[}

It}

NBER WORKING PAPER SERIES

SOLVING SYSTFMS OF NONLINEAR EQUATIONS BY

BROYDEN'S METHOD WITH PROJECTED UPDATES

David M. Gay*

Robert B. Schnabel**

Working Paper No. 169

COMPUTER RESFARCH CENTER FOR CCONOMICS AND MANAGEMENT SCIENCE
National Bureau of Fconomic Research, Inc.
575 Technology Square
Cambridge, Massachusetts 02139

March 1977

Preliminary

NBER working papers are distributed informally and in limited
numbers.

This report has not undergone the review accorded official NBER
publications; in particular, it has not yet been submitted for
approval by the Board of Directors.

*NBER Ccmputer Research Center. Research conducted in part during
a visit to the Atomic FEnergy Research Establishment, Harwell,
England, and supported in part by Mational Science Foundation
Grant MCS76-00324 to the National Bureau of Economic Research, Inc.

**Computer Science Dept., Cornell University. Research conducted in
part during a visit to the Atomic Energy Research Establishment,
Harwell, England, and supported in part by a National Science
Foundation Graduate Fellowship.




r

I

r

Abstract

We introduce a modification of Broyden's method for finding
a zero of n nonlinear equations in n unknowns when analytic
derivatives are not available. The method retains the local
Q-superlinear convergence of Broyden's method and has the addi-
tional property tihat if any or all of the equations are linear,
it locates a zero of these equations in n+l or fewer iterations.
Limited computational experience suggests that our modification

often improves upon Broyden's method.
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1. Introduction

This paper is concerned with solving the problem

given a differentiable F : R - r" ,
(1.1)
find x* ¢ R" such that F(x*) = 0
when derivatives of F are either inconvenient or very costly to campute.
We denote the n camponent functions of F by
£, RP> R i=1,...n
afi
and the Jacobian matrix of F at x by F'(x), F'(x)ij= s (%)
J
When F'(x) is cheaply available, a leading method for the solution
of (1.1) is Newton's method, which produces a series of approximations
{Xl'xz""} to x* by starting from approximation x, and using the
formula
- ! =
Xi01= % - F'(x)) lF(xi) : (1.2)

If F is nonsingular and Lipschitz continous at x* and X is

sufficiently close to x*, then the algoritim converges Q-quadratically to

x* - i.e., there exists a constant ¢ such that ||xi+l

-xl] 2 e flxg - x|
/] (c.£. §9.1 of [Ortega & Rheinholdt,

for all i and same vector norm

1970)). If F is linear with nonsingular Jacobian matrix, then X = x*.

When F'(x) is not readily available, an obvious strategy is to replace
F'(x;) in (1.2) by an approximation B;. This leads to the modified Newton

iteration



. ol
Xiq] = %3 7 BT Filxy)

Bj+1 = U(By)

where U 1is some update formula that uses current information about F.
Broyden [1965] introduced a family of update formulae U known as
quasi-Newton updates. He also proposed the particular update used in
"Broyden's method", which we consider in more detail below. If x o is
sufficiently close to x*, the matrix norm of By - F' (xo) is sufficiently
small and several reasonable conditions on F are met, then Broyden's

method converges Q-superlinearly to x* —i.e.,

{0 = 0 [Broyden, Dennis & Moré, 1973]. However for

linear F, convergence may take as many as 2n steps—and B, - F'(x*)

2n
may have rank n-1 ‘(see (Gay, 19771).

In this paper, we introduce a new method of form (1.3) using an update
(1.3b) which is different from but related to Broyden's update. Our new
method is still locally Q-superlinearly convergent under the corditions for
which Broydens method is. It has the additional property .that if F is
lirear with nonsingular Jacobian matrix, then x; = x* for some i < nt+l, and
if k+l iterations are required ,then Bk+l - F'(x*) has rank n-k.

Initial tests show our method to be somewhat superior in performance to

Broyden's method.

(1.3a)

(1.3b)



The basic idea behind our new method is related to one originally proposed
by Garcia-Palamares [1973]. Davidon [1975] used this idea independently
in deriving a new method for the unconstrained minimization problem,

min f(x) £ .

X ¢ RN ! > R

Davidon also modified an existing update formula to produce a quasi-Newton
method which does not use exact line searches but is exact on cuadratic
problems. This new method has been an improvement in practice. While it
has not vet been shown to retain the local supecrlinear convergence of 11 ué
method it modified, Schnabel [1977] uses the techniques of this paper to show
that a very similar modification retains Q~superlinear convergence as well
as the properties of Davidon's [1975] method.

In Section 2 we briefly describe Broyden's method and the important
features of cuasi-Newton methods. We then introduce our new algorithm in
two forms: Algorithm I, a simplified version which is sufficient to dis-
cuss its basic and linear properties, and Algorithm II, the version used in
practice and to prove local superlinear convergence. We also derive the
basic properties of our method which we will use in subsequent sections.

In Section 3 we discuss the behavior of our algorithm on linear problems.
We show that if any or all of the equations fi are linear, then our new
algorithm will find a zero of these equations in n+l or fewer iterations.
We also discuss the effect of a certain restart procedure on our algorithm.

In Section 4 we show that our new method is locally Q-superlinearly con-
vergent on a wide class of problems. We discuss our computational results in

Section 5 ard sumrarize our results in Section 6.




Henceforth, ||-|| will denote the L, vector norm

n 1/2
(lvll = (z V?.) / for v= (v ,...,vn)T

i=1

e R® or the corresrcnding

matrix nom, while ||-]|, will dencte the Frobenius matrix norm:

F

n n " 1/2
llp= 2z mi) for M= (m,,) ¢ RV
i=1 =1 I H

l



2. The New Method

Quasi-Newton methods are often damped: they take the form

=¥, - A.B.7 F(x) (2.1a)

B,y = UGBy (2.1b) -

where the damping factor xi > 0 1is chosen to promote convergence from
starting points Xy which may lie outside the region of convergence of
the corresponding direct prediction method (1.3). When it leads to a
"successful" step, e.g. reduction of ||F||, the choice X, =1 is

usually preferred.

Broyden's ("good") method is a method of form (2.1), using the update

ecquation
(y; = B;s;) s;
_ i ici’ i
Bi+l = Bi + T ' where (2.2)
S, S
i~i
si = Axi = Xi+l =X o » (2.3a)
Because of equation (2.2), Bi+l satisfies Bi+l Axi = AFi . Since

for small Axi ' F'(xi+l) Ax; = AFi , we expect that Biv1 resembles



F' (xi +l) in the direction of our last step. Since we have no other

infarmation which would help approximate F'(x. it is reasonable

1+l) !
to change Bi_ which hopefully approximates F! (xi)—-as little as

possible consistent with B, ., Ax. = AFi. This suggests the rank one

i+l i
change
T
(y: = B, s.:) V.
i 171 i
B, =B, + (2.4)
i+l i v? s ’
171

IT!
for any vector v, eR® such that vi S; # 0. The choice Vi =s;

which yields Broyden's method, minimizes the ¢

4

5 ©Or Frobenius ncxrm (the

2, norm of the elements) of (Bi +1 ~B;) over all possibilities (2.4) (Dennis
and Moré, 1977].

Broyden defined quasi-Newton methods to be those of form (1.3)
which satisfy the "quasi-Nawtcn" equation,

B (2.5)

. . S, =Y.
i+1 Si T Y

in their attempt to build Jacobian approximations. Broyden's method, with

intelligent choice of )‘i in (2.13) ,has been the most successful quasi-Newton
method for solving systems of nonlinear equations.

It is interesting to campare Newton's and Broyden's methods on
linear problems where F (x)= AX+ b and A is nonsingular. Whereas
Newton's method (1.2) yields X; = x* for i 21, Broyden's method

may require 2n direct prediction (A i = 1) steps to produce the exact



solution [Gay, 1977]. 1In part this is because Bi may never ecqual A, even
though F' (x) = A for all X, . We can easily see why this may be so. After

one iteration we will have Bl Sy = Yq (=2 S, for a linear problem); after

the next iteration we will have }32 S =¥ (= A sl) , but not in general

B2 Sy T Y5+ At each step we introduce into Bi +1 our most current information

about A; but in doing so we destroy other good information about A learned
through previous iterations. Therefore we will never have Bi = A, sO the

. . -1 .
lteration xi +l= xi - Bi F (xi) rmay take twice as many steps to converge as

might seem necessary.
From the preceeding analysis, we are interested in finding an update

equation which, while giving Bi +1 5§ T Y50 also retains Bi +1 sj

j < iand Bi sj = yj. Note however that for any formula of form (2.4),

= yj whenever

Bi +1 Sj ¥ ¥;7 we can retain old information by our choice of v, ¢ if
Bi sj = vj anc v'jI_‘ sj = 0, then Bi+l sj = yj. These considerations lead to
our new algorithm, given in simplified form as Algorithm I below.

We choose our update at each iteration to be the Bi +1 which minimizes
the Frobenius norm of Bi +1 Bi among all Bi +1 satisfying
Bi+l S; =Y, and (Bi+l - Bi) sj =0 for all j < i. In Theorem 2.1 we show
that the unique solution to this problem is given by update (2.4) with vy the
projection of s; perpendicular to gll the sj 's, j < i. The proof is similar
to Dennis and Moré's [1977] proof that Broyden's method is the least-change

update among a11'Bi+ satisfying B,

1 i+l 51 T Y-




Theorem 2.1 Let B ¢ R and s, Y be NCn-zero Vectors e R"

with Bg#y. let Z be an m dimensional subspace of R", m<n.

Then for ||:|]; either the 2, or the Frobenius nom, a
solution to
min {||B - B||([Bs =y, (B - B)z=0 for all z € z} (2.6
is
. (y - Bs) v'
B=B+ ,
VTS

where v is the orthogonal projection of s onto the ofthogonal camplement

of Z, i.e.,

T
m sz,
v=g5 - 1 z.

. i
=] 2.2,
L i1

with (zl,... ,zm) an orthogonal basis for Z. The solution is unique in
the Frobenius norm.

Proof: let S={§|1;s=Y, (B=-B)z=0¥% z¢e2}. Now §s=y;\
and since szi=0 for i=1,..., m, VTz=0 for all z ¢ Z.
Thus B € S.

Now consider any BeS. Since y=Bs,

~  __ (B-B)sv'

VTS




j=s-v. Since d € 7 and v is perpendicular to Z,

T -—
v-d= 0. Thusvs=vTv. Since (B - B) z

0 for all z € Z, (B ~ B)d = 0,

- _ , R - T
so (B - B)s = (B - B)v. Therefore (B - B) = {B-B)wv

I, , so for [[-]] the %,
or Frobenius norm,
A - WT —
18 = Bll, < 1B - Blly S]] = |18 - 8]l
v'v
Thus B is a solution to (2.6). It is the unique solution in the Frobenius
norm because the function &: R " + R given by &(B) = ||B - B IF is
strictly convex over all B in the convex set S. [
Algorithm I
Let x_ € r", B, € R™, r : R™ > R” be given.
For i=0, 1, 2,...
n . _ -
Choose nonzero S; € R (likely s; = }‘iBi J'E'(xi))
Xiv] =% + s; (2.7a)
1f F(xi+l) = 0 then stop
Yy = F(xi+1) - F(xi) (2.7b)




=10~

i-1 8, s.°%
0;= I I (2.7¢)
i=0 S. S.
J i ®3
§l=si-Qisl 12.72)
T
(y;, = B;s.) s,
Bj,g = B + ——— g | (2.7e)
S. S
1 1

Algcritim I is unsuitable for camputer inplementation for several

reasons—-rmost inportantly. if i > n, then §i will be zero vector. However,

it is sufficient for deriving the basic properties of our algoritim (for
general functions F) in Theorem 2.2 below; and is also sufficient for dis-

cussing the behavior of our algoritim on linear problems in Section 3.

We use the notation <a,b> to denote the scalar product

ab= Zaib. ,a,stRn.

Theorem 2.2 Given X, € JRn, Bo S ]Rnxn, F: R® ~ JRn, let the sequences
{so,...,si}, {yo,...,yi}, {BO,...,Bi+l} be generated by Algoritim I.

Define Sgree+18; @S in Algoritim I and let yj = yj - Bijsj, j=20,...,i.

Then at each iteration i, if so,‘...,si are linearly independent, then Bi+l

is well defined and




-11 -

<;i’ ;k> =0 k=0,..., i-1 (2.8a)
<;i, s> =0 k=0,..., i-1 (2.8b)
<;i’ s;> = <§l, §i> (2.8c) )
Bi1 S, = Yy k=0,..., 1 . (2.8d)
B/ ;kz;k k=0,..., 1 . (2.8e)

Proof It is straightforward to prove (2.8 a-d) by induction. In
view of (2.8a) and (2.7e), it suffices to consider k = i in (2.8e).
Using (2.7e), (2.8¢c), and the definition of §i, we find

~

B. . = ) ., + - B. .
i+l SJ. Bl sl (yj_ Bl SJ.)

. + - B, Q. s.) - B. ., = Q. s.
Bi 5§ (yi Bl Ql sl) Bl (sl Ql SJ.)

A A ~ A
= B. s, +vy, -B, 5. =v.
171 Yl i7i YJ. !

so that (2.8e) holds for k = i. ]

~

Theorem 2.2 shows that we are selecting S; in Algorithm I to be
orthogonal to all previous steps‘ Sy j<i, so that we do not disturb
information contributed by previous quasi-Newton equations. The equations
(2.8e) can be thought of at each iteration as the part of the quasi-
Newton equation giving information in the subspace where previous

iterations gave none.
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Note that if B; and B, are nonsingular, then (2.7e) is equivalent to

-1 - -1
-1 - (s. =B, ~y.) s: B
Bip] = By 1,74 i 11 i1 (2.9)
~ T -
Si By Y3

Therefore if B, is nonsingular and <Sj’ Bj—l yj> #0 for0<j<i, then

...l . .
Bi+l exists, 1.e., Bi-i-l

is nonsingular.

We now state, in general form, the version of our new algorithm
which is used in practice and in proving local Q-superlinear conver-
gence. It recognizes that, in general, the projection of S orthogonal
to the subspace spanned by Sqrece ,si_lmust be the zero vector for same

~

i<n. The algorithm therefore "restarts" by setting s, =S if s;

is too small compared to s; (which must happen at least every n steps) .
Theorem 2.2 is still valid if we consider only the vectors S.. ;i’ Yy ;i

generated since the last restart. Since the version of Theorem 2.2

applicable to Algorithm IT is needed in Section 4, it is stated as

Theorem 2.3. The amitted proof is almost identical to that of Theorem 2.2.

Because of the restart criteria, s; is always strongly linearly indepen-—

dent of all sj's since the last restart.

aAlgorithm II
Let xos‘.!Rn, Boemm,F:an*Ir& e >0, <T>1 begiven.
Set 2, =0.
For i=0,1, 2,-..

. _ -1 -
Choose naonzero s, € K (likely s; = =A; B; ~ F (%))
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X, =x, + s, (2.10a)

1f ||F(xi+l) H < € then stop

Y, = F(x,) - F(x,) (2.10b)
i-1 S, 8.t
Q=1 L \ (z.10c)
]=£i_l sj sj
- (2.1924)
If [ls; 1] > 7 |Is; - @ sl : )
then (gi = s, and 2, =1i)
else (si =s; - Qi s. and Rl = zi_l)
(y. - B, s.,) 8,
By =B ¥+ ————= (2.10e)
. S.” s,
i 7i
Theorem 2.3 Given X, € Rr", B, € R™, F. RY>R", €>0, 1>1, let the

sequences {so,...,si}, {yo,...,yi}, {Bo""’Bi+l} be generated by Algorithm

II. Define {go""’gi} as in Algorithm II; let §j = yj if gj = sj and

yj = yj - Bj Qj sj otherwise, j = 0,...,i. Then at each iteration i,

Sg . 1e++sS; are linearly independent, B is well defined, and
i

i+l

<s., §k> =0 k=2 ,.00,in1 (2.11a)

<s., Sk> = 0 k Qi,---,i-l (2.1].b)
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<S,, S.,> = <s,, S,>

i’ 71 i’ 71
Bi+l sk= Y]r. k= SLi,. , 1
Bi+l S = Yy k= SLi,...,l

~

15,11 < tlls,]]

‘i—SLi<n.l

We finally note that the entire subject of quasi - Mewton methods for

nonlinear systems of equations can be approached by directly forming

(2.11c)
(2.11d)
(2.11e)
(2.11£)

(2.119)

approximations Hy to F'(xi) -l, the inverse of the Jacobian matrix of F at x.

In this case we require K S. and can achieve this through the

i+l ¥i T Si
rarik-cne update

for any vector wiemnsuchthat wiTyia-‘O. We have already seen

fram (2.9) that if Bi is non-singular, Broyden's update simply corresponds

=p T_ .
o w; =By 's; in (2.12).

The choice of w; in (2.12 which minimizes the Frobenius nomm of

(H -H,) is w, =vy.. The quasi-Newton method using this update was

i+l i i i
also prcposed by Broyden and is sametimes called "Broyden's bad method”

because it doesn't perform as well as Broyden's method (update (2.4)) in

(2.12)
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practice. However, it has also been demonstrated by Broyden, Dennis, and

Moré [1973] to have local superlinear convergence under reascnable assumptions

on F.

Similarly, we can propose algorithms I' and II', which update
approximations H, to F'(xi)"l, and choose w, in (2.12) to be the
projection of yi orthogonal to (some of) the previous vy j's. For
instance, Algorithm II' would only require replacing (2.l0c-e) with

i-1 o7
Q.' = b ] Yj (2.13a)
1 .
=i 9Ty
3 73

= D>

I |yl > olly; - 9" vl

A

then (yi =y; and Qi = i) (2.13b)
else (yi =Y, - Qi y. and L = gi—l)
H, . =H + (s, - H, v.) g.7 (2.13c)
i+l i i i i 43 .
~ T
Yy Y3

Using Algorithms I' or II' we can prove theorems analagous to 2.2and 2.3;
and we can prove the same convergence results for linear and general
nonlinear functions F as are proven in Sections 3 and 4. (As a matter of
fact, the proofs of Section 3 are then a bit nicer as they never need

assume Bi-'l non-singular). We have tested hoth algorithms II and II'
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in practice, and have found that Algorithm II appears more likely to

converge than II'.
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3. Behavior on Linear or Partly Linear Problems

In this section we examine the behavior of our algorithm on
systems of n equations in n unknowns, some or all of which
are linear. We find that our algorithm will always locate a
zero of whichever of the equations are linear in n+l1 or fewer
iterations. This proﬁérty is not shared by Broyden's method.

Theorems 3.1 and 3.2 examine the Lehavior of Algorithm I on
a cormpletely linear system. In reality we would not expect to
use our algorithm to solve linear equations. However, it is
possible ﬁhat near a solution, a system of nonlinear eguations
may be almost linear--and these theorems then tell us what sort
of behavior to expect.

Theorem 3.1 shows that if Algorithm I is applied to

1

F(x) = Ax + b, A nonsingular, then x; will equal x* = -A b for some

i < n+l; an¢ if n+l iterations are required, then B = A. Follow-
ing Powell [1976], however, we are really more interested in

Theorem 3.2, which shows what happens if we do a restart waile

solving a linear system of equations. This is likely to be the

case if we enter a linear region after the algorithm starts.

Theorem 3.2 shows that we still require at most n+2 iterations -
' +1 may not egual A. i
Theorems 3.4 and 3.5 examine the behavior of Algorithm I

to find x*, but Example 3.3 shows that Bn

when some but not necessarily all of the component functions of
F are linear. This may be the most important case in section
3, as partly linear systems do arise in practice; they may also

approximate the behavior of a nonlinear system near a solution.




-18-~

Theorem 3.4 shows that our method will locate a zero of the

linear components in n+l or fewer iterations--and if n+l itera-
tions are required, then Bn will also agree with the Jacokian ratrix
on the rows corresponding to the linear equations. Theorem 3.5
shows that in this case, subsequent updates by any rank-one

formula (2.4) will not disturb the correct linear information

and as lohg as we take quasi-Newton steps of length one (xi =1

in (2.la)) , we will only visit points at which the linear com-
ponents are zero.

Theorems 3.1, 3.2, and 3.4 are stated for simplicity for
Algorithm I. They are also true for Algorithm II, which we
really use, as long as the algorithm doesn't restart prematurely
(i.e., Ilsill <t |lsy - Qisill in (2.10d) when i = &,_; < n).
Since T is set significantly larger than 1 in practice, we often expect our
theorems to hold for Algorithm II. The conclusions of Theorem
3.5 do not depend on which of the two algorithms we are using.

We denote the subspace spanned by vectors vl,....,vk e R™

nxn

by [Vl,-...,vk]; and the column space of matrix M € IR by

c(M).

n

Theorem 3.1 Let A € R pe non-singular; b € R"; and

F(x) = Ax + b: R+ R"™. Consider Algorithm I acting on F, starting from

any x_ € R" and Eo e R, Ifs ,....,s are linearly inde-

o o n-1
o . _ g "1 ) =
pendent, then B = A; and if s = -Bj F(x ) then F(x,4q) 0.

Moreover, if for some k < n, Sgre e 15ka1 are linearly indepen-

-1 -1

dent, B exists and Bk F(Xk) € [s ,....,sk_l], and if

Sy = -B

k
-1

X F(xk), then F(x
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Proof If Sgree-sS . are linearly independent, then by Theorem
2.2, ani = yi, i=20,...,n-1. Since y; = F(xi+l) - F(xi) = A Sy
we have B.s, = A s,, i =0,...,n-1, so that B = A,
ni i n
If so""’sk-l are linearly independent, then by the same

reasoning as above,Bisi = A S; i=20,...,k-1. Thus if

s, = -p. 1 F(x,) € [s ,...,s ], then B, s. = A s Th f

k k k o' rPk=-14" k Sk K erefore

= - - a1 -

Fxpy) = Flx ) + A s = F(x) + B s, = F(x)) + B [-B = F(x)]

From the proof of Theorem 3.1, we see that if Algorithm II is

D

acting on a linear problem, then after n-m iterations in which

S are linearly independent and no restarts have occurred,

e« e ey

14 s ——
o) n=-m-1

Bn-m will agree with A in n-m directions--i.e., (A - Bn—m) will
have rank m. It is possible--especially if we have entered a
linear region after we began--that we will then do a restart:

A

set sn—m = sn-m and ln—m = n-m. Following Powell [1976], we
wonder if the information from tiese n-m iterations is of help.

In Theorem 3.2 we show that it is: using quasi-Newton steps (l.3a),
we require at most m+2 additional iterations, or a total of n+2, to
locate the zero of F. Our conclusions are not as general as
Powell's for Davidon's [1975] new unconstrained optimization
algorithm, as they do not allow for subsequent restarts or com-~
pletely general steps; however, our conditions should mirror the

behavior of Algorithm II in practice. Also, in our case Examgle

3.3 shows that the full m+2 iterations may be required and that Bm+l
may still not equal A.

0.
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Theorem 3.2 Let A ¢ B*¥!, b ¢ ®R", and F(x) = Ax + Db: RrR® » BT,

Consider Algorithm I started from %, € R ané Bo e R™*" non-

singular with rank (A - Bo) =m > 1. Suppose S; is selected by

_ . -1 . .
s, = }i Bi F(xi) and if s 4 [so,...,si_l], assume B, , is

nonsingular. Then there exists j < m + 1 such that

Proof: We first show that for any update of form (2.4)--one of
which is used by Algorithm I-- that o € [so,...,sj_l] for some
j <m+ 1l. We accomplish this by showing by induction that if

Sqre-+15;3

o -1 are linearly independent, then

-1
s; € [so, C(I - By a)] (3.1)

-1 - -1 -
(si - Bi yi)e c (I Bo A) . (3.2)

For i = 0, (3.1) is trivielly true, and

S, - Bo'l Yo = Sg ~ Bo'l As = (I- Bo'lA) s, € C(I - Bo'lA).
Assume (3.1-2) true for i = 0,...,k. Then
} x;il CSee1 T Ber | FORey) S Bpy  (Flx) + vl
By Theorem 2.2, Bk+l-lyk = Sy and using the inverse form of (2.4) we have
o 1o, Bk il v Ve B, i
k+1 k v T Ly
k “k k
<v., B T F(x,)>
Brer | F %) = By DGy (s - B ¥y <Vk Bk-l :

]
. A
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. -1 _ .1 -1 ,
Since Bk F(xk) = Ak Sy 1 we have sk+l £ [sk, (sk Bk yk)]’

so by the induction hypothesis (3.1-2) for i = k,

sk+l £ [so, C(I - B;lA)], which shows (3.1) for i = k+1. To com-

3 5 1 - -l -
pPlete the induction, sk+l Bk+1_yk+l
k (s. - B. v.) v.T B.-'l
= S - B -l + Z ] J J J Y
k+1 o) =0 v,T B._l k+1
J J J
-1 K -1 vy 5, Yet1”
= Spy1 - B, T ¥+ I (sy -B. Yyl -
k+1 o k+1 =0 J J 37 <y , B. 1 y.>
J J
'Since S - B -1 Yy = (I - B -lA) S and
k+1 o k+1 o) k+1

CHES ¥{) € C (I-B,7'a) for j < k by the induction

hypothesis, we see that (3.2) holds for i = k+1.
Because the subspace [so, C (I - BO—lA)] has dimension at
,...s._l] for some j < m+l. Now

J

Bj S; T Y i =0,...3-1 by Theorem 2.2; and Bj s;{ = A S;r 1= 0,

-+J~1 since F is linear. Therefore Bj sj = A sj, and

-1
F ) } -B. . = .
(x5) + By [-B, F(x5)] = 0 |

most m+l, we must have sj € [sO

F(

xj+l) = F(xj) + A sj

n

Example 3.3. Let F(x) x : R? » m™ (* F'(x) = I), Consider

Algorithm I, with s; = —Bi-l F(xi) started from X, = (l,...,l,2)T
d — -—
an 10 vvvenvnnnns 0
1 1:2
10 ..., 0
B = ‘110...0
° 1017,
N 1°0
10 ...°01




n

with 1 < m < n.

Then rank (I-Bo) = m.
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Algorithm I then

reguires & full m+2 iterations to reach x* = 0, and

rank (I - B = 1,

m+l)

(-1,0,...,0, 'l)Tr

The intermediate wvalues are:

s = s =s_,
(@] (o] (o]
. = (0,...,0,-1, 0,...,00% , s. = s., j=1,...,m1
B —— J J .
j
xy = (Qe..,001, 7T, i=1,...,m,
j
1 {)x(j_l)o ....... O Oy (nom-1) | ©
1/2 1 -1/2
. .
J-'l . : I .
Bj= 0 n-m-1 . ,j-—-l,-.-,m,
- %m0 Ho -1/2
12| ¥3=L) . ..., i| Ix(n-m=1)} 4 5
[T \_—’-Y_\J —
m-j
s = (0,-=1 -1,-2 -7 % .. = (0,-1 1T
m r’ 2 r’ A r’ r’ m+l 14 r’ ! 7
m-1
2 = - - _ L _\T
Sm Sm (So‘“ -+5m_l) (110,---10,1 2/ .oy 2! l) 7
m=-1
_ I T AT
Bo1= By + Trmey=z (0/-Llsee sl 8
_ T, =N-
Therefore sm+l = (0,1,...,1)"; xm+2 0; and

(I - Bm+l)

t =-1/[4(n-m)-2]1. |}

=S 41 (-1/2 - t,0,...,0,2t,...,2t, 1/2 + t), where

We now consider the case when some but not necessarily all

of the component functions of F are linear.

For ease of nota-

tion we assume that the first m component function of F are

linear--however the positioning of the linear functions has

4
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no bearing on the algorithm or the proof. The Jacobian of F

will therefore be constant in its first m rows, and we will de-

C,
note our Jacobian approximetions Bi by [ E£ 1, Ci e IRTED '
' i
D, ¢ Hi(n m) Xn
i
Theorem 3.4 Let A ¢ IR'™*%, 1 <m<n; be Rr"; .
Fl(x) n n n m n n-m
F(x) = : IR"->+1R withFl(x)=Ax+b:]R - R andFZ:ZIR + R .
F,(x)

Consider Algorithm I acting on F, starting from any X, € ®R" and
nxn

BO e IR . If for some k < n, so""’sk—l are linearly incde-
-1 . -1 . :

pendent, Bk exists and Bk F(xk) € [so""’sk—l]’ then the

. _- "l _— : £
choice sk = Bk F(xk) leads to Fl (xk+l) = 0. Furthermore if
so,...,sn_l are linearly independent, then Cn = A,
Proof: Suppose Syr+r+1S,_q are linearly independent and Bk_l
exists. By Theorem 2.2, Bk S, = Yy 0 < i < k-1. Since the
first m components of y; are Fl(xi+l) - Fl(xi) = A s.,, while the

i
equal C, s., we have C, s.= A s.,
k 7i k i i

first m components of Bk S;
0 < i < k~1. In particular, if k = n then this implies Cn = A. More-

. -] . . .
over, if Bk F(xk) € [so,...,sk_l] (which w;ll necessarily hold
for some k < n) and S = -Ek—l F(xk), then this implies

= . -1 _ . .
Ck Sy = A Sy because Ck Bk = [Im . Omx(n—m)]’ we thus have

= — - -l

Fl(xk+l) Fl(xk) + A Sy Fl(xk) Ck Bk F(xk)

Fl(xk) - Fl(xk) =0 . .




n
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Theorem 3.5 Let A, b, F, Fl, F2 be defined as in Theorem 3.4.

IfC, = A and B is defined by (2.4) for any value of Sy (and

k k+1
any vy such that <vk, sk> # 0), then Ck+l = A. Furthermore, if
-1 -1

either s, = -B, = F(x;) or Fy(x,) = 0 and s = “AL By T OF(x ).

then F,(x,,,) = 0. [

Theorem 3.5 shows that once we have correctly obtained the
linear part of the Jacobian as Theorem 3.4 shows we are likely
to do in n iterations, then our quasi-Newton algorithm will not
disturl this information; and whenever we take a guasi-Newton
step of length one, which in practice we usually do on our final

iterations, we will locate a zero of the linear functions.




4. Local Q-Superlinear Convergence on Nonlinear Problems

In this section we show, subject to reasonable conditions

n

on the function F : R - Hln, that if X is close enough to x*

and if BO is close enough in norm to F' (x*) [or F'(xo)], then

the sequence of xi's generated by Algorithm II with s; = uBi—lP%xi)
converges Q-superlinearly to x¥*. Our proof 1leans heavily

on the local superlinear convergence proof of Broyden, Dennis,
and.Moré[1973] for Broyden's method; and on the work of Dennis

anc More [1974] characterizing superlinear convergence.

In Theorem 4.2, we give a general condition under which a
quasi-Newton algorithm of form (2.1) with steplength one will
achieve linear convergence. This theorem amounts to Theorem 3.2
in Broyden, Dennis, Moré [1973] extended to updates using infor-
mation from previous iterations. Lemmas 4.3 and 4.4 show that
the update of Algorithm II satisfies the conditions of Theorem
4.2 along with some further conditions. Using this we show in
Theorem 4.5 that Algorithm II achieves local Q-superlinear con-
vergence. We first state a simple lemma which we will use

several times; its proof follows immediately from §3.2.5 of

[Ortega & Rheinboldt, 1970]. )

n

Lemma 4.1 Let F: R™ +» R™ be differertiakle in the open convex -

set D, and suppose for some x* ¢ D and p > 0, K > 0 that
[F'(x) - F' (x0)|] <K ||x - x*|]° . (4.1)
Then for u, v ¢ D,

| |F(v) = F(u) - F'(x*) (v-u)|] .
< K] |v-u||max {||v-x*||®, ||u-x*||P}- W (4-2)
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Theorem 4.2 Let F : IR® > IR” be differentiable in the open

convex set D, and assume for some x* ¢ D and ¢ > 0, K > 0 that
(4.1) holds, where F(x*) = 0 and F' (x*) is nonsingular. Let
J = F'(x*). Consider sequences {xo, xl,...} c¢f peints in m°

and {Bo, Bl,...} of nonsingular matrices which satisfy

Xpep = X - By T F(x) (4.3)
and
1By = Tllp < 1B = g + @ max {]]x,, - x*11%,
2, = x*1%,..., (4.0)
||xk-q - x*| %)
k=0,1,..., for some fixed o« > 0 and q > €, vlere x, = x_ for

J
j < 0. Then for each r € (0,1), there are positive constants

e(r), 8(r) such that if leo - x*|| < e(r) and IIBO - JIIF < 8(r),

then the sequence {xo,x .; is well-defined and converges to x*

17
with
xpy = 2%l < zllx, - x*]]

for all k > 0. Furthermore,{llBkll} and {IIBk-lll} are uni-
formly bounded.

The proof is so similar to that of Theorem 3.2 of [Broyden,
Dennis, & Moré, 1973] that we omit it. [}

In Lemma 4.3 we show that for ;i’ §i defined in Algorithm II,
asymptotically ||§i - F' (x*) ;i[| is small relative to ||si[[.

This is the key to proving in Lemma 4.4 that the update of Algor-

ithm II satisfies equation (4.4) of Theorem 4.2.
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n n . . .
Lemma 4.3 Let F : IR + IR be differentiable in the open

convex set D and assume for some x* ¢ D and p > 0, K > 0 that

(4.1) holds, where F(x*) = 0 and J = F'(x*) is non-singular.
Consider the sequences {xo,xl,...} of points in R" and {Bo’Bl"”}
of nonsingular matrices in IR XM generated from (xo,BO)
by Algorithm II with s; = -Bi_l F(x;) for all i. rLet §i be defined
as in Algorithm II and §i as in Theorem 2.3. Then
. . i—Ri-l i—Ri
||yi -3 s;|] < max {1, 1 } 2 K llsi|l m., where (4.5a)
_ P p |
mi = max {]lxzi - x*ll ,...,|lxi - x*,, ’ Hxi+l - x*,lp} . (4.5b)
Proof. The proof is by induction. For i = 0, §o = sS4 and
Yo = ¥gis0 |13 -3 s |1 = [lyg = 3 s ll, which is < K| [s | |m_ by

Lemma 4.1 with v = xl, u = x

since 20 = 0 by Algorithm II.

0" Thus for i = 0 (4.5) is true,

Now assume (4.5) holds for i = 0,...,k-1. For i = k, if

k= Rk, then yk=yklsk= Sk,and Ilyk‘Js

| A

1< Kl [sy | [my by

Lemma 4.1, so we are done. If k > Rk,then

yk - J sk = yk - Bk Qk sk - Jd sk + J Q, s

“k Tk
= (Yk - dJd sk) - (Bk - J) Qk Sk
k-1 . <S..s.>
= (y - J s,.) - z (B - J) s. -
k k = k J <s5.,8.>
J lk <S-ISJ
k-1 “ R <s ,sk>
=y =3I s ) - ¢ (y,-Js,) =12,
k k =1 J 3 <5, ,s5.>
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the last equation following from By gj = §j in Thecrem 2.3.
Therefore
¥ = 9 &l < Ny = 3 s+ 2 185 = 3 3511 sl /113511
k

Thus,using l.emma 4.1, induction hypothesis 4.5, (2.11f), and the

fact that m 2 m., i=1%,,...,k-1,by the definition of m;, we have

19 = 9 31 < Kl sl Im + &I ls | Img
k-1 j=2,-1 3-2 s, ||
+ I KT 7 kg —lTl—— ]|sk[|mJ
J=2'k+l IISJII ) J
k=1 -2}
< K||sk||mk{l + 1 + r (21)3 77k
j=2,+1
- - k-1 .
< KHs.PHnk Lt B SR 23743
) =8y
- k=2y-1 k=2
= e 1 k k ¢
hll-kllwk T 2
which proves (4.5) for i = k and completes the induction. |}
Lemma 4.4 Let all the conditions of Lemma 4.3 hold. Then
2 n-1
||Bi+l -Jlle < ||Bi -Jlly /1 - 6,” + (21) Kmg,
(4.6a)
where R
|1, -3 s,
0, = - . (4.6Db)

B, = 3llg 115,11
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Proof: Using the definitions of gi and §i along with the equa-

tion <§i, $;> = <§i, §i> from Theorem 2.3, we find
A T A ~ A T
(y. = B. s.) s, (y. - B, s.) s.
_ i i °i i _ i i 71 i
Bigp = By ¥ 2T . =Byt ~ T -
i ®i i Si
Therefore .
SRR
Bj,1~J = (B, = J) [I - Sra —— , and
B i % i 8§
A ~ T ~ A ~ T
S.. S. (y. - J s.) s.
_ _ _CiCi i i i
IIE"i+l JIIF < (Bl J) [I 5. T 3 ] + 3 T 3
i i F i i F
(4.7)
Broyden, Dennis, and Moré [1973] show that for E € R and
u € nzn ’
T ] 2 2 Fu 2
e |1 -89 12 = (g2 - UElD | qngs
N u- u_ | F F | Jaf]
A A T - - o 2
s; S, 2 [l (B, = J) s,||
2 .
(B, =~ 3) |T -~ F——[I1° = ||B, - 0|l, |1~ = ——
i 5,75, | v . F 1B, - 311 15,1
i Sid i i
(4.8a)
Secondly, -
A A A T ~ - A
(Yl J si) si - llyi o Slll (4.8b)
s, 8, RERY |
1 P 1
- |
i-9, -1 s, ] *7%i -
< max {1, 7 S S ——~£—T 2 m, < (2T)™ 1 K m,




from (2.11 f£-g) and Lemma 4.3. Combining (4.7-8) gives (4.6). |
Lemma 4.4 shows that Algorithm II satisfies the conditions
of Theorem 4.2 and is locally linearly convergent for any

r e (C/1). The extra power supplied by the /1 - Oiz term in equa-

tion (4.6) enables us to prove local Q-superlinear convergence.

n

Theorem 4.5 Let F : R~ R te differentiable in the open

convex set D, and assume for some x* ¢ D and p > 0, K > 0, that

(4.1) holds, where F(x*) = 0 and J F'(x*) is nonsingular.

X Bz,...} P X € R,
, generatec¢ frocm (xO,Bo) by Algorithm II with

Consider the sequence {xo, Byr Xy, Bys X
g ¢ mDXD
i

s, = =B,
1 1

-1 F(xi) for all i. Then there exist ¢, & > 0 such that for

leo - x*|| < ¢ and I|Eo - J||F < 8§, {xi} converges Q-super-

linearly to x* and {|[B. ||}, {llBk-lll} are bounded.

Proof: The linear convergence of Algorithm II, and houndedness
of {||B;|]}., {||8,"*||}, follow Theorem 4.2 and Lemma 4.4. The

n-lK in (4.6) corresponds to o in (4.4).

term (271)
We turn now to the superlinear convergence of Algorithm II.

From Lemma 4.4 we have

2 -
< ltey - Il g 1-0,"+am, where (4.9a)

= ! . : (4.9b)

If lim inf {]|Bi - J|lg } = 0, then Corollary 3.3 of Broyden,
Dennis and More [1573] shows that Algorithm II is Q-superlinearly

convergent.

-
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Now suppose lim inf {||Bi - Jl|z } > 0. From the linear
convergence of Algorithm II we know lim m, = 0. By (4.9) we

must therefore have lim @iz =0, i.e.,

: s; ||
im 1 T =90 . (4.10)

Now Theorem 2.2 of Dennis and More [1974] shows, under the con-

ditions of Theorem 4.5, that if Algorithm II is linearly con-

vergent, then

lim II(Bi - J) Sill

i =0 (4.11)
[1s5 11

is a sufficicernt (ard recessary) condition for local Q-superiirear
convergence of the algorithm. Therefore it only remains to show

that (4.10) implies (4.11).

Let N
“ i-1 s, s.
0, = 1 =L,  so that
J=£l sj sj
§i = (I - éi) s;. Now [[I - éill = 1 because (I - 51) is a non-
zero orthogonal projection matrix, so ||§i|| < Ilsyl] and
(B, - J) S, (B, - J) s,
135 = &1 116 =D &1 .
NEMN REFRN
By the triangle inequality,
||(Bi = J) si!| < ||(Bi = J) Si|| N II(Bi = J) Q; sill
REFN - I]Si|1 T1s; 11

(4.13)
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As i»w, the first term on the right hand side of (4.13) approa-
ches zero due to (4.10), (4.12). For the second term on the

richt side of (4.13), Theorem 2.3 and Lemma 4.3 show

-1
[l(Bi - J) Q si|l = || (B, - J) 55 <S4 si>/<sj, sj>l|
j=2,
i
i-1 .
= - J <s., >/<s., >
||J£2 (YJ sj) Sy s /<s., s.>|]|
i
i-1 j=L.=1  j-4, lss |
< £ max {1, 7 o2 T x ——jl——

Eecause ||sj||/|!§j|| < 1 (by (2.11f)) and m, < m

j i-1'

with i-li < n (by (2.11g)), we thus have

1-2i-l i-1 j=2.

A i
_l‘(Bi - J) Q sill hl Kllsillmi_l T 'Eg 2
=X,
i
i-2.-1 i-%;
. i i
bl £<llsiH T 2 m,.1
. n-2 ,n-1
< Kllsyll 7222 ny
Hence
[1(B, - 3) 4. s.]]
i i 71 n-2 ,n-1
1 LRTOE T %

, =0 , (4.14)
o TTs 1T
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since %ig m, = 0. Therefore (4.10) and (4.12-14) imply (4.11)
is true, which completes the proof of local Q-superlinear con-
vergence of Algorithm II. |}

It should be noted that the techniques of this section apply
equally well to an algorithm identical to II except restarting
whenever i - %, , > t, t < n (or |!si||/||§i]| > t). Such an
algorithm would not be exact on linear problems, however. Ano-
ther interesting algorithm covered by the techniques of this

section is one setting

<s. S.>

~ i-1" “i
Si T Si T Si.1 <s S >
i-1’ “i-1

at each iteration. Such an algorithm would preserve the current
and most recent quasi-Newton equation at each step, and can be
shown by the techniques of this section to be Q-superlinearly
convergent without restarts. We have not tested this algorithm.
Finally, the techniques of this section would also arply to
an algorithm which set gi ecual to the projection of S; ortho-
gonal to the preVious t sj's, t <n,subject to the strong linear
independence of s, _

i-t' "
would require no restarts and would be exact for linear problems

1S, as in Algorithm II. Such an algorithm

if t = n. It would be fairly easy to implement (in O(n2) house~
keeping operations per step) using Powell's [1968] orthogonaliza-

tion scheme.
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5. ComputationalvResults

We have implemented Algorithms II and II', with some modifica-
tions,and tested them on several problems. In Step (2.10a) we
choose s; = -Ai Bi—l F(xi), where Ai is determined by the scheme
described in [Broyden, 19651 with the added restriction that
llsillm < 1 (except as otherwise noted). Instead of storing B,
we actually store and update Hi = Bi-l. Rather than compute Qi
explicitly by formula (2.10c), we use appropriate Householder
transformations to express in product form an orthogonal matrix

Pi such that

O
0
)
'.o
i
’_.l
o
)
o
o
o]
(9]
o
7]
!
0
]
"
o
o
7]

I__.
n-1+2i_l

Our implementation includes the option suggested above of restarting

whenever i-2i_ >t, where t < n is fixed. For t = 1 this lets us

1
try Broyden's original methods on the test problems.

Test Problems

The test problems we used include the following; we write x*
T
for the iEE component of x = (xl,...,xn) e RT.

Problem 1 [Rrown, 1969, p. 567]: n = 5.

. n .
f.(x) = -(n+l) + 2xl + Z xj, l < i < n-1
i L = =
j=1
j#L
n .
f (x) = -1+ I x3
n j=1
T
x. = (.5, .5, , .5)T; x* = (1, 1,...,1)
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Problem 2 [Brown, 1969, p. 567l : n = 2.

fl(x) = (x7) -x" -1
2 2
0 = =27+ (x2 - 15" -1
xg = (.1,2); x* = (1.06735, .139228)"
Problem 3 - "Chebyquad" - [Fletcher, 1965, p. 36]: n= 2,3,4,5,6,7,9.
1 1 0 j . th

f.(x) =f T.(g)dgz - = ¢ T,(x’), where T. is the i~ Chebyshev
i 0 i n 44 1 i

polynomial, transformed to the interval [0,1], i.e. To(c) =1,
T,(2) =20 -1, T, (8) = 2(2g-1)T;(Z) - T,_;(¢) for i > 1. Note

that
1 0 if 1 is odd

é Ti(C)dC =

-1/(i%-1) if is is even.

x% = j/(n+l), 1 < j < n; the components x*) of a solution are any
permutation of the abscissae for the Chebyshev quadrature rule of
order n.

None of the variations of Broyden's method which we tried

solved this problem for r=9, so we omit the results of these runs.

Problem 4 [Brown and Conte, 1967]: n = 2,

2 1
_ 1 . 1.2, _ x~ _ x_
fl(x) =5 sin (x7x7) aT 5
1 1 ex? 1
fz(x) = (1 - ZF) [exp(2x~) - e] + - " 2ex” .

0
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Problem 5 [Brown and Gearhart, 1971, p. 341]: n = 3.

£,(x) = 52+ 23 - 4

£,(x) = H2 s xD+x3 -8

£,0x) = -1 s 2x% - /D2 s 357 - 4.
xg = (1, .7, 9T x* = (0, /Z, 6)7

P:oblem 6 [Deist and Sefor, 1367]: n = 6 .

6
fi(x) = [ cot S.xJ, l1 <1i<6, where
. i = -
j=1
j#1
(Byre--1Bg) = 1072 (2.249, 2.166, 2.083, 2, 1.918, 1.833)
x_ = (75, 75,...,75) T, x* = (121.850, 114.161, 93.6483,

62.3186, 41.3219, 30.5027)T

Problem 7 [Brovden, 1965]: n = 5, 10.

£, (x) = (.5xt-3)xt + 24° - 1.

£ 0 = kP e sxeaxet 4 2xi*l -1, 2 <1 < n-1
£ = xTh e (sx-3x" - 1

Xy = (-1, -l,...,-l)T

For n = 5, x* = (-.968354, -1.18696, -1.14848, -.958989, -.594159)T
and for n = 10, x* = (-~1.03011, -1.31044, -1.37992, -1.39071,
-1.37963, -1.34993, -1.29066, ~1.17748,

-.967501. -.5976526) T .
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We ran our tests in double precision on the IBM 370/168 at
Cornell University. Table I below gives the results of some of
these tests. "Problem «.v" means problema with n = v,

For each test proklem we report both the actual number of
function evaluations needed to achieve ||F|| < 10710 ang a
normalized number of function evaluations obtained by dividing
the actual number by the minimum of the three numbers for that
problem (and rounding to two decimal places). Although Alygorithm
IT sometimes fares worse then 3Broyden's good method, the means
of the normalized numbers show that Algorithm II with T = 10
averaged about 10% fewer function evaluations than Brovden's
good method on these test prcklems. The choice T = 10 worked
considerabkly better than T = 100 in Algorithm II, suggesting
that a reasonably small value of T, such as 10, may be best.

We ran several other tests, which we shall not report in
detail. True to its name, for example, Broyden's bad method
failed six times as often as his good method. Algorithm II'
with T = 10 failed on 5 of the 15 test runs; with T = 100 it
failed on only 3, but fared rather worse than Broyden's good
method with respect to mean normalized function evaluations.

We tried a hybrid between Aigorithms IT and II' whose average
behavior for Tt = 10 was as good as that of Algorithm II. The
hybrid applies the projections of Algorithm II' to the inverse
form of Broyden's good method, so that Y, - QJ!_yi is replaced by

T

T LA A
(1 - QJf_)Hi s; and the choice y, = y; is replaced by y;, = H,” s..
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Total Function Normalized Function
Evaluations Evaluations
Broyden's Algorithm II Broyden's Algorithm II
Problem | "Good" 1=10{t =100 "Good" T=10|t =100
1.5 31 27 28 1.15 1.00 | 1.04
2.2 11 10 10 1.10 1.00 | 1.00
3.2 9 9 9 1.00 1.00 | 1.00
3.3 13 11 13 1.18 1.00 | 1.18
3.4 19 23 23 1.00 1.21 | 1.21
3.5 20 24 23 1.00 1.20 | 1.15
3.6 (31)! 26 33 -- 1.00 | 1.27
3.7 45 35 36 1.29 1.00 | 1.03
4.2 12 10 10 1.20 1.00 | 1.00
5.3 15 (28)%] (28)! 1.00 - | -
5.3° 16 15 15 1.07 1.00 : 1.00
6.6° 62 29 60 2.14 1.00 | 2.07
6.6° 32 28 57 1.14 1.00 | 2.04
7.5 13 13 13 1.00 | 1.00 | 1.00 |
7.10 21 20 20 1.05 1.00 | 1.00
Table I: Function Mean 1.17 1.03 | 1.21
gz;igizé°§§ std.Dev | .29 .074| .37
?T;TTVf 10-10 Failureﬂi 1 1 1
Notes: 1. Broyden's [1965] guadratic interpolation technique

failed to reduce

evaluations at the time of failure.

|F|| in 10 function evaluations.
The number reported is the total number of function

2. ||F|| was allowed to incrcase as much as twofold
(per step) and a maximum steplength of 10 rather
than 1 was allowed.

3. A maximum steplength ||s

was allowed.

illa

of 10 rather than 1l
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6. Summary and Conclusions

We have introduced some new quasi-Newton algorithms for
solving systems of n non-linear eguations in n unknowns. These
methods are modifications of "Broyden's good method" and "Broy-
den's bad method" (Broyden [1965]). They retain the local Q-
superlinear convergence of the unmodified methods anc have the
additional property that if any of the equations are linear,
then the methods locate a zero of these equations in n+l or
fewer iterations. (We have only proven these properties in this
paper for the modified Broyden's good method, but virtually the
same proofs go through for the modified bad method.)

Our computational results suygest that our modified form of
Broyden's good method performs better, on the average, than the
original form. We think our new method should be further tested
and possibly considered as a replacement for the conventional

Broyden's method in existing subroutines.
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