NBER WORKING PAPER SERIES

ROBUST NONLINEAR REGRESSION
USING THE DOGLEG ALGORITHM

Roy E. Welsch#
Richard A. Becker#:

Working Paper No. 76

COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE
National Bureau of Economic Research, Inc.
575 Technology Square
Cambridge, Massachusetts 02139

March 1975

Preliminary: not for quotation

'NBER working papers are distributed informally and in limited
numbers for comments only. They should not be quoted without
written permission.

This report has not undergone the review accorded official NBER
publications; in particular, it has not yet been submitted for
aprroval by the Board of Directors.

*NBER Computer Research Center and Massachusetts Institute of
Technology, Sloan School of Management. Research supported in
part by National Science Foundation Grant GJ-1154X3 to the
National Bureau of Economic Research, Inc.

**Bell Telephone Laboratories. Research supported in part by
National Science Foundation Great GJ-1154X3 to the National
Bureau of Economic Research, Inc. h

Abstract

What are the statistical and camputational problems associated with
robust nonlinear regression? This paper presents a number of possible
approaches to these problems and develops a particular algorithm based
on the work of Powell and Dennis.

10.
11.
12.
13.

Contents

Introduction e e e
The Problem
What Can the Average Man Do? . . .

Nonlinear Reweighted Least-Squares .

Creating Specialized Algorithms
Robust Nonlinear Regression
Starting Values

Scale Computation

Confidence Regions . .
Eliminating Second Derivatives .
Examples
Concluding Remarks

References « « v ¢« ¢« « .« .

Tables

Table 1. Marketing Model Data . . .

Table 2. Marketing Model Results

Table 3. Test Function Results

ROBUST NONLINEAR REGRESSION
USING THE DOGLEG ALGORTTHM

1. INTRODUCTION

In recent years the concepts of robust estimation
-have lead to a rethinking of the ways we fit models
to data., Papers by Beaton and Tukey [1374] and
Andrews [1974] have proposed algorithms for rcbust
linear regression using iteratively reweighted
least-squares. This technique has proved to be
quite successful and has considerable intuitive
appeal because of its connection to weighted least-
squares regression.

In late 1973 the authors designed and implemented
a robust linear regression macro on the TROLL sys-
tem at the NBER Computer Research Center. It
makes use of reweighted least-squares, iterative
scaling, optional starts including least absolute
residuals, and provides a robust trace of the co-
efficients as a "robustness parameter" is varied.
After some economists and management scientists
had worked with this macro, we received a number
of requests to provide similar facilities for non-
linear problems. In what follows we discuss
several possible approaches to robust nonlinear
regression, outline a few successful algorithms,
and discuss our experience with them.

2. THE PROBLEM

Assume that we are intcrested in fitting the model
£00)=(£,(9),...,f (8)}7,8=(6_,...,8_} to the data
y=(yl,...,yn}T. fle shall sedk to dB this by moving
from some start 0(0) toward a local minimum (with
respect to 8) of

n y.-f.(8)
- iti
Ps(a) = i-fl Pe <s—>

where p(+) is assumed to satisfy p(t) € p(u)

if |t]<|u] and is often viewed as a loss function
(which, in general, need not be independent of i

or symretric).

(2.1)

For nonlinear least-squares (o(t)=t?) we have
always faced the problem of specifying starting

values. For robust loss functions such as
r , 2
t_2_ Itls e
b (8) =S 2 (2.2)
clt| -5 jt]> ¢
\
,
R c2[1-cos(t/e)] [t]s cn
pé(t) = 4 2 : (2.3)
L s |t]> en

we not only need a starting value but, because
these loss functions are not scale invariant, we
also need a way to measure the scale (size is per-
haps a better word in this context) of the residuals,
r(8)=y-f(8), at the beginning of the computation
and, in some cases, to remeasure it as the computa-
tion continues. Ve must also choose ¢, the robus:-
ness parameter, or at least provide ways to indicate

"“the effects of changing c.

We note that neither (2.2) nor (2.3) have a second
derivative everywhere. There are approxirations to
these functions which do (e.g. the bisquare of
Beaton and Tukey (1974]) but having a second deriva-
tive everywhere has not proved to be practically
important for the algorithms we shall discuss.

3. WHAT CAN THE AVERAGE MAN DO?

We have found that many people have access to some
form of general nonlinear optimization pregram and/
or a special routine for nonlinear least-squares.
Most of the researchers interested in robust fit-
ting are not interested in extensively modifying
these programs or writing new ones. So we discuss
first scme approaches to robust nonlirear regression

-

that allow the use of existing programs.

If we assume that a general nonlinear optimization
routine is available then it seems reasonable to
try to estimate the scale, s, by making it a part
of the optimization problem,

n I‘i(e) -
min I P *+ S log s (3.1)
8,s i=1 s

in direct analogy to the related maximm likelihood
problem. It is also immediately'clear that this
idea will fail for robust loss functions which are
bounded (such as (2.3)) because s will be forced
to 0.
in this case.)> However for loss functions of the
form (2.2) this is not true and (3.1) is viable,

The constant S, can be chosen in a variety of ways,
one of which iS5 the following. Dﬁferentlatmg
(3.1) with respect to s and setting it equal to 0

we obtain
1 j=1 ¢ S s

If the residuals were Gaussian then we might try to
choose Sl so that s would be asymptoticially unbi-
" ased giving

(3.2)

§ = (n—p)_£ toé(t) de(t)

where ¢(t) denotes the standardized Gaussian dis-
tribution function.

Huber and Dutter [1974) have suggésted a related
idea. They propose replacing (3.1) by

<§ (8
sp +S
esi

S, = (n-p) _i tpé(t)-pc(t)dtb(t)

3.3)

where

When pc(t) is the Huber type, (2.2), then

= (! 2

= (LN,

and the normal equation for s reduces to the scale

estimate proposed by Huber [1964, 1973]. This idea
also fails for bounded loss functions.

tpc':(t)—pc(t)

We have tried (3.1) and (3.3) using a general opti-
mization algorithm to be described later and found
that both work about equally well. Both can be
implemented very quickly.

Y¥hat about the bounded loss function case? It is
natural to consider a penalty function to keep s

positive, For example
vy (e)
-m:.n}:p + By logs+B/s (3.4)
8,s izl

(€ 1S NO proper max Likelihood least-squares and use his program as is.

In effect, we have added the negative log likelihwod
of an inverted gamma prior distribution for the
scale parameter.

We must, of course, specify B, and B_. If there is
prior information about the séale thén B, and B,
would be taken from that. Otherwise we \«)uld
choose B;=S; and B, by penalty function considera-
tions such as those discussed by Bard [1974, p.1u45].
Our experience with this method is lmu.ted a.nd not
wholly satisfactory.

Thn above three methods provide ways for a person
with a general nonlinear optimizer to simply put in
an objective function different from the one for

We do not
advise doing this blindly but it generally works
(especially the first two methods). It has draw-
backs, It is expensive because another @ra.rreter
(s) must be estimated (with algorithms of order p?)
and the objective function is more compllcated and
numerlcally less pleasing. When .choice is available,
it does not seem reasonable to pay so much for the
privilege of iteratively modifying s.

There is another obvious approach. That is s:mply
to find an s(0) (see section 7) and then minimize
(2.1) with s=s(®), At the end of this cemputation
anew s, say s , 1s computed based on the current
values of 8, then left fixed until a new local
minimm is found, etc. until s(%*1) changes less
than, say, ten percent from s(k)., This is simple,
but often proved to be as expensive as the earlier
approaches. It does, however, lead us to consider
ways to handle iterative scaling without making use
of the objective function.

4, NONLINEAR REWEIGHTED LEAST-SQUARES
For those with special nonlinear least-squares

algorithms available it is natural to attempt to
adapt the iteratively reweighted least-squares idea

mentioned earlier to the nonlinear problem. We now
discuss this method in more detail.
The gradient and Hessian of F (8) are
T
(o < - J_u<_<_l> -
_ n e\ v (0
-H.(8) = T -p’ —_—
s 121) s)
(4.2)

+

JL6) . free) Vae)
S P S S

where J(8)=[3f;(8)/38+] is the Jacobian matrix,
v2f ; (8)=h2f; /39 12853, 0" (r(8)/35)=[p " (r3(0)/s),.
o (r (e)/s)]Tand p"(r(8)/s) is an nxn diagonal matrix.
Now define a weight function w(t)=p'(t)/t and an
approximate Hessian

iy - 1 n 2 T

H (o) = —-[lz -wr; VEL + T w J]

52 iz 1

r
vhere wi=w(—i-),w is an nxn diagonal matrix, and
p"(t) is appPoximated by w(t). If we have start-
ing values 8%/ and §25(0) then the first step of
reveighted least-squares is

oD 2 0O 4 L () g (O

which in the linear case is
= (0, xlaxy! xTw (r-x0(9)

The whole procedure can, of course, be iterated.
Except for the fact that p"(t) has been approximat-
ed by w(t) this is just the first Newton step for
the solution of (2.1) in the linear case. Using .
w(t) makes H positive semi-definite and makes the
analogy to weighted least-squares obvious.

A word of caution is in order. Even if X°X is well
conditioned, XTwX may be very ill-conditioned and
the first Newton step a very poor one. (This can
happen when there are low weights on observations
'which contain all of the information about a para-
meter or information about how to separate the
effects of two carriers.) Even if XTwX is well -
behaved at a local minimum a bad start can lead to
poor results. Often this problem is ignored in the
linsar case because of the availability of robust,
scale invariant procedures, such as least absolute
residuals [Barrodale and Roberts (1373)] to provide
starting values. All of the literature about
Newton-Raphson methods applies to this problem -
such methods are only reasonable in a neighborhood
of a local minimm., Good algorithms for robust
regression should contain some diagnostic studies of
the data matrix to determine potential high lever-
age observations. Varying the robustness parameter
€ can also be very useful. Ridge regression
techniques could also be employed.

In the nonlinear case we do not have such good
techniques for finding starting values and the
first term of the Hessian does not vanish. But
most nonlinear least-squares routines ignore the
first term of the Hessian and use a technique like
that of Marquardt (1963) to overcome the difficul-
ties of Gauss-Newton steps away from the local
minimm. Once in a region where the residuals are,
hopefully, small the first term of the Hessian can
be more safely ignored. Some work has been done
on the large residual least-squares problem, e.g,
Dennis [1973]. Robust loss functions help to
reduce the size of the first term of the Hessian
because |p'(t)|<|t| for large residuals and with
(2.3), p'(t) is eventually zero.

With the same caveats we have always had in using
Gauss-Marquardt nonlinear least-squares routines
for very nonlinear problems, it is reasonable to
propose that (2.1) be attacked by finding starting
values 8 ang sf©/, forming the weights and
solving the least squares problem with /& y and
/A £(8) as data and model, making the obvious
change if there is a weighted nonlinear least-
squares routine available.

We now ask - should we modify w and s as we go

along and if so how? Since starting values in non-
linear problems are generally not good, we feel
that w(©) and s(0) are crude and will need iteraticn.
It is not at all clear how these changes at each
Step will interact with a specialized algorithm
like that of Marquardt, Using this routine with
its special start-up procedures to do each step
after computing new weights will not be very
successful. Direct intervention in the algorithm
is required, it cannot just be called each time.
Clearly such modifications can be made but- we should
note that Chambers [1973, p. 7] indicates thzt such
iterative procedures may be inferior to general
optimization methods.

5. CREATING SPECIALIZED ALGORITHS

If one is willing to intervene more directly in an
optimization algorithm then some special things can
be done to accomodate reweighting and scaling. Ve
shall discuss our efforts in the context of a
particular algorithm. -

In the past year, work at the NRER Camputer Research
Center has created a need for nonlinear optimizatica
in such diverse areas as full information maximm
likelihood estimation, probit analysis, and pro-
jection pursuit (Friedman and Tukey (1374)]." The
first algorithm implemented was DOGLEGF s developed
by Chien and Dennis at Cornell. This algerithm
only requires information about the function F and
is closely related to the MINFA algorithm of Powell
(1970] which, however, requires the gradient as
well as F. DOGLEGF was installed in the NBER TROLL
system as a function and is not easily modified
except by experienced programmers.

In the TROLL system we also had a symbolic differen~
tiator and a proposed way to autamatically compile
F,g, and H into very efficient code suitable for
repeated evaluation. We also have a macro language
that allows a user to glue together variocus TROLL
comands and functions in a way that makes it easy
to experiment with new algorithms. With these
ideas in mind one of us (RAB) in consultation with
John Dennis developed the DOGLEGK algorithn and
macro. Since this algorithm formed the basis for
further research (by REW) on robust nonlinear
regression, we will describe it in detail.

DOGLEGX utilizes a cambination of steepest-descent
and Newten steps in the process of minimizing a
function. As long as gredient steps are relatively
large, they are used. However, since gradient steps
tend to perform poorly in valleys, Newton cteps are
also used. Newton steps, however, are of doubtful
worth when taken from a point far removed from the
minimum. Hence, the algorithm uses a bound on the
maximun step size and provides a compromise “dogleg"
step which combines the gradient and Newton steps.

As input DOGLEGX requires only the functicn (all
derivatives are computed symbolically), starting
values 0(0), an initial raedius (R) to provide an
upper bound on step size (the default is zero

which makes the first step a gradient step), the

. maximun number of iterations, and convergence toler-

ances for the gradient and relative coefficient charge.

Initially the expressions for F, g, and H are
evaluated. H(8) is then forced to be positive
definite by the use of a Greenstadt modification.
This procedure is carried out whenever the second
derivative matrix is reevaluated.

At the beginning of each itération, there is a test
for convergence using both the gradient and the
relative change in 8 from the previous iteration,
The exact details will not be provided here.
Assuming that there were no convergence, the algo-
rithm investigates a step in the direction of the
gradient vector. Define .

AK8) = F(e(k))+(g(e(k)),6)+%(G,H(e(k))s)

where (a,b) denotes an inner product. The function
AX(8) then is’a quadratic approximation to F(e (kX §)
based on the gradient vector and the Hessian.
Powell [1370] shows that A¥ is minimized along the
gradient” direction by a step of length

o o Lae)®
&7 (g™, ne™ g™

At this point, the step-bound limitation is checked.
If Ag2R then a step in the gradient direction of
length R will be tried. Let 8y represent the
Newton step. If Ag<R and | GNIY <R the Newton step
is attempted. If Ag<R and ||&y||>R a "dogleg" step
8p is attempted. The dogleg step 6, is defined as
the point on the line connecting &g (the gradient
step) and §, vhich is at a distance R from © (k)

At this point let &§(k) represent the step that the
algorithm decided to take (gradient, Newton, or
dogleg). If F(8(k)+5(k))<F(8(K)), the step is
accepted and we set 8(k*1)=8(k)+§(K) otherwise set
g (k+1)=g (k) halve the radius, R, and start a new
iteration.

One of the most powerful features of DOGLEGX in-
volves revision of the step bound R, If the step
is accepted, a test of the approximation Ak(s (K
is performed., If the predicted reduction measured
by F(e(k))-pk(5(k)) is more than ten times the
actual reduction, F(e8(k))-F(o (k) +s(k)) the radius
is halved and a new iteration begins.

If this test is passed we perform further checks
to decide if the step bound should be increased.
In order to do this we look at the scalar product
S()=(g (0 (k)+rs(k)) 6 (k). The term o (k)+rs (k)
defines a line from & (%) in the direction &(k/.
S(A) measures the expected change in the objective
function starting at the point o (k)+A6(k) and tak-
ing a step 6(%). Ve would like this change to be
negative, decreasing the value of the objective
function.

At this point we compute g(e(k) +6™)) so that we
have S(0) and S(1) available. If we assume S
is linear, these two points define a line and we
let A be the point where S(1)=0 i.e.

\® = S(0)
T 5@®-s(M)

If the slope of this line is negative, then AR<0.
If the slope is positive, A*>0. When A%<Q or A%22
a step of twice the length of §(k) would still have
decreased the value of the objective function if
S(A) really were linear. In these cases R is
doubled. ‘

If 0<A%<2 one more check is performed. The pre-
dicted gradient at 8(k)+§ (k) g(a(k))+H(o (k))5(k),
is compared with the actual gradient g(6(k)+s(k))
and if

; 2
118€0 %6996 0 -11¢a 003509

<

2
25 |1ge |

the step bound, R, is doubled. In all other cases
the step bound remains the same for the next itera-
tion. Iterations continue until convergence is
reached or the limit on the number of iterations is
exceeded.

DOGLEGX was used for testing the ideas developed in
seetion 3. It is an algorithm that invites tinker-
ing (ellipsoids instead of spheres for the step
bounding, quadruple instead of double the radius,
etc.) and the macro (interpretive) form has permit-
ted this kind of modification, often for specialized
purposes. In particular it permitted us to experi-
ment with a number of ideas for robust nonlinear
regression.
6. ROBUST NONLINEAR REGRESSION
Since DOGLEGX computes the true Hessian we had no
need (at this point) for reweighting as a way to
solve our problem. We did however have to consider
rescaling and the DOGLEGXS macro was developed by
one of us (REW) to accomplish this.

DOGLEGX is complicated by the fact that after it
has found an acceptable step it locks ahead at the
new gradient to see if it should increase the step
bound radius for the next iteration. The question
arises - if we are changing the scale, at what
point in a step do we change it? Our discussion
of this problem is meant to be indicative of the
kind of problems that can arise in modifying non-
linear optimization algorithms for specialized
applications like robust regression.

In DOGLEGXS we use e”‘) to compute a scale
(k) _

s median (Iri(e(k))l)/.67u5 .
i

Sections 7 and 8 contain a discussion of starting
values and other ways to compute s. The algorithm
proceeds as in DOGLEGX \j.ntil § (k) Qrs been deter-
mined. Still using s* (o (K)+gf }) is evaluated
and checked to see if §%) is an accegtable step.
If the step is not accepted s(ktll=glk) If it is
accepted we do not yet change s. The test of the
approxination ak(s(k)) is performed as before.
Thus in cases where the radius can be reduced we
do not change s before performing these tests.
This costs us an extra cvaluation of F (we shall

-5~

have to eventually evaluate it with a new s) but it
is conservative in the sense that changing s here
(s generally decreases) would cause us to more
often reduce the radius. Reducing the radius is
costly because to increase it again we must compute
a new g and H, but if a step is not acceptable, no
new g and H are necessary to reduce the radius.

If the step has been accepted, we now compute
s(k*l) and proceed to see if the radius should be
increaﬁed'assmdng, of course, that the test using
Ak(8(¥)) yas passed (i.e. the radius was not
reduced).

The tests for radius increase are th
before but the new gradient at 8(X*1/ is computed
with s(%*1) A number of tests run using s
instead of s(%*1) here gave no indication of being
better or worss, but were much more expensive
since the gradient had to be evaluated twice (with
s(k) and s(k*l)z.‘ The next iteration begins using
8(k*1) and s(k*1), .

same as

7. STARTING VALUES

How to start a robust nonlinear regression is not
an easy problenr. A scale free start would be nice
but least-squares is the only readily available

~ one and, of course, requires a start itself.
(Perhaps an L_,1<p<2, start would work, but we have
not tried it. Je could also linearize the

problem at the supplied starting values and then
use least absolute residuals to get a revised start.

We have often found that the original starting
values specified by an intelligent model builder
can be used directly in a robust loss function
with ¢ chosen so that the asymptotic efficiency at
the Gaussian is say, .8, i.e.

® 2
L{ og(t) do(t)]

I lor0)7? do(e)

=.8

(See Huber (1973) for a discussion of asymptotic
efficiency.) - For (2.2) this means ¢ is about .67
and for (2.3) about 1. Too low a value of ¢ can
throw away a lot of data (low weights) if the
start is poor and too high a ¢ does not downweight
large residuals enough. We see little reason to
perform a least-squares analysis first, although
we may want to do this at some point in studying
the data.

8. SCALE COMPUTATION
We have used a median absolute deviation (MAD)
scalinz adjusted so that it will be unbiased for
independent Gaussian residuals. In order to allow
for a rore asymmetric set of residuals,reduce the
"granularity" of the median and remove from the
scale computation very large residuals we also tried

iglwimrz AN

TR

i=] 1

s(k)

It has performed satisfactorily but requires some
form of nonweighted starting scale because w(°/

is not defined. All of the results reported below
use the MAD scale.

9. CONFIDENCE REGIONS

Since there is not yet general agreement about how
to compute covariances for the estimated coeffi-
cients in robust linear regression, we cannot hope
to give very definitive results for the ronlinear
case. Gross (1973) has proposed a way to find
confidence intervals for robust location estimates.
A partially campleted Monte Carlo study by Paul
Holland, David Hoaglin, and Roy Welsch irdicates
that a reasonable covariance estimate for robust

" linear regression would be

L P p2e &t (9.1
n-p i‘-'l 1 1

where the w: are the weights used to obtain 8 in

the final iteration of reweighted least-squares.

The associated t-statistics would probably be

based on an equivalent number of degrees of freedcm

li.keial W =P.

An obviocus extension to the nonlinear prcblem is
1

——

5 (3.2

n. 2,20 ,.T -1
RAA ri(e) (T wd)
1=1

where J and w were used to obtain 8. This, of
course, has been used in most weighted nonlinear
least-squares programs where the weights are
assumned to be fixed.

It is useful to see what type of covariarce formula
arises if we attack the nonlinear problen directly.
To do this we follow Bard (1974, p. 176) and argue
that we want to examine the effect on the solution
6* of perturbations in the residuals at e*. Bard
gives the approximate covariance (in our notation)
as

vy = %ot s B

A (9.3)

s L

where V_ is the "covariance" matrix of the resicuals
at 6" and we have replaced p" by w. One estimate

of V, would be r(8%)rT(8%). Various other formulas
are possible and scme have been explored by Tukey
(1973). Until more information is available, we
prefer to take the apprcach that (9.3) is cenditioned
on the weights, set Vy=¢?w~! and estimate o2 by

n
L wiri(e"')

(9.4)
P j=1

. In cases where we ignore the first term of the

Hessian, (9.3) would then reduce to (9.2). Ve have
mainly relied on (9.2) especially because robust
loss functions tend to reduce the size of the first
term of the Hessian (cf. section 4).

: the final value of the (adjusted) MAD scale (s),
10. ELIMINATING SECOND DERIVATIVES the weighted least-squares scale (ws) as given in

c . s . (9.4), the number of evaluations of F g, and H,
eophi:‘gfagz :;::‘;n;lfsszg;stgex abcsat‘;eaigxilt?ms the "corrected" degrees of freedom (_glwi-p) and the
were developed using DSGLEGX as a base we replaced regular degrees of freedom (n-p). i
the t Hessian by JTwJ, i.e. we used f P ‘s . .
mmg;:ed ieast—sqiares within tbﬂuZont:xttygg the We mote that y is highly sensitive to changes in c
DOGLEGX algorithm with scaling (Eall this , and further investigation is called for, including,
algorithm DOGLEGW.)) "~ perhaps, a change in model formulation. The least-

) : squares results are not listed because the algorithn
B . ‘ . ‘e _ forced v to infinity (machine overflow) in that case.
ritme!d‘ée':Snggemn%l%hzeﬁpgﬁt;o;:liy;z:{;egi;ilg; A more detailed discussion of the model is contained
nonlinear problems. A compromige algorithm in Little and Welsch [1975]..
(DOGLEGH) is now being tested by Dennis and Welsch.

In it, each of the two parts cf the Hessian is In order to show how the DOGLEGKS algorithm per-

treated separately. The second part is always E.'ormed on synthetic data we used the function

computed -exactly (except for the fact that w . Lsee Chambers (1973)]

replaces p"). The first part is approximated and . Thx ~8gx +

updated using methods developed by Broyden [see y=e -e errar

Dennis,=(1973)lto update the entire Hessian in where 8; and 6, had true values of 1 and 10, ten

general optimization algorithms. This can be observations were taken for x=.1(.1)1, and the error

accomplished in a way that keeps the Hessian was contaminated Gaussian with-75% from 4(0,.1) and

positive definite, removing the need for the 25% from N(0,1). The convergence criterion consisted

Greenstadt modification in DOGLEGK. of having the length of the gradient less than .1 and
, ‘ the maximum relative coefficient change less than

.001.
11. EXAMPLES

. : : All computations were started at 8.=0 and 8,20, The
The above algorithms have been tested on a number results are listed in Table 3. 2

of standard problems, but we Present here an

example from marketing which arose in joint work 12. CONCLUDING REMARKS
with John Little. The model we are trying to
calibrate is _ We hope that the above discussion will stimulate
. . statisticians to consider the types of algorithms
SALES(t) = Ro' STREND(t)+ PROM.MOD(t)- ADV.MOD(t) they would like to see developed for a flexible non-
: linear fitting package which would incluce robust
STREND(t) = SEASON(t)- TREND(t) loss functions. We also hope that numerical analysts
will consider the problems that arise in this area,
PROM.MOD(t) = 148, PROM(t)-B2-PR0M(t-l) including large residuals, weights, and the role of
special parameters such as scale.
S 3 C, (Ks ADV(t-i+1))Y
ADV.MOD(t) = I @y |C + 2 - 13. REFERENCES
iz 14 (K- -i+
171 (K- ADV(t-1+1)) 1, Andrews, D.F. (1974). A Robust Method for
with a. = .46 K= .0041) Multiple Linear Regression. Technometrics 16,
1 . .$23-531.
a, = .32 ¢, = .88 2. Bard, Y. (1974). Nonlinear Parameter Estimation.
) 2 C = .oy] Academic Press, New York.
% " 2 3. Barrodale, I. and F.D.K. Roberts (1973). An
: : Improved Algorithm for Discrete L Acproximation.
and starting values of what we want to estimate SIAM J. Numer. Amal. 10, 839-8148.1 v
R, = 538 B =1 4. Beaton, A.E. and J.W. Tukey (1974). The Fitting
: of Power Series, Meaning Polyncmials, Illustrated
Yy=2 - By=.2 on_Band~-Spectroscopic Data. Technometric 16,
147-192. ’
All estimation was done on the first twenty-four .. .

; ; 5. Chambers, J.M. (1973). Fitting Nonlinear Models:
observations of the data in Table 1. Numerical Techniques. Bﬂ—%‘mme Trika 60 1-13,
Using the loss function of type (2.3) and DOGLEGXS ¢, Dennis, J.E. (1973). Some Camputaticnal
we started the series of computations with c=1 us- Techniques for the Nonlinear Least Squares
ing the given starting values,and then used the Problem, in Bryne and Hall, eds. Numerical
results at c=1 to start the computation for c=.8 Solutions of Systems of Nonlinear AlrcEtraic
and c=1.5 corresponding to asymptotic efficiencies Equations. Academic Press, New York, 15/-183.

of about 50 percent and 95 percent at the Gaussian.
The standard errors (using 9.2) are given below the
coefficient estimates in Table 2. Also listed are

~

Gross, A.M. (1973). A Robust Confidence Interval
for Location for Symmetric Long-tailed Distribu- -
tions. Proc. Nat. Acad. Sci. 70, 1995-1997

10.

12,

13.

14.

18.

16.

-7=

Friedman, J.H. and J.W. Tukey (1974). A
Projection Pursuit Algorithm for Exploratory
Data Analysis., IEEE Transactions on Computers
C-23 9 881-890.

Huber, P.J. (1964). Robust Estimation of a
Location Parameter. Ann. Math. Statist. 3§,
73-101. »

Huber, P.J. (1973). Robust Regression:
Asymptotics, Conjectures, and Monte Carlo.
Annals of Statisties 1, 799-821.

Huber, P.J. and R. Dutter (1974). Numerical
Solution of Robust Regression Problems.
Research Report No. 3. Fachgruppe Fuer

Statistik.

Little, J.D.C. and R.E. Welsch (1975). Robust
Calibration of Nonlinear Marketing Models.
Unpublished manuscript. ' Sloan School of
Management, M.I.T. Cambridge, Mass.

Marquardt, D.W. (1963). An Algoritim for Least-
Squares Estimation of Nonlinear Parameters.

. J. Soec. Indust. Appl. Math. 11, u31-441.

Powell, M.J.D. (1970). A New Algorithm for
Unconstrained Optimization. J.B. Rosen,

0.L. Mangasarian, and K. Ritter Eds., Nonlinear
Programming , Academic Press, New York, 31-65.

TROLL Experimental Programs, Robust and Ridge
Regression, NBER Computer Research Center
Documentation Series D0070.

Tukey, J.W. (1973). A Way Forward for Robust
Regression. Unpublished memorandum, Bell
Laboratories (Murray Hill).

oW

CONOOTOBMEWN -

TABLE 1

MARKETING MODEL DATA

- SALES

677.475
407.716
676.695
418.784
529.228
960.094
450.273
508,651
872.330
354,248
406.859
403.507
673.500
483.164
518.784
437.880
SS4. 40y
861.3u1
468.277
568.979
800.701
404,365
418.706
394.388
903.819
391.426
488.230
522.915
874.980
450.896
589.634
561.029
592.673
896.882
379.735
414.965

PROM

HooooH

-

w N
F o

-

-

OCOHOOOOHOOOHOOOHFHOOHOOOOOOOOHOO
e s b o 8 e = e o ¢« o o s e s e e o b e e e o o o

ADV

750.12 °

118.44
507.60
90.24
81.78
902.40
98.70

177.66

454.02
14.10
45.12

177.66

397.62

115.62

138.18

129.72

394.80

640.1u

149.46

200.22

239.70

0.001
81.78

0.001
$30.16

121.26

290.u46

177.66 -

679.62

245.34

104.34

112.80

115.62

121.26

138.18

S.64

COHHKHHHHMHHHOONMHHREHEMHMHIHIHOOOHKRKHKHKHKHKHKHOO

é

.95285
.999951
.0150S
.01806
.03375
.13322 -
.10791
-08965
.09695
.05676
.89700S
.83928
.99C8S
.03967
.05525
.05826
.02082
.17766
.15123
.13209
.1388S
.02768
.931605
.87156
.02885
.07939
.09545
.09gue
.13210
.222190
.19455
.17453
.1821S
.13860
. 966205
.90384

-8-

_ TABLE 2

MARKETING MODEL RESULTS

c .8 1.
v 1.29 .96
(1.23) (1.34)
) . .lm 053
B (.06) (.07)
B, .22 .21
(.03) (. 04)
R 499, oy,
s 40.8 48,3
WS 27.2 37.5
#F 13. 2,
#cH 13. 20.
c.d.f., 12.5 14.6
a.f. 18. 18.
TABLE 3

TEST FUNCTION RESULTS

c .8 1.
Y .75 .76
(.08) (.09)
8, 8.17 8.02
(1.17) . (2.65)
s : .15 .15
ws .06 .07
#F 12. - 18,
f#cH 12. 17.
c.d.f. 3.5 3.8

d.f. 8. 8.

1.5

6.81
(9.88)

48
(.06)

.23
(.04)

514,
39.6
44.5
16.
16.
15.6
18.

1‘5

.84
(.19

6.78
(2.09)

.21

<14
1l1.
10.

4.68

2.18
(1.19)

18.48
(28.85)

.95

- 16.

16.

