% 8.48 8.25 8.12 8.00

1.0% 10.60 8.92 8.40 8.00

1.5% 13.18 9.65 8.70 7.99

2.0% 16.00 10.40 9.00 7.98

2.5% 19.03 11.14 9.30 7.97

Assumptions: E(kt) = E'(k) 8%, Pt = = all t.
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As in Table 2, the computations underlying Table 5 assume homogeneous issuer's

and investors' expectations with mean 8%. In contrast to the examples in

Table 2, however, in which the four bonds depicted all have 8% coupon rates

so that the callable bonds have new-issue prices below 100, in Table 5 the

four bonds' respective coupon rates differ according to whatever coupon is

necessary for a par new—issue price. Following the same logic which indicates

new—issue prices less than 100 for the three 8% callable bonds in Table 2,

the callable bonds in Table 5 all have coupon rates greater than 8%. For a

given set of call provisions (except for the noncallable bond29), the greater

the uncertainty the higher is the required coupon rate. Conversely, for

given expectations, the earlier the bond is callable the higher is the

required coupon rate.

S
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V. Summary of Conclusions

Expectations about future interest rates are essential to the bond issuer's

optimal refunding problem and the associated problem of determining the value

of a callable bond. For the issuer, his own expectations (together with the

bond's coupon and call features) suffice to indicate the critical refunding

yield as well as the expected value of the bond in each time period until the

bond matures. For an investor, however, the issuer's expectations and his

own both matter if the two differ.

In the general refunding decision and callable bond valuation model

developed in Section II, in which there is no specific presumption about how

the issuer finances a refunding operation, the relevant interest rate expecta—

P
tions refer only to the issuer's and investor's respective discounting rates.

In the less general -- but probably more important for practical applications

-— model developed in Section III, in which the issuer finances the refunding

by issuing a new long—term (call deferred) bond, the relevant interest rate

expectations refer not only to the issuer's and investorts respective dis-

counting rates but also to the new-issue rate on the issuer's long-term

bonds. Once again, if an investor's expectations about the future course of

this interest rate differ from the issuer's, both sets of expE'ctations are

relevant to determining the value of the bond to an investor. The hypothetical

examples presented in Section IV illustrate the relationship, within the

model, of both the mean and the associated uncertainty of the issuer's and

investors' interest rate expectations for a number of the model's parameters

including the bond's coupon, call deferment, critical refunding yield, new-

issue price, and expected price in future time periods.
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A number of simplifying assumptions in the analysis of this paper probably

represent interesting topics for further research. The use in the illustra-

tions in Section IV of a constant discounting factor mean, for example, is

equivalent to the assumption of a flat term structure of interest rates. To

the extent that yields on debts of different term to maturity differ, the

individual coupon payments should be discounted by different factors. Since

the actually prevailing term structure is typically fairly flat after the

first several years, the approximation involved in assuming a totally flat

term structure probably leads to significant over—valuation or under—valuation

only for the first few coupon payments. Nevertheless, the assumption itself

is merely convenient and is in no way a necessary element of the model, so

that allowing for any specified nOn-flat term structure would be straight-

forward, as would allowing for any specified non-flat (probably increasing)

standard deviation.

A second subject for further research along these lines concerns risk

aversion. While the model's assessments of probabilities explicitly incorpo-

rate the full distributions of interest rate expectations, its valuations

rely only on expected values and ignore preferences with respect to higher

moments. Allowing for risk aversion would simply require substituting any

specified utility function for the simple present discounted value function

applied in Sections II and III.

Yet a third extension of the model would be to replace the normal dis-

tributions used in Section IV to characterize interest rate expectations

with different (perhaps asymmetrical) distributions. Here again, the assump-

tion of normally distributed expectations is in no way necessary for the

model, and substituting an alternative distribution would be straightforward.
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Finally, the model admits a variety of potentially interesting empirical

applications, including not only direct use as an aid to corporations'

financial decisions and/or investors' portfolio decisions but also use in

reverse to infer market participants' (unobservable) expectations from

observed market data.
30
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1. The security is the bond less the option, because in effect the purchaser
of the bond is required to write an option to the issuer, permitting the
issuer to call the bond, i.e., to repay the loan. Industrial bonds and
utility bonds almost always bear ten years and five years, respectively,
of call protection.

2. Data are from Board of Governors of the Federal Reserve System, Flow of
Funds Accounts, and are as of yearend 1976.

3. In addition to the references cited in the text, see also Bowlin [ 5],
Pye [21], Jen and Wert [13], and Ofer and Taggart [19]. For an analysis
which antedated Pye's, see Crockett's Appendix to Hess and Winn [11].

4. See, for example, the treatment in Elton and Gruber [10].

5. For analysis of the bond refunding problem, assuming a nonstochastic dis—
count rate misses the heart of the problem, and both Pye and Elton and
Gruber [ 9] incorporated a stochastic discount rate in their respective
models. By contrast, much of the literature analyzing the refunding
option has been deficient in assuming a nonstochastic discount rate; see,
for example, Kraus [16], Kalymon [14] and Elton and Gruber [10].

6. See Bodie and Friedman [ 4].

7. To the extent that the refunding operation involves transactions costs,
such as investment bankers' fees or use of management time, C includes
these costs as well as the call price per se.

8. The model developed in this paper abstracts from a number of complica-
tions which arise from the option writer's need to estimate the option
holder's objective and expectations, e.g., the "gaming" implications
which would result if bond issuers and investors deliberately attempted
to conceal their true objective and expectations from one another; see
Cyert and de Groot [7, 8] for a treatment of an analogous problem in a
different context.

9. Other objectives, perhaps incorporating risk aversion, would also be
suitable, both here and below for the investor. The only requirement,
which follows from the use of dynamic programming to solve the model,
is that the objective function exhibit the intertemporal separability
(additivity) property; for reference, see Bellman [ 1] and Bellman and

Dreyfus [ 2]. In conjunction with a further assumption extending the

present discounted value criterion to other aspects of the issuer's
behavior, this objective is consistent with maximization of
stockholders' wealth.



10. The call price typically provides for some premium above the bond's
principal amount, with that premium varying positively with the number
of years remaining to maturity at the time of exercise of the call
option. One commonly used schedule of call prices, for example, begins
at 100% of principal amount plus one year's coupon interest, if the
bond is called within one year of its issue, and declines linearly to
100% of principal amount some few years before maturity.

11. No general solution exists for the refunding decision problem when
expectations of the stochastic discount rate are state—dependent. To
solve this problem, therefore, it is necessary to specify a unique
stochastic process which the issuer assumes to generate the future
so that the resulting solution depends on the particular stochastic
process chosen. Pye [20] dealt with this problem by assuming that the
discount rate followed a first—order Markov process, with a small number
of possible states, and using either estimated values or arbitrarily
assigned values for the elements of the transition matrix. The state-
independence assumption introduced above renders the problem solvable by

straightforward dynamic programming techniques while still permitting a
general form for the density functions

12. Successive application of the time discounting procedure in (14) and
(15), for a given set of expectations about the future discount rate,
of course yields a form of the familiar expectations hypothesis of the
term structure of interest rates; see Hicks [12] and Lutz [17].

(Pt .13.
Integrals J f1 (p)dp and

J
* f...i(P)dP represent the investor's

0 Pt
perception of probabilities analogous to and (1 -

respectively, as in (2).

14. See, for example, Bowlin [ 5], Ofer and Taggart [19], and the references
cited therein.

15. More precisely, issuers most often use a refunding situation to extend
somewhat the maturity of their outstanding debt; Elton and Gruber's [ 9]
generalization of Pye's model focuses on this point.

16. U.S. issuers of long—term corporate bonds almost always issue bonds
bearing call options deferred for either five or ten years, depending on
the business of the issuer. Issuers refunding bonds which originally
bore five—year call deferments will typically issue new bonds bearing
five—year deferments. Issuers refunding bonds which originally bore
ten-year deferments will typically issue new bonds bearing ten-year
deferments.

17. This simplified expression overstates Rt in that it does not take account
of the possibility of subsequently calling the refinancing bond before
maturity. The correct expression is



C t+D T
R = {k [1 + ( fl

1
(p )ds)]

t
l+pt

t
=t+l s=t+l l+p0 S

t+D
+ Et+D(Rt+l)fl ft(P5)ds}

0

where Et+D(Rt+D+1) follows from a further backward induction solution

analogous to that shown below except using k in place of k, and

expressions (21) and (21') below are analogously altered. Hence the
model is in general able to accommodate an entire series of potential
refundings, as would be the case for D small relative to T. The
possibility of multiple refundings, however, means that the computational
requirements of the solution no longer increase only linearly with T.

18. Once again, this expectation is conditional on the bond's not being
called as of the beginning of time period t.

19. The problem is therefore similar to the optimal one-time sale of an
asset in the context of an uncertain stream of bids; see, for example,
Karlin's [15] highly instructive treatment of that question.

20. See again foothote 17.

21. For the later periods of the outstanding bond's term (i.e., the first
periods treated in the backward induction), the term to maturity of the
refinancing bond to be issued is very short under the fixed-maturity
assumption. For the limiting case of the final time period T as in
(22) and (23), for example, k is a one—period borrowing rate, so that
the discounting rate is g(k'f = kT. For discount rates of the order of

those in the numerical examples presented below, however, any term—
structure implications of this aspect of the fixed—maturity assumption
in far-off time periods have only very small effects on the resulting
calculations for current refunding decisions and valuations.

22. See again footnote 17.

23. Footnote 27 below qualifies this statement.

24. The normal distribution is truncated so as to preclude expectations of
negative nominal interest rates.

25. Note that C > 100 provides yet another reason, apart from interest rate

expectations, why it may not be optimal to refund at kt < 10.60%. The

effect of a declining call price, so that Ct+T < C, could be to make it

optimal to wait to refund even if kt+ > kt.



26. The remaining assumptions underlying the solution values presented in
Table 1 are the same as those used in Figure 1, including flat,

normally distributed expectations with E(kt) E'(k) = 8% for all t

and truncated so as to preclude expectations of negative nominal
interest rates.

27. Because E( 1 1
for (kt) > 0 (Jensen's Inequality), there is

l+k l+E(kt)
always a small effect in the opposite direction, i.e., requiring a higher

price as a(kt) becomes larger. For callable bonds, the effect of o(kt) > 0

on the valuation of the call option predominates. For noncallable bonds,
the smaller (opposite) effect stands alone. As the "noncallable" column
of Table 2 indicates, however, this effect is quantitatively very small
for normally distributed interest rate expectations.

28. In each case the schedule of call prices declines linearly from 100 plus
one year's interest in the first half year to 100 in the final half year
of the bond's term to maturity.

29. The reason for the coupon rates less than 8% for the noncallable bond is
again the effect of Jensen's Inequality; see again footnote 26.

30. See Bodie and Friedman [ 4] for an application of the model in reverse,
to market data for 1969-76, to infer the uncertainty associated with
expectations of future interest rates.

.
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