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Abstract

This paper derives an estimation procedure which, when the same distrib-

uted lag appears twice in an equation to be estimated by least-squares

regression, identifies all of the relevant coefficients and lag weights and

also constrains the two sets of individual lag weights to be identical. The

procedure for solving this identification—constraint problem involves prior

imposition of a restriction on the lag weight sum —— i.e., it is necessary to

impose the sum restriction before estimating the equation. A further useful

feature of the derived procedure is that it facilitates conveniently imposing

the sum restriction on all of the weights in a distributed lag even if the

leading weight is independent of a polynomial restriction imposed on the

others.
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IDENTIFYING IDENTICAL DISTRIBUTED LAG STRUCTURES BY THE

USE OF PRIOR SUM CONSTRAINTS

Benjamin M. Friedman and V. Vance Roley*

It is well known that, if an independent variable in an equation to be

estimated by least-squares regression is itself a distributed lag, it is

necessary to impose some restriction in order to identify both the independ-

ent variable's coefficient in the equation and the weights defining the dis-

tributed lag. If the proxy variable for "expected permanent income" in a

consumption function is defined as a distributed lag on past observations of

income, for example, a restriction is necessary to identify both the marginal

propensity to consume out of expected permanent income and the weights defin-

ing the autoregressive expectation. A familiar practice under such circum-

stances is to impose the restriction that the weights in the distributed lag

must have a prespecified sum, so that the estimated coefficient of the

independent variable in the equation is simply the sum of the unrestricted lag

weight estimates divided by the prespecified weight sum. This sum restriction,

which is easy enough to impose after estimation of the equation, need not

represent any complication for the estimation process itself -- even if the

relevant independent variable is a nonlinear term such as the product of the

distributed lag and another variable.

But what if the equation to be estimated includes two nonlinear independ-

ent variables, each defined as the product of the same distributed lag and one

other variable? Simply estimating the equation and then applying the same

prespecified sum restriction to both appearences of the distributed lag is

sufficient to identify all of the lag weights as well as the coefficients of
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both independent variables, but the two sets of estimated lag weight patterns

will in general be different. Imposing the usual sum restriction after estima-

tion of the equation is not sufficient to constrain the two sets of individual

lag weights to be identical.

The object of this paper is to derive a procedure which not only identifies

all of the relevant coefficients and lag weights, when the same distributed lag

appears twice in an equation to be estimated, but also constrains the two sets

of individual lag weights to be identical. In particular, the procedure for

solving this identification—constraint problem involves prior imposition of the

restriction on the lag weight stun —— i.e., it is necessary to impose the sum

constraint before estimating the equation. An additional useful feature of

this procedure is that it facilitates readily imposing the sum constraint on

all of the lag weights even if, following Sims [141, the leading lag weight is

independent of a polynomial constraint imposed on the remaining lag weights.

Section I states in precise terms the nature of the identification problem.

Section II, using the direct method of polynomial distributed lag estimation,

derives the prior stun constraint procedure. Section III illustrates the use of

this procedure with an example drawn from an analysis by one of the authors of

corporate financing behavior. Section IV briefly summarizes the paper's

principal conclusions.
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I. The Problem

Consider the problem of estimating by ordinary least squares the expression

= a + (ptxt) + Ut (1.1)

where

T+1
x E 6 z , (1.2)
t t=0TtT

a, $ and 6, r=O,... ,T+l, are the parameters to be estimated, and T is an

integer defining the lag length in (1.2). Simply estimating (1.1) with (1.2)

substituted for x yields a set of estimates ('6), T=O,...,T+1, thereby

still leaving and 6, t=O,. . . ,T+l, unidentified. A commonplace way to

identify these parameters is to impose a sum constraint

T+l
6 = (1.3)

r=O

for prespecified 6,1 thereby facilitating the solution for arid 6

r=O,... ,T+l, as

T+l
E

= t=O
(1.4)

6

.
)

6 =
T+1

T
, T=O,... ,T+1. (1.5)

E (•S
r=O

This simple restriction, imposed after estimation of (6), T0,...,T+1, is

sufficient to identify the equation's parameters regardless of additional

polynomial constraints on 6, r=O,... ,T+1, with or without further zero

restrictions, etc.

Suppose, however, that the equation to be estimated is not (1.1) but
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= + tx + y(qx) + u (1.6)

where x is again the distributed lag defined in (1.2) and y is an additional

parameter to be estimated. Repetition of the procedure described above for

equation (1.1), now with the addition of

T+1

= ________ (1.7)

T
= , T0,.. . ,T+1, (1.8)

E (y•6
r=O

results in two different values of each , r0,... ,T+l -— one from (1.5) and

one from (1.8). By contrast, the economic logic of (1.6), in which the two

independent variables involve the same distributed lag, clearly indicates that

the relevant to (px_) should be identical to the relevant to

t=O,... ,T+l.

Hence unrestricted estimation of (1.6), with subsequent imposition of the

sum restriction (1.3) via (1.4, 1.5) and (1.7, 1.8) oversolveS the problem of

identifying the parameters of (1.6). Section ii derives a procedure for

solving this problem which uses (1.3) to yield estimates and y and identical

sets of estimates , T0,... ,T+l.
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II. The Prior Sum Constraint Procedure

Direct Estimation of Polynomial Distributed Lags. Constraining distributed

lag weights such as , , ,T+l, in (1.2) to depend on the corresponding

lag r according to some polynomial expression is a familiar procedure, intended

to reduce the number of independent parameters to be estimated as well as to

enforce a priori beliefs about smoothness.2 The most common method of imposing

polynomial distributed lag constraints is due to Almon ( 1]. In the context

of prior imposition of a sum constraint, however, it is more convenient to work

from what Cooper [ 3] has called the "direct" method. Cooper demonstrated that,

since the two methods differ only by a nonsingular transformation, the cor-

responding sets of estimated lag weights are identical, so that the reason for

using the direct method here is merely a matter of computational convenience.

The Appendix to this paper derives procedures, based on the Almon method,

which are equivalent to the procedures derived in this section using the

direct method.

For a generalized distributed lag term like (1.2), the direct approach to

imposing polynomial constraints on the lag weights &, r=O,... ,T+l, represents

these coefficients in the form

Q+l
, T0,. .. ,T+l, (2.1)

'r

where Q+l is the degree of the polynomial, and the A.., j=O,... ,Q+1, are the

fixed parameters to be estimated. Substituting (2.1) into (1.2) yields

Q+l
x = Z X.Z. (2.2)
t j=oJJt

where
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T+l

E TZtT j=O,... ,Q+l.
r=O

In the simplest polynomial distributed lag models, variable in (1.2)

is observable, and the problem is to estimate (1.2) directly, constrained

only by the polynomial pattern of the lag weights. Ordinary least-squares

regression, with x as the dependent variable and the distributed lag in the

form (2.2), yields an estimate A. for each A., j=O,...,Q+l, together with the

respective variances and covariances of these estimates. Corresponding

estimates of the distributed lag weights themselves follow directly from

(2.1) as

Q+1
= I X.T , t=O... .. ,T+l. (2.3)

I

The variances and covariances of the distributed lag weight estimates follow

as

Q+1Q+]. .

cov(5, 5,) = I I cov(A., A.,), t,T'O,... ,T+1. (2.4)
j=O j'=O

Imposing zero constraints on particular parameters of the polynomial

distributed lag (typically or T+2 , or both) is also common and is

straightforward. For example, the constraint

T+2 = (2.5)

implies from (2.1)

Q+1
I A.(T+2) = 0 . (2.6)

j=O

To impose this constraint, it is necessary to solve (2.6) for any one of the

A., j=O,... ,Q+1. For A0, for example, the solution of (2.6) yields simply
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Q+l
X0 = — E A.(T+2) . (2.7)

j=l

Substituting (2.7) into (2.2) yields

Q+l
x = Z X.z (2.8)

t j=lJJt

where

—
(hI+2)JZot

Ordinary least—squares regression, with x as the dependent variable and

the distributed lag in the form (2.8), yields estimates A., j1,... ,Q+l,

together with their respective variances and covariances, and the estimate of

A0 follows from (2.7) as

Q+l
A0 = E

j=l

The distributed lag weight estimates , T=O,...,T+l, again follow from (2.3).

The variances and covariances of these estimates again follow from (2.4), where

Q+l Q+l ..,
var(A0)

= Z Z (T+2) cov(A., A.,)
j=l j'=l

3 3

Q+l
cov(X0, A.) = E (T+2)3 cov(A., A.,)

j'=l

Imposing the Prior Sum Constraint. As Section I explains, when the equa-

tion to be estimated is (1.1) instead of (1.2) -- for example, if x is

unobservable -- it is useful to impose, in addition to the polynomial con-

straint (2.1) and the zero constraint (2.5), the suzu constraint (1.3). Further—

more, following Sims' [14] suggestion, in many circumstances it is appropriate

to exclude the leading lag weight from the polynomial constraint, which

then becomes
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Q+l
= E , r=0,... ,T, (2.1')

while still including 6 within the sum constraint (l.3).

Substituting (1.3) into (2.1') yields

Q+l

+ (T+l)A0 + 41A1 + E 4.A. = 6 (2.9)
j=2

where

T
E E , j=1,... ,Q+l
T0

and substituting (2.5) into (2.1') yields

Q+1 .

Z A.(T+l) = 0 .
(2.6

j=oJ

To impose jointly the full set of constraints, it is sufficient to solve (2.9)

and (2.6') for any two of the A., j=0,... ,Q+l. For A0 and A1, for example,

the solution of (2.9) and (2.6') yields

A = + + ix. (2.10)

Q+1
= — + n' 6 + En'A (2.11)

where

T+1
111 — — (T+l)2

.(T+1)
= [ - (T+l)][ 2' j=2,...,Q+l

— (T+1)
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[1I-1 (T+l)]

+1

+ .(T+1)]
11 = — j2,... ,Q+1

Substituting (2.1') into (1.2) yields

Q+l
x = z + A,Z (2.12)t ot =0jjt

where

zt T=OtTl
j=0,... ,Q+l

and substituting (2.10) and (2.11) into (2.12) yields

Q+1
x = +

(St5o)Zt ÷ ZX.Z' (2.13)

where

zt — n1z0 — njz1

Z' E + + , j=2,... ,Q+1

Nonlinear regression, with x in the form (2.13) replaced by (x - 6Z)
on the right—hand side of (1.6), yields estimates and A., j=2,...,Q+1,

together with their respective variances and covariances, as well as estimates

and y. Estimates A0 and A3 then follow from (2.10) and (2.11) as

- Q+1
A = — Ti cS + r d + E n.A.
0 1 10 j=2

- Q+l
A1 = — nj +

nj60
+ Z nA

j=2
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and estimates of the remaining distributed lag weights follow in turn from

(2.1') as

Q+l
= Z A.r , (2.14)

3=0

Hence imposing the sum constraint prior to estimation, in the manner of (2.9)-

(2.14) yields only a single set of lag weights for the two appearances of the

distributed lag in (1.6). The variances and covariances of the distributed

lag weight estimates follow from

Q+1Q+]. •, -.

cov(S11,1) = E E rr' cov(A,, A.,) , T,r'=O,. ..

j=0 j =0

Q+l.
cov(sois+i) = cov(50, A.) , r=0.. ..

where

2 Q+1
var(A0) = (r)1) .var(c50) + E r. cov(50, A.)

Q+1 Q+1
+ E E r.n,, cov(A., A.,)

j=2 j'=2

2 Q+l
var(A1) = (ni) var(d0) + 2njEn cov(c50, A.)

Q+1 Q+1
+ Z E ri'n'., cov(A., A.,)

j=2 j'=2

Q+1

cov(A0, A1) = fl1fl.var(50) + .2(nn + njn.) cov(t50, A)

Q+l Q+1 -.

+ E E n.n, cov(A., A.,)
j=2 j'=2
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Q+l
cov.0,A.) = 1cov(0,X.) + En., cov(A.,X.,) , j=2,... ,Q+l

Q+l

cov(X11A.) = ri•cov(501X.) + E r cov(A.,X.,) , j=2,.... ,Q+l
j =2

Q+l
cov(50,X0) = 1•var(c50) + E i. cov(601X.)

Q+l
cov(601X1) = '.var() + n cov(501A.)

j=2

In all cases considered here, it is of course possible to use and

var(cS0) to test directly the null hypothesis that the (free) leading weight

is zero. If = 0, the procedure developed above is still valid for the

remaining weights , r=l,... ,T+l. All that is necessary is to set = 0

in (2.13) and to re—estimate the equation accordingly. All estimates, vari-

ances and covariances follow as before, with &, var(50) and all covariances

of with the other estimated parameters simply set equal to zero.

In sum, the estimation procedure based on nonlinear regression using the

substituted form (2.13) for the distributed lag variable x in (1.2) yields

lag weight estimates , r=0,...,T+l, which satisfy the sum constraint (1.3),

the zero constraint (2.5) and the polynomial constraint (2.1) or the equivalent

(2.1') which omits the leading lag weight. In addition, the procedure not

only identifies the coefficients 8 and y in (1.6) but also constrains the

individual lag weights to be identical in both appearances in (1.6) of the

distributed lag variable



III. An Illustration

An example may serve to illustrate the application of the estimation

procedure derived in Section II. An analysis of corporate financing behavior

by one of the authors [ 7] modeled nonfinancial business corporations' net

new issues of long—term bonds by combining the familiar linear homogeneous

model of portfolio allocation, applied to the selection of liabilities to

finance externally a given cumulated deficit requirement,5

= ÷ + • , i1,... ,N, (3.1)

with the optimal marginal adjustment model of portfolio adjustment out of

equilibrium,6

= E e.k(xkDl - ,t-l + , i1,... ,N, (3.2)

where

i=l,... ,N (3.3)1

and

il,... ,N = the borrower's desired equilibrium amount of the
i—th liability outstanding at time period t
(Z L = Dit t
1

= the borrower's total cumulated external deficit
at time period t

rk? k1,.. . ,N = the expected "borrowing-period" yield on the k-th
liability at time period t

h=l,... ,M = the values at time period t of additional variables
which influence the allocation of the portfolio of
outstanding liabilities

1
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L.ti i=l,.. . ,M = the borrower's actual amount of the i-th liability
1 outstanding at time period t (E L.t = D)

and the 8ik' 1ih' 71, and e.k are parameters satisfying the relevant adding—up

constraints specified in Brainard and Tobin [ 2].

Any rk or q variable which influences the determination of the equili-

brium allocation ratios in (3.1) therefore appears twice in (3.2), in nonlinear

form both times. Expanding (3.2) after substituting (3.1) for the

i=l,... ,N, indicates that the coefficient of each resulting (rkD) or

term consists of a single parameter ik or 1ih which, from (3.1), is

presumably of known sign a priori. By contrast? the coefficient of each

resulting (rkD_l) or (D1) term is a sum of products of parameters from

(3.1) and (3.2) and is in general of unknown sign a priori; nevertheless,

since these terms do appear in the model specification, it is inappropriate to

impose the assumption that their respective coefficients are zero by eliminating

them from the estimated equation.

The equation developed in [ 7] for net new issues of long—term bonds of

nonfinancial corporations follows (3.l)-(3.3), introducing three yield

variables and four non—yield variables in (3.1). The three yield variables,

in particular

rB

are

= the currently prevailing yield, at time period t,
on new issues of corporations' long—term bonds

= corporations' expectation, at time period t, of the
average future yield on new issues of their

long-term bonds

= corporations' expectation, at time period t, of the
average current and future level of yields on their

short-term securities
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and the unobservable and r variables are in turn modeled as autoregressive

distributed lags as in (1.2). Hence the estimated net bond issues equation is

analogous to expression (1.6) in that the distributed lag variables each appear

twice, in two separate independent variables. Since the expectation in the

(r1D) term is the same as that in the (rDi) term, it is necessary to use

some procedure like that developed in Section II in order to constrain the

individual distributed lag weights defining to be identical in the two

terms. The same requirement applies to the two appearances of

The result of estimating this expression, using quarterly U.S. data for

l960:I—1973:IV, is

= 1.837 D — 5.382 r D + 0.04167 r D
(4.8) (—6.2)

Bt t Bt t—l

+ 4.732re D — 0.03886 re D + 0.4046 re D
(6.0)

Bt t
(—4.1)

Bt t—l
(3.0)

St t

+ 5.600 — 5.331 — 0.2579
(2.7) (—3.0) (—1.7)

+ 0.6239 q D — 0.07134 B + 0.07889 S

(3.6)
4t t

(—4.8) (2.6)

= 0.95 SE = 303 H = —1.28

where
8

Bt = corporations' outstanding amount of long—term bonds

= stock of fixed investment

= average retained earnings

= inventory of bond dealers

= equity retirements

S = corporations' outstanding amount of short—term liabilities
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= coefficient of determination, adjusted for degrees of
freedom

SE = standard error of estimate (in millions of dollars)

H = Durbin's [ 5] H—statistic

and the numbers in parentheses are ratios of estimates to standard errors

for each coefficient.

All estimated coefficients in the bond issues equation which correspond

to single parameters of (3.1) have the signs expected a priori. With two

exceptions, the coefficients of the nonlinear terms involving Di did not

significantly differ from zero, and so these terms are eliminated from the

final specification of the equation. In particular, the (rtD_i) term is

eliminated, thereby avoiding the need to constrain the distributed lag

weights defining r to be identical in twO separate terms. Imposition of

the sum constraint (1.3) after estimation of the equation is sufficient to

identify both the associated = 0.4046 and the set of lag weights.9

By contrast, both (rBDl) and (rDti) have coefficients significantly

different from zero, and the presence of (rD_i) along with (rD) leads

to the need for the prior sum constraint procedure developed in Section II.

The distributed lag expression for in both of the appearances of in

the estimated equation, is10

12 12

ô0
= 0.1397 = 0.1251 = 0.03398

l 0.1636
iS.

0.1034 S = 0.01474

2 = 0.1568 6 = 0.07992
c510

= 0.000124

S3
= 0.1517

57
= 0.05624 =—0.008271

12 =—0.008846.

erBrB t B,t—tTO
=tT0

1
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Following the discussion in Section II, the estimation procedure constrains

T=1,... ,12, to follow a third-degree polynomial with the implicit t513 =0,

and leaves free of the polynomial constraint but still includes it within the

sum constraint.
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IV. Summary

The procedure for distributed lag estimation developed in this paper is

useful when two separate independent variables, in an equation to be estimated

by least-squares regression, both contain the same distributed lag. The

procedure, which involves the prior imposition of a restriction on the sum of

the relevant distributed lag weights, serves not only to identify the coef-

ficients of the two nonlinear independent variables but also to constrain

the individual distributed lag weights to be identical in the lag's two

appearances in the estimated equation. In addition, this prior sum constraint

procedure is especially convenient in the context of polynomial distributed

lags with the leading lag weight left free of the polynomial constraint.



—18—

Appendix

Estimation of Polynomial Distributed Lags using the Almon Method. The

Almon approach to imposing polynomial constraints on the lag weights S in

(1.2) represents these coefficients in the form

Q+l
cS = E '.(r) , r=O,...,T+l , (A.l)

j=oJJ

where Q+l is the degree of the polynomial as in (2.1) ; the j0,.. . ,Q+l,

are the fixed parameters to be estimated, and the '.(r) are values of

Lagrangian interpolation polynomials given by

(t—t0) (t—t1)... (r_T_1) (rT÷1)... (T_TQ1)
j -

(rr0) (t_t1)... (r_'r1..1) (T_r1)... (rj_TQ÷l)
where the t.,j=O,.. . ,Q+l, are arbitrary values along the polynomial lag

structure.

For T,=j,J=O,. .. ,Q+1, the Almon approach reduces to the direct approach

of Section II, and, in general,

= 1 , j=O,...,Q÷1 , (A.2)

= 0 , jj',j,j'= O,...,Q+l . (A.3)

Substituting (A.1) into (1.2) yields

Q+l

x = E (A.4)
j=0

where

T+l

w. Z .(T)z , j=0,...,Q+l

Ordinary least-squares regression, with x as the dependent variable and

the distributed lag in the form (A.4), yields an estimate ij. for each

1
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,Q+l, together with the respective variances and covariances of

these estimates. Corresponding estimates of the distributed lag weights

themselves follow directly from (A.l) as

Q+l
= E ..(t) ,

j=O

The variances and covariances of the distributed lag weight estimates follow

12
as

Q+1Q+l -.

cov(ST,Stt)= Z E

j=Oj'=03
t,T'O,... ,T+l . (A.5)

From (A.l)-(A.3), it follows that imposing the zero constraint in (2.5)

is equivalent to selecting

+1
= T+2 (A.6)

= (A.7)

Hence it is possible to rewrite the lag coefficients, conditional on (A.6), as

Q
=

, t=O,...,T+l ,
(A.8)

j=O

thereby deleting all terms involving

Estimation in this case proceeds as before, upon the substitution of

(A.8) into (1.2).

Imposing the Prior Sum Constraint. To impose the constraints in (A.U,

(2.5) and (l.3),while leaving the leading lag weight free of the polynomial

constraint, it is useful to represent the remaining lag weights included in

the polynomial lag as
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Q+l

r+l
= E 4i•.(r) ,

j=O

so that imposing the zero constraint (2.5) is then equivalent to selecting

= T+l (A..6')

in conjunction with (A.7). Hence it is possible to rewrite the lag weights

included within the polynomial lag structure, conditional on (A.6'), as

Q
= E , (A8')

j=0

Substituting (A.B') into the sum constraint (1.3) yields

T Q -+ E E = . (A.9)
r=0 j=0

To impose the sum constraint, it is necessary to solve (A.9) for one of the

,j—O,... ,Q, or for For 50, the solution to this problem is straight-

forward and is applicable using most currently available standard polynomial

distributed lag estimation programs. For tS = 0, the procedure is computationally

more difficult, so that it is most convenient to rely on the direct approach

of Section II.

For solving (A.9) for yields

- T Q

5çj
= 6 — E E ct.(r) . (A.lO)

t=O j=0

Substituting (p.8') and (A.10) into (1.2) yields

Q

xt =
Szt ÷ E

j=0

where
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T
W' = E —z
jt j''t—t—l tT0

The simplicity of this result is readily apparent. The procedure imposes

both zero and sum constraints on a polynomial lag structure, with free of

the polynomial constraint, simply by representing the equation with

T

x = + E s÷i(zt_i_zt) (A.1l)

substituted for x in the form (l.2),and using a standard polynomial distributed

lag estimation procedure to constrain the right-hand tail of the lag structure

to zero. The leading lag weight is readily computed from the sum of the lag

coefficients +l' t=O,...,T, in (A.ll):

T
o = — (A.12)
0

t=0

and the variance of follows as

T
var(00) = var( E 0+1) (A.13)

T0

Hence (A.l2) and (A.13) facilitate testing directly the significance of

If the leading lag weight '5c is constrained to equal zero, however, it is

necessary to solve (A.9) for some other parameter, thereby complicating the

computational aspects of the estimation and rendering the direct approach of

Section II substantially easier to implement. Solving (A.9) for iP, for

example, yields

0 00 1
T

= — — E . E .(T) , (A.l4)
j=l T0
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where

T
E Z t) ,

T0

and imposing the constraint = 0 then involves simply deleting the term in

from (A.14). Substituting (A.8') and (A.l4) into (1.2) yields

=
60zt +

— + Z4,. (W — E. (r)W) , (A.15)

where

W E , j=0,...,Q

The analog of this expression in the direct approach is (2.13). The estima-

tion procedure based on (A.15) is more difficult to implement than that based

on (2.13) because of the greater complexity of the '.(t) in (A.8') in

contrast to the in (2.1').
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Footnotes

* The authors are, respectively, Associate Professor of Economics and Graduate
Student at Harvard University. They are grateful to Gary Chamberlain and
Zvi Griliches for helpful discussion, and to the National Science Foundation
and the National Bureau of Economic Research for research support.

1. The most familiar such constraint in expectational models is d = 1, which
implies that the autoregressive expectation defined by (1.2) is formed
on the assumption that the process generating z is borderline stationary!
nonstationary -- i.e., any level of z which has persisted for T+l time
periods is expected to persist indefinitely. For criticisms of the use
of a unit sum constraint, see Lucas (10] and Sargent (12].

2. For additional reference, see Jorgenson ( 9] and Griliches [ 8]. Shiller's
[13] procedure meets these two objectives in a somewhat different way.
Beliefs about smoothness are especially prevalent in the context of lags
representing autoregressive expectations.

3. Freeing the leading lag weight from the polynomial constraint is computa—
tionally trivial in the absence of the sum constraint.

4. It is clear that this procedure based on a prior sum constraint on the
distributed lag weights is not the only way to accomplish these objectives.
A prior constraint on the ratio of and y in (1.6) for example, would
facilitate achieving the same purpose by simply imposing the lag weight
sum constraint after the nonlinear estimation of (1.6) in the form

= ct + 4 (-)q]x + Ut

with prespecified ratio (y,/). Imposing the lag weight sum constraint
before the estimation has the advantage, however, of requiring no further
restrictions such as a prespecified ratio of and y.

5. See de Leeuw [ 4] for a discussion of the rationale behind the familiar
linear homogenous model of portfolio allocation.

6. See Friedman [ 6] for a discussion of the rationale behind the optimal
marginal adjustment generalization of the standard stock adjustment model.

7. The equation is estimated using an instrumental variables procedure,
because of the joint determination of Bt and rB. For a detailed

description of the estimation process and an evaluation and interpretation
of the results, see Friedman [ 7].

8. See Friedman [ 7] for a more detailed description of the data and variable
definitions (especially

9. The distributed lag defining is
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17 17er = E.r E6 =1.St t S,t—rr=1 r=1

The estimation procedure constrained , r=2,... ,17, to follow a third-
degree polynomial with the implicit = 0, and left free of the

polynomial constraint but still included it within the sum constraint.
(Initial experimentation could not reject the hypothesis = 0.) The
lag weights (which exhibit a pattern strikingly similar to that reported
by Modigliani and Shiller (11] in their reduced-form equation which also
includes a distributed lag on past levels of the short-term yield as a
proxy for expectations of this yield's future level) are —.1657, .06996,
.08212, .09451, .09691, .09998, .1005, .09861, .09462, .08873, .08115,
.07212, .06186, .05060, .03855, .02596, .01303. The standard error ratio
for is -2.0, and the F—statistic for the two polynomial variables

jointly is 5.7.

10. Note that, since the first—differences representation of implies the
presence of rB with unit coefficient, the identification problem of

Section I would not arise in this equation if rB were not already an
argument of the bond issues function. The analysis in [ 7] exploits this
relationship to test whether the -5.382 coefficient on rBD is

esignificantly different from the 4.732 coefficient on rBD
by re-estimating the equation with rB eliminated from the expression;

the resulting coefficient on r5D (which is then, of course, —0.650 =

—5.382 + 4.732) does turn out to be significantly different from zero at
high confidence levels.

11. The standard error ratios for and the two polynomial variables are,
respectively, 6.6., —3.5, and 4.1.

12. To avoid needless repetition from the body of the paper, the discussion
below of the estimation procedure in the presence of the zero and sum
constraints does not derive the variances and covariances of the
r=0,.. . ,T+l; these follow, in each case, from estimating the variaces
and covariances of ji., j=0,...,Q+l, and substituting into (A.5).
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