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1 Introduction

Randomization is now an integral part of a development economist’s toolbox. Over the last ten
years, a growing number of randomized evaluations have been conducted by economists or with
their input. These evaluations, on topics as diverse as the effect of school inputs on learning
(Glewwe and Kremer 2005), the adoption of new technologies in agriculture (Duflo, Kremer, and
Robinson 2006), corruption in driving licenses administration (Bertrand, Djankov, Hanna, and
Mullainathan 2006), or moral hazard and adverse selection in consumer credit markets (Karlan
and Zinman 2005b), have attempted to answer important policy questions and have also been
used by economists as a testing ground for their theories.

Unlike the early “social experiments” conducted in the United States—with their large bud-
gets, large teams, and complex implementations—many of the randomized evaluations that have
been conducted in recent years in developing countries have had fairly small budgets, making
them affordable for development economists. Working with local partners on a smaller scale has
also given more flexibility to researchers, who can often influence program design. As a result,
randomized evaluation has become a powerful research tool.

While research involving randomization still represents a small proportion of work in de-
velopment economics, there is now a considerable body of theoretical knowledge and practical
experience on how to run these projects. In this chapter, we attempt to draw together in one
place the main lessons of this experience and provide a reference for researchers planning to con-
duct such projects. The chapter thus provides practical guidance on how to conduct, analyze,
and interpret randomized evaluations in developing countries and on how to use such evaluations
to answer questions about economic behavior.

This chapter is not a review of research using randomization in development economics.!
Nor is its main purpose to justify the use of randomization as a complement or substitute to
other research methods, although we touch upon these issues along the way.? Rather, it is

a practical guide, a “toolkit,” which we hope will be useful to those interested in including

"Kremer (2003) and Glewwe and Kremer (2005) provide a review of randomized evaluations in education;
Banerjee and Duflo (2005) review the results from randomized evaluations on ways to improve teacher’s and
nurse’s attendance in developing countries; Duflo (2006) reviews the lessons on incentives, social learning, and

hyperbolic discounting.
*We have provided such arguments elsewhere, see Duflo (2004) and Duflo and Kremer (2005).



randomization as part of their research design.

The outline to the chapter is as follows. In Section 2, we use the now standard “potential
outcome” framework to discuss how randomized evaluations overcome a number of the problems
endemic to retrospective evaluation. We focus on the issue of selection bias, which arises when
individuals or groups are selected for treatment based on characteristics that may also affect their
outcomes and makes it difficult to disentangle the impact of the treatment from the factors that
drove selection. This problem is compounded by a natural publication bias towards retrospective
studies that support prior beliefs and present statistically significant results. We discuss how
carefully constructed randomized evaluations address these issues.

In Section 3, we discuss how can randomization be introduced in the field. Which partners to
work with? How can pilot projects be used? What are the various ways in which randomization
can be introduced in an ethically and politically acceptable manner?

In section 4, we discuss how researchers can affect the power of the design, or the chance to
arrive at statistically significant conclusions. How should sample sizes be chosen? How does the
level of randomization, the availability of control variables, and the possibility to stratify, affect
power?

In section 5, we discuss practical design choices researchers will face when conducting ran-
domized evaluation: At what level to randomize? What are the pros and cons of factorial
designs? When and what data to collect?

In section 6 we discuss how to analyze data from randomized evaluations when there are
departures from the simplest basic framework. We review how to handle different probability of
selection in different groups, imperfect compliance and externalities.

In section 7 we discuss how to accurately estimate the precision of estimated treatment
effects when the data is grouped and when multiple outcomes or subgroups are being considered.
Finally in section 8 we conclude by discussing some of the issues involved in drawing general
conclusions from randomized evaluations, including the necessary use of theory as a guide when

designing evaluations and interpreting results.

2 Why Randomize?



2.1 The Problem of Causal Inference

Any attempt at drawing a causal inference question such as “What is the causal effect of edu-
cation on fertility?” or “What is the causal effect of class size on learning?” requires answering
essentially counterfactual questions: How would individuals who participated in a program have
fared in the absence of the program? How would those who were not exposed to the program
have fared in the presence of the program? The difficulty with these questions is immediate. At
a given point in time, an individual is either exposed to the program or not. Comparing the same
individual over time will not, in most cases, give a reliable estimate of the program’s impact
since other factors that affect outcomes may have changed since the program was introduced.
We cannot, therefore, obtain an estimate of the impact of the program on a given individual.
We can, however, obtain the average impact of a program, policy, or variable (we will refer to
this as a treatment, below) on a group of individuals by comparing them to a similar group of
individuals who were not exposed to the program.

To do this, we need a comparison group. This is a group of people who, in the absence of
the treatment, would have had outcomes similar to those who received the treatment. In reality,
however, those individuals who are exposed to a treatment generally differ from those who are
not. Programs are placed in specific areas (for example, poorer or richer areas), individuals
are screened for participation (for example, on the basis of poverty or motivation), and the
decision to participate in a program is often voluntary, creating self-selection. Families chose
whether to send girls to school. Different regions chose to have women teachers, and different
countries chose to have the rule of law. For all of these reasons, those who were not exposed
to a treatment are often a poor comparison group for those who were. Any difference between
the groups can be attributed to both the impact of the program or pre-existing differences (the
“selection bias”). Without a reliable way to estimate the size of this selection bias, one cannot
decompose the overall difference into a treatment effect and a bias term.

To fix ideas it is useful to introduce the notion of a potential outcome, introduced by Rubin
(1974). Suppose we are interested in measuring the impact of textbooks on learning. Let us call
YiT the average test score of children in a given school ¢ if the school has textbooks and Yio the
test scores of children in the same school 7 if the school has no textbooks. Further, define Y;

as outcome that is actually observed for school i. We are interested in the difference YiT — YZ-C,



which is the effect of having textbooks for school i. As we explained above, we will not be able
to observe a school 7 both with and without books at the same time, and we will therefore not
be able to estimate individual treatment effects. While every school has two potential outcomes,
only one is observed for each school.

However, we may hope to learn the expected average effect that textbooks have on the
schools in a population:

Ely;" Y. (1)

Imagine we have access to data on a large number of schools in one region. Some schools have
textbooks and others do not. One approach is to take the average of both groups and examine
the difference between average test scores in schools with textbooks and in those without. In a

large sample, this will converge to
D = E[Y;'|School has textbooks] — E[Y;”|School has no textbooks] = E[Y;|T] — E[Y,X|C].

Subtracting and adding F [Y;C|T ], i.e., the expected outcome for a subject in the treatment
group had she not been treated (a quantity that cannot be observed but is logically well defined)

we obtain,

D = ElY;"|T) - E[YC|T] - E[YX|C] + E[Y,°|T] = E[Y;" = Y,°|T] + E[Y,"|T] - E[Y|C]

The first term, E[Y;] — Y;°|TY, is the treatment effect that we are trying to isolate (i.e., the
effect of treatment on the treated). In our textbook example, it is the answer to the question:
on average, in the treatment schools, what difference did the books make?

The second term, E[Y,C|T] — E[Y,C|C], is the selection bias. It captures the difference in
potential untreated outcomes between the treatment and the comparison schools; treatment
schools may have had different test scores on average even if they had not been treated. This
would be true if schools that received textbooks were schools where parents consider education
a particularly high priority and, for example, are more likely to encourage their children to do
homework and prepare for tests. In this case, E[Y;"|T] would be larger than E[Y,“|C]. The
bias could also work in the other direction. If, for example, textbooks had been provided by a
non-governmental organization to schools in particularly disadvantaged communities, £ [KC|T}

would likely be smaller than E[Y;“|C]. It could also be the case that textbooks were part of



a more general policy intervention (for example, all schools that receive textbooks also receive
blackboards); the effect of the other interventions would be embedded in our measure D. The
more general point is that in addition to any effect of the textbooks there may be systematic
differences between schools with textbooks and those without.

Since E[Y;®|T7] is not observed, it is in general impossible to assess the magnitude (or even the
sign) of the selection bias and, therefore, the extent to which selection bias explains the difference
in outcomes between the treatment and the comparison groups. An essential objective of much
empirical work is to identify situations where we can assume that the selection bias does not

exist or find ways to correct for it.

2.2 Randomization Solves the Selection Bias

One setting in which the selection bias can be entirely removed is when individuals or groups
of individuals are randomly assigned to the treatment and comparison groups. In a randomized
evaluation, a sample of N individuals is selected from the population of interest. Note that
the “population” may not be a random sample of the entire population and may be selected
according to observables; therefore, we will learn the effect of the treatment on the particular
sub-population from which the sample is drawn. We will return to this issue. This experimental
sample is then divided randomly into two groups: the treatment group (N individuals) and the
comparison (or control) group (N¢ individuals).

The treatment group then is exposed to the “treatment” (their treatment status is T') while
the comparison group (treatment status C) is not. Then the outcome Y is observed and com-
pared for both treatment and comparison groups. For example, out of 100 schools, 50 are
randomly chosen to receive textbooks, and 50 do not receive textbooks. The average treatment

effect can then be estimated as the difference in empirical means of Y between the two groups,

D = EYj|T] - E[Y;|C],

where E denotes the sample average. As the sample size increases, this difference converges

to

D = B |T] - EYEIC).

Since the treatment has been randomly assigned, individuals assigned to the treatment and



control groups differ in expectation only through their exposure to the treatment. Had neither
received the treatment, their outcomes would have been in expectation the same. This implies
that the selection bias, E[Y|T] — E[Y,°|C], is equal to zero. If, in addition, the potential
outcomes of an individual are unrelated to the treatment status of any other individual (this
is the “Stable Unit Treatment Value Assumption” (SUTVA) described in Angrist, Imbens, and
Rubin (1996)),% we have

EY;|T) — E[vi|C] = E[Y{f —Y|T) = E[v;l —Y"],

] (2

the causal parameter of interest for treatment 7.

The regression counterpart to obtain D is

Yi=a+ 0T +a, (2)

where T' is a dummy for assignment to the treatment group. Equation (2) can be estimated
with ordinary least squares, and it can easily be shown that ors = E(Y;|T) — E(Y;|C).A

This result tells us that when a randomized evaluation is correctly designed and implemented,
it provides an unbiased estimate of the impact of the program in the sample under study—this
estimate is internally valid. There are of course many ways in which the assumptions in this
simple set up may fail when randomized evaluations are implemented in the field in developing
countries. This chapter describes how to correctly implement randomized evaluations so as to
minimize such failures and how to correctly analyze and interpret the results of such evaluations,
including in cases that depart from this basic set up.

Before proceeding further, it is important to keep in mind what expression (1) means. What
is being estimated is the overall impact of a particular program on an outcome, such as test
scores, allowing other inputs to change in response to the program. It may be different from the
impact of textbooks on test scores keeping everything else constant.

To see this, assume that the production function for the outcome of interest Y is of the

form Y = f(I), where I is a vector of inputs, some of which can be directly varied using policy

3This rules out externalities—the possibility that treatment of one individual affects the outcomes of another.

We address this issue in Section 6.3.
4Note that estimating equation 2 with OLS does not require us to assume a constant treatment effect. The

estimated coefficient is simply the average treatment effect.



tools, others of which depend on household or firm responses. This relationship is structural; it
holds regardless of the actions of individuals or institutions affected by the policy changes. The
impact of any given input in the vector I on academic achievement that is embedded in this
relationship is a structural parameter.

Consider a change in one element of the vector I, call it ¢. One estimate of interest is how
changes in t affect Y when all other explanatory variables are held constant, i.e., the partial
derivative of Y with respect to t. A second estimate of interest is the total derivative of Y with
respect to t, which includes changes in other inputs in response to the change in ¢. In general,
if other inputs are complements to or substitutes for ¢, then exogenous changes in I will lead
to changes in other inputs j. For example, parents may respond to an educational program
by increasing their provision of home-supplied educational inputs. Alternatively, parents may
consider the program a substitute for home-supplied inputs and decrease their supply. For
example, Das, Krishnan, Habyarimana, and Dercon (2004) and others suggest that household
educational expenditures and governmental non-salary cash grants to schools are substitutes,
and that households cut back on expenditures when the government provides grants to schools.

In general, the partial and total derivatives could be quite different, and both may be of
interest to policymakers. The total derivative is of interest because it shows what will happen
to outcome measures after an input is exogenously provided and agents re-optimize. In effect it
tells us the “real” impact of the policy on the outcomes of interest. But the total derivative may
not provide a measure of overall welfare effects. Again consider a policy of providing textbooks
to students where parents may respond to the policy by reducing home purchases of textbooks
in favor of some consumer good that is not in the educational production function. The total
derivative of test scores or other educational outcome variables will not capture the benefits of
this re-optimization. Under some assumptions, however, the partial derivative will provide an
appropriate guide to the welfare impact of the input.

Results from randomized evaluations (and from other internally valid program evaluations)
provide reduced form estimates of the impacts of the treatment, and these reduced form param-
eters are total derivatives. Partial derivatives can only be obtained if researchers specify the
model that links various inputs to the outcomes of interest and collect data on these intermedi-
ate inputs. This underscores that to estimate welfare impact of a policy, randomization needs

to be combined with theory, a topic to which we return in section 8.



2.3 Other Methods to Control for Selection Bias

Aside from randomization, other methods can be used to address the issue of selection bias. The
objective of any of these methods is to create comparison groups that are valid under a set of
identifying assumptions. The identifying assumptions are not directly testable, and the validity
of any particular study depends instead on how convincing the assumptions appear. While it is
not the objective of this chapter to review these methods in detail,® in this section we discuss

them briefly in relation to randomized evaluations.®

2.3.1 Controlling for Selection Bias by Controlling for Observables

The first possibility is that, conditional on a set of observable variables X, the treatment can

be considered to be as good as randomly assigned. That is, there exists a vector X such that

E[YY|X,T] - E[Y|X,C] = 0. 3)

A case where this is obviously true is when the treatment status is randomly assigned con-
ditional on a set of observable variables X. In other words, the allocation of observations to
treatment or comparison is not unconditionally randomized, but within each strata defined by
the interactions of the variables in the set X, the allocation was done randomly. In this case,
after conditioning on X, the selection bias disappears. We will discuss in section 6.1 how to
analyze the data arising from such a set-up. In most observational settings, however, there is
no explicit randomization at any point, and one must assume that appropriately controlling for
the observable variables is sufficient to eliminate selection bias.

There are different approaches to control for the set of variables X. A first approach, when
the dimension of X is not too large, is to compute the difference between the outcomes of the
treatment and comparison groups within each cell formed by the various possible values of X.
The treatment effect is then the weighted average of these within-cell effects (see Angrist (1998)

for an application of this method to the impact of military service). This approach (fully non-

"Much fuller treatments of these subjects can be found, notably in this and other handbooks (Angrist and

Imbens 1994, Card 1999, Imbens 2004, Todd 2006, Ravallion 2006).
5We do not discuss instrumental variables estimation in this section, since its uses in the context of randomized

evaluation will be discussed in section 6.2, and the general principle discussed there will apply to the use of

instruments that are not randomly assigned.
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parametric matching) is not practical if X has many variables or includes continuous variables. In
this case, methods have been designed to implement matching based on the “propensity score,”
or the probability of being assigned to the treatment conditional on the variables X.” A third
approach is to control for X, parametrically or non-parametrically, in a regression framework. As
described in the references cited, matching and regression techniques make different assumptions
and estimate somewhat different parameters. Both, however, are only valid on the underlying
assumption that, conditional on the observable variables that are controlled for, there is no
difference in potential outcomes between treated and untreated individuals. For this to be true,
the set of variables X must contain all the relevant differences between the treatment and control
groups. This assumption is not testable and its plausibility must be evaluated on a case-by-case
basis. In many situations, the variables that are controlled for are just those that happen to be
available in the data set, and selection (or “omitted variable”) bias remains an issue, regardless

of how flexibly the control variables are introduced.

2.3.2 Regression Discontinuity Design Estimates

A very interesting special case of controlling for an observable variable occurs in circumstances
where the probability of assignment to the treatment group is a discontinuous function of one
or more observable variables. For example, a microcredit organization may limit eligibility for
loans to women living in household with less than one acre of land; students may pass an exam if
their grade is at least 50%; or class size may not be allowed to exceed 25 students. If the impact
of any unobservable variable correlated with the variable used to assign treatment is smooth,

the following assumption is reasonable for a small e:

EYSIT,X <X+6X>X - =EYYIC,X <X +6X >X —¢, (4)

where X is the underlying variable and X is the threshold for assignment. This assumption
implies that within some e-range of X, the selection bias is zero and is the basis of “regression

discontinuity design estimates” (Campbell 1969); see Todd (2006) chapter in this volume for

"The results that controlling for the propensity score leads to unbiased estimate of the treatment effect under
assumption 3 is due to Rosenbaum and Rubin (1983) see chapters by Todd (2006) and Ravallion (2006) in this

volume for a discussion of matching).
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further details and references). The idea is to estimate the treatment effect using individuals
just below the threshold as a control for those just above.

This design has become very popular with researchers working on program evaluation in
developed countries, and many argue that it removes selection bias when assignment rules are
indeed implemented. It has been less frequently applied by development economists, perhaps
because it faces two obstacles that are prevalent in developing countries. First, assignment rules
are not always implemented very strictly. For example, Morduch (1998) criticizes the approach of
Pitt and Khandker (1998), who make implicit use of a regression discontinuity design argument
for the evaluation of Grameen Bank clients. Morduch shows that despite the official rule of not
lending to household owning more than one acre of land, credit officers exercise their discretion.
There is no discontinuity in the probability of borrowing at the one acre threshold. The second
problem is the officials implementing a program may be able to manipulate the level of the
underlying variable that determines eligibility, which makes an individual’s position above or
below the threshold endogenous. In this case, it cannot be argued that individuals on either

side of the cutoff have similar potential outcomes and equation (4) fails to hold.

2.3.3 Difference-in-Differences and Fixed Effects

Difference-in-difference estimates use pre-period differences in outcomes between treatment and
control group for control for pre-existing differences between the groups, when data exists both
before and after the treatment. Denote by Y (YC) the potential outcome “if treated” (“if
untreated”) in period 1, after the treatment occurs, and YOT (YOC) the potential outcome “if
treated” (“if untreated”) in period 0, before the treatment occurs. Individuals belong to group
T or group C. Group T is treated in period 1 and untreated in period 0. Group C' is never
treated.

The difference-in-differences estimator is

DD = (B |T) - BY{|T]) - [EY|C) - BV |C]

and provides an unbiased estimate of the treatment effect under the assumption that [E(Y,C|T)—
E(YE|T)] = [E(YF|C) — E(YF|C)], i.e., that absent the treatment the outcomes in the two

groups would have followed parallel trends.

12



Fixed effects generalizes difference-in-differences estimates when there is more than one time
period or more than one treatment group. The fixed effects estimates are obtained by regress-
ing the outcome on the control variable, after controlling for year and group dummies. Both
difference-in-differences and fixed effect estimates are very common in applied work. Whether
or not they are convincing depends on whether the assumption of parallel evolution of the out-
comes in the absence of the treatment is convincing. Note in particular that if the two groups
have very different outcomes before the treatment, the functional form chosen for how outcomes

evolved over time will have an important influence on the results.

2.4 Comparing Experimental and Non-Experimental Estimates

A growing literature is taking advantage of randomized evaluation to estimate a program’s
impact using both experimental and non-experimental methods and then test whether the non-
experimental estimates are biased in this particular case. LalLonde’s seminal study found that
many of the econometric procedures and comparison groups used in program evaluations did not
yield accurate or precise estimates and that such econometric estimates often differ significantly
from experimental results (Lalonde 1986). A number of subsequent studies have conducted such
analysis focusing on the performance of propensity score matching (Heckman, Ichimura, and
Todd 1997, Heckman, Ichimura, Smith, and Todd 1998, Heckman, Ichimura, and Todd 1998,
Dehejia and Wahba 1999, Smith and Todd 2005). Results are mixed, with some studies finding
that non-experimental methods can replicate experimental results quite well and others being
more negative. A more comprehensive review by Glazerman, Levy, and Myers (2003) compared
experimental non-experimental methods in studies of welfare, job training, and employment
service programs in the United States. Synthesizing the results of twelve design replication
studies, they found that retrospective estimators often produce results dramatically different
from randomized evaluations and that the bias is often large. They were unable to identify any
strategy that could consistently remove bias and still answer a well-defined question.

Cook, Shadish, and Wong (2006) conducts a comparison of randomized and non-randomized
studies, most of which were implemented in educational settings, and arrives at a more nuanced
conclusion. He finds that experimental and non-experimental results are similar when the non-
experiment technique is a regression discontinuity or “interrupted time series” design (difference-

in-differences with long series of pre-data), but that matching or other ways to control for

13



observables does not produce similar results. He concludes that well designed quasi-experiments
(regression discontinuity designs in particular) may produce results that are as convincing as
those of a well-implemented randomized evaluation but that “You cannot put right by statistics
what you have done wrong by design.” While Cook’s findings are extremely interesting, the
level of control achieved by the quasi-experiments he reviews (in terms, for example, of strictly
following threshold rules) is such that for developing countries these designs may actually be
less practical than randomized evaluations.

We are not aware of any systematic review of similar studies in developing countries, but
a number of comparative studies have been conduc