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Abstract

The identification of te-varying coefficient regression models is
investigated using an analysis of the classical information matrix.
The variable coefficients are characterized by autoregressive stochastic

processes, allowing the entire model to be case in state space form.

Thus the unimown stochastic specification parameters and priors can
be interpreted in terms of the coefficient matrices and initial state
vector. Concentration of the lixelihood function on these quantities
allows the identification of each to be considered separately. Suitable
restriction of the form of the state space model, coupled with the

concept of controllabili-j, lead to sufficient conditions for the identi-

fication of the coefficient transition parameters. Partial identification

of the variance-covariance matrix for the random disturbances on the

coefficients is established in a lixe rrnner. Introducing the additional

concept of observabili-ty then provides for necessary and sufficient

conditions for identification of the un)mown priors. The results so

obtained are completely analogous to those already establishad in the

econometric literature, namely, that the coefficients of the reduced

form are always identified subj ect to the absence of multicollineari-ty.

Some consistency results are also presented which derive from the above

approach.



1. INROJICN

Identification is an issue which arises in connection with all parametric

statistical rrodels. Simply stated, the issue is w:riether one can infer

from observed samples the existence of a uricue underlying theoretical

structure. Econometricians have long c-onoer'ned thamsieves with establish—

ing the conditions for the identifiability of structures whose parameters

are assujnecl to he constant over time. In this paPer we address the

seemingly more complex issue of the identifialili-tyof structures when

the regression coefficients themselves are varying stochastically over

tine. This is a relevant problem because in recent years increasing

attention has been focused on the problem of estimating time varying

structures.' Although estimation methods have been suggested by several

authors, little attention has been paid to the problem of identification

or to the asmptotic theory for these estimatoxs. Many of the issues

we address in this paper have been investigated by others (Tse £ Anton

[1972] and Mebra [1974] for example) bt the context and the results,

as we shall elaborate, are quite different.

The identification problem for the traditional linear econcretric

model with uncorrelated errors was first recognized by Kooprrans and

Reiersol [1950] and solutions were provided by Xoopmans et al. [1950].

This theory was later extended and elaborated upon by Fisher [l96]

in his comprehensive book on the subject. o imoortant papers by

Harinan [1969, 1971] generalize the earlier theory to encompass ir'dels

with moving average error processes. ost of this prior theory

concentrates on conditions which guarantee unique solutions to -the set
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of equations which characterize the structural form parameters in terms

of the reduced form parameters as manifest by Hannan's solution.

Rothenberg [1971] takes a different approach in characterizing the

identifiability criteria in terms of the infonration matrix of classical

mathematical statistics. Rothenberg's approach has been nicely extended

to a more general representation by Bowden [1973]. It is this latter

approach which is most appropriate to problems we are considering because

of its relative independence from concepts related to sta-tionar9

stochastic process theory.

The problem we are addressing can best be illustrated by consider-

ing the state space representation of a model with stochastically varying

coefficients. We characterize the problem in terms of a regression relation

(or observation equation) and a "state" equation which describes the

evolution of the coefficients over time:

(1.1) + e
(1.2) ti = +

The variables y arid X represent the obser'vables of the system is a (KxK)

matrix which governs the transitions of the K component coefficient and

e and are independently and identically distributed random variables

w th mean zero and covariance matrices 2 and Q respectively. It is
clear that the identification is quite complex in this context because

we must establish the conditions for the existence of a inique stochastic

characterizaticn of the process governing the coefficients. Identifica-

tion of the coefficients depends on the identification of the transition
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matrix , the covariancematrix Q arid the initial conditions of the

coefficient process The literature on varying parameter estima-

tion has focused on the problem of estinating the initial conditions,

but there has been no discussion of the conditions under which the other

parameters will be identified

In the following section we formulate the general estimation problem

for time varying coefficients arid present the recursive (Kalman filtering)

solution. The initial condition problem is discussed and the 1i2:elfl-iood

function, concentrated with respect to the initial conditions, is presented

to facilitate the derivation of the identification conditions. In

Section 3 the Information Natrix is derived and analyzed to give simple

sufficient conditions for the identification of and Q. It is shown

that there are restrictions on the forns of and Q nich can be identified.

Section briefly states the conditions for the identifiability of
using the results of Section 3. As.totic properties of the estimators

are also discussed. The final section sujiciarizes the results arid draws

some conclusions.

2. Thi ESTB4ATICN TI-CRY FOR TL. ARYLG STRUOYJFES

In the introduction we represented the rcblem of time varying structures

in teis of a single equation regression relationship arid an equation

which characterizes the evolution of the coefficients as a first order

Narkov process. As a point of departure for this section let us consider

how we might generalize this representation. Ideally, we would like to
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be able to consider general sinailtanecus equation regression relation-

ships. In practice, however, we must restrict ourselves to the considera-

tion of reduced form relationships because the estimation theory for time-

varying structural forms of simultaneous equation systems has not yet

been developed.

In many instances one might expect to observe variation that is

systematic but non-stochastic, or variation that is purel random. To

include these possibilities we can modify our state equation to the form

(2.1) ti + + w

which admits variation of all three types. If w is equal to zero then

the variation is purely systematic. Thus, if the parameters follow a

time trend, a sinusoidal pattern, or are correlated with exogenous var!-

ables it can be represented in this fashion. Similan models have been

considered by Beisley [1973]. If is a unit vector, w is nonzero

while 0, then the formulation is equivalent to the random coefficients

model considered by Swamy [1970] and others where the parameters are

regarded as random drawings from a multivariate distribution with mean

vector D in the above representation. Although this is not properly a

state space formulation it can still be handled within this framework.

Thus, the evolution of the state of the system represented by equation

(2.1) is a general one ich encompasses many possibilities.2 In this

paper we concentrate on stochastic coefficient variation because it is

this which presents the most difficult problems of identification.3
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We wish to ectend the basic state sace model to permit the

coefficient3 to be characterized by more general stochastic processes.

Let each of the obey an autoregressive process of order }cl,2).. .K.
Thus

(2.2)
klk,t-l + k2k,t-2 + k,t-l

where 0 and is a normally distributed zero mean sequentially

independent random process with E{nnJ = The model can then

be represented compactly as

(2.3) YX+e1

(2.L) t Hz.
(2.5a) z = zi +

where is the state vector of the model describing the evolution of

1_ ( 2 ... I K —z [(zr) (zt) (Zr.

k . . .V!i-ch z. representing the r state viae (tne substate \lector for

H is a Kxn (n rik) matrix of the form

2 A=H
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and h is a row vector of zeros except for a one in the 1 + + •+n:kl
column. The iratrix is now assumed to be of the form

ll12B

k1 kk

where

[ 2k

The assumed form of is a natural one given the autoregressive repre-

sentation of the process governing each coefficient. In the fo1lowin

discussion we assume that the off-diagonal blocks are null ratrices
(c.. = 0 ; since this. is a restriction which must be irnoseâ to.

1J
derive a sufficient condition for identification. In Section 3.3 we

present a counter example showing that a model without this restriction

is underidentified.

To further simplify derivation of the identifiability conditions

we replace the stochastic term of the state equation, Ant by an eçuivalent

term ru where is Kxl vector of stochastic elements such that

E[u] = E[rlt]0 , E[utu] I

and
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E[n]EQ E[(HArIt)(HArlY] [(Hru)(HFu)'].

r is an nxlK matrix of the same stn.icture as A with the exception that the

nonzero rows contain the corresponding rows of the unique lower triangular
factorization of Q. Henceforth, (2.Sa) will be replaced by

(2.5) z z1 ÷ ru1.

Models like the one described by ecuations (2.3) - (2.5) have been

extonsively explored in the engineering literature following the york

of YiTh'an [19605] arid a1nsn arid Bucy [l5i]. The first recognition of

the applicability of state space representations and Kalman filtering

solutions to the problem of estinating eonnetric relationships
with time varying structure was by Rosererg [1968]. Other approaches to

estimating models similar to the one described above have been suggested

by Cocley arid Prescott [1973, 1976] and Sarris [1973]. Here, however,

we shall briefly review only the optiral recursive estimation method

because it is the most convenient for establishing the. identifiability

criteria.

The estimation proSier is to obtain estimates of the states, z,
based on the observations [yl yJ. If we let be an estimate

of z based on observations [y1 There tt and define the error

covariasice matrix of the estimated staes as

(2.6) I

then the solution is easily obtained wnen z0, , 2 and V are known.

The form of the solution is known as the Kalman filter arid is rerresented
as
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(2.7) Ztl/tl
(2.8)

t-1it-1 + rr

(2.9)

(2.10) i-1 ÷

(2.11) Kt Pti-1 Mt'

(2.12) -it_ +

(2.13) = (I_Kt) i-i

where X H

Although the KaJ.man Filter has appeared many other places in the

literature a brief interpretation may be useful. Equation (2.7) represents

the one step ahead prediction of the states based on obseniations thrcugh

period t when t = t-1. The quantity ' which is ca.lled the "innovations"

series, is obviously the one period prediction error for the The

quantity is called the gain of the Kalman Filter and Mt is the covariance

matrix of the innovations. In this light it is easy to see that the gain
of the filter is simply the optiiial prediction correction factor.

It is obvious that z, p0, a2 and r will not be 3iown in most

applications. The log licelihood of the system represented by (2.7) - (2.13),

however, is (see Mebra [1972]);

(2.1k) £(z,P,®) -1/2 1[logIMI +
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where B (2 r, ). Thus., estimation proceeds by selecting initial

values of z, F, 0 and using the equations of the KaLrn Filter to

define the likelihood function. This process proceeds iteratively and

is known in the engineering literature as 'fturiing the filter'1.. The

engineering literature, however, has not in general been sensitive to

problems of estina-ein the initial state vector z0. Most of the literature
assumes that has a proper prior distribution which eliminates the

problem. That this is seldom the case, however, is not a serious Droblem

in dealing with real time systems with many observations (as in most

engineering apiicatiors) because it is easily sho-i that under the

aDpropriate condi-cions the discrete lKaJman Filter is asymptoticajly
stable and the effects of the initial conditions are ultimately forgotten
(see Jazwinski [1970, pp. 20-23]). In econometrics, however, the
situation is somewhat different in that we do not deal with real tine

systems, our observation intervals are often relatively short, arid we
are often primarily interested in how the structure of the system evolves

over tine. For all of these reasons it is particularly iuortant to be

sensitive to the stattisig problems. The first correct solution to the

starting problem was propcsed by Rosenberg [2958] arid later generalized

by him [1973b]. The solution involves concentration of the likelihood

function with respect to the initial state vector z0. This permits

naximum likelihood estimation of z conditional on ci2, arid r.

recursive equations for z0 are

(2.16) o/o

(2.16) tit_i
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(2.1'/) t/t t/t-l -

(2.18) Ht ti_' M1 it-p
(2 19) h (" ' ) M -1

• t_ 't t/t_1 t lit

T T
•

At h

where and are as defined in equations (2.7) - (2.13). The matrix

' then is simply a function of the transition matrix which extrapolates

the initial parameter vector into the. future.

Equations (2.15) (2.20) show that the likelihood function of

the system can be concentrated with respect to the initial state vector

arid thus, the identifiability of z0 simply requires the invertability
T

of Ht) ich in tuni depends on the identification of and r

arid the properties of the X. Consequently we can approach the problem

at hand by first looking at the conditions for the identification of

and F.

It is worth noting that the initial condition approach outlined

above does not provide estimates of the initial covariance matrix P0.

The consequences of this have recently been discussed in a paper by

Garbade [1975a]. In econometric applications one should be most

interested in obtaining "smoothed" estimates of the states (zt/T),

that is, estimates which use all of the information in the sample.

A smoothing algoritIun which avoids all of the initial condition roblenis

has been derived in Cooley and Wall [1976].
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3. IDEfIIFTOATION OONJ::0':s FOP !1D F

The identifiability of the unkiown stochastic specification parameters

can be determined through an investiga-nion. of the classical Information

matrix. This approach has wo advantages: First, it permits the

identification problem to be studied wihin the general framework of

statistical Lrlfonration theo - a poinn well emçnasized by Bowden [1973].

Also, it provides a useful connection heteen cermain concepts in control

systems theory and mather-aical statistics.

3.1 The Information Natrix

The classical Information Matrix of P. A. Fisher is defined as

(see Rothenberg [1971] or owden [1971]):

C

where, i is the Nxl vector of u kTlown caraneters ith true value 0;
an n p is the natural logarithm of the density function foP the jointly
observed outputs over the interval 1 < T. Thus, the first step is
to derive the density function for the ointlv observed outputs.

Combining the state anä odtput euacicns (2.3) — (2.5) permits

the formation of an expression for y ( 1,2,... ,T) exclici-tly in

terms of the vector of unJo; parameters.

(.1) t 1

XW + e
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[ ! •••

(3.2) z +

xl
0

0

I I

0 ••• 0

I X2 i... 10
--—I---H---

wt

A I I I

(z_1Y1 0 •.. 0 0

2]
—

0

(zt.1)j...i
0

-
0
— U2

: I : I•.1 : I: :OtQ.t(zyI
— I I J LJ..

I

0 0

0 ". 0

0 u.t-

is thus a KxN ntrix with

stricture, the (k,k)th block

state vector associated with

columns form a matrix in the

last row consisting of u1.

compactly in terms of (3.1):

its first n columns exhibiting a block diagonal

having dension lXnk arid containing the sub—

the kth regression coefficient. The last K(K+1)/2

elements of u1, with the last K columns of the

The joint observation can now be written

where,
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wJ-

w
w

WT.

[e1,e2,. .

The e are independently and iden-ioally dierihuted normal random

variables so the probability density fictiori for conditional on XT
and is;

PT; =

()i/2(2)T/2
e

Taking natural logarithms and then partially differentiating with respect
to it gives

9n p(Ym;X.. it))
(,3•4)

—

_y ij-m—. _—.j_

Finally, the above eression may be substituted into the definition for
I(i) to yield

(3.5) I(p) —E{(- w)( c)}
The replacement of YT.Wit) by ET follc'.:s from the evaluation of

at =i°. The Infonmatioh matrix is seen to depen on the exDectation of
a product of random matrices.
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In order to facilitate tne evaluation of the expectation operation,

we resort to consideration of the (1,)tn element of l(i):

(3.6) {I()}.. ejwjj]L m esmwri1)

nT TK irT TX 1
— E1 er ij[51 e 1

r E{e} E( xtw.) (1j )1
E { (xw. ) (xw.)a tl 1 3

1 T
E{x w.)(wx )}

—t

1 T
__5_
o t=i

Here x denotes the t w of > and w. with .th colu of . It is now—t — —I 1

possible to cons'uct the Inonration Mtri, element-by-elenent once the

expectation of the outer product ww is computed.

Appendix A contains the details of the element-by-element construction

of I(i), along with some additional steps required to put l() into a rrre
useful form for analysis. The end result is:

(3.7) I(p) =---
a t=l t t
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is a nonsisigular elementary rasfonition of the data rtrices:t t

z1z2
0

0 V

xI
V x IR )ck

01

L0 DKJ

The nxn ma S1 is the genera1ize varance-covariace caix fcr the
state-space process z1, i.e. S1 E{z1zJ (See Bryson Ho [1959]

pp. 320—325). Thc }((K+i)/2 x K(K+1)/2 cetrix D, has a block diagorl

stn.cture

AK

K—i
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where each, O K, K-i,..., 1) is a kXk rnatrx with unity in

every location. In view of (3.7), it is clear that the identificaticn
of the ui)o-ion-is in and I depends upon the rank (or, equivalently,

the positive definiteness) of both S1 and Dk.

3.2 Identification Conditions

Two points are immediately evident from (3.7). First, DK is never

of. full rank since each has only one linearly independent column.

Thus all the unJown elements in F can never be identified simultarec:siy,

but K linear combinations of these elements are identified. Second,

the identifiability of the parameters depends on whether or not S,

is positive definite. If conditions can be found which establish this,

then the unJmown elements of will be identified.

The question of identification of can readily be resolved with

the aid of the concept of controllability ;5

Definition 1. The state-space model (2.5) is said to be
uriiforiifty ccmpletely controllable (UCC) with respect to
the disturbances, ut_i, if arid only if there exists an
integer N1 > 0 arid constants c, C2 > 0 such that6

0 < cI C(t,t-N1) cI <

for all t > N1, where the controllability
C(t,t-N1)is defined by

t1 t1—T-, (Ot1T
(3.8) C(t,-t-N1)

ill

Definition 1 and the restricted structure of are all that is needed to

prove the rr5 result of this paper:



Theorem 1. If the time-varying coefficients of (2.3) have
their transition relationships realized by (2.5) with
arid if (2.5) is UCO then: (1) the n-o-o-i sochastic specifica-
tion parameters in are globally enthiled; and (ii) only X
linear combinations of the ur.or.s in F are identified.

Proof: The identifiability resul- ico F bas already been

established from our observations conceco-ing the D, matrix, so

we shall concentrate on the proof of (i . Yrrn the state equations for

z, the generalized varience-covariance nanrioes are seen to obey the equation

St St_i + 11

which has a unique solution given by.

t—l t—l t—l t- -- -T(3.9) S S1( ) + E T F( )•.
L TO

The second term on the righthand side ci (3. ) is nothing more then the

controllability matrix C(t,O) defined in (3.8) with N1t. rrom the UCC

of (2.5) there will always exist a t=7 such that C(t,O) > 0 for all t�t1.
Thus for all t�t1 (3.9) will be posifive definite and the identification

of is established.

3.3 Remarks

The identifiability of relies abnos exclusively on the special

structure underlying the state-space noiel, ith the principle condition

being the block diagonal form. This resus in an with its upper left-

hand block identically equal to S1. ne controllability condition is
then imposed to giarantee that S1 > fr all t>t1+l. Controllability
alone is not a sufficient condition :Tcr iienification of - it mist be
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accomanied by anpropriate structure in . Actelly, any ( j) air

which yields this structure in * has linear in p, and is UOC will

give exactly the same conclusions as Theoreri.l.

The controllability requirement ny apocar imoossible to verify
a priori since it is stated in teis of the owns. In practice,
however, this is no real lijnitation since the block diagonaltiy off

perrilts (2.5) to be viewed as a grouping of K independent subsystems

(sec. Luenberger [1967]. Each "subsystem" will he UCC if arid only if

0 and at least one nonzero element apocars in the corresponding

row of r. If each subsystem is UOC, then the overall state-space model

will be UOC. The first requirement is met if the specified order, ri1,,

is less than or equal to the "tnie autoregressive order, while the

second is met if there is any trace of randomness in each coefficient.

It is difficult to concieve of a realistic situation where such conditions

will be a.b:irt.

In the case where all K coefficients obey first order autoregressive

processes each lagged becomes an element of the state vector (i.e.,HI),

and our results regarding the lack of complete identification of r agree

ith the results of 'ebra [±9i] co-'.ce: ang - _:entfablrty r Q

His other results are not generally comparable to ours cecause ne consrders

only models with stationary regression relationships, i.e. X constant

for all t.

The results in the control theory literature (see Tse and \e±nert [1975])

suggest that more general forms for can be identified (specifically, block

triangular 'I). The following counter examrle, hcwever, demonstrates that

this specification for will not be identified in the tire-varying coefficients

problem.
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Consider the special case where Kz2, r1ri2
1 (which more closely

reserr1es the control thec case), ar let some interccn1irg between

coefficients be pers'itted through 21

L21 22

This lower (block) trianguier is not inentified. as can be seen by

constructing the associated 1 () following the steo contained in the

Appendix:

E
a t=l t t t

Ixiti

- I

=t_ lxii
TiZ2t
I I

L ii

H11 11 i2
0

S11 ll l2

1s12 S12 S22t I- 110
0 110

L I
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Clearly the upper-left 3X3 block of 2÷ is singular so that all ..
elements are not identified. Whereas the control theory srate model

has one substate—vector associated with each element of :÷ the time-

varying coefficient model has one subsrate—vector associated with each
7element.

4. CONTROLLABILITY, OBSERVAEILITY ATD CONSISTCY8

In Section 2 it was shown that the likelihood function can be concentrated

with respect to the initial vector. This allowed us o consider the

identification of and F separately. We now t1rn to the establishment

of the identification conditions for . Conditions which establish the

identification of any ft can easily be derived with the aid of certain

qualitative concepts from control theory as in the previous section.

In addition to controllability, the concept of Uniform Complete Observability

(UCO) is helpful. It is introduced by a second definition:9

Dfinition 2. The model (2.3) - (2.5) is said to be uniforray
completely observabie (UCO) witn respec to the ou Lrt,
and only if there exists an integer N2>O and constanrs c3,c>O
such that

(4.1) 0 < c31 �. O(t,t—N2) c41 <

for all where the observahility matrix O(t,t-N2) is

defined by

t T—t' T—t(4.2) O(t,t—N,) ( )
L

Tt—N2
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Taken together, controllability arid obseiability imrly the identification
of each point on the trai, ectcry for . The nin result is given by the

following theorem

Theorem 2. If the system defined by (2.3) - (2.5) is both
UCO and UOC, then is completely identified.

Proof: Each z can be exresse terms of z via solution ofT L

the underlying state equations, i.e.,

T—t T-l -T-l—S
Z +

St

Substitution of this exression into that for the observed outputs yields,

YT XZ + 2.T1 Tl_ST. +

Az, +'•TI: T

The jointly observed process, iith a an unJrncn parameter vector, can

no be represented as in regression theri: (let mx

YAz+V
where

'-t—N' 't1
-

A [A I . . A] —

tN L_j
V

1t-:r+1'

The standand conditions for z to be unique are that both

AA (o1ty
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ad the veriarice-covariance matrix

11 12

H
E{Vv} 21 22

m..
R6.. + X. m. .—-1 m. .--1.

12T ri ( ij )

ra.. mm {i,j}
13

ó.. Kronecker delta
3.3

be nonsingular. The first of these is just UCO, while the second follows

irrmediately from UCC. Finally, since Hz and H is full rank,
I. t L

is unique whenever z÷ is identified.

Theorem 2 can inmediately be specialized to the problem of estimating

unc-io-i priors. In such a situation, the observation interval ns from

the point of interest, tzO, forward to I. Thus, by setting N- e
find that is identified if and only if

(.3) 0 < ()TT_l <

TT+l

The above condition is equivalent to requiring that the matrix

(TlyyJi 2j

be of (full) rank K. The full rank interDpetatjOn of (4.L) can be
interpreted as a generalized muiticollinearity condition.

Observability and controflabi]i-y are also quite useful in e<arnining
the consistency of tine-varying coefficient esttes. Both C(t,--N) and O(,t-.N)
can be used to establish bounds on the estimation erTol'
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rtrix and thus to study the behavior of the err as T - . The essence

othase steps is contained in the following theorem.

Theorem 3. Let the tine-varying coefficient model (2.3) -
(2.5) be both UCO and UCO. If t �. N max {N1,N2} then the
best ]J-iear unbiased estima:e is never consistent.

Proof: First, consider the behavior of the filter estimation error

variance-covariance matrix P. Together UCO and UCC guarantee the

existence, uniqueness, and stability of as t0, the initial tim.e
tends toward -°° Furthermore, for any prior P > 0, UCO guarantees

tnat P > 0. (See JaZWLnSki [1970], Lerrma 7.3, . 238-239). Thus

the filtered estimate's error variance-covariance matrix can never decay

to zero no matter how much ata, up through tLrne t, has been emplc-ied.

Next consider the behavior of the smoother estimaticn error ;ariance-

covariance matrix, F4, ,, which uses all data in the sanijle. Fraser arid

Potter [1989] have shown that

t/T [(f)l +
is the filtered ermor variance-covanjance of a

tu filter begri at t 1 ama rmnning :orard to = i, while

is the one-stan prediction error variance-ccvariam:e of a "back?ard"

filter begun at t T and runnim ackward uivtil Fixing t

and letting T -* reveals that cnly P?/1 will change since only it is
dependent on T. Now, from the oositive definite roperty of
no matter how fr "back" it was started (i.e. how large T is), it is
clear that P > 0 and hence ? > C. The smoothed estimate willt/t+j
always be inconsistent
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Specializing the theorem to the estination of n}oc.•r prior:,
it is clear that inconsistency persists. For diffuse prior:,

P - [ + (pb )_ll - p
O/T

— " 0/i —

Oil

which reveals the lack of consistency under stocbastic excitation for

the s's.

5. SULARY AND COi'CLUSlC S

The growing literature on the estimation of models with time Vao-.1ing

regression coefficients has largely ignored the issue of the identif i-

ability of such models and consequently has left in doubt the generality

with which they cart be specified. This paper has used the classical

information matrix of statistics to establish sufficient conditions for

identifiability. The main result of the paper shows that the peramet-r

transition matrix will be completely identified if it is in block

diagonal form. This special form of the transition matrix pe±mdts

generality in the specification of the process gcverTling eaoh coefficient

in the regression relation but riles out the estimation of intercouplings

aIrng coefficients. This is an important restriction in that n-any

theoretical considerations which lead one to expect stochastic vErieion

in coefficients also suggest that the nvements in the coefficients will

be related. The restriction, however, doe not preclude a priori specifi-

cation of )iown off diagonal transition parameters, arid it may often be the

case that theory will suggest a priori values for parameters. The
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identifiability conditions also show that only 1< linear coiriatinns

of the elements of the variance-covariance matrix of the coefficients

can be identified. Diagonal Q matrices will therefore always be identified

The results of Section 3 are equally aeplicable to the muitivariae

output mod--I where y is an Lxi vector. The observation error variance

is replaced by an LxL matrix R, which, as before, is always identified.

In addition, the unciown priors are identified subjeci to exactly the

same conditions as given in Section (these conditions being oboalned

independent of the dimension of y÷). The only conolication is in the

evelopment or the expression for I (). R rep±aces trie scalar a/a2

in the earlier stages of the algehrac naniou±atcns and cannot be so

easily tractcred out" of the ensuing cerivaton - With the ai 0: the

Kronecker product, however, an expression similar to (3.9) can be

obtained which yields exactly the same conclusions as before:

(5.1) I() [ØR]
L

Since the Kronecker pn>duct of to positive definite matrices is itself
positive definite, the conditions for identification once again derive

from an analysis of defined in (3.9). The matrices above have

exactly the same form given in the apoandix with the exception -hat t:e

scalars x are replaced by LXl column vectors.
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The mioo priors ae always identified sabj act to the generalized

multicollii-iearity condition tnduced in Section . If is iccn
a priori then the identification of the i(Xl prior and hence any point

on the trajectory, can be established by exaaining the rank of the

associated Observabili-ty Natrix of (.3). Note that with knor, this

check can always be carTied out before estimation is attempted. The

consistency of the prior estimate cannot, however, be established. The

analysis of the dynadic properties of the estiirtion error variance-

covarance matrlx reveals that random excitation of the coefficients

always prevents the limiting distribution for from attaining a zero

dispersion. Given comDiete observabili-ty (identification) the most

that can be achieved is an asymptotically finite error distribution for

the estimates of the randomly excited coefficients.



AP?ENDIZ

DF.EOTATIOI EVALUATION ANP FOFJATION OF

i n\TcRwTIo:

The Inforniation Matrix construction resented in Seotien 3.1 reduces

to the evaluation of {w.(w.) '} where w. and w denote ne i and th
colurru-is, respectively, of (see ecuation (3•3))•12 Since 1 < i,j < N,

where N is the total nuier of u n7n stochastic specification para-

meters for the B. process, this airnts to the evaluation of matrix

expectations forned from various vector outer products - These evalua—

tions are straightforward if care is taken to avoid the potential for

confusion. Tras can be achieved by decomtosing the evaluations to

three pants, depending on the relati.'e value of the subscripts i arid j.

To this end let denote the set ci integers containing the colurrri

nunibers of the states in W.associacei 7ith the k coefficient in

other words, Ck contains the coluirr ncbers in which the states

are located. For exarle,

C1 1, 2, ..., n1

C2 n1-1-l, ...,

nKi+i, ..., nl+n2+..

First, consider the case in which i,j < n, i.e., in which w. arid

w. are both taken from the first n colujru-is of U . Tr:s let .1 c C arid
J t £

j c C , then
m



[1 1 H I
E [O...EJ

Zj,_1
O...iJ

Hi
KxX rrtrix of zeros with the ()th -
position replaced b' {z1,_i z }

The eectaticn E{z±ti z,_1} is noth than the

element of the generalized variance covariance function St

E(zt z associated with the COT. lete state representatic:. for

the coefficient transitions defined by (2.5). If this elemenT is

denoted by then14

E{w.(w.)'} KxKtrjx of zeroes with the (9)th
3- i

el&ent replaced by s.
1]

Second, consider the case in which i while j is ass:ciated

with any of the last K(K+l)/2 coluTns of U. Then it is easy to see

that

Ew.(wi'} KxK null rracrix, (A.2):L
since z1 and u1 are independent. The sare result holds with the

roles of I and j exchanged.

Finally, consider the case in fnich both i and 5 are taan fr:nt

the last 1K(K+l)/2 colurmis in W. In general the matrix expectations

become,



Ew1(w)?} Z UDt [O...u0_1...o]

LU J

Obviously if q q the end result is a KxK null matrix. If q then
the expectation operation results in a Kx}( matrix of zeros with one ele-

mart reolaced by unity. The exact location of unity depends, of course,
on the resmactve row csitions Of u arid u . A concise chax'ac-- ,t—l q,c-l
terization analogous to (A.l) does not seem possible. This dffficulty,

however, is of little consequence to the final expression for I(i) as

will beco:r.e apparent below when resort is made to the use of elementary

row and colutn-i transformations.

The above results concerning the evaluation of the expectatic:s can
.thno be co;abined with the Oe1nit1ori of the (i j) elamen-t o () to per—

mit an elemant-by-elernen- construction of I(). More specificeflu;
1. If i>j belong to the first n columns of W, then

T
— V x. s.;<. . (A.3)
o2 tl it 1] jt

2. If i or j belongs to the first n colutris of while
the other is associated with the last K(K+L)/2 colutne

of W, then

i. .() 0. (A.L)

.3. If i and j ar-s. both associated with the last KG(+1)/2

columns of U, then



x Efu uQ x1 (A.5)

T
1

—- 2. XX ; pq0 Ll

q.
The element-by-element construction can finally be corrined give

the complete InfonTiation Matrix:

I() = - E t Et (A.6)

where,

z1 1

V1
V

o 2

--S

o

0
Vkt :kxk

0



•1

st...1

Tk

Although Zk an Vk contain the sane elements cn the diagonal, they have
different dimensions. Thus Z1 is an n1xn1 ma-trix whereas V1 is merely

a scalar (lxi matrix). The K(Y+l)/2 x K(K+1)/2 matrix is difficult
to write down in general; it con-tains only zero-es arid oneTs following
the pattern set out below.

11010010 001
11010010 001.....

00101001000
11010010001
00101001000
00000100100
110 100 10 0 01
00101001000
00000100 100
00000000010
11010010001

The InSormat ion matrix of (A. S) can be written in a more conrenierit

form for analysis of identification by resorting to elanentarr row and.

column transformations. In Darticular there will always exist nonsingular

matrices P and Q, composed of eiemantary excherges of rows an colum-is

respectively, such that



0

————I------
0

whre

I.
K

K

j
with a kxk matrix with 1' s everyhre. :rl addition, the srcture

• of reve:i1s that for evory rc.-: exchange recuired to bring T,, to

there is a corresponding co1urn- exchange. Thus QP', and the final

expression for the inforrration ratrix becones

t
0

(A.7)

Since P is nonsingular the rank of I(4i), and hence its definiteness,

derend on the rarJ and definiteness of
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FOOTflCTi'S

1. See, for exaniple, Garbade [1975a, 1975b], Cooley [197], Pager. [197],
Rosenberg [1973a, 1973b], Cooley and Prescott [19761.

2. For an excellent survey of generic relaticus among models with rot-
constant coefficients see Rosenberg [137 3a1.

3. An earlier version of this paper (Cooley and Wall [1375]) anely:oad
the differences bet :eeri t ie seque:::ial nonsoochas tic variatito pr'obinT
arid the stochastic variation proh1am.

i. The ccrdrtucus are that the systr is u cceolete:j olervable
and uniformly cort1ete1y controllable.

5. The derivation of ccrro1 lability cotta ned in the folliwin; definition
is beyond the scope of this panor. The reader nay consult any
of it tects such as Zadeb and besoer [1963; pp. 506-509] for
an excefle::: de'lcbmcnt. It shc:dui be noted that there are. rrmmy
definitions cf controllability, each with its. own subtle twist (sac
Rosenbrock [1970; EThpt. 5 0 6]).

6. Let x be any arbitr p>l vector and A an pXp matrix. Than ci < 21

is taken to mean xxr < xAx < 6xx where I is the op identify matrix.

7. There is a basic difference bet:een the identification problem posed in
this paper and that considered the control engineering literature. There
is more ornationi available in the latter case because cash diagonal
block in the crisiticn matrix (i.e. each state subgroup, z) is
a soc±to a d±fferonr. coreme oto ( )it

8. The authors wish to ac}cowledge an anorvres referee whose heluful
corn-ants have greatly facilitated the presentation of Theorem 2.

9. Obsarvability was another qualitative SVa L-err rromertv firsr defined he
Kalman [l96[)ai in a purely deteitidnistic framework. Stochastic versions
of this concept were also aitrociuceG by Ka2nan [1963], Ache [1967], arid
Jazwinski [l370]. The sole difference between the stocheemi: and determin-
istic versions is the insertion of R—1, the variarica-covariance of e-,
bet :aen X- and X. This distinction is, however, immaterial so long as

R is assumed positive definite.

10. This fundamental result was first obtained by }(abran [1903] for the

contlnuoes time case The e_screte—tarc case as fxst coos_oared r :eysa
arid Price [1968] arid Deyst [1973], with subsequent cedagogical oresenca-

tion given by Jazwirski [19701. The interested readar cs referred to
any of these for a proof.



ii. iJte-ati'e1y, the exoressio: couli have bee:. itter. usir
end with equal validity. In a ccninuc us-time frame mr-.
lcilosyncracy disappeers, I .e. both fil-er variance-covarian:ss -e
em?loyed.

12. The. time dependence of each colupm of is supresed in cYder to
avoid the use of dobie subscrjD-ts :hich are reserved for eementsos matrices.

13. Fm the definj-tjor of the overall state vecor, z-, giveri in Section 2,it is cleaT -that 4 Zj, if p is such that z,t_1 appca in theIth colunri of W-. fikewise, z,-:-l z ,-t-: if q is such tt z,t_i
aprears in the jth colua-u-i of W:.

14. The supersorapt t is used hare to aoid triue subscripts while still
retaining explicit indication of the time de:endence of


