
NBER WORKING PAPER SERIES

SOLVING SYSTEMS OF NONLINEAR EQUATIONS BY

BROYDEN'S METHOD WITH PROJECTED UPDATES

David M. Gay*

Robert B. Schnabel**

Working Paper No. 169

COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE
National Bureau of Economic Research, Inc.

575 Technology Square
Cambridge, Massachusetts 02139

March 1977

Preliminary

NBER working papers are distributed informally and in limited

numbers.

This report has not undergone the review accorded official NBER

publications; in particular, it has not yet been submitted for

approval by the Board of Directors.

*NBER Cc'mputer Research Center. Research conducted in part during

a visit to the Atomic Energy Research Establishment, Harwell,

England, and supported in part by National Science Foundation
Grant MCS76-00324 to the National Bureau of Economic Research, Inc.

**Computer Science Dept., Cornell University. Research conducted in

part during a visit to the Atomic Energy ResearCh Establishment,
ilarwell, England, and supported in part by a National Science

Foundation Graduate Fellowship.

Abstract

We introduce a modification of Broyden's method for finding

a zero of n nonlinear equations in n unknowns when analytic

derivatives are not available. The method retains the local

Q—superlinear convergence of Broyden's method and has the addi-

tional property that if any or all of the equations are linear,

it locates a zero of these equations in n+1 or fewer iterations.

Limited computational experience suggests that our modification

often improves upon Eroyden's method.

—ii—

CONTENTS

Section Page

1. Introduction 1

2 . The Ne'q Method 5

3. Behavior on Linear or Partly Linear Problems.... 17

4. Local Q—Superlinear Convergence on Nonlinear
Problems 25

5. Computational Results 34

6. Summary and Conclusions 39

7. References 40

1. Introduction

This paper is concerri& with solving the prob1n

given a differentiable F
(1.1)

find x' c such that F(x*) = 0

when derivatives of F axe either inconvenient or very costly to compute.

We denote the n component functions of F by

i1,...,n
af.

and the Jacobian matrix of F at x by F'(x), F'(x) = (x).

When F' (x) is cheaply available, a leading method for the solution

of (1.1) is Newton's method, which produces a series of approximations

{x1 ,x2,. . . } to x by starting from approximation x0 and using the

foxrctula

X11 x1
— F' (x)F(x) . (1.2)

If F is nonsingular and Lipschitz continous at x' arid x0 is

sufficiently close to x*, then the algorithm converges Q-quadratically to
— i.e., there exists a constant C such that

I

- x* I c I lxi — x* 2

for all i and sanevector norm 1.11 (c.f. 59.1 of [Ortega & Rheinholdt,

1970]). If F is linear with nonsingular Jacobian matrix, then x1 = x.
When F' (x) is not readily available, an obvious strategy is to replace

F'
(xi)

in (1.2) by an approximation B. This leads to the irodified Newton

iteration

—2—

x. =x. -BF(x.) (1.3a)i+1 1 1 1

B÷i = tJ(B.) (1.3b)

where U is sara update formula that uses current information ahout F.

Broyden [1965] introduced a family of update formulae U known as

quasi-Newton updates. He also proposed the particular update used in

"Broyden' s method", which we consider in ITore detail below. If x0 is
sufficiently close to x, the matrix norm of - F' (x0) is sufficiently
snail and several reasonable conditions on F are met, then Broyden 's

method converges Q-superlinearly to x i.e.,

Hx _x*j = 0 [Broyden, Dennis & ré, 1973]. However for
Hx _x*I

linear F, convergence may take as many as 2n steps—and B - F' (x*)

may have rank n—i (see [Gay, 1977]).

In this paper, we introduce a new method of form (1.3) using an update

(1. 3b) which is different fran but related to Broyden' s update. Our new

method is still locally Q—superlinearly convergent under the conditions for

which Broydeth method is. It has the additional property that if F is
] inear with nonsingular Jacobian matrix, then x = x for some i < n+l, and

if k+1 iterations are required ,then 3k+1 - F' (x*) has rank n-k.

Initial tests show our method to be somewhat superior in performance to

Broyden's method.

—3—

The basic idea behind our new method is related to one originally proxDsed

by Garcia-Palamares [1973]. Davidon [1975] used. this idea independently

in deriving a new method for the unconstrained minimization problem,

mm f(x) nXEn '
Davidon also ncdified an existing update formula to produce a quasi-Newton

method which does not use exact line searches but is exact on cuadratic

problems. This new method has been an irrprovement in practice. While it

has not yet been shown to retain the local superlinear convergence of lie

method it rrcclifiecl, Schnabel (1977] uses the techniques of this paper to show

that a very similar rrcdification retains Q-superlinear convergence as well

as the proper-ties of Davidon's [1975] method.

In Section 2 we briefly describe Broyden' s method and the iTrtant

features of quasi-Newton methods. We then introduce our new algorithm in

to forms: Algorithm I, a simplified version which is sufficient to dis-

cuss its basic and linear properties, and Algorithm II, the version used in

practice and to prove local superl±near convergence. We also derive the

basic properties of our method which we will use in subsequent sections.

In Section 3 we discuss the behavior of our algorithm on linear problems.

We show that if any or all of the equations f. are linear, then our new

algorithm will find a zero of these equations in n+l or fewer iterations.

We also discuss the effect of a certain restart procedure on our algorithm.

In Section 4 we show that our new method is locally Q-superlinearly con-

vergent on a wide class of problems. We discuss our computational results in

Section 5 and untrarize our results in Section 6.

—4—

Ilenceforth, I will denote the 2.2 vector norm

2 1/2 ,v)T or the ccrrescring(IIvII=(z v.) for v=(v
i=1 1'.. '1

matrix norm, while 'will denote the Frcbenius matrix norm:

nfl 21/2
I I I I

= (E in. .) for i = (rn.)F
1=1 j=1

—5—

2. The New Method

asi-Newton methods are often damped: they take the form

x÷1 = x — F(x) (2.la)

= U(B)
(2.lb) -

where the damping factor > 0 is chosen to pratte convergence from

starting points x0 which may lie outside the region of convergence of

the corresponding direct prediction method (1.3). When it leads to a

"successful" step, e.g. reduction of I F , the choice 1 is
usually preferred.

Broyden' s ("good") method is a method of form (2 .1), using the update

equation

T
(y1 — Bs) s= B +

Si
where (2.2)

Si = Ax = x1 —

x1 , (2.3a)

= =
F(x÷1)

- F(x) . (2.3b)

Because of equation (2.2), B1 satisfies B÷1 bc1 = . Since

for 1l , F' (x÷1) tax. AF , we expect that B1 resth1es

—6—

F' (x1+i) in the direction of our last step. Since we have no other

infoirnation which uld help apçroxirnate F' (x.1), it is reasonable

to change B— which hopefully approximates '(xi)—as little as
possible consisnt with B+i . = This suggests the rank one

change

(y1 - B. s1) VT
3i+1 = B1

+ 1
, (2.4)

for any vector v such that vT s o. The choice V S

which yields Broyden' s method, minimizes the £2 or Froberilus norm (the
Z2 norm of the e1ents) of (B+i -B) over all possibilities (2.4) [Dennis

)and 1977].

Broyden defined quasi—Newton methods to be those of form (1.3)

which satisfy the "quasiNsc.n' equation,

B÷1 s = y1 , (2.5)

in their attanpt to build Jacobian approximations. Broyden'S method, with

intelligent choice of A1 in (2.1 a) ,has been the rrost successful quasi-Newton

method for solving systEns of nonlinear equations.

It is interesting to canpare Newton' s and Broyden' s methods on

lineer prob1ns where F (x) = AX + b and A is nonsingular. Whereas
Newton' s method (1.2) yields x1 = x* for i 1, Broyden 's method

may require 2n direct prediction (A = 1) steps to produce the cact

—7--

solution [Gay, 1977). In part this is because B. may never equal A, even
though F' (x) = A for all x1. We can easily see why this may be so. After
one iteration we will have s0 = y (= A S for a linear problem); after
the next iteration we will have 132 S1 =

y1 (= A s1), but not in general

B2 S0
=

y0. At each step we introduce into 13i+1 our irost current information
about A; but in doing so we destroy other good information about A learned

through previous iterations. Therefore we will never have B A, SO the
iteration x1= x. - B1 F (xi) may take twice as many steps to converge as

might seem necessary.

From the receeding analysis, we are interested in finding an update

equation which, while giving B.1 s = also retains B÷1 s = y. whenever

j < i and B s = Note however that for any formula of form (2.4),

B.1 S1 = y1; we can retain old information by our choice of
v1 if

B. s = v and v' s = 0, then •÷l s. = y. These considerations lead to

our n algorithm, given in simplified form as Algorithm I below.

We choose our update at each iteration to be the B11 which rniniraizes

the Frobenius norm of B.1 - B aring all 1+l satisfying
B.1 s = and (B1 — B1)

s. = 0 for all j < i. In Theo:r 2.1 we show
that the unique solution to this problem is given by update (2.4) with v the
projection of Si perpendicular to all the Si 's, < i. The proof is similar

to Dennis and vbrts [1977] proof that Broyden's method is the least-change

update arrong all B11 satisfying B1 s = y.

—8—

Thrn 2.1 Let B ar s, y be In-zero vectors C

with Bg y. Let Z be an in dimensional subspace of :IR , in < n.

Then for I I I I either the L2 or the Frobenius nonn, a

solution to

rain {B — B ItBS = y, (B — B)z=O for all z C Z} (2.6)

is

A (y-Bs)vBB+ Tvs
where v is the ort1gorial projection of s onto the ort1gonal canp1nt

of Z, i.e.,

Tin S Z.1VS Ti=1 z 1

with (z11.. Z) an ortrgonal basis for Z. The solution is unique in

the Frobenius norm.

Proof: Let S={BBsy, (B-B) z0 ZCZ}. Naw Bs=y;

ansince T=o for i=1,...,m, vT=o forall zCZ.

Thus B C S.

Now consider any B c S. Since y 35

A
B—B= — sv

vT s

—9—

m T
iDefine d = Z '!' z. = s - v. Since d c Z and v is perpendicular to Z,

i=1 zz. 111
d = o. mus = Since (- B) z = 0 for all z c Z, (B - B)d = 0,

so (- B) s = (- B)v. Therefore (B - B) = (fl-B)T so for
N the

v.&.v
or Frobex-ijus norm,

T
lB - BuN - IIN lll ll - B

'S

Thus B is a solution to (2.). It is the uniciue solution in the Frobenius

norm because the function 5: JR - JR given by (B) = - is

strictly convex over all B in the convex set S. •

AlgorithTl I

Let x JRfl, B c F + JR11 be given.0 0

For i=0, 1, 2,...

c1ose nonzero s. E JRfl (likely s. = -x n F(x))11

x. = x. + s. (2.7a)
i+1 1 1

If F(x.) = 0 then stop
i+l

y. = F(x.) - F(x.) (2.7b)
1 i+l 1

—10—

A
i—i S. S.

Q= E AT (2.7c)
j=O S Si

S. = S. — C).s. 2.7)1 1 11

(y. — .s.) s.
B — ÷ — 11 1
i+l j ATS. S.1 1

Alçcrithn i is unsuitable for crtuter irLplerrentatiorl for several

reasons—— rrost inirtaritly; if i > n, then s. will be zero vector. However,

it is sufficient for deriving the basic properties of our algorithu (for

general functions F) in Theor 2,2 below; and is also sufficient for dis-

cussing the bebavior of our algorithn on linear problns in Section 3.

We use tJ'ie tation <a,b> to denote the scalar product

rrab = E a.b. , a, b
i=l 1 1

TheorEn 2.2 Given P , B P , F P - P, let the sequences

{s0,... ,s}, y0,. .. , y}, {B01. . . , B1} be generated by Algorithm I.

Define .. ,s. as in Algorithm I and let y = y -
BQs1 j = 0,. . . i.

Then at each iteration i, if se;. . . ,s. are linearly independent, then 3i+l
is well defined and

— 11 —

Sk>
= 0 k = 0,..., i-i (2.8a)

<S., S> = 0 k = 0,..., i-i (2.8b)

A A A
<s., S.> = <s,, s.> (2.8c)1 1 1 1

B÷1 Sk = (2.9d) -

B.1 Sk = k = 0,. ., i . (2. 8e)

Proof It is straightforward to prove (2.8 a-d) by induction. In

view of (2.8a) and (2.7e), it suffices to consider k = i in (2.8e).

Using (2. 7e), (2. 8c), and the definition of we find

A A

B. S. = B. S. + (y - B. s.)i+l 1 3. 1 j 1 1

= B. S. + (y. - B. Q. s.) - B. (s. - 0. s.)
3. 1 1 1 1 1 1 1 1 1

A A A A
= B. S. + y. - B. s. = y.11 1 11 1

so that (2. 8e) holds for k = i.

Tira 2.2 shows that we are selecting s in Algorithm I to be

ort1gonaj. to all previous steps s, j<i, so that we do not disturb

information contributed by previous quasi-Newton equations. The equations

(2.8e) can be thought of at each iteration as the partof the quasi-

Newton equation giving information in the subspace where previous

iterations gave none.

— 12 —

Note that if B. and B1 are nonsinguJ.ar, then (2.7e) is equivalent to

(s. — B.1 y) T B.1
B.1 = B. + 1 1 1 1]. (2.9)
11 1 AT —1s B y

Therefore if B is nonsingular and <sj, B1 y>
0 for 0 < j < i, then

B1 exists, i.e., B+i iS flOflSinU.lr.

We now state, in general form, the version of our new algorithm

which is used in practice and in proving local Q-superliflear conver-

gence. it recognizes that, in general1 the projection of s orthocJO1l

to the subspace spanned by So,... ,s1im.ist be the zero vector for sane

i < n. The algorit1Et therefore "restarts" by setting s = s if

is too small canpared to Si (which rrn.ist happen at least every n steps).

ThecrEn 2.2 is still valid if we consider only the vectors s, ' '
generated since the last restart. Since the version of TheorEn 2.2

applicable to Algorithm ii is needed in Section 4, it is stated as

TheorEn 2.3. The anitted proof is a1irst identical to that of TheorEn 2.2.

Because of the restart iteria, s is alcays strongly linearly indepen-

dent of all s 's since the last restart.

Algorithm II

Let X0 £, B0
F c > 0, 't > 1 be given.

Set

For i = 0, 1, 2,...
Choose nonzero s (likely s = —X B1 F (xi))

—13—

x1 = x. + s.
(2.lOa)

If I J
< C then stop

y. = F(x.1) — F(x.) (2.lOb)

i—i S. S.
Q. = E (2.lOc)

J=. S. Si—i j j

1± IIs.II > -r s. — Q. s.J (2.i')d)1 — 1 11
then (s = S1 arid = i)

else (. = S. — Q. S. and 9... =

,rr
(y. — B. s.) s.

B.1 = B. + 1 1 1
(2.lOe)

Theorn 2.3 Given x C IR, B0 c F C > 0, -r > 1, let the

sequences {s,... ,s1}, Cy,. . . ,y.}, {B,. . . ''÷l be generated by Algorithm

II. Define {, .. . ,} as in Algorithm II; let = y if s
= s and

y. = y. - 13. Q. s otherwise, j = 0,. . . ,i. Then at each iteration i,

s , ... ,s are linearly independent, B1 is well defined, and
1

<s., = 0 k = L,...,i—1 (2.lla)

<s., Sk> = 0 k = 2..,.. . ,i—l (2.llb)

— 14 —

A A A

<s., s.> = <s., s.> (2.llc)
1 1 1 1

B1 Sk
= k = Zr,.. j (2. lid)

B.1 5k =
ic = 2.... ,i (2. lie)

IIsII < ilisHi (2.lif)

(2.llg)

We finally note that the entire subject of quasi - Newton methods for

nonlinear systans of equations can be approached by directly fozning

approxitnations H to F' (xi) -1, the inverse of the Jacobian matrix of F at x.

In this case we require H1 y = s and can achieve this through the

rark -one update

T(s. - H. y.) w.
= H + 1 1 1 1 (2.12)

w. y.1 1

for any vector w. c such that y o. we have already seen

fran (2.9) that if B. is non-singular, Broyden' s update sitriply corresponds

-rto
w1

= B. s in (2.12).

The choice of w in (2.1Z which mi.nimizes the Frobenius norm of

(H+i - H.) is w = The quasi-Newton method using this update was

also proposed by Broyden and is saTetimes called "Broyden' s bad rrethxl",

because it doesn't perform as well as Broyden's method (update (2.4)) in

— 15 —

practice. However, it has also been dconstrat1 by Broyden, Dennis, and

Ibr [1973 to have local superlinear convergence under reasonable assurrtions

on F.

Similarly, we can propose a1gorit1ns I' and II', which update

approximations H1 to F' (x1) , arid choose w in (2.12) to be the

projection of y. orthogonal to (sorr of) the previous y 's. For

instance, Algorithm II' would only require replacing (2. lOc—e) with

i—I
= E 'j Y (2.13a)1

j=9.i—i y y

If
I II I > TI — Q4' yI I

then (y. y and 9.. = i) (2.13b)

else (y. = y — Q.' y and =

H. = H. + (s. - H. y (2.13c)i+l 1. 1 11 1
yi Y

Using Algorithms I' or II' we can prove theorems analagous to 2.2 and 2.3;

and we can prove the sane convergence results for linear and general

nonlinear functions F as are proven in Sections 3 and 4. (As a matter of

fact, the proofs of Section 3 are then a bit nicer as they never need

asse B11 non-singular). We have tested hoth algorithms II and II'

—16—

In practice, and have fotrid that AlgoritlTn II appears irore likely to

nverge than II'.

—17—

3. Behavior on Linear or Partly Linear Problems

In this section we examine the behavior of our algorithm on

systems of n equations in n unknowns, some or all of which

are linear. We find that our algorithm will always locate a

zero of whichever of the equations are linear in n+l or fewer

iterations. This property is not shared by Broyden's method.

Theorems 3.1 and 3.2 examine the behavior of Algorithm I on

a corp1etely linear system. In reality we woulc not expect to

use our algorithm to solve linear equations. However, it is

possible that near a solution, a system of nonlinear equations

may be almost linear--and these theorens then tell us what sort

of behavior to expect.

Theorem 3.1 shows that if Algorithm I is applied to

F(x) = Ax + b, A nonsingular, then x will equal x = -Ab for some

i < n+l; and if ri+1 iterations are required, then B = A. Follow-

ing Powell [1976),however, we are really more interested in

Theorem 3.2, which shows what happens if we do a restart wiile

solving a linear system of equations. This is likely to be the

case if we enter a linear region after the algorithm starts.

Theorem 3.2 shows that we still require at most n+2 iterations

to firu , but Example 3.3 shows that B+l may not equal A.

Theorems 3.4 and 3.5 examine the behavior of Algorithm I

when some but not necessarily all of the component functions of

F are linear. This may be the most important case in section

3, as partly linear systems do arise in practice; they may also

approximate the behavior of a nonlinear system near a solution.

—18—

Theorem 3.4 shows that our method will locate a zero of the

linear components in n+l or fewer iterations—-and if n+l itera-

tions are required, then B will also agree with the Jacobian rratrix

on the rows corresponding to the linear equations. Theorem 3.5

shows that in this case, subsequent updates by any rank-one

formula (2.4) will not disturb the correct linear information

and as long as we take quasi-Newton steps of length one (X1
= 1

in (2.la)) , we will only visit points at which the linear coin-

ponents are zero.

Theorems 3.1, 3.2, and 3.4 are stated for simplicity for

Algorithm I. They are also true for Algorithm II, ihich we

really use, as long as the algorithm doesn't restart prematurely

(i.e., IIjI < Hs — Q.s.H in (2.lOcl) when i — 9i—1 <

Since T is set significantly larger than 1 in practice, we often expect our

theorems to hold for Algorithm II. The conclusions of Theorem

3.5 do not depend on which of the two algorithms we are using.

We denote the subspace spanned by vectors V1 ,V

by (v1 ,vk]; and the column space of matrix M by

C(M).

Theorem 3.1 Let A flXfl be non-singular; b C and

F (x) = Ax + b: -]R. Consider Algorithm I acting on F, starting from

any x C and E C If s0 ,s_1 are]irearly inde-

pendent, then B = A; and if Sn = -B1 F(x) then F(Xn+i)
= 0.

Moreover, if for some k < n, s ISk_1 are linearly indepen-

dent, Bk1 exists and k1 F(xk) c [s
lSk_lI1 arid if

Bk1 F(xk), then F(xk+l) = 0.

—19—

Proof.: If s,... ,s1 are linearly independent, then by Theorem

2.2, Ens. = y, i = O,...,n—l. Since y = F(x.1) — F(x.) = A
Si,

we have B S. = A s., i = O,...,n—l, so that B = A.fll 1 fl

If 5'••'5k1 are linearly independent, then by the same

reasoning as above,B.s. = A s., i = O,...,k-l. Thus if11 1

Sk = 3k F(xk) [s...,skl], then Bk 5k = A Sk . Therefore

F(xk÷l) = F(xk) + A Sk = F(xk) + Bk Sk = F(x) + Bk [_Bk1 F(xk)] 0.

I
From the proof of Theorem 3.1, we see that if ALjorithni II i

acting on a linear problem, then after n—rn iterations in which

s,.. .,s1 are linearly independent and no restarts have occurred,

Em will agree with A in n-rn directions-—i.e., (A -
Bn_rn) will

have rank in. It is possible——especially if we have entered a

linear region after we began--that we will then do a restart:

set = s and 2. = n—rn. Following Powell [1976], wen-rn n—rn n-rn

wonder if the information from these n—rn iterations is of help.

In Theorem 3.2 we show that. it is: using quasi-Newton steps (1.3a),

we require at most m+2 additional iterations, or a total of n+2, to

locate the zero of F. Our conclusions are not as general as

Powell's for Davidon's [1975] new unconstrained optimization

algorithm, as they do not allow for subsequent restarts or com-

pletely general steps; however, our conditions should mirror the

behavior of Algorithm II in practice. Also, in our case Example

3.3 shows that the full m+2 iterations may be required and that
Bm+i

may still not equal A.

Proof: We first show that for any update of form (2.4)-—one of

which is used by Algorithlr. I-— that s e Es0
for some

j < m + 1. We accomplish this by showing by induction that if

'. ,s_1 are linearly independent, then

Si C [s0,
CCI - BQ1A)1

(3.1)

(s — B1y)c C (I — BQ1A) • (3.2)

For i = 0, (3.1) is trivi.1ly true, and

— Bol y0 = S0
- B01 A S0 = (I -

BQ1A) s0 C C(I -
BQ1A).

Assume (3.1-2) true for i = 0,... ,k. Then
1 —l 1

-
Xk+l

Sk+l — 3k+l F(xk+l) = Bk+l (F(xk) +

By Theorem 2.2, B,,+l1Yk
=

$3,;
and using the inverse form of (2.4) have

-1 T -1

-l — B
1 +

(Sk - Bk 'k Vk Bk
Bk+l

— k T -1
Vk Bk

—20—

Theorem 3.2 Let A , b c , and F(x) = Ax + b: +

Consider Algorithm I taited from x0 C and B0 C nxn

singular with rank (A - B0)
= n > i. suppose s. is selected by

Si = —X. B.1 F(x) and if s. ' (s0,...,S_i]r assume B1 is

nonsingular.
Then there exists j < in + 1 such that

Si C (s01...1s_1);
and if X = 1, then F(x±1) = 0.

<Vkl Bk1 F(xk)>

Bk+11 F(xk) = 3k F(x1j + - Bk1 -l
<Vkl Bk k>

—21—

Since Bk F(xk) = -
Ski we have E [Ski (sk - Bk' k'

so by the induction hypothesis (3.1-2) for k,
Sk+l c [5, C(I - E1A)J, which shows (3.1) for i = k+1. To corn-

plete the induction, Sk+l - Bk+,yk+ =

I -1 T —1
I - k (s.-B. y.)v. B.= s —'B +k+1 °

j0 T -1 ,L 3 J 3

k <v., B. >— -1 -l -—
Sk÷l

-
B0 k+1 + E0 (Si -

<vj, B.

Since Sk+l - B01 'k+1 = (I - B1A) Sk+l and

(s - C C (I-B0A) for j < k by the induction

hypothesis, we see that (3.2) holds for i = k+1.

Because the subspace [s0, C (I - B01A)] has dimension at

most m+1, we must have S. C Is01.. .s1] for some j < m+l. Now
B. = i = 0,...j-3. by Theorem 2.2; and B s1 = A s, i = 0,

,j—l since F is linear. Therefore B S. = A s, and

F(x.1) = F(x.) + A S. = F(xi) + B. (_B' F(x.)] = 0. 1

Example 3.3. Let F(x) x . (F'(x) I). Consider

Algorithm I, with s = -B1 F(x.) started from x0 = (1
and

10 0
11.

o
B = : •iio...o

1...10....01L)
rn n-rn

—22—

with 1 < m < n. Then ran] (I-B0) = m. Algorithm I then

requires full jn+2 iterations to reach x = 0, and

rank (I - B1) = 1. The intermediate values are:

T
s0 = (—1,0,.. .10, —1) , s =

S0

Si o, ,0)T , s. = s., j = l,...,m—1

x = 11)'P , j = i,... ,r

10 0 00 0

lx(j—l)
. mx(n—m—l)

1/2 1 : —1/2

'j-•l .• . I
B

= n—rn—i . , = im
•

. '•l(n—j) . 0
1/2 x(j1) i lx(n—m—1) 1/2'—v_S---1

Sm
= (0,,•••,_1,21•,2)T = (01_1,•••,_1)T

=
Sm

—

(so+...+srn...i)
= (1101•••,01_2,••,_2,_1)T

Bl= B + 4(nm)20'1'••• ,-1)

Therefore S+i = (011)T; X+2 = 0; and

(I —
Bm+i)

= S+i (—1/2 — t,0,...,0,2t,...,2t, 1/2 + t), where

t =-1/(4(n—m)-2). •
We now consider the case when some but not necessarily all

of the component functions of F are linear. For ease of nota-
tion we assume that the first in component function of F are

linear--however the positioning of tb€ linear functions has

—23--

no bearing on the algorithm or the proof. The Jacobian of F

will therefore be constant in its first m rows, and we will de-
c.

note our Jacobian approdn'ations B by [) , C c

D. R(nm)xn
1

Theorem 3.4 Let A c mxn 1 < m < n; b

EF (x)l
F(x)=

F2(x)j

Consider Algorithm I acting on F, starting from any and

B e . If for some k < n, s01... FSk_l are linearly ince-

pendent, Bk' exists and Bk1 F(xk) c [soI...lskl], then the

choice Sk = 3k F(xk) leads to F1 (xk÷1) = 0. Furthermore if

s,... ,s1 are linearly independent, then C = A.

Proof: Suppose s,... ,5ki are linearly independent and Bk1

exists. By Theorem 2.2, Bk s = y, 0 < i < k-i. Since the

first m components of y are F1(x÷1) — F1(x) = A s, while the

first m components of Bk s equal Ck s, we have Ck s1 A s,
o < i < k-i. In particular, if k = n then this irrplies C = A. More-

over, if Bk F(Yk) [s,... ,sk_1] (which will necessarily hold

for some k < n) and Sk = F (Xk)l then this implies

Ck Sk = A Sk; because Ck Bk1 = (I 0mx(n-m)' we thus have

Fl(xk+l) = Fl(xk) + A Sk = Fl(xk) -
Ck Bk1 F(xk)

=
Fl(xk)

-
Fl(xk) = 0

—24—

Theorem 3.5 Let A, b, F, F1, F2 be defined as in Theorem 34.

If Ck = A and Bk+l is defined by (2.4) for any value of Sk (and

any Vk such that <Vkl Sk> 0), then Ck+l = A. Furthermore, if

either Sk = Bk F(xk) or Fl(xk) = 0 and Sk Ak Bk1 F(xk),

then Fl(xk+l) = 0. I

Theorem 3.5 shows that once we have correctly obtained •the

linear part of the Jacobian as Theorem 3.4 shows we are likely

to do in n iterations, then our quasi-Newton algorithm will not

disturb this information; and whenever we take a quasi-Newton

step of length one, which in practice we usually do on our final

iterations, we will locate a zero of the linear functions.

—25—

4. Local Q—Superlinear Convergence on Nonlinear Problems

In this section we show, subject to reasonable conditions

on the function F :]R" - :iRrl, that if x is close enough to x

and if is close enough in norm to F' (x*) [or F' (x0)], then

the sequence of xi's generated by Algorithm II with s = —B11F(x)
converges Q—superlinearly to x. Our proof leans heavily

on the local superlinear convergence proof of Broyden, Dennis,

and More [1973] for Broyden's method; and On the work of Dennis

and Nor& [1974] characterizing superlinear convergence.

In Theorem 4.2, we give a general condition under which a

quasi-Newton algorithm of form (2.1) with steplength one will

achieve linear convergence. This theorem amounts to Theorem 3.2

in Broyden, Dennis, Mor [1973] extended to updates using infor-

mation from previous iterations. Lemmas 4.3 and 4.4 show that

the update of gorithm II satisfies the conditions of Theorem

4.2 along with some further conditions. Using this we show in

Theorem 4.5 that Algorithm II achieves local Q-superlinear con-

vergence. We first state a simple lemma which we will use

several times; its proof follows immediately from §3.2.5 of

[Ortega & Rheinboldt, 1970].

Lemma 4.1 Let F: rI + be ciifferertialle in the open convex

set D, and suppose for some x* c D and p > 0, 1< > 0 that

F'(x) - FI(x*)II < K Ix - x*HP (4.1)

Then foru, veD,

I
F(v) - F(u) - F' (x*) (v-u)

< KI Iv—uI Imax { v_x*I Iu_x*I P} • (4.2)

—26—

Theorem 4.2 Let F : - be differentiable in the open

convex set D, and assume for some x c D and P > 0, K > 0 that

(4.1) holds, where F(x*) = 0 and F' (x*) is nonsingular. Let

J = F'(x*). Consider sequences Cx0, x11...} of points in

and {, '••• of nonsingular matrices which satisfy

Xk+l_XkkF(Xk)
and

'1k+l — IIF . Hk HF + c max flIXk+l -

I x* I1. .., (4.4)

lIXk — x*It°}

k = 0,1,..., for some fixed > 0 and q > 0, '1ere x. = x for— — J 0

j < 0. Then for each r c (0,1), there are positive constants

e(r), d(r) such that if x0 — x*II < (r) and lIE0 — JHF < 5(r),
then the sequence x,x1,...} is well-defined and converges to x

with

I jX - x*l I < ri Xk
- x*l

I

for all k > 0. Furthermore, {I IBkI } and Cj tkt are uni-

forinly bounded.

The proof is so similar to that of Theorem 3.2 of (Broyden,

Dennis, & Mor, 1973] that we omit it. I

In Lemma 4.3 we show that for Sj y. defined in Algorithm II,

asymptotically I Iy — F' (x*) sJ I is small relative to I IsI

This is the key to proving in Lemma 4.4 that the update of Algor-

ithni II satisfies equation (4.4) of Theorem 4.2.

Lemma 4.3 Let F IRn be differentiable in the open

convex set D and assume for some x c D and p > 0, K > 0 that

(4.1) holds, where F(x*) = 0 and J E F' (x*) is non-singular.

Consider the sequences {x ,x11. . .} of points in JR' and {B,B11...}

of nonsingular matrices in)R generated from (x0,B)
—l Aby Algoritjt II with S. = -B. F(x.) for all i. Let S. be defined

as in Algorithm II and y. as in Theorem 2.3. Then

i—Z..—l i—i
ili

— j < max {1, T
1

} 2

Proof. The proof is by induction. For i = 0, =
S0 and

= 0,so - J J I = j y - J sI J, which is < KJ sf fIn by
Lemma 4.1 with v = x1, u = x. Thus for i = 0 (4.5) is true,

Since = 0 by Algorithm II.

Now assume (4.5) holds for i = 0,... ,k-i. For i = k, if

k = £k, then 'k = ' S =
Ski and 'k

-
Ski J < KI

ISki Ink by

Lemma 4.1, so we are done. If k > 'k' then

= - J
S})

-
(Bk

- j) k Sk

k—i <s.,s >A j k(YkJsk) E (Bk_J)s. AJ
<sj,sj>

k—i <.,s >= (y — J s) — E (. —
A Ak k J <s. s.>-, k j'j

—27—

1<
I

s m , where (4.5a)i i

max {f Jx — x*f ,..., lxi — x*J l, I Ix÷1 — *f P} (4.5b)I

YkJSk_YkEkksk_Jsk+ Sk

—28—

the last equation following from 3k s = in Theorem 2.3.

Therefore

I

— S]j — J S1 +

j-Lk
— Li Sj11 IlSklI/ISII.

Thususing Lemma 4.1, induction hypothesis 4.5, (2.llf), and the

fact that m., 1= the definition of we have

1k - J ii S)J Xflk + KJ Ski i9

h—i j—2. —l j—L s.
+ E T 2 K is Hrn

''sill
k-i

}

K ISki Imk{1 + 1 + E (2T)k

- k—i
< K rr., TkLkl 1 + E 29'k}

=
kt mk 1k-2.k-l 2 k-2.k

which proves (4.5) for i = k and comp1tes the induction. I

Lemma 4.4 Let all the conditions of Lemma 4.3 hold. Then

I IB÷ — J. < JB. —
'F

/1 — ®.2 + (2t)1 K rn.1

(4.6a)

where
- J)

o = 1 1 (4.6b)
1 - II H.ll1 F 1

—29--

Proof: Using the definitions of s and y along with the equa-

tion <s., S.> = <i., •> from Theorem 2.3, we find1 i 1 1

(y. - B. s.)
T

1 1 1
ATS.

1

(. - B.
=E. + 1 1 1 -

1 S. S.1 1

AT
S.

1

There fore -
S. S. I

1 ii— J) —
A T A +
S. S.'

-- 1 iJ

A AT— J s.) s.
1 1

AT A
S. S.1 1

BrOyden, Dennis,

U C I

and Mor nxn
(1973] show that for E C m and

i—..—l
<max {l, T 1

2
2 HEuH= lIEu - ____

2F Hul

B. =B.+1+1 1 S.1

B. -J
1+1

= (B.1

I lB+1 — , 'F

(9

(B. - J)— 1

A A T
S. S.1 — 1 1
ATA

I S. S.
1 1

and

- J S.)1TAS. S.
1 1+v±

AT
S.1

F

(4.7)

Thus- uuHE r T1— u uJ F

A AT
2. 1J)

E

s. S.

H2- AT A
S. S. P

2. 1

A A A Til
(y. — J s.) S. H1 1 1 II

H
S. S. ii

1 1 F

Secondly

(B - J)
A 2

lB. - JI1

= -

= IIj — J lI
A
S.

1

F

(4. 8a)

(4.8b)

Ils.!I 1i
F ——— 2

I II

n-im. < (2T) Km.1—

from (2.11 f—g) and Lemma 4,3. Combining (4.7—8) gives (4.6). I

Lemma 4.4 shows that Algorithm II satisfies the conditions

of Theorem 4.2 and is locally linearly convergent for any

r (0 1). The extra power supp1i by the /1 - term in equa-

tion (4.6) enables us to prove local Q-superlinear convergence.

Theorem 4.5 Let F : - e differentiable in the open

convex set D, and assume for some x c D and p > 0, K > 0, that

(4.1) holds, where F(x*) = 0 and J F' (x*) is nonsingular.

Consider the sequence {x0, B0, x1, E,, x2, 2' • I E

flXfl, generatec fron (x0,E0) by Algorithm II with

s1 = -B. F(x.) for all i. Then there exist , >0 such that for

— < and -
'F < S, {x} converges Q-super

linearly to x and CiIBJ }, C k1' are bounded.

Proof: The linear convergence of Algorithm II, and houndedness

of CIIB.II}, {lIBII}1 follow Theorem 4.2 and Lemma 4.4. The

term (2T)'K in (4.6) corresponds to a in (4.4).

We turn now to the superlinear convergence of Algorithm II.

From Lemma 4.4 we have

IIB1 — JHF . — /i- G.2 + a m1 where (4.9a)

— J)
e. = . (4.9b)
1 H B. - JIIF Ilsill

If lirn inf { -
'F

= 0, then Corollary 3.3 of Broyden,

Dennis and More [lS73] shows that Algorithm II is Q-superlinearly

convergent.

—31—

Now suppose urn inf { lB1 - i 'F
> 0. From the linear

convergence of Algorithm II we know urn m1 = 0. By (4.9) we

must therefore have lim = 0, i.e.,

(B. - J) s•
urn 1 = 0 . (4.10)

lklJ

Now Theorem 2.2 of Dennis and More [1974] shows, under the con-

ditions of Theorem 4.5, that if Algorithm II is linearly con-

vergent, then

ll(B. — J)urn 1 1 = 0 (4.11)

I lsI I

is a sufficicr't (and necessary) condition for local Q—superlirear

convergence of the algorithm. Therefore it only remains to show

that (4.10) implies (4.11).

Let
i-l

Q. = E 2T , so that
1 j=i. S. S.13 J

S1
= (I - Q) s. Now 1 - = 1 because (I - Q) is a non-

zero orthogonal projection matrix, so I IsH and

- J) II(B. - J)1 1 1 1 (4.12)
IiII

-
11s4 H

By the triangle inequality,

II (B — J) SjI (B — J)
+

I (B — J) Q s
IISjIJ

— IlSjlI IISjII

(4.13)

—32—

As i+, the first term on the right hand side of (4.13) approa-

ches zero due to (4.10), (4.12). For the second term on the

right side of (4.13), Theorem 2.3 and Lemma 4.3 show

i—i

I (B — J) Sj1 =
I

— J) s>/< >I I

j=zi

i—i
= 1Z (— J) <i., s.>/<, >I I

i-i j-.-1 j-i. IIs.II
rnax{1,t

1 }2 1K— IIH
• Is. rn.

1 J

Because IsII/IIII < T (by (2.llf)) and rn < rn.1, jZ,...,i—1

with i-2.. < n (by (2.ilg)), we thus have

i—2.—1 i—i j—..

H (B — 3) sj I . KI Isj rnj.1 T
1

2
1

i—Z.—1 i—i..

5. XI IsI T
1

2
1

rnj....1

n—2 n—i
< iI s. 2 m.— 1 i—i

Hence

I! (s sdj < K n—2 2n—i rn1 , so

lint I I (B — j) I = n , (4.14)HH

-33—

since im m. = 0. Therefore (4.10) and (4.12—14) imply (4.11)1

is true, which completes the proof of local Q—superlinear con-

vergence of Algorithm II.

It should be noted that the techniques of this section apply

equally well to an algorithm identical to II except restarting

whenever i — R..l > t, t < n (or I Is.I I/I lsI I > T). Such an

algorithm would not be exact on linear problems, however. Ano-

ther interesting algorithm covered by the techniques of this

section is one setting

<S. , S.>i—i 1S. = 5. — S.
1 1 i—l<s. ,s. >i1 i—l

at each iteration. Such an algorithm would preserve the current

and most recent quasi—Newton equation at each step, and can be

shown by the techniques of this section to be Q-superlinearly

convergent without restarts. We have not tested this algorithm.

Finally, the techniques of this section would also apply to

an algorithm which set s ecual to the projection of s ortho-

gonal to the previous t si's, t <n,suhject to the strong linear

independence of . . ,s. as in Algorithm II. Such an algorithm

would require no restarts arid would be exact for linear problems

if b = n. It would be fairly easy to implement (in 0(n2) house-

keeping operations per step) using Powell's [1968] orthogonaliza-

tion scheme.

—34—

5. Computational Results

We have implemented Algorithms II and II', with some modifica-

tions,and tested them on several problems. In Step (2.lOa) we

choose s = -.X B.1 F(x.), where). is determined by the scheme

described in rBroyden, 1965] with the added restriction that

I Isj I < 1 (except as otherwise noted). Instead of storing

we actually store and update H = 3l• Rather than compute Q

explicitly by frmu1a (2.lOc), we use ajpropriate Householder

transformations to express in product form an orthogonal matrix

P such that

= p , whence s — =

L n—i+2._1

Our implementation includes the option suggested above of restart.xszj

whenever i-L. >t, where t < n is fixed. For t = 1 this lets us--

try Broyden's original methods on the test problems.

Test Problems

The test problems we used include the following; we write x1

th 1 T
for the i— component of x = (x ,. .. ,x) c

Prob1 3. [Frown, 1969, p. 567]: n = 5.

n
f. (x) = —(n+l) + 2x1 + x, 1 < i < n—i
1 j=1

ji
n

f (x) = —1 + 11 X
n

j=l

T T
= (.5 5) ; * (1 11)

—35.-

Problem 2 [Brown, 1969, p. 567] : n = 2.

i2 2(x) —x —1.

1 2 2 2= (x —2) + (x — .5) — 1

x0 = (.1,2); x (1.06735, 139228)T

Problem 3 - "Chebyqd' - [Fletcher, l965,y. 36] : n = 2,3,4,5,6,7,9.

1 in
f(x) = / T()d - E T(xJ), where T. is the Chebyshev

0 j=1
1

polynomial, transformed to the interval [0,1], i.e. T0() 1,

T1() = 2 — 1, T1() = 2(2—1)T() — T.1() for i > 1. Note

that

1
10 if i isodd

/ T. ()d =
1 l-l/(i2-l) if is is even.

x = j/(n+l), 1 < j < n; the components of a solution are any

permutation of the abscissae for the Chebyshev quadrature rule of

order n.

None of the variations of Broyden's method which we tried

solved this problem for r=9, so we omit the results of these runs.

Problem 4 (Brown and Conte, 19671: n = 2

2 1
1 12 x x

f1(x) = sin (x x) - - --

f2(x) = (1 —) [exp(2x1) — e] + — 2ex1

x0
= (63)T. x = (5)T

—36—

Problem 5 (Erown arid Gearhart, 1971, p. 341): n = 3.

12 22
f1(x) = (x) + 2(x)

— 4

12 22 3

f2(x) = (x) + (x) + x - 8

f3(x) = (x11) + (2x2 - + (x-5)2 - 4.

= (1, .7, = (0, /• 6)T

Problem 6 [Deist and Sefor, l962j_ ri = 6

6

f(x)
= E cot $.x, 1 < i < 6, where

j=1 1

j1

1'• '6 = io2 (2.249, 2.166, 2.083, 2, 1.918, 1.833)

x0 = (75, 75,• ,75); x (121.850, 114.161, 93.6483,

62.3186, 41.3219, 30•5027)T

Problem 7 [Broyden, 1965) n = 5, 10.

(.5x—3)x1 + 2x2 — 1.

f(x)
= + (.5x1—3)x1 + 2xj1 — 1, 2 < n—i

f(x)
= xr1 + (.5x-3)x - 1.

T
x0

= (—1, —i,...,—1)

For n = 5, x* (—. 968354, —1.18696, —1.14848, —.958989, _594159)T

and for n = 10, x (1.0301l, —1.31044, —1.37992, —1.39071,

-1.37963, -1.34993, -1.29066, -1.17748,
—.975O1. 5657)T

—37—

We ran our tests in double precision on the IBM 370/168 at

Cornell University. Table I below gives the results of some of

these tests. 1'Probiern ct. means probiemc with n =

For each test problem we report both the actual nuriber of

function evaluations needed to achieve IFI < 1010 and a

normalized number of function evaluations obtained by dividing

the actual number by the minimum of the three numbers for that

problem (and rounding to two decimal places). Although Algorithm

II sometimes fares worse then Broyden's good method, the means

of the normalized numbers show that Algorithm II with T = 10

averaged about 10% fewer function. evaluations than Broyden's

good method on these test. prc1lems. The choice T = 10 worked

considerably better than T = 100 in Algorithm II, suggesting

that a reasonably small value of T, such as 10, may be best.

We ran several other tests, whici we shall not report in

detail. True to its name, for example, Broyden's bad method

failed six times as often as his good method. Algorithm II'

with -r = 10 failed on 5 of the 15 test runs; with T = 100 it

failed on only 3, but fared rather worse than Broyden's good

method with respect to mean normalized function evaluations.

We tried a hybrid between Algorithms II and II' whose average

behavior for T = 10 was as good as that of Algorithm II. The

hybrid applies the projections of Algorithm II' to the inverse

form of Broyden's good method, so that y - is replaced by

T A A T(I - Q)H. S. and the choice = y is replaced by y = H Si.

Total Function
Evaluations

Function
Evaluations
Required to
Achieve
I

< 1010

—38—

Normalized Function
Evaluations

Algorithm II
__________ T = 10 T = 100

Notes: 1. Eroyden's [1965] quadratic interpolation technique
failed to reduce IFI i in 10 function evaluations.
The number reported is the total number of function
evaluations at the time of failure.

2. I IFI was allowed to incr3ase as much as twofold
(per step) and a maximum steplength of 10 rather
than 1 was allowed.

3. A maximum steplength sj of 10 rather than 1
was allowed.

P robl em
Broyden' S'hhi Algorithm II

r=lO T100
3royden' S
"Good"

1.5 31 27 28 1.15 1.00 1.04

ii.

3.2 9

3.3 13

10 ltD 1.10 1.00 1.00

9

11

23

9

13

1.00

1.18

1.00

1.00

1.00

1.18

19 23 1.00 1.21 1.21

3.5

3.6

3.7

20 24

(31)1 26

45 35

23

33

—

36
—

1.00 1.20

-- 1.00

1.29 1.00

1.15

1.27

1.03,
4.2 12 10 10 1.20 1.00 1.00
5.3

532

15

16 15

(28)1(28)1

15

1.00

1.07

-- --
1.00 1.00

6.6 62 29 60 2.14
-

1.00 2.07

6.62 32 28
—

57

—
1.14 1.00 2.04

7.5 13 13 13 1.00 1.00 1.00

7.10 21 20 20 1.05 1.00 1.00

Table I: Mean 1.17 1.03 1.21

Std.Dev .29 .074 .37

Failures 1 1 1,

—39—

6. Summary and Conclusions

We have introduced some new quasi-Newton algorithms for

solving systems of n non-linear equations in n unknowns. These

methods are modifications of 'Broyden's good method" and "Broy—

den's bad method' (Broyden [1965]). They retain the local Q—

superlinear convergence of the unmodified methods and have the

additional property that if any of the equations are linear,

then the methods locate a zero of these equations in n+1 or

fewer iterations. (We have only proven these properties in this

paper for the modified Broyden's good method, but virtually the

same proofs go through for the modified bad method.)

Our computational results suggest that our modified form of

Broyden's good method performs better, on the average, than the

original form. We think our new method should be further tested

and possibly considered as a replacement for the conventional

Broyden's method in existing subroutines.

Acknowledgement

We are grateful to Professor 14.J.D. Powell for helpful discus-

sions and advice.

—40—

7. References

Brown, K.I4. (1969), "A Quadratically Convergent Newton-Like
Method Based Upon Gaussian Elimination," SIAM J. Numer.
Anal. 6, pp. 560—569.

Brown, 1CM., & Conte, S.D. (1967), "The Solution of Simultaneous
Nonlinear Equations," Proc. 22nd National Conference of the
ACM, Thompson nook Co., Washington, D.C., pp. 111-114.

Brown, I.N., & Gearhart, W.B. (1971), "Deflation Techniques for
the Calculation of Further Solutions of a Nonlinear ystcm,"
Nurer. Math. 16, pp. 334—342.

Broyden, C.G. (1965), "A Class of Methods for Solving Nonlinear
Simultaneous Equations," Math. Comput. 19, pp. 577-593.

Broyden, C.G.; Dennis, J.E.; & Mor, J.J. (1973), "On the Local
and Superlinear Convergence of Quasi-Newton Methods," J.
Inst. Math. Appi. 12, pp. 223—245.

Davidop, tT.C. (1975), "Optimally Conditioned Optimization Algor-
ithins cithout Line Searches," Math. PrograInxruiii 9, pp. 1-30.

Deist, F.H.; & Sefor, L. (1967), 'Solution of Systems of Non-
linear Equations by Parameter Variation," Comput. J. 10,
pp. 78—82.

Dennis, J.E., Jr.; & More, J.J. (1974), "A Characterization of
Superljnear Convergence and Its Application to Quasi-Newton
Methods," Math. Comput. 28, pp. 549-560.

Dennis, J.E., Jr.; & More, J.J. (1977), "Quasi-Newton Methods,
Motivation and Theory," SIAM Rev. 19, pp. 46-89.

Fletcher, R. (1965), "Function Minimization Without Evaluating
Derivatives; a Review," Comput. J. 8, pp. 33-41.

Garca-palomar U.M. (1973), "Superlinearly Convergent Quasi-
Newton Methods for Nonlinear Programming," Ph.D. disserta-
tion, University of t'7isconsjn.

Gay, D.M. (1977), "Convergence Properties of Eroyden-rype Methods
on Linear Systems of Equations," in preparation.

Ortega, J.M.; & Rhejnbcldt, W.C. (1970), Iterative Solution of
Nonlinear Equations in Several Variables, Academic Press,New York.

—41—

Powell, M.J.D. (1968), "On the Calculation of Orthogonal Vectors,"
Comput. J. 11, PP. 302-304.

Powell, M.J.D. (1976), "Quadratic Termination Properties of
Davidon's New Variable Metric Algorithm," Math. Programn-iing,
(to appear).

Schnabel, R.B. (1977), Ph.D. Thesis, Computer Science Dept.,
Cornell University.

