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This paper shows how particle filtering allows us to undertake likelihood-based inference in dynamic

macroeconomic models. The models can be nonlinear and/or non-normal. We describe how to use

the output from the particle filter to estimate the structural parameters of the model, those
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implemented from either a classical or a Bayesian perspective. We illustrate the technique by

estimating a business cycle model with investment-specific technological change, preference shocks,

and stochastic volatility.
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1. Introduction

This paper shows how particle filtering allows us to undertake likelihood-based inference

in dynamic macroeconomic models. The models can be nonlinear and/or non-normal. We

describe how to use the particle filter to estimate the structural parameters of the model,

those characterizing preferences and technology, and to compare different economies. Both

tasks can be implemented from either a classical or a Bayesian perspective. We illustrate

the technique by estimating a business cycle model with investment-specific technological

change, preference shocks, and stochastic volatility. We report three main results. First,

there is strong evidence for the presence of stochastic volatility on U.S. data. Second, the

decline in aggregate volatility has been a gradual trend and not the result of an abrupt change

in the mid 1980s, as suggested by the literature. It started in the late 1950s, was interrupted

in the late 1960s and 1970s, and resumed around 1979. Third, variations in the volatility of

preferences shocks can account for most of the variation in the volatility of growth in U.S.

real output per capita over the last 50 years.

Macroeconomists now routinely build dynamic models to answer quantitative questions.

To estimate these economies, the literature has been forced either to exploit methods of

moments or to linearize the model solution and evaluate the implied approximated likelihood

with the Kalman filter. This situation is unsatisfactory. Methods of moments suffer from

small-sample biases and may not efficiently employ the available information. Linearization

techniques depend on the accurate approximation of the exact policy function by a linear

relation and on the presence of normal shocks.

The impact of linearization is grimmer than it appears. Fernández-Villaverde, Rubio-

Ramírez, and Santos (2006) prove that second order approximation errors in the solution of

the model have first order effects on the likelihood function. Moreover, the error in the ap-

proximated likelihood gets compounded with the size of the sample. Period by period, small

errors in the policy function accumulate at the same rate at which the sample size grows.

Therefore, the likelihood implied by the linearized model diverges from the likelihood implied

by the exact model. In Fernández-Villaverde and Rubio-Ramírez (2005), we document how

those insights are quantitatively relevant for real-life applications. Using U.S. data, we esti-

mate the neoclassical growth model with two methods: the particle filter described in this

paper and the Kalman filter on a linearized version of the model. We uncover significant

differences on the parameter estimates, on the level of the likelihood, and on the moments

generated by the model. These findings are relevant because they highlight how linearization

has a tremendous impact on inference, even for nearly linear economies as the neoclassical

growth model.
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Finally, the assumption of normal shocks precludes investigating models with fat tails dis-

tributions (for example, with student-t’s innovations), time-varying volatility, autoregressive

conditional duration, and others that are of interest to address many empirical questions.

The main obstacle to likelihood-based inference is the difficulty in evaluating the likelihood

function implied by a nonlinear and/or non-normal macroeconomic model. Beyond a few

particular cases, it is not possible to perform this evaluation analytically or numerically.1

Methods of moments avoid the problem by moving away from the likelihood. Linearization

fails to evaluate the exact likelihood function of the model and computes instead the likelihood

of a linear approximation to the economy.

We use a particle filter to solve the problem of evaluating the likelihood of nonlinear and/or

non-normal macroeconomic models (although the algorithm is general enough to handle linear

models with or without normal shocks). To do so, we borrow from the growing literature

on Sequential Monte Carlo methods (see the book-length review by Doucet, de Freitas, and

Gordon, 2001). In economics, particle filters have been applied by Pitt and Shephard (1999)

and Kim, Shephard, and Chib (1998) to the estimation of stochastic volatility models in

financial econometrics. We adapt this know-how to handle the peculiarities of the likelihood

of macroeconomic models. We propose and exploit in our application a novel partition of the

shocks that drive the model. This partition facilitates the estimation of some models while

being general enough to encompass existing particle filters.

The general idea of the procedure follows. First, for given values of the parameters,

we compute the optimal policy functions of the model with a nonlinear solution method.

The researcher can employ the solution method that best fits her needs in terms of accuracy,

complexity, and speed. With the policy functions, we construct the state space representation

of the model. Under mild conditions, we apply a particle filter to this state space form to

evaluate the likelihood function of the model. Then, we either maximize the likelihood

function or, after specifying priors on the parameters, find posterior distributions with a

Markov chain Monte Carlo (McMc) algorithm. If we carry out the procedure with several

models, we could compare them by building either likelihood ratios (Rivers and Vuong, 2002)

or Bayes factors (Fernández-Villaverde and Rubio-Ramírez, 2004), even if the models are

misspecified and nonnested.

Particle filtering is both reasonably general purpose and asymptotically efficient. There-

fore, it is an improvement over approaches that rely on features of a particular model, like

Miranda and Rui (1997) or Landon-Lane (1999), and hence are difficult to generalize. It is

1Some of these cases are, however, important. For example, there exists a popular literature on the
maximum likelihood estimation of dynamic discrete choice models. See Rust (1994) for a survey.
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also an improvement over methods of moments, which are asymptotically less efficient than

the likelihood (except in the few cases pointed out by Carrasco and Florens, 2002). Fermanian

and Salanié’s procedure (2004) shares the general-purpose and asymptotically efficiency char-

acteristics of particle filters. However, the particle filter avoids the kernel estimation required

by their nonparametric simulated likelihood method, which is difficult to implement in models

with a large number of observables.

Being able to perform likelihood-based inference is important for several additional rea-

sons. First, the likelihood principle states that all the evidence in the data is contained in the

likelihood function (Berger andWolpert, 1988). Second, likelihood-based inference is a simple

way to deal with misspecified models (Monfort, 1996). Macroeconomic models are false by

construction, and likelihood-based inference has both attractive asymptotic properties and

good small-sample behavior under misspecification (see White, 1994, for a classical approach

and Fernández-Villaverde and Rubio-Ramírez, 2004, for Bayesian procedures). Furthermore,

likelihood inference allows us to compare models. We do not argue that a likelihood approach

is always preferable. There are many instances where because of computational simplicity,

or robustness, or because the model is incompletely specified, a method of moments is more

suitable. We simply maintain that, in numerous contexts, the likelihood is an informative

tool.

To illustrate our discussion, we estimate a business cycle model of the U.S. economy.

Greenwood, Herkowitz, and Krusell (1997 and 2000) have vigorously defended the impor-

tance of technological change specific to new investment goods for understanding postwar

U.S. growth and aggregate fluctuations. We follow their lead and estimate a version of the

neoclassical growth model modified to include a shock to investment, a shock to preferences,

two unit roots, cointegration relations derived from the balanced growth path properties of

the model, and stochastic volatility on the economic shocks that drive the dynamics of the

economy.

Introducing stochastic volatility is convenient for two reasons. First, the evidence accu-

mulated by Kim and Nelson (1999), McConnell and Pérez-Quirós (2000), Stock and Watson

(2002), and Sims and Zha (2005) among others strongly suggests that an assessment of volatil-

ity is of first order transcendence for modelling U.S. aggregate time series. This makes the

application of interest per se. Second, stochastic volatility induces both fundamental non-

linearities in the law of motion for states and non-normal distributions. If we linearized the

laws of motions for shocks to apply the Kalman filter, the stochastic volatility terms would

drop, killing any possibility of exploring this mechanism. Thus, the Kalman filter not only

induces an approximation error, but more important, it makes it impossible to learn about

time-varying volatility. With our business cycle model, we demonstrate how the particle filter
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is an important tool to address empirical questions at the core of macroeconomics.

In our estimation, we identify the process driving investment-specific technology shocks

through the relative price of new equipment to consumption and the neutral technology and

preference shock from the log difference of real output per capita, the real gross investment

per capita, and the level of hours worked per capita. The data reveal three patterns. First,

there is compelling evidence that stochastic volatility is key to understanding the dynamics

of U.S. aggregate time series. Second, the decline in aggregate volatility has been a gradual

process since the late 1950s, interrupted only by the turbulence of the 1970s. Third, the

reduction in the preference shock is a plausible explanation for the increase and posterior

fall in the volatility of growth in U.S. real output per capita over the last 50 years. In

addition, we provide evidence of how inference is affected both by the nonlinear component

of the solution and by the stochastic volatility part, reinforcing the message of Fernández-

Villaverde, Rubio-Ramírez, and Santos (2006) and Fernández-Villaverde and Rubio-Ramírez

(2005).

Methodologically, our paper builds on the literature on likelihood-based inference on

macroeconomic models, as reviewed, for instance, by An and Schorfheide (2005). Our paper is

also related to the literature on simulated likelihood and simulated pseudo-likelihood applied

to macroeconomic models. Important examples are Laroque and Salanié (1989, 1993, and

1994). The approach taken in these papers is to minimize a distance function between the

observed variables and the conditional expectations, weighted by their conditional variances.

We, instead, consider the whole set of moments defined by the likelihood function.

With respect to the application, we are aware of only one other paper that deals with

stochastic volatility using a dynamic equilibrium model: the important and fascinating con-

tribution of Justiniano and Primiceri (2005).2 Their innovative paper estimates a rich New

Keynesian model of the business cycle with nominal rigidities and adjustment costs. One

difference between our papers is that the particle filter allows us to characterize the nonlinear

behavior of the economy induced by stochastic volatility that Justiniano and Primiceri cannot

handle. We document how including this nonlinear component is quantitatively important

for inference. Moreover, we provide smooth estimates of stochastic volatility.

The rest of the paper is organized as follows. In section 2, we describe the particle filter,

how it evaluates the likelihood function of a macroeconomic model, and how to apply it for

filtering and smoothing. We present our application in sections 3 to 5 and our results in

sections 6 and 7. We discuss computational details in section 8. We conclude in section 9.

2There is also a relevant literature on VARs that incorporate time-varying volatility. See, for example,
Uhlig (1997), Bernanke and Mihov (1988), Cogley and Sargent (2005), Primiceri (2005), and Sims and Zha
(2005). See Laforte (2005) for a related dynamic equilibrium model with Markov regime switching.
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2. A Framework for Likelihood Inference

In this section, we describe a framework to estimate and compare a large class of nonlinear

and/or non-normal dynamic macroeconomic models using a likelihood approach. Examples

of economies in this class are the neoclassical growth model (Cooley and Prescott, 1995),

sticky prices models (Woodford, 2003), asset pricing models (Mehra and Prescott, 1985),

macro public finance models (Chari, Christiano, and Kehoe, 1994), and regime-switching

models (Jermann and Quadrini, 2003), among many others.

All of these economies imply a different joint probability density function for observables

given the model’s structural parameters. We refer to this density as the likelihood function of

the model. The likelihood function is useful for two purposes. First, if we want to estimate the

model, we can either obtain point estimates by maximizing the likelihood or, if we specify

a prior, find the posterior of the parameters with an McMc algorithm. Second, if we are

comparing macroeconomic models, we can do so by building either likelihood ratios or Bayes

factors.

In the past, the literature has shown how to write the likelihood function of dynamic

macroeconomic models only in a few special cases. For example, we knew how to evaluate

the likelihood of a linear model with normal innovations using the Kalman filter. In com-

parison, particle filtering allows us to evaluate the likelihood of macroeconomic models in a

general case, removing a stumbling block for the application of likelihood methods to perform

inference.

We structure this section as follows. First, we define the likelihood function of a dynamic

macroeconomic model. Second, we present a particle filter to evaluate that likelihood. Third,

we link the filter with the estimation of the structural parameters of the model. Fourth, we

compare particle filtering with some alternatives. We finish by discussing the smoothing of

unobserved states.

2.1. The Likelihood Function of a Dynamic Macroeconomic Model

A large set of dynamic macroeconomic models can be written in the following state space

form. First, the equilibrium of the economy is characterized by some states St that evolve

over time according to the following transition equation:

St = f (St−1,Wt; γ) , (1)

where {Wt} is a sequence of exogenous independent random variables and γ ∈ Υ is the vector

of parameters of the model.
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Second, the observables Yt are a realization of the random variable Yt governed by the
measurement equation:

Yt = g (St, Vt; γ) , (2)

where {Vt} is a sequence of exogenous independent random variables. The sequences {Wt}
and {Vt} are independent of each other. The random variables Wt and Vt are distributed as

p (Wt; γ) and p (Vt; γ). We only require the ability to evaluate these densities. It should be

clear that γ ∈ Υ also included any parameters characterizing the distributions of Wt and Vt.

Assuming independence of {Wt} and {Vt} is only for notational convenience. Generalization
to more involved stochastic processes is achieved by increasing the dimension of the state

space. To summarize our notation: St are the states of the economy, Wt are the exogenous

shocks that affect the states’ law of motion, Yt are the observables, and Vt are the exogenous
perturbations that affect the observables but not the states.

The functions f and g come from the equations that describe the behavior of the model:

policy functions, laws of motion for exogenous variables, resource and budget constraints,

and so on. Along some dimension, the function g can be the identity mapping if a state

is observed without noise. Dynamic macroeconomic models do not generally admit closed-

form solutions for functions f and g. Our algorithm requires only a numerical procedure to

approximate them.

To fix ideas, we map {St}, {Wt}, {Yt}, {Vt}, f, and g into some examples of dynamic
macroeconomic models. Consider first the example of the neoclassical growth model. The

states of this economy are capital and the productivity level. Assume that our observables

are output and labor supply, but that labor supply is measured with noise. Thus, St will

be capital and productivity, Wt the shock to productivity, Yt output and observed labor
supply, Vt the measurement error of labor, f the policy function for capital and the law

of motion for technology, and g the production function plus the policy function for labor

augmented by the measurement error. Consider also an economy with nominal rigidities in

the form of overlapping contracts. This economy experiences both productivity and money

growth shocks, and we observe output and inflation. Now, the states St are the distribution

of prices, capital, money, and the productivity level, Wt includes the shocks to technology

and money growth, Yt is output and inflation, Vt is a degenerate distribution with mass at
zero, f collects the policy functions for capital and prices as well as the laws of motion for

technology and money growth, and g is the aggregate supply function and the Phillips curve.

Many more examples of dynamic macroeconomic models can be fitted into the state space

formulation.

To continue our analysis we make the following assumptions.
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Assumption 1. dim (Wt) + dim (Vt) ≥ dim (Yt) for all t.

This assumption is a necessary condition for the model not to be stochastically singular.

We do not impose any restrictions on how those degrees of stochasticity are achieved.3

Now we provide some definitions that will be useful in the rest of the paper. To be able

to deal with a larger class of macroeconomic models, we partition {Wt} into two sequences
{W1,t} and {W2,t}, such that Wt = (W1,t,W2,t) and dim (W2,t) + dim (Vt) = dim (Yt). The
sequence {W2,t} is the part of {Wt} necessary to keep the system stochastically nonsingular.
If dim (Vt) = dim (Yt) , we set W1,t = Wt ∀t, i.e., {W2,t} is a zero-dimensional sequence. If
dim (Wt) + dim (Vt) = dim (Yt) , we set W2,t = Wt for ∀t, i.e., {W1,t} is a zero-dimensional
sequence. Also, let W t

i = {Wi,m}tm=1 and let wti be a realization of the random variable W t
i

for i = 1, 2 and for ∀t. Let V t = {Vm}tm=1 and let vt be a realization of the random variable

V t for ∀t. Let St = {Sm}tm=0 and let st be a realization of the random variable St for ∀t.
Let Y t = {Ym}tm=1 and let Y t be a realization of the random variable Yt = {Ym}tm=1 for ∀t.
Finally, we define W 0

i = {∅} and Y0 = {∅}.
Our goal is to evaluate the likelihood function of a sequence of realizations of the observable

YT at a particular parameter value γ:

L
¡YT ; γ¢ = p ¡YT ; γ¢ . (3)

In general the likelihood function (3) cannot be computed analytically. The particle filter

relies on simulation methods to estimate it. Our first step is to factor the likelihood as:

p
¡YT ; γ¢ = TY

t=1

p
¡Yt|Y t−1; γ¢ = TY

t=1

Z Z
p
¡Yt|W t

1, S0,Yt−1; γ
¢
p
¡
W t
1, S0|Yt−1; γ

¢
dW t

1dS0,

(4)

where S0 is the initial state of the model, the p’s represent the relevant densities, and where

in the case {W1t} has zero dimensions
R R

p (Yt|W t
1, S0,Yt−1; γ) p (W t

1, S0|Y t−1; γ) dW t
1dS0 =R

p (Yt|S0,Yt−1; γ) p (S0|Yt−1; γ) dS0. To save on notation, we assume herein that all the
relevant Radon-Nykodim derivatives exist. Extending the exposition to the more general

case is straightforward but cumbersome.

3This paper does not contribute to the literature on how to solve the problem of stochastic singularity of
dynamic macroeconomic models. There are two routes to fix this problem. One is to reduce the observables
accounted for to the number of stochastic shocks present. This likelihood can be studied to evaluate the
model (Landon-Lane, 1999) or to find posteriors for parameters or impulse-response functions (Schorfheide,
2000). The second route, increasingly popular, is to specify a model rich in stochastic dynamics (Smets and
Wouters, 2003). This alternative is attractive for addressing practical policy questions like those of interest
to central banks.
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The previous expression shows that the problem of evaluating the likelihood (3) amounts

to solving an integral, with conditional densities p (Yt|W t
1, S0,Yt−1; γ) and p (W t

1, S0|Yt−1; γ)
that are difficult to characterize. When the state space representation is linear and normal,

the integral simplifies notably because all the relevant densities are conditionally normal.

Then, tracking the mean and variance-covariance matrix of the densities is enough to compute

the likelihood. The Kalman filter accomplishes this objective efficiently through the Riccati

equations. However, when the state representation is nonlinear and/or non-normal, the

conditional densities are not any longer normal, and we require a more powerful tool than

the Kalman filter to evaluate the likelihood.

Before continuing, we present two additional technical assumptions.

Assumption 2. For all γ, s0, wt1, and t, the following system of equations:

S1 = f (s0, (w1,1,W2,1) ; γ)

Ym = g (Sm, Vm; γ) for m = 1, 2, ...t

Sm = f (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t

has a unique solution, (vt (wt1, s0,Y t; γ) , st (wt1, s0,Y t; γ) , wt2 (wt1, s0,Y t; γ)), and we can eval-
uate the probabilities p (vt (wt1, s0,Yt; γ) ; γ) and p (wt2 (wt1, s0,Y t; γ) ; γ).

Assumption 2 implies that we can evaluate the conditional densities p (Yt|wt1, s0,Yt−1; γ)
for all γ, s0, wt1, and t. To simplify the notation, we write (v

t, st, wt2) , instead of the more

cumbersome (vt (wt1, s0,Y t; γ) , st (wt1, s0,Y t; γ) , wt2 (wt1, s0,Y t; γ)). Then, we have:

p
¡Yt|wt1, s0,Yt−1; γ¢ = p ¡vt, w2,t|wt1, s0,Y t−1; γ¢ |dy (vt, w2,t; γ)| (5)

for all γ, s0, wt1, and t, where |dy (vt, w2,t; γ)| stands for the determinant of the jacobian of Yt
with respect to Vt and W2,t evaluated at vt and w2,t. Note that assumption 2 requires only

the ability to evaluate the density; it does not require having a closed form for it. Thus, we

may employ numerical or simulation methods for this evaluation if this is convenient.

The most important implication of (5) is that, to compute p (Yt|wt1, s0,Y t−1; γ), we only
need to solve a system of equations and evaluate the probability of observing the solution

to the system, p (vt, w2,t|wt1, s0,Yt−1; γ) , times the determinant of a jacobian evaluated at
the solution, |dy (vt, w2,t; γ)|. The evaluation of p (vt, w2,t|wt1, s0,Yt−1; γ) is always possible by
assumption. How difficult is to evaluate the jacobian? Often, this is a simple task because the

jacobian depends on f and g, which are functions that we can evaluate numerically, and γ.
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For example, if, given γ, we employ a second order perturbation method to solve the model

and get f and g, the jacobian is a constant matrix that comes directly from the solution

procedure.

To avoid trivial problems, we assume that the model assigns positive probability to the

data, yT . This is formally reflected in the following assumption:

Assumption 3. For all γ ∈ Υ, s0, wt1, and t, the model gives some positive probability to

the data YT , i.e.,
p
¡Yt|wt1, s0,Y t−1; γ¢ > 0,

for all γ ∈ Υ, s0, wt1, and t.

Assumptions 1 to 3 are necessary and sufficient conditions for the model not to be sto-

chastically singular.

We get now to the core of this section. If assumptions 1 to 3 hold, conditional on having

N draws of
n©bwt,i1 , bsi0ªNi=1oTt=1 from the sequence of densities {p (W t

1, S0|Yt−1; γ)}Tt=1 (note
that the hats and the superindex i on the variables denote a draw), the likelihood function

(4) is approximated by:

p
¡YT ; γ¢ ' TY

t=1

1

N

NX
i=1

p
¡Yt|bwt,i1 , bsi0,Y t−1; γ¢

because of a law of large numbers. This shows that the problem of evaluating the likelihood

of a dynamic model is equivalent to the problem of drawing from {p (W t
1, S0|Y t−1; γ)}Tt=1. In

the next section, we propose a particle filter to accomplish this objective.

2.2. A Particle Filter

We saw in the previous expression how the evaluation of the likelihood function is equiv-

alent to the problem of drawing from {p (W t
1, S0|Yt−1; γ)}Tt=1. Why is it difficult to draw

from {p (W t
1, S0|Y t−1; γ)}Tt=1? Because, as we mentioned before, when the model is nonlinear

and/or non-normal, this conditional density is a complicated function of Yt−1. The goal of
the particle filter is to draw efficiently from {p (W t

1, S0|Yt−1; γ)}Tt=1.
Before introducing the particle filter, we fix some additional notation. Let

©
wt−1,i1 , st−1,i0

ªN
i=1

be a sequence of N i.i.d. draws from p
¡
W t−1
1 , S0|Yt−1; γ

¢
. Let

n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1

be a se-

quence of N i.i.d. draws from p (W t
1, S0|Y t−1; γ). We call each draw

¡
wt,i1 , s

t,i
0

¢
a particle and

the sequence
©
wt,i1 , s

t,i
0

ªN
i=1

a swarm of particles. Also, let h (St) be any measurable function
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for which the expectation

Ep(W t
1 ,S0|Yt;γ)

¡
h
¡
W t
1, S0

¢¢
=

Z
h
¡
W t
1, S0

¢
p
¡
W t
1, S0|Yt; γ

¢
dW t

1dS0

exists and is finite.

The following proposition, a simple and well-known application of importance sampling

(e.g., Geweke, 1989, Theorem 1), is key for further results.

Proposition 4. Let
n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1
be a draw from p (W t

1, S0|Yt−1; γ) and the weights:

qit =
p
³
Yt|wt|t−1,i1 , s

t|t−1,i
0 ,Y t−1; γ

´
PN

i=1 p
³
Yt|wt|t−1,i1 , s

t|t−1,i
0 ,Y t−1; γ

´ .
Then:

Ep(W t
1 ,S0|Yt;γ)

¡
h
¡
W t
1, S0

¢¢ ' NX
i=1

qith
³
w
t|t−1,i
1 , s

t|t−1,i
0

´
.

Proof. By Bayes’ theorem:

p
¡
W t
1, S0|Yt; γ

¢ ∝ p ¡W t
1, S0|Y t−1; γ

¢
p
¡Yt|W t

1, S0,Y t−1; γ
¢

Therefore, if we take p (W t
1, S0|Yt−1; γ) as an importance sampling function to draw from the

density p (W t
1, S0|Yt; γ), the result is a direct consequence of the law of large numbers.

Rubin (1988) proposed to combine proposition 4 and p (W t
1, S0|Y t−1; γ) to draw from

p (W t
1, S0|Yt; γ) in the following way:

Corollary 5. Let
n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1

be a draw from p (W t
1, S0|Y t−1; γ). Let the sequence

{ewi1,esi0}Ni=1 be a draw with replacement from n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1

where qit is the probability

of
³
w
t|t−1,i
1 , s

t|t−1,i
0

´
being drawn ∀i. Then {ewi1, esi0}Ni=1 is a draw from p (W t

1, S0|Yt; γ).

Corollary 5 shows how a draw
n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1
from p (W t

1, S0|Y t−1; γ) can be used to
get a draw

©
wt,i1 , s

t,i
0

ªN
i=1
from p (W t

1, S0|Yt; γ). How do we get the swarm
n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1
?

By taking a swarm
©
wt−1,i1 , st−1,i0

ªN
i=1
from p

¡
W t−1
1 , S0|Y t−1; γ

¢
and augmenting it with draws

from p (W1,t; γ) since p (W t
1, S0|Yt−1; γ) = p (W1,t; γ) p

¡
W t−1
1 , S0|Y t−1; γ

¢
. Note that wt|t−1,i1 is

a growing object with t (it has the additional component of the draw from p (W1,t; γ)), while

s
t|t−1,i
0 is not. Corollary 5 is crucial for the implementation of the particle filter. We discussed
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before how, when the model is nonlinear and/or non-normal, the particle filter keeps track

of a set of draws from p (W t
1, S0|Y t−1; γ) that are updated as new information is available.

Corollary 5 shows how importance resampling solves the problem of updating the draws in

such a way that we keep the right conditioning.

This recursive structure is summarized in the following pseudo-code for the particle filter:

Step 0, Initialization: Set tÃ 1. Initialize p
¡
W t−1
1 , S0|Yt−1; γ

¢
= p (S0; γ).

Step 1, Prediction: Sample N values
n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1

from the conditional

density p (W t
1, S0|Yt−1; γ) = p (W1,t; γ) p

¡
W t−1
1 , S0|Y t−1; γ

¢
.

Step 2, Filtering: Assign to each draw
³
w
t|t−1,i
1 , s

t|t−1,i
0

´
the weight qit defined

in proposition 4.

Step 3, Sampling: Sample N times from
n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1
with replacement and

probabilities {qit}Ni=1. Call each draw
¡
wt,i1 , s

t,i
0

¢
. If t < T set t Ã t + 1 and go

to step 1. Otherwise stop.

With the output of the algorithm,
½n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1

¾T
t=1

, we compute the likelihood

function as:

p
¡YT ; γ¢ ' 1

N

Ã
TY
t=1

1

N

NX
i=1

p
³
Yt|wt|t−1,i1 , s

t|t−1,i
0 ,Y t−1; γ

´!
. (6)

Since the particle filter does not require any assumption on the distribution of the shocks

except the ability to evaluate p (Yt|W t
1, S0,Y t−1; γ), either analytically or numerically, the

algorithm works effortlessly with non-normal innovations. Del Moral and Jacod (2002) and

Künsch (2005) provide weak conditions under which the right-hand side of (6) is a consistent

estimator of p
¡YT ; γ¢ and a Central Limit Theorem applies.

The algorithm presented above belongs to the class of particle filters described by Doucet,

de Freitas, and Gordon (2001). We modify existing procedures to deal with more general

classes of state space representations than the ones addressed in the literature. In particu-

lar, through our partition of Wt, we handle those cases, common in macroeconomics, where

dim (Vt) < dim (Yt). We consider this more general applicability of our procedure an impor-
tant advance.

Our partition of the shocks raises a question: Do the identities of {W1,t} and {W2,t}
matter for the results presented in this section? The short answer is no. If, for example,

dim (Wt) = 2 and dim (W1,t) = dim (W2,t) = 1, we can exchange the identities of {W1,t} and
{W2,t} without affecting the theoretical results. Of course, the identities of {W1,t} and {W2,t}

13



will affect the results for any finite number of particles, but as the number of particles grows,

this problem vanishes. Luckily, as is the case with our application below, often there is a

natural choice of {W2,t} and, therefore, of {W1,t}.
The intuition of the algorithm is as follows. Given a swarm of particles up to period

t− 1, ©wt−1,i1 , st−1,i0

ªN
i=1
, distributed according to p

¡
W t−1
1 , S0|Yt−1; γ

¢
, the Prediction Step

generates draws
n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1

from p (W t
1, S0|Yt−1; γ). In the case where dim (W1,t) =

0, the algorithm skips this step. The Sampling Step takes advantage of corollary 5 and

resamples from
n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1
with the weights {qit}Ni=1 to draw a new swarm of particles

up to period t,
©
wt,i1 , s

t,i
0

ªN
i=1
distributed according to p (W t

1, S0|Yt; γ). The best procedure for
resampling in terms of minimizing Monte Carlo variance (and the one we implement in our

application below) is known as systematic resampling (Kitagawa, 1996). This procedure

matches the weights of each proposed particle with the number of times each particle is

accepted. Finally, applying again the Prediction Step, we generate draws
n
w
t+1|t,i
1 , s

t+1|t,i
0

oN
i=1

from p
¡
W t+1
1 , S0|Y t; γ

¢
and close the algorithm.

The Sampling Step is the heart of the algorithm. If we avoid this step and just weight

each draw in
n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1

by {Nqit}Ni=1 , we have the so-called Sequential Importance
Sampling (SIS). The problem with SIS is that qit → 0 for all i but one particular i0 as t→∞
if dim (W1,t) > 0 (Arulampalam et al., 2002, pp. 178-179 and references there). The reason is

that all the sequences become arbitrarily far away from the true sequence of states, which is a

zero measure set. The sequence that happens to be closer dominates all the remaining ones in

weight. In practice, after a few steps, the distribution of importance weights becomes heavily

skewed, and after a moderate number of steps, only one sequence has a nonzero weight. For

example, Fernández-Villaverde and Rubio-Ramírez (2006) find that the degeneracy appears

after only 20 periods. Since samples in macroeconomics are relatively long (200 observations

or so), the degeneracy of SIS is a serious problem.

Several points deserve further discussion. First, we can exploit the last value of the particle

swarm
n
wT,i1 , s

T,i
0

oN
i=1
for forecasting, i.e., to make probability statements about future values

of the observables. To do so, we draw from
n
wT,i1 , s

T,i
0

oN
i=1

and by simulating p (W1,T+1; γ),

p (W2,T+1; γ), and p (VT+1; γ), we build p
¡
YT+1|YT ; γ

¢
. Second, we need to explain how to

draw from p (S0; γ) in the Initialization Step. In general, since we cannot evaluate p (S0; γ),
it is not possible to draw from it with an McMc. Santos and Peralta-Alva (2005) solve this

problem by showing how to sample from p (S0; γ) using the transition and measurement

equations (1) and (2). Finally, we emphasize that we are presenting here only a basic particle

filter and that the literature has presented several refinements to improve efficiency, taking

14



advantage of some of the particular characteristics of the estimation at hand. See, for example,

the Auxiliary Particle Filter of Pitt and Shephard (1999).

2.3. Estimation Algorithms

We now explain how to employ the approximated likelihood function (6) to perform likelihood-

based estimations from both a classical and a Bayesian perspective. First, we describe the

classical approach, then the Bayesian one.

On the classical side, the main inference tool is the likelihood function and its global

maximum. Once the likelihood is approximated by (6), we can maximize it as follows:

Step 0, Initialization: Set iÃ 0 and an initial γi. Set iÃ i+ 1

Step 1, Solving the Model: Solve the model for γi and compute f (·, ·; γi) and
g (·, ·; γi).
Step 2, Evaluating the Likelihood: Evaluate L

¡YT ; γi¢ using (6) and get γi+1

from a maximization routine.

Step 3, Stopping Rule: If
°°L ¡YT ; γi¢− L ¡YT ; γi+1¢°° > ξ, where ξ > 0 is the

accuracy level goal, set iÃ i+ 1 and go to step 1. Otherwise stop.

The output of the algorithm, bγMLE = γi, is the maximum likelihood point estimate

(MLE), with asymptotic variance-covariance matrix var(bγMLE) = −µ∂2L(YT ;bγMLE)
∂γ∂γ0

¶−1
. Since,

in general, we cannot directly evaluate this second derivative, we will approximate it with

standard numerical procedures. The value of the likelihood function at its maximum is also

an input when we build likelihood ratios for model comparison.

However, for the MLE to be an unbiased estimator of the (pseudo-)true parameter values,

the likelihood L
¡YT ; γ¢ has to be differentiable with respect to γ. Furthermore, for the

asymptotic variance-covariance matrix var(bγMLE) to equal −µ∂2L(YT ;bγMLE)
∂γ∂γ0

¶−1
, L

¡YT ; γ¢
has to be twice differentiable with respect to γ. Remember that the likelihood can be written

as:

L
¡YT ; γ¢ = TY

t=1

p
¡Yt|Yt−1; γ¢ = Z ÃZ TY

t=1

p (W1,t; γ) p
¡Yt|W t

1, S0,Yt−1; γ
¢
dW t

1

!
µ∗ (dS0; γ) ,

where µ∗ (S; γ) is the invariant distribution on S of the dynamic model. Thus, to prove that

L
¡YT ; γ¢ is twice differentiable with respect to γ, we need p (W1,t; γ), p (Yt|W t

1, S0,Yt−1; γ) ,
and µ∗ (S; γ) to be twice differentiable with respect to γ.

15



Under standard regularity conditions, we can prove that both p (Yt|W t
1, S0,Yt−1; γ) and

p (W1,t; γ) are twice differentiable (Fernández-Villaverde, Rubio-Ramírez, and Santos, 2006).

The differentiability of µ∗ (dS0; γ) is a more complicated issue. Except for special cases

(Stokey, Lucas, and Prescott, 1989, Theorem 12.13, and Stenflo, 2001), we cannot even show

that µ∗ (dS0; γ) is continuous. Hence, a proof that µ∗ (dS0; γ) is twice differentiable is a

daunting task well beyond the scope of this paper.

The possible lack of twice differentiability of L
¡YT ; γ¢ creates two problems. First, it

may be that the MLE is biased and var(bγMLE) 6= −µ∂2L(YT ;bγMLE)
∂γ∂γ0

¶−1
. Second, Newton’s

type algorithm may fail to maximize the likelihood function. In our application, we report

−
µ

∂2L(YT ;bγMLE)
∂γ∂γ0

¶−1
as the asymptotic variance-covariance matrix, hoping that the true as-

ymptotic variance-covariance matrix is not very different. We avoid the second problem by

using a simulated annealing algorithm to maximize the likelihood function.

Even if we were able to prove that µ∗ (dS0; γ) is twice differentiable and, therefore, the

MLE is consistent with the usual variance-covariance matrix, the direct application of the

particle filter will not deliver an estimator of the likelihood function that is continuous with

respect to the parameters. This is caused by the resampling steps within the particle filter

and seems difficult to avoid. Pitt (2002) has developed a promising bootstrap procedure

to get an approximating likelihood that is continuous under rather general conditions when

the parameter space is unidimensional. Therefore, the next step should be to expand Pitt’s

(2002) bootstrap method to the multidimensional case.

Another relevant issue is as follows. For the maximum likelihood algorithm to converge,

we need to keep the simulated innovations W1,t and the uniform numbers that enter into

the resampling decisions constant as we modified the parameter values γi. As pointed out

by McFadden (1989) and Pakes and Pollard (1989), this is required to achieve stochastic

equicontinuity. With this property, the pointwise convergence of the likelihood (6) to the

exact likelihood is strengthen to uniform convergence. Then, we can swap the argmax and

the lim operators (i.e., as the number of simulated particles converges to infinity, the MLE

also converges). Otherwise, we would suffer numerical instabilities induced by the “chatter”

of changing random numbers.

In a Bayesian approach, the main inference tool is the posterior distribution of the para-

meters given the data π
¡
γ|YT¢. Once the posterior distribution is obtained, we can define

a loss function to derive a point estimate. Bayes’ theorem tells us that the posterior density

is proportional to the likelihood times the prior. Therefore, we need both to specify priors

on the parameters, π (γ), and to evaluate the likelihood function. The next step in Bayesian

inference is to find the parameters’ posterior. In general, the posterior does not have a closed
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form. Thus, we use a Metropolis-Hastings algorithm to draw a chain {γi}Mi=1 from π
¡
γ|YT¢.

The empirical distribution of those draws {γi}Mi=1 converges to the true posterior distribution
π
¡
γ|YT¢. Thus, any moments of interest of the posterior can be computed, as well as the

marginal likelihood of the model. The algorithm is as follows:

Step 0, Initialization: Set i Ã 0 and an initial γi. Solve the model for γi

and compute f (·, ·; γi) and g (·, ·; γi) . Evaluate π (γi) and approximate L
¡YT ; γi¢ with

(6). Set iÃ i+ 1.

Step 1, Proposal draw: Get a proposal draw γ∗i = γi−1+ηi, where ηi ∼ N (0,Ση).

Step 2, Solving the Model: Solve the model for γ∗i and compute f (·, ·; γ∗i ) and
g (·, ·; γ∗i ).
Step 3, Evaluating the proposal: Evaluate π (γ∗i ) and L

¡YT ; γ∗i ¢ using (6).
Step 4, Accept/Reject: Draw χi ∼ U (0, 1). If χi ≤

L(YT ;γ∗i )π(γ∗i )
L(YT ;γi−1)π(γi−1)

set γi = γ∗i,

otherwise γi = γi−1. If i < M , set iÃ i+ 1 and go to step 1. Otherwise stop.

2.4. Comparison with Alternative Schemes

The particle filter is not the only procedure to evaluate the likelihood of the data implied

by nonlinear and/or non-normal dynamic macroeconomic models. Our previous discussion

highlighted how computing the likelihood amounts to solving a nonlinear filtering problem,

i.e., generating estimates of the values of W t
1 and S0 conditional on Yt−1 to evaluate the

integral in (4). Since this task is of interest in different fields, several alternative schemes

have been proposed to handle this problem.

A first line of research has been in deterministic filtering. Historically, the first procedure

in this line was the Extended Kalman filter (Jazwinski, 1973), which linearizes the transition

and measurement equations and uses the Kalman filter to estimate for the states and the

shocks to the system. This approach suffers from the approximation error incurred by the

linearization and by inaccuracy incurred by the fact that the posterior estimates of the states

are non-normal. As the sample size grows, those problems accumulate and the filter diverges.

Even refinements such as the Iterated Extended Kalman filter, the quadratic Kalman filter

(which carries the second order term of the transition and measurement equations), and the

unscented Kalman filter (which considers a set of points instead of just the conditional mean

of the state, see Julier and Uhlmann, 1996) cannot fully solve these problems.

A second approach in deterministic filtering is the Gaussian-sum filter (Alspach and Soren-

son, 1972), which approximates the densities required to compute the likelihood with a mix-
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ture of normals. Under regularity conditions, as the number of normals increases, we will

represent the densities arbitrarily well. However, the approach suffers from an exponential

growth in the number of components in the mixture and from the fact that we still need to

rely on the Extended Kalman filter to track the evolution of those different components.

A third alternative in deterministic filtering is grid filters, which use quadrature integration

to compute the different integrals of the problem (Bucy and Senne, 1971). Unfortunately,

grid filters are difficult to implement, since they require a constant readjustment to small

changes in the model or its parameter values. Also, they are too computationally expensive

to be of any practical benefit beyond very low dimensions. A final shortcoming of grid filters

is that the grid points are fixed ex ante and the results are very dependent on that choice.

In comparison, a particle filter can be interpreted as a grid filter where the grid points are

chosen endogenously over time based on their ability to account for the data.

Tanizaki (1996) investigates the performance of deterministic filters (Extended Kalman

filter, Gaussian Sum approximations, and grid filters). His Monte Carlo evidence documents

that all those filters deliver poor performance in economic applications.

A second strategy is to think of the functions f and g as a change in variables of the

innovations to the model and use the jacobian of the transformation to evaluate the likelihood

of the observables (Miranda and Rui, 1997). In general, however, this approach is cumbersome

and problematic to implement.

Monte Carlo techniques are a third line of research on filtering. The use of simulation

techniques for non-linear filtering can be traced back at least to Handschin and Mayne (1969).

Beyond the class of particle filters reviewed by Doucet, de Freitas, and Gordon (2001), other

simulation techniques are as follows. Keane (1994) develops a recursive importance sampling

simulator to estimate multinomial probit models with panel data. However, it is difficult to

extend his algorithm to models with continuous observables. Mariano and Tanizaki (1995)

propose rejection sampling. This method depends on finding an appropriate density for the

rejection test. This search is time-consuming and requires substantial work for each particular

model. Geweke and Tanizaki (1999) evaluate the whole joint likelihood through draws from

the distribution of the whole set of states over the sample with an McMc algorithm. This

approach increases notably the dimensionality of the problem, especially for the sample size

used in macroeconomics. Consequently, the resulting McMc may be too slowly mixing to

achieve convergence in a reasonable timeframe. Also, it requires good proposal densities and

a good initialization of the chain that may be difficult to construct.

In a separate paper by the authors, Fernández-Villaverde and Rubio-Ramírez (2006) com-

pare many of the previous approaches to filtering in a Monte Carlo experiment. We show how

the particle filter outperforms the alternative filters in terms of approximating the distribu-
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tion of states and minimizing the root mean squared error between the computed and exact

states. We direct the interested reader to that paper for further information.

2.5. Smoothing

The particle filter allows us to draw from the filtering distribution p (W t
1, S0|Yt−1; γ) and

compute the likelihood p
¡YT ; γ¢ . Often, we are also interested in the density p ¡ST |YT ; γ¢,

i.e., the density of states conditional on the whole set of observations. Among other things,

these smoothed estimates are convenient for assessing the fit of the model and running coun-

terfactuals. We describe how to use the distribution p
¡
ST |YT ; γ¢ for these two tasks.

First, we analyze how to assess the fit of the model. Given a value for γ, the sequence of

observables implied by the model is a random variable that depends on the history of states

and the history of the exogenous perturbations that affect the observables but not the states,

YT
¡
ST , V T ; γ

¢
. Thus, for any γ, we compute the mean of the observables implied by the

model and the realization of observables, YT :

YT
¡
V T ; γ

¢
=

Z
YT
¡
ST , V T ; γ

¢
p
¡
ST |YT ; γ¢ dST . (7)

If V T are measurement errors, comparing YT
¡
V T = 0; γ

¢
versus YT is a good measure of the

fit of the model.

Second, we study how to run a counterfactual. Given a value for γ, what would have

been the expected value of the observables if a particular state had been fixed at value from

a given moment in time? We answer that question by computing:

YTSt:Tk =Sk,t

¡
V T ; γ

¢
=

Z
YT
¡
ST−k, S

t:T
k = Sk,t, V

T ; γ
¢
p
¡
ST |YT ; γ¢ dST , (8)

where S−k,t =
¡
S1,t, . . . , Sk−1,t, Sk+1,t . . . , Sdim(St),t

¢
and St:T−k = {S−k,m}Tm=t. If V T are mea-

surement errors, YTSt:Tk =Sk,t

¡
V T = 0; γ

¢
represents the expected value for the whole history of

observables when the state k is fixed to its value at t from that moment onward. A counter-

factual exercise compares YT
¡
V T = 0; γ

¢
and YTSt:Tk =Sk,t

¡
V T = 0; γ

¢
for different values of k

and t.

The two examples share a common theme. To compute integrals like (7) or (8), which

will appear in our application below, we need be able to draw from p
¡
ST |YT ; γ¢. To see this,
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let {st,i}Ni=1 be a draw from p
¡
ST |YT ; γ¢. Then (7) and (8) are approximated by:

YT
¡
V T = 0; γ

¢ ' 1

N

NX
i=1

YT
¡
st,i, 0; γ

¢
and

YTSt:Tk =Sk,t

¡
V T = 0; γ

¢ ' 1

N

NX
i=1

YT
¡
st,i−k, S

t:T
k = sik,t, 0; γ

¢
.

Hence, the problem of computing integrals like (7) and (8) is equivalent to the problem

of drawing from p
¡
ST |YT ; γ¢. We now propose a smoothing algorithm to accomplish this

objective.

An advantage of particle filtering is that smoothing can be implemented with the simulated

filtered distribution from our previous exercise. We do so following the suggestion of Godsill,

Doucet, and West (2004). We factorize the density p
¡
ST |YT ; γ¢ as:

p
¡
St:T |YT ; γ¢ = p ¡St|St+1:T ,YT ; γ¢ p ¡St+1:T |YT ; γ¢ (9)

for all t, where St+1:T = {Sm}Tm=t+1 is the sequence of states from period t + 1 to period

T . Therefore, from (9) it should be clear that to draw from p
¡
St:T |YT ; γ¢, we need to draw

from p
¡
St|st+1:T ,YT ; γ

¢
, where st+1:T

³
= {sm}Tm=t+1

´
is a draw from p

¡
St+1:T |YT ; γ¢. We

describe a recursive procedure to do so.

Because of the Markovian structure of the shocks, we can derive

p
¡
St|st+1:T ,YT ; γ

¢
= p

¡
St|st+1,Yt; γ

¢
=

p (St|Y t; γ) p (st+1|St,Y t; γ)
p (st+1|Y t; γ)

∝ p
¡
St|Y t; γ

¢
p
¡
st+1|St,Yt; γ

¢
= p

¡
St|Y t; γ

¢
p (st+1|St; γ)

Then, following an argument similar to the one in proposition 4, we show that p (St|Yt; γ) is an
importance sampling function to draw from the density p

¡
St|st+1:T ,YT ; γ

¢
. This statement

is proved in the following proposition:

Proposition 6. Let st+1:T be a draw from p
¡
St+1:T |YT ; γ¢ and let ©st,it ªNi=1 be a draw from

p (St|Y t; γ). Also, let the weights:

qit|t+1 (st+1) =
p
¡
st+1|st,it ; γ

¢PN
i=1 p

¡
st+1|st,it ; γ

¢ .
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Let the sequence
©est,it ªNi=1 be a draw with replacement from ©

st,it
ªN
i=1

where qit|t+1 (st+1) is the

probability of
©
st,it
ªN
i=1
being drawn ∀i . Then ©est,it ªNi=1 is a draw from p

¡
St|st+1:T ,YT ; γ

¢
.

Proof. The proof uses the same strategy as the proof for proposition 4.
The crucial step in proposition 6 is to draw from p (St|Yt; γ). We accomplish this with

the output from the particle filter described in section 2.2. First, we know that p (St|Y t; γ) =
p (W t

2,W
t
1, S0|Yt; γ). Second, we also know that

p
¡
W t
2,W

t
1, S0|Y t; γ

¢
= p

¡
W t
2|W t

1, S0,Y t; γ
¢
p
¡
W t
1, S0|Yt; γ

¢
and p (W t

2|W t
1, S0,Y t; γ) = χ{wt2(W t

1 ,S0,Yt;γ)} (W
t
2), where w

t
2 (W

t
1, S0,Y t; γ) is the function de-

scribed in assumption 2 and χ is the indicator function. Thus, if
©
wt,i1 , s

t,i
0

ªN
i=1
is a draw from

p (W t
1, S0|Yt; γ) obtained using the particle filter, then

©
wt2
¡
wt,i1 , s

t,i
0 ,Y t; γ

¢
, wt,i1 , s

t,i
0

ªN
i=1

is a

draw from p (W t
2,W

t
1, S0|Y t; γ). Clearly, using

©
wt2
¡
wt,i1 , s

t,i
0 ,Y t; γ

¢
, wt,i1 , s

t,i
0

ªN
i=1
, we can build©

sT,i
ªN
i=1
, a draw from p (St|Y t; γ).

From proposition 6 and the explanation above, the smoother algorithm is:

Step 0, Initialization: Draw N particles
n
wT,i1 , s

T,i
0

oN
i=1

from p
³
W T,i
1 , S0|YT ; γ

´
using a particle filter. Let wT,i2 = wT2

³
wT,i1 , s

T,i
0 ,Y t; γ

´
and use

n
wT,i2 , w

T,i
1 , s

T,i
0

oN
i=1

to build
©
sT,i
ªN
i=1
.

Step 1, Proposal I: Set i = 1.

Step 2, Proposal II: Draw states
n
sT−1,jT−1,i

oM
j=1

from p
¡
ST−1|YT−1; γ

¢
and computen

qjT−1|T (s
i
T )
oM
j=1
.

Step 3, Resampling: Sample once from
n
sT−1,jT−1,i

oM
j=1

with probabilities qiT−1|T (s
i
T ).

Call the draw sT−1,i. If i < N set i Ã i + 1 and go to step 2. If T > 1 set

T Ã T − 1 and go to step 1. Otherwise stop.

The algorithm works as follows. Starting from
n
wT,i1 , s

T,i
0

oN
i=1

from p
³
W T,i
1 , S0|YT ; γ

´
and taking advantage of corollary 6, steps 1 to 3 generate draws p

¡
St:T |YT ; γ¢ in a recursive

way. The outcome of the algorithm,
©
sT,i
ªN
i=1
, is a draw from p

¡
ST |YT ; γ¢. As the number

of particles goes to infinity, the simulated conditional distribution of states converges to the

unknown true conditional density.
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3. An Application: A Business Cycle Model

In this section, we present an application of particle filtering. We estimate a business cy-

cle model with investment-specific technological change, preference shocks, and stochastic

volatility. Several reasons justify our choice. First, the business cycle model is a canonical

example of a dynamic macroeconomic model. Hence, our choice demonstrates how to apply

the procedure to many popular economies. Second, the model is relatively simple, a fact

that facilitates the illustration of the different parts of our procedure. Third, the presence of

stochastic volatility helps us to contribute to one important current discussion: the study of

changes in the volatility of aggregate time series.

Even if the first work on time-varying volatility is Engle (1982), who picked as his appli-

cation of the ARCH model the process for United Kingdom inflation, it is not until recently

that research on volatility has acquired a crucial importance in macroeconomics. Kim and

Nelson (1999) have used a Markov-Switching model to document a decline in the variance

of shocks to output growth and a narrowing gap between growth rates during booms and

recessions. They find that the posterior mode of the break is the first quarter of 1984. A

similar result appears in McConnell and Pérez-Quirós (2000), who run a battery of different

structural tests to characterize the size and timing of the reduction in output volatility. This

evidence, reviewed and reinforced by Stock and Watson (2002), begets the question of what

has caused the change in volatility.

One possible explanation is that the shocks hitting the economy have been very different

in the 1990s than in the 1970s (Primiceri, 2005, and Sims and Zha, 2005). However, this

explanation has faced the problem of how to document that, in fact, the structural shocks are

now less volatile than in the past. The main obstacle has been the difficulty in evaluating the

likelihood of a dynamic equilibrium model with changing volatility. Consequently, the above

cited papers have estimated Structural Vector Autoregressions (SVARs). Despite their flexi-

bility, SVARs may, though, uncover evidence that is difficult to interpret from the perspective

of a dynamic equilibrium model (Fernández-Villaverde, Rubio-Ramírez, and Sargent, 2005).

The particle filter is perfectly suited for the analyzing dynamic equilibrium models with

stochastic volatility. In comparison, the Kalman filter and linearization are totally useless.

First, the presence of stochastic volatility induces fat tails on the distribution of observed

variables. Fat tails preclude, by themselves, the application of the Kalman filter. Second,

the law of motion for the states of the economy is inherently nonlinear. A linearization will

drop the volatility terms, and hence, it will prevent the study of time-varying volatility.

We search for evidence of stochastic volatility on technology and on preference shocks.

Loosely speaking, the preference shocks can be interpreted as proxying for demand shocks
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such as changes to monetary and fiscal policy that we do not model explicitly. The technol-

ogy shocks can be interpreted as supply shocks. However, we are cautious regarding these

interpretations, and we appreciate the need for more detailed business cycle models with

time-varying volatility.

Our concurrent research applies particle filtering to more general models, and our appli-

cation should be assessed as an example of the type of exercises that can be undertaken. In

related work (Fernández-Villaverde and Rubio-Ramírez, 2005), we estimate the neoclassical

growth model with the particle filter and the Kalman filter on a linearized version of the

model. We document surprisingly big differences on the parameter estimates, on the level of

the likelihood, and on the moments implied by the model.

Also, after the first version of this paper was circulated, several authors have shown the

flexibility and good performance of particle filtering for the estimation of dynamic macroeco-

nomic models. An (2006) investigates New Keynesian models. He finds that particle filtering

allows him to identify more structural parameters, to fit the data better, and to obtain more

accurate estimates of the welfare effects of monetary policies. King (2006) estimates the neo-

classical growth model with time-varying parameters. He finds that this version of the model

improves the fit to the data. Winschel (2005) applies the Smolyak operator to accelerate the

numerical performance of the algorithm. These papers increase our confidence in the value

of particle filtering for macroeconomists.

We divide the rest of this section into three parts. First, we present our model. Second,

we describe how we solve the model numerically. Third, we explain how to evaluate the

likelihood function.

3.1. The Model

Wework with a business cycle model with investment-specific technological change, preference

shocks, and stochastic volatility. Greenwood, Herkowitz, and Krusell (1997 and 2000) have

vigorously defended the importance of technological change specific to new investment goods

for understanding postwar U.S. growth and aggregate fluctuations. We follow their lead and

estimate a version of their model inspired by Fisher (2004) and modified to include two unit

roots, cointegration relations derived from the balanced growth path properties of the model,

a preference shock, and stochastic volatility on the economic shocks that drive the dynamics

of the model.

There is a representative household in the economy, whose preferences over stochastic
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sequences of consumption Ct and leisure 1− Lt are representable by the utility function

E0

∞X
t=0

βt
¡
edt logCt + ψ log (1− Lt)

¢
where β ∈ (0, 1) is the discount factor, dt is a preference shock, with law of motion

dt = ρdt−1 + σdtεdt, where εdt ∼ N (0, 1) ,

ψ controls labor supply, and E0 is the conditional expectation operator. We explain below

the law of motion for σdt.

The economy produces one final good with a Cobb-Douglas production function given by:

Ct +Xt = AtK
α
t L

1−α
t ,

and the law of motion for capital is:

Kt+1 = (1− δ)Kt + VtXt,

where the technologies evolve as a random walk with drifts:

logAt = γ + logAt−1 + σatεat, γ ≥ 0 and εat ∼ N (0,σa) (10)

log Vt = υ + log Vt−1 + συtευt, υ ≥ 0 and ευt ∼ N (0,συ) (11)

Note that we have two unit roots, one in each of the two technological processes.

The process for the volatility of the shocks is given by (see Shepard, 2005, for a review of

the different forms of stochastic volatility in the literature):

log σat = (1− λa) log σa + λa log σat−1 + τaηat and ηat ∼ N (0, 1) (12)

log συt = (1− λυ) log συ + λυ log συt−1 + τυηυt and ηυt ∼ N (0, 1) (13)

log σdt = (1− λd) log σd + λd log σdt−1 + τdηdt and ηdt ∼ N (0, 1) (14)

Thus, the matrix of unconditional variances-covariances Ω of the shocks is a diagonal matrix

with entries {log σa, log συ, log σd, τa, τυ, τd}.
A competitive equilibrium can be defined in a standard way as a sequence of allocations

and prices such that both the representative household and the firm maximize and markets

clear. However, since both welfare theorems hold in this economy, we instead solve the equiv-
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alent and simpler social planner’s problem that maximizes the utility of the representative

household subject to the economy resource constraint, the law of motion for capital, the

stochastic process for shocks, and some initial conditions for capital and technology.

Since the presence of two unit roots makes the model non-stationary, we rescale the

variables by eYt = Yt
Zt
, eCt = Ct

Zt
, eXt = Xt

Zt
, and eKt =

Kt

ZtVt−1
where Zt = A

1
1−α
t−1 V

α
1−α
t−1 . Then,

dividing the resource constraint and the law of motion for capital, we get:

eCt + eXt = eγ+σatεat eKα
t L

1−α
t

e
γ+αυ+σatεat+ασυtευt

1−α eKt+1 = (1− δ) e−υ−συtευt eKt + eXt
or, summing both expressions:

eCt + eγ+αυ+σatεat+ασυtευt1−α eKt+1 = e
γ+σatεat eKα

t L
1−α
t + (1− δ) e−υ−συtευt eKt

Consequently, we rewrite the utility function as

E0

∞X
t=0

βt
³
edt log eCt + ψ log(1− Lt)

´
.

The intuition for these two expressions is as follows. In the resource constraint, we need

to modify the term associated with eKt+1 to compensate for the fact that the value of the

transformed capital goes down when technology improves. A similar argument holds for the

term in front of the undepreciated capital. In the utility function, we just exploit its additive

log form to write it in terms of eCt.
Then, the first order conditions for the transformed problem include an Euler equation:

eσdtdte
γ+αυ+σatεat+ασυtευt

1−αeCt = βEt
eσdt+1dt+1eCt+1

³
αeγ+σat+1εat+1 eKα

t+1L
1−α
t+1 + (1− δ) e−υ−συt+1ευt+1

´
(15)

and a labor supply condition:

ψ
eσdtdt eCt
1− Lt = (1− α) eγ+σatεat eKα

t L
−α
t , (16)

together with the resource constraint:

eCt + e γ+αυ+σatεat+ασυtευt1−α eKt+1 = e
γ+σatεat eKα

t L
1−α
t + (1− δ) e−υ−συtευt eKt. (17)

These equations imply a deterministic steady state around which we will approximate the
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solution of our model. In that steady state, the investment to output ratio:

eXsseYss = α

³
e
γ+αυ
1−α − (1− δ) e−υ

´
exp( γ+αυ1−α )

β
− (1− δ) exp (−υ)

is a constant. This expression shows how investment and output are cointegrated either in

nominal or in real terms (when we properly deflate investment by the consumption price

index). The approximated solution of our model will respect this cointegration relation, and

hence, it will show up (implicitly) in our estimation.

3.2. Solving the Model

To solve the model, we find the policy functions for hours worked, Lt, rescaled investment,eXt, and rescaled capital eKt+1, such that the system formed by (15)-(17) holds. This system

of equilibrium equations does not have a known analytical solution, and we solve it with

a numerical method. We select a second order perturbation to do so. Aruoba, Fernández-

Villaverde, and Rubio-Ramírez (2006) document that perturbation methods deliver a highly

accurate and fast solution in a model similar to the one considered here. We emphasize,

however, that nothing in the particle filter stops us from opting for any other nonlinear

solution method as projection methods or value function iteration. The appropriate choice

of solution method should be dictated by the details of the particular model to be estimated.

As a first step, we parameterize the matrix of variances-covariances of the shocks as

Ω (χ) = χΩ, where clearly Ω (1) = Ω . Then, we take a perturbation solution around χ = 0,

i.e., around the deterministic steady state implied by the equilibrium conditions of the model.

The states of the model are given by:

est = ³1, log eKt,σatεat,συtευt, dt, log σat, log συt, log σdt

´0
The volatilities of the shocks are state variables of the model and the households keep track

of them when making optimal decisions. Thus, a second order approximation to the policy

function for capital is given by:

log eKt+1 = Ψk1est + 1
2
es0tΨk2est (18)

Note that Ψk1 is a 1×8 vector and Ψk2 is a 8×8 matrix. However, Ψk2 only has 36 distinct

elements because it is symmetric. The term Ψk1est constitutes the linear solution of the model,
except for a constant added by the second order approximation that corrects for precautionary
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behavior. Similarly, the policy functions for rescaled investment and labor are given by:

log eXt = Ψx1est + 1
2
es0tΨx2est

logLt = Ψl1est + 1
2
es0tΨl2est

The policy for rescaled output is obtained by noting that since

log eYt = γ + σatεat + α log eKt + (1− α) logLt

we have that

log eYt = γ + σatεat + α log eKt + (1− α)Ψl1est + (1− α)
1

2
es0tΨl2est

= ((γ,α, 1, 0, 0, 0, 0, 0) + (1− α)Ψl1) est + 1
2
es0t (1− α)Ψl2est

= Ψy1est + 1
2
es0tΨy2est

where Ψy1 = (γ,α, 1, 0, 0, 0, 0, 0) + (1− α)Ψl1 and Ψy2 = (1− α)Ψl2.

4. A State Space Representation

Now we present a state representation for the variables. We discuss first the transition

equation and later the measurement equation.

4.1. The Transition Equation

Given our model, we have a vector of structural parameters

γ ≡ (α, δ, ρ,β,ψ, υ, ζ, τa, τυ, τd,σa,συ,σd,λa,λυ,λd,σ1²,σ2²,σ3²) ∈ Υ ⊂ R19

where σ1²,σ2², and σ3² are the standard deviation of three measurement errors to be intro-

duced below.

We combine the laws of motion for the volatility (12)-(14) and the policy function of

capital (18) to build:

St = f (St−1,Wt; γ)

where St−1 = (st−1, st−2),

st−1 =
³
1, log eKt,σat−1εat−1,συt−1ευt−1, dt−1, log σat−1, log συt−1, log σdt−1

´0
,
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and Wt = (εat, ευt, εdt, ηat, ηυt, ηdt)
0. We keep track of the past states, st−2, because some

of the observables in the measurement equation below will appear in first differences. If we

denote by fi (St−1,Wt) the i− th dimension of f , we have

f1 (St−1,Wt; γ) = 1

f2 (St−1,Wt; γ) = Ψk1est + 1
2
es0tΨk2est

f3 (St−1,Wt; γ) = e(1−λa) log σa+λa log σat−1+τaηatεat

f4 (St−1,Wt; γ) = e(1−λυ) log συ+λυ log συt−1+τυηυtευt

f5 (St−1,Wt; γ) = ρdt−1 + e(1−λd) log σd+λd log σdt−1+τdηdtεdt

f6 (St−1,Wt; γ) = (1− λa) log σa + λa log σat−1 + τaηat

f7 (St−1,Wt; γ) = (1− λυ) log συ + λυ log συt−1 + τυηυt

f8 (St−1,Wt; γ) = (1− λd) log σd + λd log σdt−1 + τdηdt

f9−16 (St−1,Wt; γ) = st

where est = es (St−1,Wt; γ) is a function of St−1 and Wt.

4.2. The Measurement Equation

We assume that we observe the following time series Yt = (∆ log pt,∆ log yt,∆ log xt, log lt),
the change in the relative price of investment, the observed real output per capita growth, the

observed real gross investment per capita growth, and observed hours worked per capita. We

make this assumption out of pure convenience. On one hand, we want to capture some of the

main empirical predictions of the model. On the other hand, and for illustration purposes,

we want to keep the dimensionality of the problem low. However, the empirical analysis

could be performed with very different combinations of data. Thus, our choice should be

understood as an example of how to estimate the likelihood function associated with a vector

of observations.

In equilibrium the change in that relative price of investment equals the negative log

difference of Vt:

−∆ log Vt = −υ − συtευt

This allows us to read συtευt directly from the data conditional on an estimate of υ.

To build the measurement equation for real output per capita growth, we remember that

from (10) and (11), we have :

∆ logAt = γ + σatεat, γ ≥ 0 and εat ∼ N (0,σa)
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∆ log Vt = υ + συtευt, υ ≥ 0 and ευt ∼ N (0,συ)

Also eYt = Yt
Zt
=

Yt

A
1

1−α
t−1 V

α
1−α
t−1

,

therefore:

log Yt = log eYt + 1

1− α
logAt−1 +

α

1− α
log Vt−1.

Then:

∆ log Yt = ∆ log eYt + 1

1− α
(∆ logAt−1 + α∆ log Vt−1)

= ∆ log eYt + 1

1− α
(γ + αυ + σat−1εat−1 + ασυt−1ευt−1)

Since

log eYt = Ψy1est + 1
2
es0tΨy2est

we have

∆ log Yt = Ψy1est+1
2
es0tΨy2est−Ψy1est−1−1

2
es0t−1Ψy2est−1+ 1

1− α
(γ + αυ + σat−1εat−1 + ασυt−1ευt−1)

Similarly, for real gross investment per capita growth:

∆ logXt = Ψx1est−Ψx1est−1+1
2
es0tΨx2est−1

2
es0t−1Ψx2est−1+ 1

1− α
(γ + αυ + σat−1εat−1 + ασυt−1ευt−1)

Finally, we introduce measurement errors in the real output per capita growth, real gross

investment per capita growth, and hours worked per capita as the easiest way to avoid

stochastic singularity (see our assumptions 1 to 3). Nothing in our procedure depends on the

presence of measurement errors. We could, for example, write a version of the model where

in addition to shocks to technology and preferences, we would have shocks to depreciation

and to the discount factor. This alternative might be more empirically relevant, but it would

make the solution of the model much more involved. Since our goal here is to illustrate how

to apply our particle filtering to estimate the likelihood of the model in a simple example,

we prefer to specify measurement errors. We will have three different measurement errors:

one in the real output per capita growth, ²1t, one on the real gross investment per capita

growth, ²2t, and one on hours worked per capita, ²3t. We do not have a measurement error

in the relative price of investment because it will not be possible to separately identify it

from συt²υt. The three shocks are an i.i.d. process with distribution N (0,Σ²). The matrix
of variances-covariances Σ² is a diagonal matrix with entries {σ1²,σ2²,σ3²}. In our notation
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of section 2, Vt = (²1t, ²2t, ²3t)
0. The measurement errors imply a difference between the value

for the variables implied by the model and the observables. Thus:

∆ log pt = −∆ log Vt
∆ log yt = ∆ log Yt + ²1t

∆ log xt = ∆ logXt + ²2t

log lt = logLt + ²3t

Putting the different pieces together, we have the measurement equation:
∆ log pt

∆ log yt

∆ log xt

log lt

 =


−υ
γ+αυ
1−α
γ+αυ
1−α

logLss +Ψl3

+


−συtευt

Ψy1est + 1
2
es0tΨy2est −Ψy1est−1 − 1

2
es0t−1Ψy2est−1 + 1

1−α (σat−1εat−1 + ασυt−1ευt−1)

Ψx1est −Ψx1est−1 + 1
2
es0tΨx2est − 1

2
es0t−1Ψx2est−1 + 1

1−α (σat−1εat−1 + ασυt−1ευt−1)

Ψl1est + 1
2
es0tΨl2est

+

0

²1t

²2t

²3t


5. The Likelihood Function

Given that we have six structural shocks in the model and dim (Vt) < dim (Yt), we set
W2,t = ευt andW1,t = (εat, εdt, ηdt, ηat, ηυt)

0. Then, in the notation of section 2, the prediction

errors are:

ω2,t = ω2,t(W
t
1, S0,Yt; γ) = −

∆ log pt + υ

συt
,

v1,t = v1,t(W
t
1, S0,Y t; γ) = ∆ log yt −∆ log Yt,

v2,t = v2,t(W
t
1, S0,Y t; γ) = ∆ log xt −∆ logXt, and

v3,t = v3,t(W
t
1, S0,Y t; γ) = log lt − logLt.

We let ωt = (ω2,t, v1t, v2t, v3t)0 and define eΣt = eΣ(W t
1, S0,Y t−1; γ) be a diagonal matrix with

entries {συt,σ1²,σ2²,σ3²} . Hence, we have that:

p
¡Yt|W t

1, S0,Y t−1; γ
¢
= (2π)−

4
2

¯̄̄eΣt ¯̄̄− 1
2
exp−

1
2
ω0teΣtωt
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and we rewrite (4) as:

L
¡YT ; γ¢ = (2π)− 4T

2

TY
t=1

Z Z ¯̄̄eΣt ¯̄̄−1
2
exp−

1
2
ω0teΣtωt p ¡W t

1, S0|Yt−1; γ
¢
dW t

1dS0.

This last expression is simple to handle. Given particles
½n
w
t|t−1,i
1 , s

t|t−1,i
0

oN
i=1

¾T
t=1

, we

build the prediction errors
n
{ωit}Ni=1

oT
t=1

and the matrices
½neΣitoN

i=1

¾T
t=1

implied by them.

Therefore, the likelihood function is approximated by:

L
¡YT ; γ¢ ' (2π)−4T

2

TY
t=1

NX
i=1

¯̄̄eΣt ¯̄̄−1
2
exp−

1
2
ωi0t eΣitωit . (19)

Equation (19) is nearly identical to the likelihood function implied by the Kalman filter

(see equation 3.4.5 in Harvey, 1989) when applied to a linear model. The difference is that

in the Kalman filter, the prediction errors ωt come directly from the output of the Riccati

equation, while in our filter they come from the output of the simulation.

6. Findings

In this section we conduct likelihood-based inference on our model with U.S. data. This

exercise proves how the particle filter can be brought to real-life applications and how it

delivers new results concerning the business cycle dynamics of the U.S. economy.

We estimate the model using the relative price of investment with respect to the price

of consumption, real output per capita growth, real gross investment per capita growth,

and hours worked per capita in the U.S. from 1955:Q1 to 2000:Q4. Our sample length is

limited by the availability of good data on the relative price of investment that account for

quality change in the ways dictated by theory (see the description in Fisher, 2004). To match

our model predictions with the observed data, we need to be careful when constructing our

observed series. In particular, to make the observed series compatible with the model implied

series, we have to compute both real output and real gross investment in consumption units.

As the relative price of investment we use the ratio of an investment deflator and a deflator

for consumption. The consumption deflator is constructed from the deflators of nondurable

goods and services reported in NIPA. Since the NIPA investment deflators are poorly mea-

sured, we use the investment deflator constructed by Fisher (2004). For the real output

per capita series, we first define nominal output as nominal consumption plus nominal gross
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investment. We define nominal consumption as the sum of personal consumption expendi-

tures on nondurable goods and services, national defense consumption expenditures, federal

nondefense consumption expenditures, and state and local government consumption expendi-

tures. We define nominal gross investment as the sum of personal consumption expenditures

on durable goods, national defense gross investment, federal government nondefense gross

investment, state and local government gross investment, private nonresidential fixed invest-

ment, and private nonresidential residential fixed investment. Per capita nominal output is

defined as the ratio between our nominal output series and the civilian noninstitutional pop-

ulation between 16 and 65. Since we need to measure real output per capita in consumption

units, we deflate the series by the consumption deflator. For the real gross investment per

capita series, we divide our above mentioned nominal gross investment series by the civilian

noninstitutional population between 16 and 65 and the consumption deflator. Finally, the

hours worked per capita series is constructed with the index of total number of hours worked

in the business sector and the civilian noninstitutional population between 16 and 65. Since

our model implied series for hours worked per capita is between 0 and 1, we normalize the

observed series of hours worked per capita such that it is, on average, 0.33.

We perform our estimation exercises from a classical perspective and from a Bayesian

one. For the classical perspective, we maximize the likelihood of the model with respect to

the parameters. For the Bayesian approach, we specify prior distributions over the parame-

ters, evaluate the likelihood using the particle filter, and draw from the posterior using a

Metropolis-Hastings algorithm. The results from both approaches are very similar. In the

interest of space, we report only our classical findings. Bayesian inference would be feasible

(although extremely slow) using an McMc, while maximum likelihood estimation is unsolved

for this problem. Our Bayesian findings are available upon request.

6.1. Point Estimates

Before taking the model to the data, we fix two parameters to improve the quality of the

estimation. We set α = 0.33 and δ = 0.0132 to match capital income share and the capital-

output ratio in the U.S. economy. Also, we constrain the value of β to be less than one (so

the utility of the consumer is well-defined) and the autoregressive coefficients {ρ,λa,λυ,λd}
to be between 0 and 1 to maintain stationarity.

Table 6.1 reports the MLE for the other 17 parameters of the model and their standard

errors. The point estimates are close to the ones coming from a standard calibration exercise,

suggesting a good performance of the estimation. More important, the standard errors of

the estimates are low, indicating tight estimates. We interpret our finding as an endorsement
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of the ability of the procedure to uncover sensible values for the parameters of dynamic

macroeconomic models.

[Table 6.1 Here]

The autoregressive component of the preference shock level, ρ, reveals a high persistence

of this demand component. The discount factor, β, nearly equal to 1, is a common finding

when estimating dynamic models. The parameter that governs labor supply, ψ, is closely

estimated around 2.343 to capture the level of hours worked per capita. The two drifts in

the technology processes, υ and ζ, imply an average growth rate of 0.45 percent quarter

to quarter (which corresponds to 1.8 percent per year, the historical long-run growth rate

of U.S. real output per capita since the Civil War), out of which 98.8 percent is accounted

for by investment-specific technological change. This result highlights the importance of

modelling this biased technological change for understanding growth and fluctuations. The

autoregressive components of stochastic volatility of the shocks {λa,λυ,λd} are more difficult
to estimate, ranging from a low number, λa, to a persistence close to one, λυ. Our results hint

that modelling volatility as a random walk to economize on parameters may be misleading,

since most of the mass of the likelihood is below 1.

The three estimated measurement error variances are such that the structural model

accounts for the bulk of the variation in the data. A formal way to back up our statement and

assess the performance of the model is to compare the average of the paths of the observed

variables predicted by the smoothed states at the MLE without the measurement errors

against the real data. In the language of section 2.5, we need to compare YT
¡
V T = 0;bγMLE¢

and YT . In the four panels of figure 6.1, we plot the average predicted (discontinuous line)
and observed (continuous line) paths of real output per capita growth, real gross investment

per capita growth, hours worked per capita, and relative price of investment.

The top left panel displays how closely the model captures the dynamics of the real output

per capita growth, including the recessions of the 1970s and the expansions of the 1980s and

1990s. We assess the fit of the model using three measures. First, the correlation between the

model average predicted and observed real output per capita growth is 72 percent. Second,

the model average predicted output accounts for 72 percent of the standard deviation of

real output per capita growth. Third, the mean squared error between the model average

predicted output and the data is 1.029e-5. We judge that these three measures demonstrate

the model’s notable performance in accounting for fluctuations in real output per capita

growth.

The top right panel shows the fit between the model average predicted and the observed
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real gross investment per capita growth. Now, the model average predicted real gross in-

vestment per capita growth has a correlation of 79 percent with the data, it accounts for

124 percent of the observed standard deviation, and the mean squared error between the

model average predicted and the data is 8.660e-5. The model, hence, also seems to do a good

job with real gross investment per capita growth, except for the excessive volatility of the

predicted real gross investment per capita. This failure is common in business cycle models

without adjustment costs. It is in the bottom left panel, hours worked per capita, where

the model shows its best: the correlation between the model average predicted and observed

hours worked per capita is 99 percent, the model accounts for 98 percent of the observed

standard deviation of hours worked per capita, and the mean squared error is only 4.757e-6.

The bottom right panel analyzes the fit of the model with respect to the relative price of in-

vestment. Since we assume that we observe this series without measurement error, both the

average predicted and the observed relative prices are the same. Our summary assessment of

figure 6.1 is that the model is fairly successful at capturing aggregate dynamics.

6.2. Evolution of the Volatility

Given the success of the business cycle model at fitting the data, we have high confidence in

our findings regarding the (unobserved) states of the model. In figure 6.2, we plot the mean

of the smoothed path for capital in log deviations from the balanced growth, log eKt (top

left panel), neutral productivity shock, σatεat (top right panel), investment specific shock,

συtευt (bottom left panel), and preference level, dt (bottom right panel). We also plot the one

standard deviation bands around the mean of the smoothed paths. The bands demonstrate

that for all four states, our smoothed paths are tightly estimated. All the smoothed paths

reported in this section are computed at the MLE.

The most interesting of the panels is the bottom right one. It shows important negative

preference shocks in the late 1970s and 1980s and large positive shocks in the early 1980s

and 1990s. Since the preference shock can be loosely interpreted as a demand shock, our

empirical results are compatible with those accounts of fluctuations in the U.S. economy that

emphasize the role of changes in demand induced by monetary policy that occurred during

those years. Since our model lacks that margin, we are careful in our interpretation, and we

only point out this result as suggestive for future work.

Figure 6.3 presents the mean of the smoothed paths of the volatility for the three shocks,

also with the one standard deviation bands. The top left panel reveals how the volatility of the

shock to neutral technology, σat, has been roughly constant over the sample. In comparison,

the top right panel shows how the volatility of the shock to investment-specific technology,
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συt, has evolved. After a small decline until the mid 1960s, the volatility increases steadily

until the mid 1970s. Its peak coincides with the oil shocks of late 1970s. After the peak, it

falls back during the next 20 years until it stabilizes by the end of the 1990s. The bottom left

panel shows a decrease in volatility of the preference shock, σdt, from 1955 to the late 1960s.

That volatility increased slightly during the 1970s and 1980s and fell again in the 1990s. The

evidence in figure 6.3 is consistent with the evidence from time series methods summarized

in section 5.4 of Stock and Watson (2002). Figure 6.3 teaches the first important empirical

lesson of this paper: there is important evidence of time-varying volatility in the aggregate

shocks driving the U.S. economy.

How did the time-varying volatility of shocks affect the volatility of the aggregate time

series? Figure 6.4 computes the instantaneous standard deviation of each of the four observ-

ables implied by the MLE and the smoothed volatilities. For example, each point in the top

left panel represents the standard deviation of real output per capita growth if the volatility

of the three shocks had stayed constant forever at the level at which we smoothed for that

quarter. Figure 6.4 can be interpreted as the estimate of the realized volatility of the observ-

ables. Of course, for each quarter the smoothed volatility is not a point but a distribution.

Hence, we draw from this distribution using the algorithm described in section 2.5 and com-

pute the instantaneous standard deviation of the observables for each draw. We report the

mean of the instantaneous standard deviation of the observables.

Figure 6.4 shows important reductions in the volatility of real output per capita growth

and real gross investment per capita growth, a smaller reduction in the volatility of hours

worked per capita, and a roughly constant volatility of the relative price of investment. The

top left panel indicates that the reduction in the volatility of real output per capita growth is

not the product of an abrupt change in the mid 1980s, as defended by a part of the literature,

but more of a gradual change. It started in the late 1950s, was interrupted in the late 1960s

and 1970s, and resumed again by the end of the 1970s, continuing until today. The presence

of large preference shocks in the 1970s hid that reduction in volatility until the mid 1980s,

when the literature dates the fall in real output per capita growth volatility. Moreover, the

size of the reduction in instantaneous volatility of real output per capita growth is around

55 percent. This reduction is comparable with the computations of Blanchard and Simon

(2001) and Stock and Watson (2002).

Our finding of a steady reduction in the volatility of real output per capita growth coincides

with the view of Blanchard and Simon (2001). It is interesting to compare the top left panel in

our figure 6.4 with figure 1 in their paper to see how we reach qualitatively similar conclusions

(although the size of the reduction in volatility estimated by the rolling standard deviation

they propose is bigger). This steady decline in volatility of real output per capita growth
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since the late 1950s, punctuated by an increase in the 1970s, is the second main finding of

our paper.

6.3. What Caused the Fall in Volatility?

Which shocks account for the reduction in the volatility of U.S. aggregate time series? In the

context of nonlinear models, it is difficult to perform a decomposition of the variance because

the random shocks hitting the model enter in multiplicative ways. Instead, to asses the role

of the different shocks, we perform three counterfactual experiments.

In the first one, we fix the volatility of one of the three shocks at its level in 1958 and we

let the volatility of the other shocks evolve in the same way as in our smoothed estimates. In

figure 6.5, we plot the estimated instantaneous variance (continuous line) and the counter-

factual variance (discontinuous line) of real output per capita growth (first row), real gross

investment per capita growth (second row), hours worked per capita (third row), and the

relative price of investment (fourth row), when we keep it at its value in the first quarter

of 1958, the volatility of the neutral technological shock (first column), the volatility of the

investment-specific technological shocks (second column), and the volatility of the prefer-

ence shock (third column). The results from figure 6.5 illustrate that neither changes in the

volatility of the neutral technological shock nor the investment-specific technological shock

explain the reduction in volatility. Indeed, the lines of the estimated actual volatility and

of the counterfactual are nearly on top of each other. The decrease in the volatility of the

shock to preferences explains the reduction in volatility. We see how in the counterfactual,

the volatility of the aggregate time series is roughly constant at the level of the late 1950s.

The second counterfactual experiment repeats the first experiment, except that now we

fix the volatilities at their values in the first quarter of 1978. We plot our findings in figure

6.6. Again, we see the same results as in the first experiment. Nearly all the reduction in

volatility is accounted for by reductions in the volatility of the preference shock.

Finally, the third counterfactual experiment fixes the volatilities at the fourth quarter of

1974, the peak of the volatility of the relative price of investment. The results are once more

the same as in the first two experiments.

From figures 6.5, 6.6, and 6.7, we conclude that our model points to the crucial role of

the changes in the volatility of the preference shocks in accounting for the large reduction in

the volatility of real output per capita growth, real gross investment per capita growth, and

hours worked per capita.
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7. Are Nonlinearities and Stochastic Volatility Important?

Our model has one novel feature, stochastic volatility, and one particularity in its implemen-

tation, the nonlinear solution. How important are these two elements? How much do they

add to the empirical exercise?

To answer these questions, we estimated three additional versions of the model: one

with a linear solution without stochastic volatility on the shocks (the volatility parameters

{τa, τυ, τd,λa,λυ,λd} are all set to zero), one with a linear solution with stochastic volatility,
and one with a quadratic solution but without stochastic volatility. We name those versions

in table 7.1.

Table 7.1: Versions of the Model

Solution\Stochastic Volatility No Yes

Linear Version 1 Version 2

Quadratic Version 3 Benchmark

We spend some time comparing the results of version 2 of the model and the benchmark.

This comparison is relevant because version 2 implies a conditionally normal linear model,

which can be estimated with alternative McMc algorithms (Justiniano and Primiceri, 2005).

We plot in figures 7.1 and 7.2 the evolution of the smoothed states and volatility that we

obtain when we estimate version 2 of the model and the benchmark. These two figures

tell us the importance of the quadratic component of the solution. In the top left panel of

figure 7.1, we observe how the quadratic solution accumulates more capital (in deviations

with respect to the scaled steady state) as a response to the increase in volatility than the

linear solution. In the top right and bottom left panels, we appreciate important differences

in the level of the neutral technological shock and the preference shock, which fluctuate

much more in the linear solution. The explanation is simple. In the absence of quadratic

components, the model requires bigger shocks to preferences to fit the data. Moreover,

the sign of the shocks is often different. When the linear model is telling us there were

large positive technological shocks (for example, in the early 1960s), the benchmark model

suggests negative shocks. The investment-specific technological shock is roughly the same

in both version 2 and the benchmark, since we are reading it from the relative price of new

capital (since all the parameters are jointly estimated and the law of motion for investment-

specific technological shock affects the policy functions of the households, we do not get

exactly the same process).

Figure 7.2 shows that the level and evolution of the volatilities are also quite different in

the linear and in the quadratic solution. The top left panel reports how the volatility of the
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neutral technological shock is failing in the linearized version of the model, while the same

volatility is roughly constant for the benchmark quadratic case. The top right panel tells us

how the investment-specific technological shock has a bigger variation for the quadratic case,

with a later peak. Finally, the bottom left panel suggests that the volatility of the preference

shock of the quadratic model is much smaller, and that it has been declining much less than

the volatility of the preference shock of the linearized model.

We summarize our results from figures 7.1 and 7.2. First, the magnitude of the shocks

(often even their signs) are sufficiently different in the linear and quadratic version of the

model that they draw for us different pictures of the cyclical evolution of the U.S. economy.

Second, volatility is lower in the benchmark case for two of the three shocks over the entire

sample; the quadratic solution implies that we require smaller shocks on average to fit the

data. Third, for all three shocks, the reduction in volatility is much smaller in the benchmark

case than in version 2 of the model.

However, if both versions of the model deliver different answers, we need to compare the

fit of the two models to assess which of the two answers we trust more. A simple way to

check the fit of each version is to look at the value of the likelihood at their MLEs. The

benchmark model has a loglikelihood of 2350.6, while version 2 has a loglikelihood of 2230.4,

an advantage in favor of the quadratic solution of 120 log points. If we implement Rivers and

Vuong’s (2002) likelihood ratio test for dynamic, non-nested, misspecified models, we find

that this difference significantly favors the benchmark model with a p-value of 10.3. This

result is somehow strong evidence in favor of the quadratic solution, especially if we consider

that the Kernel estimate of the asymptotic variance of the test uses a (conservative) 4 period

window.

The good performance of the quadratic model is remarkable because it comes despite two

difficulties. First, three of the series of the model enter in first differences. This reduces the

advantage of the quadratic solution in comparison with the linear one, since the mean growth

rate, a linear component, is well captured by both solutions. Second, the solution is only of

second order and some important nonlinearities may be of higher order. Consequently, our

results show that, even in those challenging circumstances, the nonlinear estimation pays off.

In the interest of space, we do not discuss the comparison of benchmark with versions

1 and 3 of the model. We just mention that the presence of stochastic volatility does not

improve the fit of the linear model (comparing version 1 with version 2) but it does for the

quadratic model (version 3 versus benchmark). We interpret this result as further evidence

of the importance of the nonlinear components and the interaction between nonlinearity and

non-normality.
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8. Computational Issues

An attractive feature of particle filtering is that it can be implemented on a good PC. Never-

theless, the computational requirements of the particle filter are orders of magnitude bigger

than those of the Kalman filter. On a Xeon Processor at 3.60 GHz, each evaluation of the

likelihood with 80,000 particles takes around 18 seconds. The Kalman filter, applied to a

linearized version of the model, takes a fraction of a second. The difference in computing

time raises two questions. First, is it worth it? Second, can we apply the particle filter to

richer models like those of Smets and Wouters (2003) or Christiano, Eichenbaum, and Evans

(2005)?

With respect to the first question, Fernández-Villaverde and Rubio-Ramírez (2005) show

that the particle filter improves inference with respect to the Kalman filter. In some contexts,

this improvement may justify the extra computational effort. Regarding the second question,

we point out that most of the computational time is spent in the Sampling Step. If

we decompose the 18 seconds that each evaluation of the likelihood requires, we discover

that the Sampling Step takes over 17 seconds, while the solution of the model takes less
than 1 second. In an economy with even more state variables than ours (we already have

7 state variables!), we will only increase the computational time of the solution, while the

Sampling Step will take roughly the same time. The availability of fast solution methods,
like perturbation, implies that we can compute the nonlinear policy functions of a model with

dozens of state variables in a few seconds. Consequently, an evaluation of the likelihood in

such models would take around 20 seconds. This argument shows that the particle filter has

the potential to be extended to the class of models needed for serious policy analysis.

To ensure the numerical accuracy of our results, we perform several numerical tests. First,

we checked the number of particles required to achieve stable evaluations of the likelihood

function. We found that 80,000 particles were more than enough for that purpose. Second,

we computed the effective sample size (Arulampalam et al., 2002, equation (51)) to check

that we were not suffering from particle impoverishment due to sample depletion problems.

We omit details in the interest of space. Finally, since version 1 of the model in the previous

section has a linear state space representation with normal innovations, we can evaluate the

likelihood both with the Kalman filter and with the particle filter. Both filters should deliver

the same value of the likelihood function (the particle filter has a small-sample bias, but with

80,000 particles such bias is absolutely negligible). We corroborated that, in fact, both filters

produce the same number up to numerical accuracy.

All programs were coded in Fortran 95 and compiled in Compaq Visual Fortran 6.6 to

run on Windows-based PCs. All the code is available upon request.
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9. Conclusions

We have presented a general purpose and asymptotically efficient algorithm to perform

likelihood-based inference in nonlinear and/or non-normal dynamic macroeconomic models.

We have shown how to undertake parameter estimation and model comparison, either from a

classical or Bayesian perspective. The key ingredient has been the use of particle filtering to

evaluate the likelihood function of the model. The intuition of the procedure is to simulate

different paths for the states of the model and to ensure convergence by resampling with

appropriately built weights.

We have applied the particle filter to estimate a business cycle model of the U.S. economy.

We found strong evidence for the presence of stochastic volatility in U.S. data, that the decline

in aggregate volatility has being occurring since the late 1950s, and changes in the volatility

of preference shocks seem to be the main force behind the variation in the volatility U.S.

output growth over the last 50 years.

Our current research applies particle filtering to models of nominal rigidities and parame-

ter drifting, to dynamic general equilibrium models in continuous time, and to the estimation

of dynamic games in macroeconomics.
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Table 5.1: Maximum Likelihood Estimates

Parameter Point Estimate Standard Error (x10−3)

ρ

β

ψ

υ

ζ

τa

τυ

τd

σa

συ

σd

λa

λυ

λd

σ1²

σ2²

σ3²

0.967

0.999

2.343

8.960E-003

3.594E-005

7.120E-002

7.772E-003

5.653E-002

4.008E-004

8.523E-003

5.016E-003

4.460E-002

0.998

0.998

1.031E-005

1.024E-004

1.110E-005

3.743

0.460

6.825

0.828

2.254

1.589

2.940

2.034

0.692

0.101

2.344

6.788

8.248

2.302

0.424

0.495

0.082
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Figure 6.1: Model versus Data
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Figure 6.2: Smoothed Capital and Shocks
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Figure 6.3: Smoothed Volatilities
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Figure 6.4: Instantaneous Standard Deviation
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Figure 6.5: Counterfactual Exercise 1
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Figure 6.6: Counterfactual Exercise 2
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Figure 6.7: Counterfactual Exercise 3
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Figure 7.1: Comparison of Smoothed Capital and Shocks
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