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ABSTRACT

A regression discontinuity (RD) research design is appropriate for program evaluation problems in

which treatment status (or the probability of treatment) depends on whether an observed covariate

exceeds a fixed threshold. In many applications the treatment-determining covariate is discrete. This

makes it impossible to compare outcomes for observations "just above" and "just below" the

treatment threshold, and requires the researcher to choose a functional form for the relationship

between the treatment variable and the outcomes of interest. We propose a simple econometric

procedure to account for uncertainty in the choice of functional form for RD designs with discrete

support. In particular, we model deviations of the true regression function from a given

approximating function -- the specification errors -- as random. Conventional standard errors ignore

the group structure induced by specification errors and tend to overstate the precision of the

estimated program impacts. The proposed inference procedure that allows for specification error also

has a natural interpretation within a Bayesian framework.
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1 Introduction

In the classic regression-discontinuity (RD) design (Thistlethwaite and Campbell, 1960) the treat-

ment status of an observation is determined by whether an observed covariate is above or below a

known threshold. If the covariate is predetermined it may be plausible to think of treatment status

is �as good as randomly assigned� among the subsample of observations that fall just above and

just below the threshold.1 As in a true experiment, no functional form assumptions are necessary

to estimate program impacts when the treatment-determining covariate is continuous: one simply

compares average outcomes in small neighborhoods on either side of the threshold. The width of

these neighborhoods can be made arbitrarily small as the sample size grows, ensuring that observed

and unobserved characteristics of observations in the treatment and control groups are identical in

the limit. This idea underlies the approach of Hahn et al. (2001) and Porter (2003), who describe

non-parametric and semi-parametric estimators of regression-discontinuity gaps.

In many applications where the RD design seems compelling, however, the covariate that de-

termines treatment is inherently discrete or is only reported in coarse intervals. For example, gov-

ernment programs like Medicare and Medicaid have sharp age-related eligibility rules that lend

themselves to an RD framework, but in most data sets age is only recorded in months or years. In

the discrete case it is no longer possible to compute averages within arbitrarily small neighborhoods

of the cuto� point, even with an in�nite amount of data. Instead, researchers have to choose a par-

ticular functional form for the model relating the outcomes of interest to the treatment-determining

variable. Indeed, with an irreducible gap between the �control� observations just below the threshold

and the �treatment� observations just above, the causal e�ect of the program is not even identi�ed

in the absence of a parametric assumption about this function.

In this paper we propose a simple procedure for inference in RD designs in which the treatment-

determining covariate is discrete. The basic idea is to model the deviation between the expected

value of the outcome and the predicted value from a given functional form as a random speci�cation

error. Modeling potential speci�cation error in this way has a number of immediate implications.

1This assumption may or may not be plausible, depending upon the context. In particular, if the treatment is
under perfect control of individuals, and there are incentives to �sort� around the threshold, the RD design may
be invalid. On the other hand, even when individuals have partial control over the covariate, as long as there is a
stochastic component that has continuous density, the treatment variable is as good as (locally) randomly assigned.
See Lee (2006) for details.
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Most importantly, it introduces a common component of variance for all the observations at any given

value of the treatment-determining covariate. This creates a problem similar to the one analyzed

by Moulton (1990) for multi-level models in which some of the covariates are only measured at a

higher level of aggregation (e.g., micro models with state-level covariates). Random speci�cation

errors can be easily incorporated in inference by constructing sampling errors that include a grouped

error component for di�erent values of the treatment-determining covariate. The use of �clustered�

standard errors will generally lead to wider con�dence intervals that re�ect the imperfect �t of the

parametric function away from the discontinuity point.

More subtly, inference in an RD design involves extrapolation from observations below the thresh-

old to construct a counterfactual for observations above the threshold. As in a classic out-of-sample

forecasting problem, the sampling error of the counterfactual prediction for the point of support just

beyond the threshold includes a term re�ecting the expected contribution of the speci�cation error

at that point. Since the estimated (local) treatment e�ect is just the di�erence between the mean

outcome for these observations and the counterfactual prediction, the precision of the estimated

treatment e�ect depends on whether one assumes that the same speci�cation error would prevail in

the counterfactual world. If so, this error component vanishes. If not, the con�dence interval for the

local treatment e�ect has to be widened even further.

The paper is organized as follows. Section 2 describes the RD framework and why discreteness

in the treatment-determining covariate implies that the treatment e�ect is not identi�ed without

assuming a parametric functional form. Section 3 describes the proposed inference procedure under

a model where speci�cation errors are considered random. Section 4 describes a modi�ed procedure

under less restrictive assumptions about the speci�cation errors. Section 5 proposes an alterna-

tive, e�cient estimator for the treatment e�ect, and Section 6 relates this estimator to a Bayesian

approach. Section 7 concludes.
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2 The Regression Discontinuity Design with Discrete Support

2.1 The Problem of Discreteness

To illustrate how discreteness causes problems for identi�cation in an RD framework, consider the

following potential outcomes formulation.2 There is a binary indicator D of treatment status which

is determined by whether an observed covariate X is above or below a known threshold x0: D =

1 [X ≥ x0]. Let Y1 represent the potential outcome if an observation receives treatment and let Y0

represent the potential outcome if not. The goal is to estimate E[Y1 − Y0|X = x0], the average

treatment e�ect at the threshold. As usual, Y1 and Y0 are not simultaneously observed for any

individual. Instead, we observe Y = DY1 + (1−D)Y0.

When the support of X is continuous and certain smoothness assumptions are satis�ed, E[Y1 −

Y0|X = x0] is identi�ed by the discontinuity in the regression function for the observed outcome Y

at x0. More speci�cally, if E[Y1|X = x] and E[Y0|X = x] are both continuous in x at x0, then

E[Y |X = x0]− lim
e→0+

E[Y |X = x0 − e]

= E[Y1|X = x0]− lim
e→0+

E[Y0|X = x0 − e]

= E[Y1 − Y0|X = x0]

This idea is illustrated in Figure 1. The data identi�es E[Y1|X = x] when x ≥ x0, and E[Y0|X =

x] when x < x0, as indicated by the solid lines. Because of the discontinuous rule that determines

treatment status, the data do not identify the dashed lines, or the counterfactual mean E[Y0|X = x0]

(the open circle). What the data do yield is E[Y0|X = x0 − e], which can be an arbitrarily good

approximation to E[Y0|X = x0], with e su�ciently small. In this setting, non-parametric and semi-

parametric procedures for estimation are appropriate (Hahn et al. (2001); Porter (2003)), particularly

when the sample size is large, in which case one can precisely estimate local averages just above and

below x0.

This limiting argument, however, does not work when the support of X is discrete. Suppose

X can take on J distinct values (x1, ..., xJ) and let xk = 0 be the value of the covariate at the

2For an overview of the potential outcomes framework for program evaluation problems see, for example, Angrist
and Krueger (1999).
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discontinuity threshold. Figure 2 is a discrete analogue to Figure 1. As before, the counterfactual

mean E[Y0|X = 0] is unobservable. Here, the discrete analogue to E[Y |X = x0] − lime→0+ E[Y |X =

x0 − e] is E [Y |X = 0]− E [Y |X = xk−1], which substantially over-estimates the true e�ect E[Y1 −

Y0|X = 0].

Unlike the continuous case, even if the population quantities E [Y |X = xj ] (j = 1, . . . , J) are

known, E[Y1− Y0|X = 0] remains unidenti�ed. Identi�cation can be achieved by assuming that the

regression function can be expressed as

E [Y |X = xj ] = Djβ0 + h (xj) (1)

where h (·) is a continuous function, Dj = 1 [xj ≥ 0], and h (0) = E [Y0|X = 0]. With this speci-

�cation β0 (equal to E[Y1 − Y0|X = 0]) is the parameter of interest. Equation (1) is equivalently

expressed as a model for the micro-data

Yij = Djβ0 + h (xj) + εij (2)

where Yij is the outcome for the ith individual with the jth value of X, and εij ≡ Yij −E [Yij |X = xj ],

with conditional variance σ2
εj .

It is important to note that β0 is only identi�ed when h (·) is determined by a limited number

of parameters. With only J distinct values of X, if h (·) contains J or more parameters, there is no

way for the data to distinguish between a discontinuity in the regression function, and a continuous

function that connects E [Y |X = xk−1] and E [Y |X = 0].

In addition, the asymptotic arguments used to justify non-parametric estimation of β0 (as in

Hahn et al. (2001)) cannot be applied here. Even with an in�nite amount of data, there are no data

in a region in an �arbitrarily� small neighborhood below 0. For example, a one-sided kernel (or local

linear) estimator will, in the limit, place no weight on observations for which X ≤ xk−1, and all of

the weight on observations slightly below 0 (but above xk−1). But because of the discrete support

there are no data in this neighborhood.
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2.2 Parametric Estimation and Inference

It is common practice for researchers to estimate RD designs by regressing Y on a low-order poly-

nomial in xj , and the treatment indicator Dj (e.g., Card and Shore-Sheppard (2004); Kane (2003);

DiNardo and Lee (2004); Lee (2006)). If the polynomial function is the correct form for h (·), then

conventional least-squares inference is appropriate.

When the covariate is discrete, a simple goodness-of-�t statistic for the polynomial functional

form can be calculated as

G ≡ (ESSR − ESSUR) / (J −K)
ESSUR/ (N − J)

(3)

where ESSR is the (restricted) error sum of squares from estimating (2) with a polynomial in xj for

h (xj), and ESSUR is the (unrestricted) sum of squares from regressing Yij on a full set of dummy

variables for the J values of X. Under normality (and homoskedasticity) of εij , this statistic is

distributed as F (J −K, N −K), where K is the number of parameters estimated in (2) and N is

the number of observations.3 If the statistic exceeds the critical value, it suggests that the polynomial

function is too restrictive.

A rejection of the polynomial, however, need not imply that the least squares estimate β̂ is

inconsistent for β0. Following White (1980) and Chamberlain (1994), β̂ is consistent for β∗, the

discontinuity in the function that is the least squares approximation to the true function in Equation

(1).4 The di�erence between β∗ and β0 is unknown, but may be small (or could even be zero), even

if the goodness-of-�t statistic leads one to reject the polynomial speci�cation.

Despite this possibility, it seems natural for a researcher to be relatively more �skeptical� of β̂ as

an estimate of β0 when the goodness-of-�t statistic rejects the model, and relatively more �con�dent�

3Under non-normal (homoskedastic) εij , (J −K) ·G will be asymptotically distributed as χ2 (J −K) .Letting Wj

be the vector of regressors (the polynomial and dummy variable), under heteroskedastic εij , one can compute the
statistic as eG ≡

JX
j=1

njX
i=1

1bσ2
εj

“
Yij −Wj

bθ”2

−
JX

j=1

njX
i=1

1bσ2
εj

`
Yij − Y j

´2

which is a version of ESSR − ESSUR, weighted by the reciprocal of bσ2
εj = 1

nj

Pnj

i=1

`
Yij − Y j

´2. Equivalently,eG = [
PJ

j=1

Pnj

i=1
1bσ2
εj

“
Yij −Wj

bθ”2

] −N , or eG =
PJ

j=1

njbσ2
εj

“
Y j −Wj

bθ”2

. It can be shown that eG is distributed
asymptotically as χ2 (J −K).

4When this interpretation of bβ is adopted, the conventional heteroskedasticity-consistent standard errors are ap-
propriate for inferences about β∗. Chamberlain (1994) derives the asymptotic distribution of minimum distance
estimators under mis-speci�cation, and shows the equivalence of the variance to the heteroskedasticity-consistent
variance in a least-squares regression.
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in β̂ when the F -statistic is relatively close to 1. The inference procedures proposed below formalizes

this notion. We propose to in�ate conventional standard errors to re�ect �modeling uncertainty�.

As we show below, the degree of in�ation is directly related to the goodness-of-�t statistic G.

3 Random Speci�cation Error

Suppose a polynomial is chosen to approximate h (·). The regression in Equation (2) can be re-

written as

Yij = α0 + Djβ0 + Xjγ0 + aj + εij (4)

where Xj is a row vector of polynomial terms in xj (with the normalization xk = 0), and aj ≡

h (xj) − Xjγ0 is speci�cation error � the degree to which the true function h (·) deviates from

the polynomial function.5 Throughout the paper, we focus on the case of no other individual-

level covariates, but it will be clear that the analysis can be extended to include such covariates.

Moreover, if the RD design is valid, they can be excluded in the same way that baseline covariates

can be excluded in an analysis of a randomized experiment (see, for example, the discussion in

Lee (2006)). We also focus on the case of the �sharp� RD design � in which the treatment is a

deterministic function of X. It will be clear, however, that these ideas also extend to �fuzzy� RD

designs � in which there is imperfect compliance of the treatment.6 The Appendix describes how to

apply the inference procedures described below to the �fuzzy� design.

Our �rst proposed inference procedure stems from treating this modeling error as random and

orthogonal to X (or, alternatively, E [aj |X = xj ] = 0, j = 1, . . . , J). This assumption implies

that the least squares estimate β̂ will be consistent for β0. More importantly, it implies that the

conventional heteroskedasticity-consistent variance estimators will generally be inconsistent for the

true variance of β̂. This is because the randomness in aj has induced a within-group correlation (at

the j level) in the error. Essentially, the speci�cation error here is a random e�ect, and it is well

known that standard error estimates that ignore this within-group correlation will under-state the

true variability of the least squares estimates (Moulton, 1990).

Thus, our �rst observation is that if the polynomial function is viewed as an approximation that

5Xj may include interactions between the polynomial terms and the treatment indicator. This allows the regression
function to have di�erent derivatives (up to the order of the interaction terms) on either side of the threshold.

6Discussion of the distinction between the �sharp� and �fuzzy� designs can be found in Hahn et al. (2001).
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nonetheless gives unbiased estimates of the discontinuity, and speci�cation errors are considered to

be random, then conventional standard error formulas understate the variability of the least-squares

estimate of the discontinuity gap.

Letting θ0 ≡ (α0, β0, γ0), and θ̂ be the least squares estimator in the regression of Yij on Wj ≡

(1, Dj , Xj), a consistent estimator for the asymptotic variance of
√

N
(
θ̂ − θ0

)
is given by

(
1
N

∑J
j=1

∑nj

i=1 W ′
jWj

)−1
((

J
N

)
1
J

J∑
j=1

( nj∑
i=1

W ′
j

(
Yij −Wj θ̂

))( nj∑
i=1

Wj

(
Yij −Wj θ̂

)))
(5)

·
(

1
N

∑J
j=1

∑nj

i=1 W ′
jWj

)−1

with nj �nite as J → ∞. The computation of this variance is available as a standard option in

today's typical statistical analysis software.7

The assumption that aj is orthogonal to X may seem restrictive, but it should be noted that con-

ventional inference using parametric functional forms (like polynomial functions) implicitly imposes

the strictly more restrictive assumption of no speci�cation error, aj = 0.

3.1 Clustered Standard Errors and the Goodness-of-�t Statistic

There is a connection between the goodness-of-�t statistic given in (3), and the di�erence between

the non-clustered and clustered variance estimators.

To see this, �rst note that (5) can be re-written as

V̂C ≡

 1
J

J∑
j=1

nj

N/J
W ′

jWj

−1 1
J

J∑
j=1

(
nj

N/J

)2

W ′
jWj

(
Y j −Wj θ̂

)2

 1
J

J∑
j=1

nj

N/J
W ′

jWj

−1

(6)

where Y j = 1
nj

∑nj

i=1 Yij ; note that this estimator has been re-normalized to be consistent for

the asymptotic variance for
√

J
(
θ̂ − θ0

)
, rather than for

√
N
(
θ̂ − θ0

)
. This shows that the clus-

tered standard error formula in the micro-level regression is equivalent to using the conventional

heteroskedasticity-consistent standard error in a �cell-level� regression of Y j on Wj , weighting each

cell by the weight
nj

N/J .
8

7For example, in STATA, this variance can be computed by regressing Yij on Wj , and using the �cluster� option,
where the groups are de�ned by the discrete values of X.

8The sum of these weights across the J cells is equal to J .
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Consider the simpli�ed case where nj = n0 for all cells, so the weight becomes 1, and that aj

and εij have constant variance σ2
a and σ2

ε across all J cells. In this case, we have

V̂C
p→ E

[
W ′

jWj

]−1
(

σ2
a +

σ2
ε

n0

)

while the non-clustered variance estimator V̂NC
p→ E

[
W ′

jWj

]−1 (
σ2

a + σ2
ε

)
(1/n0).9 It follows that

the ratio of the clustered to the non-clustered estimated variance will converge in probability to

n0

σ2
a + σ2

ε
n0

σ2
a + σ2

ε

. (7)

This quantity represents the extent to which the non-clustered variance must be �in�ated�.

This ratio can be estimated by a Lagrange Multiplier version of the goodness-of-�t statistic in

G in (3), which is given by

1
J −K

LM =
1

J−K (ESSR − ESSUR)
1
N ESSR

= n0

1
J−K

∑J
j=1

(
Y j −Wj θ̂

)2

1
N

∑J
j=1

∑n0
i=1

(
Yij −Wj θ̂

)2

which, with n0 �xed and J →∞, can be shown to converge in probability to the ratio in (7).

4 Mis-speci�cation of Counterfactual Functions

In this section, we show that the special structure of an RD design implies that in some circumstances,

the clustered standard errors may still understate the variability of β̂. If the speci�cation error is

random, then it is necessary to decide how the error in estimating E [Y1|X = xk] is related to the

speci�cation error in estimating E [Y0|X = xk]. As shown below, if the errors are assumed to be

identical, then the approach described above is appropriate. If the errors are independent, then the

standard errors for β̂ must be in�ated even further.

9(1/n0) is added because this is the estimator for the asymptotic variance for
√

J
“bθ − θ0

”
, rather than

for
√

N
“bθ − θ0

”
.
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Before describing these two cases in detail, we provide some intuition for the di�erence between

the two cases. As we have argued above, in the case of discrete X, non-parametric identi�cation of

the RD design is impossible. Since it is necessary to impose some functional form, estimating the

�discontinuity gap� amounts to using data away from the discontinuity threshold to estimate the

average outcome at the threshold.

Consider Figure 3A, which abstracts from sampling error (i.e., suppose there is an in�nite amount

of data per value of X). The solid dots represent E [Y |X = xj ] away from the discontinuity. Essen-

tially, we are using data from the right, as well as an approximating function, to estimate the true

E [Y1|X = xk]. In the �gure, the approximating function (the solid line) is not perfect, and the true

E [Y1|X = xk] is larger than that predicted by the functional form. Similarly, the extrapolation of

E [Y0|X = xk] from data on the left also under-predicts the truth. Assuming �identical� speci�cation

errors means that we are assuming that the error in our �forecast� of E [Y1|X = xk] is of the same

sign and magnitude as our forecast error of E [Y0|X = xk], in repeated draws of the random e�ect

error. One realization of this process is illustrated in Figure 3A.

Figure 3B, by contrast, depicts a single realization from a process that allows the prediction error

for E [Y1|X = xk] to be independent of the error for E [Y0|X = xk]. In the �gure, the parametric

functional form over-predicts E [Y0|X = xk] and under-predicts E [Y1|X = xk].

4.1 Identical Speci�cation Errors

Suppose we approximate the following two counterfactual functions by the following polynomial

functions

E [Y1|X = xj ] = α0 + Xjγ0 + β0 + a1j (8)

E [Y0|X = xj ] = α0 + Xjγ0 + a0j

where a1j and a0j are the random speci�cation errors in the approximations for E [Y1|X = xj ] and

E [Y0|X = xj ], respectively. The approximation for E [Y1|X = xj ] is parallel to the approximation

for E [Y0|X = xj ], and di�erent by exactly β0 for each value of X.

9



If we assume that a1j = a0j , and we use the fact that Y = DY1 + (1−D) Y0, then we obtain

E [Y |X = xj ] = α0 + Xjγ0 + Djβ0 + aj

where aj ≡ Dja1j + (1−Dj) a0j . This expression leads to the same regression speci�cation given

in (4). As before, β0 (or, E [Y1 − Y0|X = xk]) is the causal parameter of interest, and the clustered

standard error formula is appropriate for inference.

The assumption of identical speci�cation errors is equivalent to assuming that the same ap-

proximation error would arise whether the cell at the discontinuity point assigned to treatment or

not. Equivalently, this assumption implies that that the treatment e�ect at the discontinuity is

deterministic, that is, E [Y1 − Y0|X = xk] = β0.

One case where this assumption may be valid is when the researcher believes that the source of

the approximation error is independent of treatment status. For example Card and Shore-Sheppard

(2004) use a regression discontinuity design to examine the impact of the Medicaid expansions on

health insurance. The family income eligibility limits for Medicaid were relaxed for children born

after a certain date, and Card and Shore-Sheppard (2004) examine the relationship between Medicaid

enrollment and quarter of birth. It is possible that there are small health di�erences by season of

birth, implying that demand for Medicaid coverage varies by quarter of birth; here, aj would re�ect

those seasonal di�erences. Arguably, the same seasonal di�erences would be present irrespective of

treatment status.

Note that the speci�cation errors a1j and a0j could be identical even when the counterfactual

functions are not strictly parallel. To see this, consider the speci�cation

E [Y1|X = xj ] = α0 + Xjγ
∗
1 + β0 + a1j

E [Y0|X = xj ] = α0 + Xjγ
∗
0 + a0j

Here, the coe�cients on the polynomial terms are allowed to be di�erent. We now have

E [Y |X = xj ] = α0 + Xjγ
∗
0 + XjDj (γ∗1 − γ∗0) + Djβ0 + aj

where again, aj ≡ Dja1j +(1−Dj) a0j . This, too, leads to the �random-e�ects� regression equation
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given in (4), except that interactions between Dj and the polynomial terms are included. In this

fully-interacted model the treatment e�ect function

E [Y1 − Y0|X = xj ] = Xj (γ∗1 − γ∗0) + β0 (9)

is itself a polynomial in X. Therefore, in order to use this speci�cation, it is necessary to assume

that even if polynomials provide only an approximation to each counterfactual function separately,

there is no approximation error in describing the di�erence in the counterfactual functions as a

polynomial in X (at least at X = xk).

4.2 Independent Speci�cation Errors

Alternatively, one can allow a1j 6= a0j . When this is true, the treatment e�ect of interest is no longer

equal to β0. Instead, we have, using (8),

E [Y1 − Y0|X = xk] = β0 + a1k − a0k.

β̂ will be consistent for β0, but not for the parameter of interest, E [Y1 − Y0|X = xk]. Formally, with

non-identical a1j , a0j , we have

β̂ − E [Y1 − Y0|X = xk] = (β̂ − β0)− (a1k − a0k) (10)

where the �rst term converges in probability to 0 as J → ∞, while the second term does not.

No matter how much data are available, there is still uncertainty in the average treatment e�ect,

induced by uncertainty about the realizations of a1k, a0k.

Inference about E [Y1 − Y0|X = xk] requires accounting for this uncertainty. In particular, it

is necessary to assume that the speci�cation errors are drawn from some parametric distribution.

A natural choice is to assume that a1j and a0j are jointly and mutually independent, for each j.

Independence implies that the forecast error for E [Y1|X = xk] is independent of the forecast error

for E [Y0|X = xk].

In the Appendix, it is shown that, assuming that a1j and a0j have equal variance σ2
a across all
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j values

β̂ − E [Y1 − Y0|X = xk]√
̂
V
(
β̂
)

+ 2σ̂2
a

d→ N (0, 1) (11)

where
̂
V
(
β̂
)
≡ V̂C

J is the standard cluster-consistent variance estimator.10 σ̂2
a is a consistent estima-

tor of σ2
a, given by

σ̂2
a ≡

1
N

J∑
j=1

nj

(
Y j −Wj θ̂

)2
− 1

N

J∑
j=1

1
nj − 1

nj∑
i=1

(
Yij − Y j

)2
(12)

The �rst term is the weighted variance of the mean residual from the regression. With nj �xed,

and as J → ∞, it converges in probability to σ2
a + limJ→∞

J
N

1
J

∑J
j=1 σ2

εj . It contains the variance

in the speci�cation error aj , as well as sampling error in estimating the Y js. The second term is an

estimate of limJ→∞
J
N

1
J

∑J
j=1 σ2

εj , the average sampling variance.11

This implies that the interval

(
β̂ − 1.96

√
̂
V
(
β̂
)

+ 2σ̂2
a, β̂ + 1.96

√
̂
V
(
β̂
)

+ 2σ̂2
a

)
(13)

will contain E [Y1 − Y0|X = xk] with approximately 0.95 probability. The interpretation of this

con�dence interval is similar to conventional con�dence intervals, except that here, the parameter

E [Y1 − Y0|X = xk] is itself random, due to the randomness of the speci�cation errors. Thus, the

correct statement of inference is that the interval contains E [Y1 − Y0|X = xk] about 95 percent of

the time in repeated draws of both εij and the (random) speci�cation errors a1k and a0k.
12

The interval in (13) strictly contains the usual con�dence interval, and therefore leads to more

conservative inferences. A wider interval is an intuitive result, since uncertainty regarding the

extrapolation errors should yield less precise inferences. Another intuitive aspect of the interval in

10It may appear that the homoskedasticity and normality of a1j and a0j is restrictive, but it is important to
remember that it is less restrictive than assuming that there is no speci�cation error at all (i.e. σ2

a = 0).
11Under heteroskedasticity of εij across the J groups, a consistent estimator is given by

bσ2
a ≡

1PJ
j=1

njbσ2
εj

JX
j=1

njbσ2
εj

“
Y j −Wj

bθ”2

− 1PJ
j=1

njbσ2
εj

JX
j=1

njbσ2
εj

„ bσ2
εj

nj

«

where bσ2
εj = 1

nj

Pnj

i=1(Yij − Y j)
2.

12(13) has been called an �Empirical Bayes� ' Con�dence Interval. See Morris (1983).
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(13) is that it collapses to the conventional one when the chosen parametric form is exactly correct

and σ2
a is known to be zero.

There is a close connection between σ̂2
a and the goodness-of-�t statistic G. Consider the case

of a constant sampling error variance σ2
ε across all j cells. In this case, an alternative consistent

estimator for σ2
a could be given by

σ̃2
a ≡

(
J

J −K

)
1
N

J∑
j=1

nj

(
Y j −Wj θ̂

)2
− J

N

1
N − J

J∑
j=1

nj∑
i=1

(
Yij − Y j

)2
The probability limits of the �rst and second terms are σ2

a +limJ→∞
J
N σ2

ε and limJ→∞
J
N σ2

ε , respec-

tively. It is also true that σ̃2
a = (G− 1) ESSUR

N−J
J
N . Thus, the more that G exceeds 1 � evidence that

the parametric approximation is too restrictive � the wider the con�dence interval (13). Obtaining

a negative value for σ̃2
a simply implies that a goodness-of-�t statistic would be less than 1.

Finally, we draw attention to a technical point that leads to two complications. First, under

conventional asymptotics, (11) only holds when σ2
a > 0. When σ2

a = 0,
√

J
(
β̂ − E [Y1 − Y0|X = xk]

)
converges in distribution to N (0, VC), (where VC = plim(V̂C)). But J

̂
V
(
β̂
)

+ 2Jσ̂2
a does not

converge to VC : the �rst term converges to VC , but the second term does not vanish. Secondly,

under conventional asymptotics, even when σ2
a > 0, β̂−E [Y1 − Y0|X = xk] converges in distribution

to N
(
0, 2σ2

a

)
, because the variance in the estimator of β0 vanishes as the number of cells increases.

Thus, with any �xed sample, the usual asymptotic approximation leads to an unintuitive result that

the variance is VC
J when σ2

a = 0, but jumps to 2σ2
a for σ2

a > 0 but arbitrarily small.

The source of these problems is that the estimation error β̂−β0 is Op

(
1√
J

)
, while the speci�cation

error a1k−a0k is Op (1). In the Appendix, we propose a sequence for the data that allows the variance

of X to shrinks as the number of cells J grows. Intuitively, although the increase in the number of

cells tends to decrease the variability in the least squares estimator, the shrinking variance in the

regressors o�sets this tendency, leading to an estimation error that is of the same stochastic order

as the speci�cation error. The expression in equation (11) will then be valid whether or not σ2
a = 0,

and the asymptotic variance in the overall error β̂−E [Y1 − Y0|X = xk] will be continuous at σ2
a = 0.
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5 E�cient Estimation

When the speci�cation errors a1j and a0j are assumed to be di�erent, there is an estimator for

E [Y1 − Y0|X = 0] that is more e�cient than the OLS estimator β̂. This is because the least squares

estimate of β0 amounts to the di�erence between the prediction for E [Y1|X = 0] and the predic-

tion for E [Y0|X = 0], using data away from the discontinuity threshold. While it is necessary to

make such an extrapolation for E [Y0|X = 0] (since this quantitity is unobservable), information on

E [Y1|X = 0] is available from the sample mean Y k. Use of this information can lead to a more

e�cient estimator of the treatment e�ect.

Figure 3B illustrates the point. In the �gure, β̂ estimates the discontinuity in the function

represented by the solid lines. In this particular realization of the data, the treatment e�ect at

X = 0 is the di�erence between the solid circle, which is above the parametric function, and the

open circle, which is below. The deviation of the open circle from the parametric line is unobservable,

but the cell mean provides information on E [Y1|X = 0]. Indeed, as the number of observations per

cell tends to in�nity, we can estimate E [Y1|X = 0] perfectly.

More formally, assume that equation (4) is valid, with the normalization that xk = 0 . Let α̂+ β̂

be the least squares estimate of E [Y1|X = 0] that leaves out the kth cell in the estimation.13 Now

consider the combination estimator

β∗ = β̂ + λ
(
Y k −

(
α̂ + β̂

))
(14)

which is the least squares estimator of the discontinuity adjusted by the kth cell mean's deviation

from the least squares prediction. The error in the estimator is given by

β∗ − E [Y1 − Y0|X = 0] = (β̂ − β0)− (a1k − a0k) + λ
(
α0 + β0 + a1k + εk −

(
α̂ + β̂

))
= (β̂ − β0)− (a1k − a0k) + λ

(
a1k + εk −

(
α̂ + β̂ − (α0 + β0)

))

which will be centered around zero.

13Note that this estimator is asymptotically equivalent to one that includes the kth cell.
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The variance of this error is

V
(
β̂
)

+ 2σ2
a + λ2V (a1k + εk −

(
α̂ + β̂

)
) + 2λC

(
(β̂ − (a1k − a0k), a1k + εk −

(
α̂ + β̂

))
= V

(
β̂
)

+ 2σ2
a + λ2(σ2

a + σ2
εk

nk
+ V

(
α̂ + β̂

)
)− 2λ(C(β̂,

(
α̂ + β̂

)
) + σ2

a)

where the equality holds because the least squares estimators α̂ and β̂ do not include data from the

kth cell.

The optimal λ can be found by di�erentiating this variance with respect to λ and solving for the

�rst order condition, yielding:

λ =
σ2

a + C(β̂,
(
α̂ + β̂

)
)

σ2
a + V

(
α̂ + β̂

)
+ σ2

εk
nk

(15)

The intuition behind this formula is illustrated by considering the case in which two separate para-

metric forms are used to model the function to the left and the right of the discontinuity thresh-

old; that is, when the terms of the parametric function are completely interacted with the treat-

ment dummy variable. Use the identity C(β̂, α̂ + β̂) = V
(
α̂ + β̂

)
− C

(
α̂, α̂ + β̂

)
, and note that

C
(
α̂, α̂ + β̂

)
= 0 here, because in a completely interacted model, only data to the left are used

to estimate α̂ and only data to the right are used to estimate α̂ + β̂. The optimal value of λ then

becomes:

λ =
σ2

a + V
(
xkγ̂ + β̂

)
σ2

a + V
(
xkγ̂ + β̂

)
+ σ2

εk
nk

(16)

When the parametric function is �good�, σ2
a will be relatively small compared to the cell-level sam-

pling error
σ2

εk
nk. λ will thus tend to 0, and the linear combination estimator will be closer to the

original parametric estimator β̂. On the other hand, if the parametric form is �bad�, σ2
a will be rela-

tively large. As a result, λ will tend towards 1, and the combination estimator will converge towards

Y k− α̂, which is the di�erence between the cell mean and the prediction of E [Y0|X = xk]using data

on the left side of the discontinuity threshold. The combination estimator thus provides a simple

way to optimally combine two alternative estimators of E [Y1 − Y0|X = 0] � β̂ and Y k − α̂. Note

that the usual OLS estimator that includes the kth cell can also be written in the same form as

(14), using the recursive residual formula of Brown et al. (1975). The implied weight by the OLS

15



will in general not be equal to the weight given by (14).14

Whether or not the model is fully interacted, the optimal λ can be substituted into the expression

above to yield the variance of this combination estimator:

V (β∗) =
(
V
(
β̂
)

+ 2σ2
a

)
− λ2

(
σ2

a + V
(
α̂ + β̂

)
+

σ2
εk

nk

)
(17)

Note that the �rst set of parentheses is the error variance as discussed in the previous section, while

the second term is non-negative. Thus, the variance of the combination estimator will be weakly

smaller than the variance of the estimator β̂.

To make this estimator feasible, it is necessary to obtain sample analogues to the population

variances and covariances in either (15) or (16). σ2
a can be estimated by σ̂2

a as de�ned in the previous

section. The estimator for V
(
α̂ + β̂

)
is simply the "standard error of the prediction" at X = 0 ,

which is a standard option in most statistical packages. C(β̂, α̂ + β̂) = V
(
β̂
)

+ C
(
α̂, β̂

)
can be

estimated using the estimated variance of β̂ and covariance between β̂ and (as long as the threshold

is normalized to be zero) the estimated intercept α̂ ; these quantities are usually computed in most

statistical packages. Finally, the usual variance estimator of Y k can be used as the sample analogue

to
σ2

εk
nk

. Together, these quantities imply an estimator λ̂ , which can be used to construct β̂∗, a

feasible version of β∗.

In the Appendix, we provide conditions under which

β̂∗ − E [Y1 − Y0|X = xk]√
̂

V
(
β̂∗
) d→ N (0, 1)

where
̂

V
(
β̂∗
)
is de�ned by (17), with population quantities replaced by their sample analogues.

The usual asymptotic arguments lead to the same complications described in the previous section.

Therefore, we continue to adopt the �shrinking variance� sequence in computing the asymptotic

distribution, and providing a consistent variance estimator. In addition, as shown in the Appendix,

in order to consistently estimate σ2
εk, while maintaining that

σ2
εk

nk
has the same order as β̂, it is

14Using the recursive residual formula, the OLS coe�cient using all observations can be written as

θ̂ = θ̂−k +
`
W ′W

´−1
W ′

k

“
Y k − θ̂−k

”
where −k denotes leaving out the k th cell, and Wk denotes the k th row of W .
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necessary to assume that the number of observations and the variance of ε in the kth cell both grow

as the number of cells increase. Without increasing the number of observations in the kth cell, one

can neither consistently estimate λ̂, nor the V
(
β̂∗
)
. Without further requiring that σ2

εk grows with

the number of observations in the cell, the term
σ2

εk
nk

will vanish in the expressions for λ and V (β∗).

6 Relation to Bayesian Estimation

There is a close connection to the proposed estimator β̂∗ and a Bayesian approach to the prob-

lem. Speci�cally, the con�dence intervals proposed above can be interpreted as Bayesian posterior

intervals.

For example, note that the (14) can be re-written as

β∗ =
[
λY k + (1− λ)

(
α̂ + β̂

)]
− α̂

The expression in brackets can be viewed as an estimate of E [Y1|X = 0] � a λ-weighted average of

the kth cell mean and the predicted value from the regression � and the term α̂ as an estimate of

E [Y0|X = 0].

Consider a simple Bayesian approach to estimating E [Y1|X = xk]−E [Y0|X = xk]. A likelihood

for the observed data would be speci�ed; for example, Yik ∼ N
(
E [Y1|X = 0] , σ2

)
; assume here that

σ2 is known. Now consider a prior distribution for (E [Y1|X = xk] , E [Y0|X = xk]) given by

N

(E1, E0) ,

 σ2
1 0

0 σ2
0


 .

In this simple setup, given the observed data, the posterior distribution for the quantity E[Y1 |

X = xk] would be given by

N
(
λY k + (1− λ) E1, (1− λ) σ2

1

)
with λ = σ2

1/
(

σ2

nk
+ σ2

1

)
. Since at X = 0, there are no data for the outcome in the untreated regime,

the posterior for E [Y0|X = xk] is the same the prior, N
(
E0, σ

2
0

)
. With some re-arrangement, the
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resulting posterior distribution for E [Y1 − Y0|X = 0] is

N(
[
λY k + (1− λ) E1

]
− E0, σ

2
1 + σ2

0 − λ2(
σ2

nk
+ σ2

1))

Note that under an uninformative (di�use) prior on E [Y0|X = 0], the posterior for the treatment

e�ect will also be uninformative. In the case where only data on the kth cell are provided, this

is intuitive: without any outside information, one should not be able to provide an informative

estimate of the treatment e�ect.

What are reasonable choices for the components of the prior distribution E1 , E0 , σ2
1 , and σ2

0 ?

One possibility is to use the data away from the discontinuity threshold to generate values for these

parameters. For example, α̂ + β̂, the predicted value of E [Y1|X = 0] using all data to the right of

the kth cell in a parametric regression could be viewed as a reasonable value for E1. The variance of

that prediction,
̂

V
(
α̂ + β̂

)
+ σ̂2

a, is a reasonable value for σ2
1. Similarly, a regression using all data to

the left of the k th cell could generate α̂ and V̂ (α̂)+ σ̂2
a, which could be used as values for E0 and σ2

0,

yielding the prior distribution for E [Y0 | X = xk]. Using these values � and substituting σ̂2
ε for σ2�

yields a posterior distribution for E [Y1 − Y0|X = 0] given by N

(
β̂∗,

̂
V
(
β̂∗
))

.15 It is important to

note that a hierarchical Bayesian approach could be used for this problem. Rather than choosing

values E1, E0, σ2
1, and σ2

0, a prior distribution could be speci�ed for the hyperparameters of the

model α0, β0, γ0, σ2
a, and σ2

εj .

7 Summary

This paper draws attention to functional form issues in the estimation of regression discontinuity

designs when the index variable determining treatment, X, has discrete support. In the discrete

case, the conditions for non-parametric or semi-parametric methods are not satis�ed; indeed, the

treatment e�ect is not non-parametrically identi�ed. Our goal is to formally incorporate uncertainty

in the necessary parametric modeling of the underlying RD function.

15Here we are referring to the combination estimator for the model that completely interacts the treatment indicator
with the polynomial. This notion of improving upon the estimate for the k th cell, by using information from other
cells, is what underlies the parametric Empirical Bayes approach. Indeed, the estimator

h
λ̂Y k +

“
1− λ̂

” “
α̂ + bβ”i

of
E [Y1|X = xk] is a type of �shrinkage�/Stein estimator (see Morris (1983)). Thus, the con�dence intervals provided
here could also be viewed as Empirical Bayes con�dence intervals.
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We have proposed a procedure for inference that explicitly acknowledges errors in whatever

parametric functional form is chosen. Instead of assuming that the chosen functional form �correctly�

describes the underlying regression function, we model the deviations of the true conditional means

from the parametric function as random speci�cation errors with an unknown variance. Viewing

these deviations as random errors requires � at a minimum � the use of cluster-consistent standard

errors (clustered on the distinct values of X ), rather than conventional heteroskedasticity-consistent

standard errors. An even more �exible model of the RD counterfactual functions requires further

adjustment; the resulting con�dence intervals can also be viewed as Bayesian posterior intervals,

when the prior distribution is based on data away from the discontinuity threshold.

The inference procedure proposed in this paper can be summarized as follows.

1. Normalize the X variable so the threshold is at 0 , so the intercept in the regression can be

interpreted as the estimate of E [Y0|X = 0]. Choose the parametric form for the approxima-

tion. Run the regression on the micro-data, computing both heteroskedasticity- and cluster-

consistent (clustering on the individual values of X ) standard errors.

2. Consider whether or not the counterfactual functions can be modeled so that speci�cation

errors in E [Y1|X = xk] and E [Y0|X = xk] are the same. If so, then the clustered standard

errors can be used for inference.

3. If not, collapse the data to the cell level, retaining information on the means, variances, and

number of observations in each cell. Run the (cell size-weighted) regression using the cell-

data.16 Use mean squared error from the regression and cell variances to compute σ̂2
a as in

(12). Adjust the sampling variance by 2σ̂2
a according to (13).

4. If a more e�cient estimator is desired, use the estimated variances and covariances of the

discontinuity coe�cients and intercept, as well as the k th cell variance, compute λ̂,and use

this estimator for computing β̂∗ and
̂

V
(
β̂∗
)
.

Although our proposed procedure allows for speci�cation error, there remains the issue of how to

choose the functional form for the systematic part of the functional form (e.g., the order of the

16At this point, it is useful to verify that the point estimate is identical to that computed in step 1, and that the
heteroskedasticity-consistent standard error is identical to the cluster-consistent standard error in step 1 (except for
a possible �nite-sample correction factor).
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polynomial in X). Nevertheless, we believe our approach is better than than simply assuming the

parametric form is correct. Moreover, our proposed procedures can be easily implemented using the

variances and covariances provided by regression routines in standard statistical packages.
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Appendix

A Proofs

Notation

Consider the regression in matrix form

y = Db + Xγ + e

where y (J × 1) is a vector of cell means for the outcome, the two columns of D (J × 2) are the

intercept and treatment indicator variable, the columns of X (J ×K) are the K polynomial terms

in the treatment-determining covariate, and each element of e (J × 1) is the composite error term

aj + εj . b and γ are the corresponding coe�cient vectors. The proofs below are for an unweighted

least squares estimate, but they also hold for weighted (by the number of observations per cell)

least squares estimates, by �rst pre-multiplying the regression equation by the square root of an

appropriate weighting matrix. Let yj , Dj , Xj , ej be the jth row of the corresponding matrices

(vectors).

Assumptions

The main assumption is that X has a shrinking variance � after partialling out the intercept and

the teratment dummy � as the number of cells increases. That is, we assume that X ≡ E [X∗|D]
+ 1√

J
(X∗ − E [X∗|D]), where X∗ is a J ×K random matrix. For the proofs below, note that this

de�nition is equivalent to X ≡ DE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
+ 1√

J
(X∗ − DE

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
),

where X∗
j is the jth row of X∗. By adopting this sequence, the estimated discontinuity � which

amounts to the di�erence between two linear forecasts at the discontinuity threshold � will not

become more precise as J increases. Instead the discontinuity estimator will converge to a normal

distribution with �nite variance.

Further assume that E

[(
X∗

j −DjE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

])′(
X∗

j −DjE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

])]
= C, a positive de�nite matrix, and that E

[
D′

jDje
2
j

]
, E
[
D′

jX
∗
j e2

j

]
, and E

[
X∗′

j X∗
j e2

j

]
are �nite ma-

trices.

Asymptotic Distribution of b̂ as J →∞
It can be shown that the least squares estimator for b can be written as

b̂ =
(
D′D

)−1
D′y −

(
D′D

)−1
D′X

(
X ′MX

)−1
X ′My

where M ≡ I −D (D′D)−1 D′. It follows that

b̂− b =
(
D′D

)−1
D′e−

(
D′D

)−1
D′X ·

(
X ′MX

)−1
X ′Me (18)
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The �rst term is op (1). (D′D)−1 D′X
p→ E

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
. X ′MX

p→ C, because

X ′MX =
1
J

(X∗ −DE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′(X∗ −DE

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)

− (
(
D′D

)−1
D′X∗ − E

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′

1
J

(D′X∗ −D′DE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)

− 1
J

(X∗′D − E
[
X∗′

j Dj

]
E
[
D′

jDj

]−1
D′D)(

(
D′D

)−1
D′X∗ − E

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)

(
(
D′D

)−1
D′X∗ − E

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′

1
J

D′D(
(
D′D

)−1
D′X∗ − E

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)

where the �rst line converges to C, and the second, third, and fourth lines are op (1).
Finally, we have

X ′Me =
1√
J

(X∗ −DE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′e− (

(
D′D

)−1
D′X∗ − E

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′

1√
J

D′e

=
1√
J

(X∗ −DE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′e + op (1)

Thus, we have

b̂− b
d→ N

(
0, E

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
CΩCE

[
D′

jX
∗
j

]′
E
[
D′

jDj

]−1
)

where Ω ≡ E[(X∗
j − DjE

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′ (X∗

j − DjE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)e2

j ].

Proof of Consistency of
˜
V
(
b̂
)
(Variance Estimator using True b)

The expression in (18) can be used to construct a natural consistent variance estimator assuming

a known b. Using (18), consider

˜
V
(
b̂
)

≡
(
D′D

)−1 (
J∑

j=1

D′
jDje

2
j )
(
D′D

)−1
(19)

+ B(
J∑

j=1

(
Xj −Dj(D′D)−1D′X

)′
Dje

2
j )
(
D′D

)−1

+
(
D′D

)−1 (
J∑

j=1

D′
j

(
Xj −Dj(D′D)−1D′X

)
e2
j )B

′

+ B(
J∑

j=1

(Xj −Dj

(
D′D

)−1
D′X)′(Xj −Dj

(
D′D

)−1
D′X)e2

j )B
′

where B ≡ − (D′D)−1 D′X (X ′MX)−1. We �rst show that this is a consistent estimator for the

variance given above, and then show that it is numerically identical to the conventional least-squares

clustered variance estimator (with known b).

The �rst three terms in (19) will be shown to be op(1), and the �nal term will converge to the
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desired asymptotic variance. The �rst term is op(1). The second term in (19) can be equivalently

written as

B(
J∑

j=1

(
Xj −DjE

[
D′

jDj

]−1
E
[
D′

jX
∗
j

])′
Dje

2
j )
(
D′D

)−1

+ B
(
E
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
− (D′D)−1D′X

)′
(

J∑
j=1

D′
jDje

2
j )
(
D′D

)−1

= B(
J∑

j=1

(
Xj −DjE

[
D′

jDj

]−1
E
[
D′

jX
∗
j

])′
Dje

2
j )
(
D′D

)−1 + op(1)

= B(
1√
J

J∑
j=1

(
X∗

j −DjE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

])′
Dje

2
j )
(
D′D

)−1 + op(1)

= op(1) + op(1)

where the �rst equality follows because (D′D)−1 D′X is consistent for E
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
and

X ′MX
p→ C, which implies that B is Op(1), the second equality follows by the de�nition of Xj , and

the third equality follows because (D′D)−1is Op

(
1
J

)
. The third term in (19) is similarly op(1).

The fourth term in (19) can be re-written as

B(
∑J

j=1(Xj −DjE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′(Xj −DjE

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)e2

j )B
′

+ B

(
E
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
− (D′D)−1 D′X

)′
(
∑J

j=1 D′
jDje

2
j ) ·(

E
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
− (D′D)−1 D′X

)
B′

+ B

(
E
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
− (D′D)−1 D′X

)′
·

(
∑J

j=1 D′
j(Xj −DjE

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)e2

j )B
′

+ B(
∑J

j=1(Xj −DjE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′Dje

2
j ) ·(

E
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
− (D′D)−1 D′X

)
B′

which is equal to

B( 1
J

∑J
j=1(X

∗
j −DjE

[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)′(X∗

j −DjE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
)e2

j )B
′

+ Op(1) ·Op( 1
J ) ·Op(J) ·Op( 1

J ) ·Op(1)

+ Op(1) ·Op( 1
J ) ·Op(

√
J) ·Op(1)

+ Op(1) ·Op(
√

J) ·Op( 1
J ) ·Op(1)
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because E
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
− (D′D)−1 D′X is Op

(
1
J

)
, and (

∑J
j=1 D′

j(Xj − DjE
[
D′

jDj

]−1

E
[
D′

jX
∗
j

]
)e2

j ) is Op

(√
J
)
, which can be seen by noting that X is, by de�nition, shrinking to-

wards the predicted means. The �rst line also follows by the de�nition of X. Thus the fourth term

in (19) converges in probability to E
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
CΩCE

[
D′

jX
∗
j

]′
E
[
D′

jDj

]−1
.

Next, (19) can be shown to be numerically identical to the conventional least squares clustered

variance estimator (with β known), after some re-arrangement of terms. Speci�cally, after expanding

the middle two terms, (19) becomes

(
D′D

)−1 (
J∑

j=1

D′
jDje

2
j )
(
D′D

)−1 −BX ′D
(
D′D

)−1 (
J∑

j=1

D′
jDje

2
j )
(
D′D

)−1

−
(
D′D

)−1 (
J∑

j=1

D′
jDje

2
j )
(
D′D

)−1
D′XB′

+ B(
J∑

j=1

X ′
jDje

2
j )
(
D′D

)−1 +
(
D′D

)−1 (
J∑

j=1

D′
jXje

2
j )B

′

+B(
J∑

j=1

(Xj −Dj

(
D′D

)−1
D′X)′(Xj −Dj

(
D′D

)−1
D′X)e2

j )B
′

After expanding the last term and collecting terms with
∑J

j=1 D′
jDje

2
j ,
∑J

j=1 X ′
jDje

2
j ,
∑J

j=1 D′
jXje

2
j ,

and
∑J

j=1 X ′
jXje

2
j , we obtain

A(
J∑

j=1

D′
jDje

2
j )A + B(

J∑
j=1

X ′
jDje

2
j )A + A(

J∑
j=1

D′
jXje

2
j )B

′ + B(
J∑

j=1

X ′
jXje

2
j )B

′

where A ≡ (D′D)−1 − BX ′D (D′D)−1 = (D′D)−1 + (D′D)−1 D′X (X ′MX)−1 X ′D (D′D)−1, and

B ≡ − (D′D)−1 D′X (X ′MX)−1. This is exactly the expression that would be obtained by using

the partitioned inverse formula for the conventional least squares clustered variance estimator (with

β known) for β̂.

Proof that
̂
V
(
b̂
)
−

˜
V
(
b̂
)
is op(1)

Let
̂
V
(
b̂
)
be the conventional clustered variance estimator (with unknown β); it is de�ned as
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˜
V
(
b̂
)
except after replacing ej with êj ≡ Yj −Dj b̂−Xj γ̂. It follows that

êj = ej −Dj

(
b̂− β

)
−Xj (γ̂ − γ)

= ej −Dj

(
D′D

)−1
D′e + Dj

(
D′D

)−1
D′X (γ̂ − γ)−Xj (γ̂ − γ)

= ej −Dj

(
D′D

)−1
D′e + Dj

((
D′D

)−1
D′X − E

[
D′

jDj

]−1
E
[
D′

jX
∗
j

])
(γ̂ − γ)

−
(
Xj −DjE

[
D′

jDj

]−1
E
[
D′

jX
∗
j

])
(γ̂ − γ)

= ej −Dj ·Op

(
1√
J

)
+ Dj ·Op

(
1
J

)
·Op (1)

− 1√
J

(
X∗

j −DjE
[
D′

jDj

]−1
E
[
D′

jX
∗
j

])
·Op (1)

The second and third equalities follow from re-arranging terms. The �nal equality follows from

noting that (D′D)−1 D′X −E
[
D′

jDj

]−1
E
[
D′

jX
∗
j

]
is Op

(
1
J

)
and (γ̂ − γ) is Op (1), as shown in the

proof of asymptotic normality.

Squaring the above residual yields

ê2
j − e2

j = ejDj

(
Op

(
1
J

)
+ Op

(
1√
J

)
−Op

(
1√
J

))
− ejX

∗
j Op

(
1√
J

)
(20)

+
(

Op

(
1
J

)
+ Op

(
1√
J

)
−Op

(
1√
J

))′
D′

jDj

(
Op

(
1
J

)
+ Op

(
1√
J

)
−Op

(
1√
J

))
−

(
Op

(
1
J

)
+ Op

(
1√
J

)
−Op

(
1√
J

))′
D′

jX
∗
j Op

(
1√
J

)
+ Op

(
1√
J

)′
X∗′

j X∗
j Op

(
1√
J

)

Note that each of the above terms is a summation of scalars. To see that
̂
V
(
b̂
)
−

˜
V
(
b̂
)
is op (1),

substitute each of these scalars for �e2
j � in (19). The �rst three terms will be op(1) as argued in the

proof for the consistency of
˜
V
(
b̂
)
. In addition, the fourth term will also be op(1) because each of

these scalars is a product that includes a Op(·) term in (20).

Proof that σ̂2
a

p→ σ2
a.

First, note the de�nitionσ̂2
a ≡ 1

J

∑
j ê2

j − 1
Jn

∑
j

1
n−1

∑
i (Yij − yj)

2. Next, summing over (20), it

follows that 1
J

∑
j ê2

j
p→ 1

J

∑
j e2

j , which converges to σ2
a +σ2

ε
n . Finally, the second term is a consistent

estimator for σ2
ε

n , as J →∞.

Proof of Asymptotic Distribution of Shrinkage Estimator

In addition to the assumptions above, normalize so that xk, the point of the threshold, is zero,

and let b = (α, β), so that α is the intercept and β is the discontinuity gap. Also assume that

nk = Jn∗k, n∗k a �nite constant, and εik =
√

nkε
∗
ik, so that σ2

εk = nkσ
∗2
εk , σ∗2εk a �nite constant.
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We will show that
β̂∗ − E [Y1 − Y0 | X = 0]√

̂
V
(
β̂∗
) d→ N (0, 1)

by �rst showing that β̂∗ − E [Y1 − Y0|X = 0] d→ N (0, V (β∗)), and then showing that
̂

V
(
β̂∗
)
is

consistent for V (β∗).
First, re-write 1√

J

(
β̂∗ − E [Y1 − Y0|X = 0]

)
as 1√

J
(β̂−E [Y1 − Y0|X = 0]+ λ̂

(
Y k −

(
α̂ + β̂

))
).

De�ne cJ as the vector
(

1√
J

(
β̂ − E [Y1 − Y0|X = 0]

)
, 1√

J

(
Y k −

(
α̂ + β̂

))
, λ̂
)′
, so that 1√

J
(β̂∗−

E [Y1 − Y0|X = 0]) = f (cJ), noting that f (·)is a continuous function.

We need to show cJ has probability limit c = (0, 0, λ), and that
√

J (cJ − c)converges in distribu-

tion to N (0, V ∗). If true, then
√

J (f (cJ)− f (c)) will converge in distribution to N(0, (1, λ, 0)′ V ∗·
(1, λ, 0)), by the delta method. The zero in the last element of the gradient vector implies that the

resulting asymptotic variance does not include the variance of λ̂ , or its covariance with any other

element of bJ . As a result, it will be true that β̂∗ − E [Y1 − Y0 | X = 0] d→ N (0, V (β∗)).
To show cJ

p→ c ≡ (0, 0, λ), recall from above that β̂ − E [Y1 − Y0|X = 0]is Op (1); multiplying
by 1√

J
yields op (1). Similarly, Y k −

(
α̂ + β̂

)
= (α̂− α) +

(
β − β̂

)
+ ak +εkis also Op (1), because

1
nk

∑nk
i=1 εik = 1√

Jn∗k

∑nk
i=1 ε∗ik; multiplying by 1√

J
yields op (1). λ̂ is consistent for λ , because the

sample analogs to each of its parts are consistent. For example, as shown above, the standard

estimators for C(β̂, α̂ + β̂) and V
(
β̂
)
are consistent, as is σ̂2

a. Also,

1
n2

k

∑nk

i=1

(
Yik − Y k

)2 =
1
n2

k

∑nk

i=1
ε2ik +

2
n2

k

∑nk

i=1
εik

(
E [Yik]− Y k

)
+

1
n2

k

∑nk

i=1

(
E [Yik]− Y k

)2
=

1
nk

∑nk

i=1
ε∗2ik +

√
nk

n2
k

(
E [Yik]− Y k

)∑nk

i=1
ε∗ik +

1
nk

(
E [Yik]− Y k

)2
=

1
nk

∑nk

i=1
ε∗2ik + O

(√
J

J2

)
Op (1) op (J) + O

(
1
J

)
Op (1)

where the �rst and second equalities hold after some re-arrangement, and the third equality holds

because E [Yik]− Y kis Op (1) .

To show
√

J (cJ − c) d→ N (0, V ∗), we decompose the vector as

√
J (cJ − c) =


β̂ − β

(α− α̂) +
(
β − β̂

)
√

J
(
λ̂− λ

)
+

 0
εk

0

+

 ak1 − ak0

ak1

0


The element in the second vector is 1

nk

∑nk
i=1 εik = 1√

n∗k

∑nk
i=1 ε∗ik, which converges to a normal.

The third vector is normal, by assumption. The �rst two elements converge to a normal as in the

proof of the asymptotic normality of b̂, as shown above. Finally,
√

J
(
λ̂− λ

)
can also be expressed
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as a summation in the form of 1√
J

∑J
j=1 zj .

√
J

( bσ2
a+

̂
C(bβ,bα+bβ)

bσ2
a+

̂
V (bα+bβ)+ bσ2

εk
nk

− σ2
a+C(bβ,bα+bβ)

σ2
a+V (bα+bβ)+σ2

εk
nk

)
converges in

probability to
√

J

bσ2
a−σ2

a+
̂

C(bβ,bα+bβ)−C(bβ,bα+bβ)

σ2
a+V (bα+bβ)+σ∗2

εk
n∗

k

. The numerator can be shown to be a summation in

the form of 1√
J

∑J
j=1 zj + op (1). The central limit theorem applies.

We have shown that each of the parts that make up λ̂ is consistent. Those same terms are used

to construct
̂

V
(
β̂∗
)
, which is therefore consistent for V (β∗).

B Extension to �Fuzzy� Regression Discontinuity Designs

Many interesting applications of the RD research design involve �imperfect compliance�: the re-

lation between the treatment of interest is not a deterministic function of X. Instead the conditional

expectation of the treatment is a discontinuous function of X. Angrist and Lavy (1998), for example,

use discontinuities in the mapping from the number of students in a grade to average class size to

identify the e�ect of class size on test scores. The rule, while not perfectly followed, nevertheless

generates a discontinuity in the expected class size. A very simple version of this setup consists of

two equations:

Y1ij = Djδ0 + Xjγ1 + uij

Y2ij = Y1ijβ0 + Xjγ2 + vij

where (Y1ij , Y2ij) is a pair of observed outcomes for the ith individual in the jth cell, Xjand Dj are

as previously de�ned, δ0 is the discontinuity in Y1 at X = 0, β0 is the causal e�ect of Y1 on Y2,

and (uij , vij) is a pair of potentially correlated errors. Correlation between uij and vij implies that

β0 cannot be estimated consistently by a simple OLS procedure. β0 can be estimated, however, by

instrumental variables method using Dj as an instrument for Y1ij . The maintained assumptions are

that program status Dj has no direct e�ect on Y2, controlling for Y1. Note that the resulting IV

estimator is equivalent to estimating two regression discontinuities � for the two outcomes Y1and

Y2� and computing the ratio of the discontinuity gaps.

A natural extension of our framework is to assume that the data generating process for the

observed outcomes is

Y1ij = Djδ0 + Xjγ1 + a1j + uij

Y2ij = Y1ijβ0 + Xjγ2 + a2j + vij

where (a1j , a2j) represents an i.i.d. vector of mean zero random speci�cation errors. IV will still

yield an asymptotically unbiased estimate of β0, but the conventional IV sampling errors, as in the

�sharp� design, ignore the group structure of the residuals and may overstate the precision of the IV

estimator (See Shore-Sheppard (1996) for a discussion of grouped error structures in an IV setting

similar to Moulton (1990)). The use of clustered standard errors is again a simple remedy in this

situation.
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Note that the above speci�cation implicitly assumes the structure of �identical� speci�cation

errors in the counterfactual functions, as described in sub-section (4.1). If it is more desirable to

assume �independent� errors, as in sub-section (4.2), then it is necessary to account for the variance

in the forecast errors a1jand a2j . One way to proceed would be to apply the procedure in (4.2),

separately for both �outcomes� Y1 and Y2. This would give us, for example, least squares estimate

β̂and π̂ for the parameters E
[
Y 1

1 − Y 0
1 |X = 0

]
and E

[
Y 1

2 − Y 0
2 |X = 0

]
(where the superscripts

denote potential outcomes). The error in these estimators include both estimation error and the

forecast error, as in sub-section (4.2). It is possible to analogously compute the covariance in the

estimation error in β̂and π̂ as well as the covariance between the speci�cation errors for each outcome.

Following an analogous argument as in (4.2), it would then follow that(
β̂ − E

[
Y 1

1 − Y 0
1 |X = 0

]
, π̂ − E

[
Y 1

2 − Y 0
2 |X = 0

])′
Σ̂−1

·
(
β̂ − E

[
Y 1

1 − Y 0
1 |X = 0

]
, π̂ − E

[
Y 1

2 − Y 0
2 |X = 0

])
(where Σ̂ is the corresponding consistent estimator of the variance-covariance matrix for the error

vector) converges in distribution to χ2(2). One can invert this test statistic to generate, for example,

a 95 percent joint con�dence set for E
[
Y 1

1 − Y 0
1 |X = 0

]
and E

[
Y 1

2 − Y 0
2 |X = 0

]
, and from this

generate the con�dence set for the ratio E
[
Y 1

2 − Y 0
2 |X = 0

]
/ E

[
Y 1

1 − Y 0
1 |X = 0

]
.
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Figure 1: Regression Discontinuity, Continuous Covariate
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Figure 2: Regression Discontinuity, Discrete Covariate
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Figure 3A: Counterfactual Specification, Identical Errors

Figure 3B: Counterfactual Specification, Independent Errors
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