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A Portmanteau Test for Serially Correlated Errors in Fixed

Effects Models

I. Introduction

Empirical researchers frequently use longitudinal data to estimate fixed effects models of the form

yit = ci + β′xit + εit, (1)

where i = 1, 2, ..., N indexes cross-sectional units (such as individuals, firms, states in a country, or

countries) and t = 1, 2, ..., T indexes time periods. In analyses of longitudinal microdata, T typically

is fairly small. The K explanatory variables in the xit vector are commonly assumed to be strictly

exogenous, while the “fixed effect” ci is a time-invariant unit-specific effect that may be correlated

with elements of xit, but not with the error term εit. If εit is i.i.d. N(0, σ2), the efficient estimator of

β is the “fixed effects estimator” that applies ordinary least squares (OLS) to the mean-differenced

regression of yit − ȳi on xit − x̄i where ȳi =
∑T

t=1 yit/T and x̄i =
∑T

t=1 xit/T . An alternative way

of computing the same estimator is to apply OLS to the regression of yit on xit and a vector of

unit-specific dummy variables.

Often, however, the error term is not i.i.d., but instead is serially correlated. This occurs in

longitudinal data for the same reasons it frequently occurs in single time series - mainly because

of left-out variables that evolve gradually over time. Quite strangely, researchers who learned

in introductory econometrics always to check for serial correlation when estimating time series

regressions completely forget this lesson when estimating fixed effects regressions with multiple time

series. When Kezdi (2002) scoured three recent years’ issues of the American Economic Review,

Journal of Political Economy, and Quarterly Journal of Economics, he found that, of the 42 articles
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that estimated fixed effects models, 36 paid no attention whatsoever to the serial correlation issue.

Similarly, Bertrand, Duflo, and Mullainathan (2004), who focused on the “differences in differences”

special case in which the explanatory variable of main interest is a binary policy variable, located

65 articles that appeared in the same journals plus three applied field journals over the 1990-2000

period, and they found that 60 of those 65 studies totally ignored serial correlation. The trouble with

this state of affairs is that ignoring serial correlation in the fixed effects context has the same poor

consequences that it has with a single time series: it leads to inconsistent estimation of standard

errors and hence to inappropriate hypothesis tests, and it also leads to inefficient estimation of the

regression coefficients.

We conjecture that practitioners’ inattention to serial correlation in fixed effects models is partly

due to a lack of simple diagnostics. Therefore, in the next section, we present a straightforward

portmanteau statistic for testing the null hypothesis of no serial correlation against a general al-

ternative that at least some of the autocorrelations are nonzero.1 Our test can be applied in the

fixed effects context much as the Box-Pierce statistic is with a single time series. When our test

rejects the null hypothesis, as it often will, practitioners should proceed in the same three ways

that they do in the time series context. First, they should consider whether the error term’s se-

rial correlation is a symptom of model misspecification.2 Second, at a minimum, they should use

a robust covariance matrix estimator to correct their estimated standard errors (Arellano, 1987;

Kezdi, 2002). Third, they should consider attempting more efficient coefficient estimation through

1Existing tests for serial correlation in fixed effects models are discussed below in Section III.
2For example, Solon (1984a), upon finding large positive autocorrelations at low orders and large negative ones

at high orders, recognized that he needed to add state-specific time trends to his model. Note that an advantage of

our test relative to existing alternatives is that it gives attention to higher-order autocorrelations, which sometimes

may help with identifying specification problems.
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a feasible generalized least squares procedure (Kiefer, 1980; Nickell, 1980; Bhargava, Franzini, and

Narendranathan, 1982; Solon, 1984b; Hansen, 2003).

II. A Portmanteau Test

We can rewrite the model in equation (1) in matrix notation as

yi = ci`T + Xiβ + εi, (2)

where `T is the T -dimensional column vector of ones, yi = [yi1 yi2 · · · yiT ]′, Xi = [xi1 xi2 · · · xiT ]′,

and εi = [εi1 εi2 · · · εiT ]′. Letting Σ = E(εiε
′
i), we wish to test the null hypothesis Σ = σ2IT

against the alternative that at least some off-diagonal elements of Σ are nonzero.3 To devise a

powerful test, we will start with a Lagrange multiplier (LM) approach under the assumption that

εi is normally distributed. It will turn out, though, that the resulting test has a straightforward

Wald test interpretation even when εi is nonnormal.

Because of the incidental parameters ci, one cannot construct an LM test based on the likelihood

function. Thus we construct a conditional likelihood function based on a sufficient statistic for the

individual specific effect ci (see Chamberlain, 1980, for this approach to the logit model for panel

data). When Σ = σ2IT , the sufficient statistic is ȳi. When Σ 6= σ2IT , however, the sufficient

statistic is (`′T Σ−1yi)/(`
′
T Σ−1`T ). Then the conditional log-likelihood function is given by

lnL = −N

2
ln|Σ| − N

2
ln(`′T Σ−1`T )

−1

2
tr

[(
Σ−1 − Σ−1`T `′T Σ−1

`′T Σ−1`T

)
N∑

i=1

εiε
′
i

]
. (3)

3Like the existing tests for serial correlation in fixed effects models, the initial version of our test assumes ho-

moskedasticity. At the end of this section, we describe a modification of our test that allows the variance of εit to

vary with t.
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Because of the mean-differencing transformation, the estimated covariance matrix is singular

and is of rank T − 1. Let ςk be the (T − 1)(T − 2)/2× 1 parameter vector obtained by stacking the

lower-diagonal elements of the (T − 1)× (T − 1) matrix that remains after deleting the kth column

and row of the covariance matrix Σ. Under the null hypothesis of no autocorrelation, ςk is a vector

of zeros. Let Dk,T denote the T 2 × (T − 1)(T − 2)/2 matrix such that Dk,T = ∂vec(Σ)/∂ς ′k where

vec is the vec operator that transforms a matrix into a column vector by stacking the columns of

the matrix. When k = 2 and T = 3, for example,

Dk,T =



0
0
1
0
0
0
1
0
0


.

The gradient of the conditional log-likelihood function with respect to ςk is

∇lnL =
∂L

∂ςk

=
∂vec(Σ)′

∂ςk

∂lnL

∂vec(Σ)

=
1

2

N∑
i=1

D′
k,T vec

[
−Σ−1 + Σ−1εiε

′
iΣ

−1 − Σ−1`T `′T Σ−1εiε
′
iΣ

−1

`′T Σ−1`T

− Σ−1εiε
′
iΣ

−1`T `′T Σ−1

`′T Σ−1`T

]

+
1

2

N∑
i=1

D′
k,T

[
Σ−1`T ⊗ Σ−1`T

`′T Σ−1`T

+ tr(Σ−1`T `′T Σ−1εiε
′
i)

Σ−1`T ⊗ Σ−1`T

(`′T Σ−1`T )2

]
.

When it is evaluated under the null hypothesis, it can be written as

∇lnL0 =
1

2σ̃4

N∑
i=1

D′
k,T vec(eie

′
i − σ̃2M)

=
1

2σ̃4

N∑
i=1

D′
k,T vec

(
eie

′
i −

e′iei

T − 1
M

)
, (4)

where ei = Mεi, M = IT − (1/T )`T `′T and σ̃2 =
∑N

i=1 e′iei/(N(T − 1)). Let

V = E

[
vec

(
eie

′
i −

e′iei

T − 1
M

)
vec

(
eie

′
i −

e′iei

T − 1
M

)′]
.

4



Then under the null hypothesis, the distribution of the infeasible LM statistic

N− 1
2

N∑
i=1

vec(eie
′
i − σ̃2M)′Dk,T [D′

k,T V Dk,T ]−1N− 1
2

N∑
i=1

D′
k,T vec(eie

′
i − σ̃2M)

converges to a χ2 distribution with degrees of freedom (T − 1)(T − 2)/2 as N →∞. Thus, our test

will be applicable in the typical panel data setting in which T may be small, but N is large.

To make the test operational we will proceed as follows: First, write the fixed effects estimator

β̂ as

β̂ = (
N∑

i=1

XiMX ′
i)
−1

N∑
i=1

XiMyi,

and let

êit = yit − ȳi − β̂′(xit − x̄i),

σ̂2 =
1

N(T − 1)

N∑
i=1

T∑
t=1

ê2
it.

Second, compute the feasible LM statistic:

LM = N− 1
2

N∑
i=1

vec(êiê
′
i − σ̂2M)′Dk,T [D′

k,T V̂ Dk,T ]−1N− 1
2

N∑
i=1

D′
k,T vec(êiê

′
i − σ̂2M)

where

V̂ =
1

N

N∑
i=1

vec

(
êiê

′
i −

ê′iêi

T − 1
M

)
vec

(
êiê

′
i −

ê′iêi

T − 1
M

)′

.

Theorem 1. Suppose that

(a) Xi, εi are iid and have finite fourth moments.

(b) E(εi|Xi, ci) = 0.

(c) rank[E(X ′
iMXi)] = dim(xit).

(d) T ≥ 3.
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(e) D′
k,T V Dk,T is nonsingular.

Then under the null hypothesis that Σ = σ2IT , the LM test statistic is asymptotically distributed

(as N →∞) as χ2((T − 1)(T − 2)/2).

Proof: Since the regressors Xi are strictly exogenous and β̂ is
√

N consistent, it follows that

N− 1
2

N∑
i=1

D′
k,T vec(êiê

′
i − σ̂2M)

= N− 1
2

N∑
i=1

D′
k,T vec

(
eie

′
i −

e′iei

T − 1
M

)
+ op(1)

d→ N(0, D′
k,T V Dk,T ). (5)

Since β̂ and σ̂2 are consistent, it follows that

D′
k,T V̂ Dk,T = D′

k,T V Dk,T + op(1). (6)

Combining (5) and (6) we obtain the desired result.

Although we have motivated our test as an LM test, inspection of the test statistic reveals that it

also is a Wald statistic that checks whether the sample autocovariances of the fixed effects residuals

êit are significantly different from their population counterparts under the null hypothesis. As

explained in Wooldridge (2002, pp. 270 and 274–275), autocovariances of the fixed effects residuals

consistently estimate those of eit = εit− ε̄i, not εit. As a result, under the null hypothesis that εit is

serially uncorrelated, the sample autocovariances of êit converge not to zero, but rather to −σ2/T .

Our test ascertains whether the discrepancies between the sample autocovariances and −σ̂2/T are

statistically significant. Equivalently, it tests whether the sample autocorrelations are significantly

different from −1/(T − 1).

Our test can be usefully modified in three ways. First, in certain circumstances, especially

when T is relatively large, it may be desirable to focus the test statistic on only the lower-order
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autocovariances. Including all the autocovariances may lead to a loss of power analogous to that

from including too many orders of autocorrelation when the Box-Pierce test is used with a single

time series.

Second, the test is readily adapted to the case of unbalanced panel data in which some obser-

vations are randomly missing. Let si = [si1, ..., siT ]′ denote the T -dimensional column vector of

selection indicators: sit = 1 if xit and yit are observed and sit = 0 otherwise. Then with some abuse

of notation the modified LM statistic can be written as

LM = N− 1
2

N∑
i=1

vec(êiê
′
i − σ̂2Mi)

′Dk,T [D′
k,T V̂ Dk,T ]−1N− 1

2

N∑
i=1

D′
k,T vec(êiê

′
i − σ̂2Mi),

where

Mi = IT − sis
′
i/(s

′
isi),

β̂ = (
N∑

i=1

X ′
iMiXi)

−1
N∑

i=1

X ′
iMiyi,

êi = Mi(yi −Xiβ̂),

σ̂2 =
1

N

N∑
i=1

1

s′isi − 1

T∑
t=1

sitê
2
it,

V̂ =
1

N

N∑
i=1

vec

(
êiê

′
i −

ê′iêi

s′isi − 1
Mi

)
vec

(
êiê

′
i −

ê′iêi

s′isi − 1
Mi

)′

.

Theorem 2. Suppose that

(a) Xi, εi, si are iid and have finite fourth moments.

(b) E(εi|Xi, ci, si) = 0.

(c) rank[E(X ′
iMiXi)] = dim(xit).

(d) P (s′isi ≥ 2) = 1 for all i and T ≥ 3.
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(e)

D′
k,T E

[
vec

(
eie

′
i −

e′iei

s′isi − 1
Mi

)
vec

(
eie

′
i −

e′iei

s′isi − 1
Mi

)′]
Dk,T

is nonsingular.

Then under the null hypothesis that E(εiε
′
i|si) = σ2IT , the modified LM test statistic is asymptot-

ically distributed (as N →∞) as χ2((T − 1)(T − 2)/2).

The proof of Theorem 2 is analogous to the proof of Theorem 1 and thus is omitted.

Third, the test can be modified to allow for time-varying variances. Using the fixed effects

residuals, estimate the possibly time-varying variances σ2
1, ..., σ

2
T by the method of moments based

on moment conditions

E[D′
T vec(Weie

′
iW −W )] = 0, (7)

where DT denotes the T 2 × T matrix such that DT = ∂vec(Σ)/∂[σ2
1, ..., σ

2
T ] and W = Σ−1 −

Σ−1`T `′T Σ−1/`′T Σ−1`T , and Σ is the diagonal matrix whose diagonal elements are given by σ2
1, ..., σ

2
T .

Define the approximate LM test statistic by

LM = N− 1
2

N∑
i=1

vec(Ŵ êiê
′
iŴ − Ŵ )Dk,T [D′

k,T V̂ Dk,T ]−1N− 1
2

N∑
i=1

D′
k,T vec(Ŵ êiê

′
iŴ − Ŵ ),

where Ŵ = Σ̂−1 − Σ̂−1`T `′T Σ̂−1/`′T Σ̂−1`T , V̂ = 1
N

∑N
i=1 v̂iv̂

′
i,

v̂i = [Ŵ ⊗ Ŵ − (Ŵ ⊗ Ŵ )DT (D′
T Ŵ ⊗ ŴDT )−1D′

T (Ŵ ⊗ Ŵ )]vec(êiê
′
i −MΣ̂M),

Σ̂ is the diagonal matrix whose diagonal elements are given by the method of moments estimator

σ̂2
1, ..., σ̂

2
T .

Theorem 3. In addition to Assumptions (a)–(d) in Theorem 1, suppose that
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(e’) D′
k,T E(viv

′
i)Dk,T is nonsingular where

vi = [W ⊗W − (W ⊗W )DT (D′
T W ⊗WDT )−1D′

T (W ⊗W )]vec(eie
′
i −MΣM).

(f) D′
T (W ⊗W )DT is nonsingular.

Then under the null hypothesis that Σ is a diagonal matrix, the approximate LM test statistic is

asymptotically distributed (as N →∞) as χ2((T − 1)(T − 2)/2).

The proof of Theorem 3 is provided in the technical appendix. Because the fixed effects estimator

is not a maximum likelihood estimator in the presence of time-varying variances, the test statistic

is not the exact LM statistic. If one is to obtain the exact LM statistic, one needs to estimate the

fixed effects generalized least squares estimator by

β̂GLS = (
N∑

i=1

X ′
iŴXi)

−1
N∑

i=1

X ′
iŴyi

and iterate method of moments estimation of σ2
1, ..., σ

2
T and fixed effects GLS estimation until β̂GLS

and σ̂2
1, ..., σ̂

2
T converge. Because the fixed effects estimator is consistent, however, the asymptotic

null distributions of the approximate and exact LM statistics are identical.

III. Monte Carlo Analyses

We have shown that, under the null hypothesis, our portmanteau test statistic converges to a

χ2((T − 1)(T − 2)/2) distribution as N → ∞, but how applicable is that distribution when N is

large but finite? To explore that question, we have conducted a Monte Carlo study in which the

data generating process is equation (1) with β = 0, scalar xit ∼ i.i.d.N(0, 1), εit ∼ i.i.d.N(0, 1).

The sample sizes considered are N = 50, 100, 250, 500 and T = 5, 8. The number of Monte Carlo

replications is set to 10000, and the deleted time period in the test statistic is k = 1.
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Table 1 reports the actual rejection frequencies when the nominal size is 5%. In the experiments

with T = 5, the empirical sizes come quite close to the nominal size. With T = 8, there are some

mild size distortions at smaller N . These distortions mostly disappear by the time N reaches 500.

We also have conducted a series of Monte Carlo analyses to investigate the power of our test

and compare it to the power of several other tests. Unlike our portmanteau test, most existing

tests focus on the specific alternative of nonzero first-order autocorelation. For example, Bhargava,

Franzini, and Narendranathan (1982), assuming normality of the error term, have developed a

Durbin-Watson test against the alternative that the error term follows a first-order autoregression.4

Wooldridge (2002, p. 275) has suggested applying OLS to the first-order autoregression of êit and

then performing a t-test of the hypothesis that the autoregressive coefficient equals −1/(T − 1).

He emphasized that the standard error estimate in the denominator of the t-ratio must be robust

to serial correlation. Another test, hinted at by Wooldridge (2002, pp. 282–283) and developed by

Drukker (2003), is based on the residuals from OLS estimation of the first difference of equation

(1). This test applies OLS to the first-order autoregression of the residuals and then performs a

t-test of the hypothesis that the autoregressive coefficient equals −1/2. Again, the standard error

estimate must be robust to serial correlation. Finally, Kezdi (2002) has proposed a White-type test

that checks whether a covariance matrix estimate robust to serial correlation differs significantly

from the conventional covariance matrix estimate that assumes no serial correlation.

The Monte Carlo analyses summarized in Table 2 compare the performance of all these tests in

experiments with T = 8, N = 500, and 10000 replications. The four rows of the table correspond to

experiments with four different data generating processes. The first (DGP1) is the same as in Table

4Baltagi and Wu (1999) have proposed a related test. Hansen’s (2003) analysis emphasizes feasible generalized

least squares estimation, but his methods can be used to formulate a test against the alternative of a pth-order

autoregression.
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1: the null hypothesis case of no serial correlation. In the second (DGP2), the error term εit follows

a first-order autoregression with autoregressive parameter 0.4. In the third (DGP3), εit follows a

second-order moving average process with first-order parameter 0.375 and second-order parameter

0.6. With these parameter values, the first- and second-order autocorrelations equal each other and

are approximately 0.4. In each of these three data generating processes, V ar(εit) = 1. In the fourth

(DGP4), εit follows the nonstationary process

εit = vit + αit

where vit and αi are i.i.d. normal with zero mean, Var(vit) = 0.5, and Var(αi) = 0.02. This ex-

periment represents the situation in which misspecification of the fixed effects model (namely, the

omission of the individual-specific linear time trends) may or may not be detected by serial cor-

relation diagnostics.5 The possibility of detection arises because the fixed effects residuals will be

positively autocorrelated at low orders, negatively autocorrelated at high orders, and heteroskedas-

tic.

Two general results from Table 2 are worth noting at the outset. First, as shown in the first

row, all the tests display an empirical size reasonably close to the nominal size of 0.05. Second,

as shown in the last column, the Kezdi test has no power against any of the departures from

the null hypothesis. This is by design: the regressor in our experiments is i.i.d. As a result,

the conventional covariance matrix estimator remains consistent despite serial correlation (and, in

DGP4, heteroskedasticity) of the error term. Kezdi’s test, which compares conventional and robust

covariance matrix estimates, discovers no problem. If consistency of standard error estimation were

the only concern, this would be a good outcome. As noted in Section I, however, there are two

5See Solon (1984a), Jacobson, LaLonde, and Sullivan (1993), Friedberg (1998), and Donohue and Levitt (2001)

for examples of longitudinal analyses involving individual- or state-specific time trends.
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other motives for serial correlation diagnostics: (1) to detect model misspecification and (2) to check

whether more efficient estimation may be possible through feasible generalized least squares. Our

experiments highlight the point that Kezdi’s test sometimes lacks power for these purposes.

The other lessons from Table 2 are specific to the particular data generating processes. Under

DGP2, the serial correlation of the error term is most pronounced at the first order. Because all of

the tests other than Kezdi’s are sensitive to this type of serial correlation, all of them show good

power.

Under DGP3, the first- and second-order autocorrelations both are around 0.4. Most of the tests

still are powerful, but not the Wooldridge-Drukker test based on the residuals from first-difference

estimation. That test checks an implication of the null hypothesis that the first-differenced error

term has a first-order autocorrelation of −1/2. The trouble is that the same implication applies

to any process for εit in which the first- and second-order autocorrelations are the same (but not

necessarily zero). By design, the MA(2) process in DGP3 has that property, so the Wooldridge-

Drukker test has no power in this case. The more general lesson is that the Wooldridge-Drukker

test will lack power for detecting serial correlation of εit whenever the first- and second-order

autocorrelations are similar.

Under DGP4, an important manifestation of the fixed effects model’s misspecification is negative

higher-order autocorrelations of the residuals. As a result, our portmanteau test tends to show

much better power than tests focused on first-order autocorrelation. The reason that our own

test specialized to first-order autocovariances is also relatively powerful is that it is sensitive to

the heteroskedasticity that causes the first-order autocovariances from different time periods to

differ from each other. This is true to varying but lesser degrees for the other tests, which also

assume homoskedasticity. If one wishes to use a test sensitive only to serial correlation and not to
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heteroskedasticity, one may use the variant of our test described at the end of Section II.

Although our own tests perform well in all of these experiments, it is obvious that our port-

manteau test will be suboptimal in certain circumstances. For example, when serial correlation

is most pronounced at the first order and T is sufficiently large, the portmanteau test that uses

all autocovariances must surely be less powerful than a test focused on first-order autocorrelation.

Our recommendation to practitioners is to use both a portmanteau test and a test for first-order

autocorrelation. We are convinced that following this advice would be a major improvement over

the typical current practice of ignoring serial correlation altogether.
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Technical Appendix

Jacobians of (7): The population and sample versions of the Jacobian of the moment condition (7)

are

G = −D′
T [(WMΣM ⊗ IT ) + (IT ⊗WMΣM)− IT 2 ]

×
[
IT 2 − Σ−1`T `′T ⊗ IT

`′T Σ−1`T

− IT ⊗ Σ−1`T `′T
`′T Σ−1`T

+
vec(Σ−1`T `′T Σ−1)

(`′T Σ−1`T )2
`′T 2

]
(Σ−1 ⊗ Σ−1)DT

= −D′
T (W ⊗W )DT , (8)

Ĝ = −D′
T [(ŴMΣ̂M ⊗ IT ) + (IT ⊗WMΣ̂M)− IT 2 ]

×
[
IT 2 − Σ̂−1`T `′T ⊗ IT

`′T Σ̂−1`T

− IT ⊗ Σ̂−1`T `′T
`′T Σ̂−1`T

+
vec(Σ̂−1`T `′T Σ̂−1)

(`′T Σ̂−1`T )2
`′T 2

]
(Σ̂−1 ⊗ Σ̂−1)DT

= −D′
T (Ŵ ⊗ Ŵ )DT (9)

respectively, and are obtained from repeated applications of Theorem 2 of Magnus and Neudecker (1999,

p.30).

Proof of Theorem 3: Because the fixed effects estimator is N1/2-consistent even when the variances

are time-varying and Xi is strictly exogenous, we can treat êi as ei in the following proof. Since

the moment condition (7) is the first order condition for the maximum likelihood estimator, the

minimum distance estimator is consistent and asymptotically normal. It follows from Theorem 2

of Magnus and Neudecker (1999, p.30), WMΣMW = W and (8) that

N− 1
2

N∑
i=1

D′
k,T vec(Ŵ êiê

′
iŴ − Ŵ )

= N− 1
2

N∑
i=1

D′
k,T vec(Weie

′
iW −W )

+
1

N

N∑
i=1

D′
k,T (IT ⊗Weie

′
i + Weie

′
i ⊗ IT − IT 2)N

1
2 vec(Ŵ −W ) + op(1)

= N− 1
2

N∑
i=1

D′
k,T (W ⊗W )vec(eie

′
i −MΣM)−D′

k,T (IT ⊗WMΣM + WMΣM ⊗ IT − IT 2)
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×
[
IT 2 − Σ−1`T `′T ⊗ IT

`′T Σ−1`T

− IT ⊗ Σ−1`T `′T
`′T Σ−1`T

+
vec(Σ−1`T `′T Σ−1)

(`′T Σ−1`T )2
`′T 2

]
(Σ−1 ⊗ Σ−1)

×DT G−1D′
T (W ⊗W )N− 1

2

N∑
i=1

vec(eie
′
i −MΣM) + op(1)

= D′
k,T [W ⊗W − (W ⊗W )DT (D′

T W ⊗WDT )−1D′
T (W ⊗W )]

×N− 1
2

N∑
i=1

vec(eie
′
i −MΣM) + op(1)

= N− 1
2

N∑
i=1

D′
k,T vi + op(1)

d→ N(0, D′
k,T E(viv

′
i)Dk,T ). (10)

Since V̂ = (1/N)
∑N

i=1 v̂iv̂
′
i

p→ E(viv
′
i) by the consistency of the fixed effects estimator β̂ and the

method of moments estimator σ̂2
1, ..., σ̂

2
T , this completes the proof of Theorem 3.
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Table 1.

Empirical Size of Portmanteau Tests for Serial Correlation

N T = 5 T = 8
50 0.048 0.030
100 0.052 0.064
250 0.057 0.067
500 0.053 0.053

Notes: The nominal size is 0.05.
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Table 2.

Empirical Power of Tests for Serial Correlation

Our Our test Bhargava Wooldridge Wooldridge- Kezdi
port- specialized et al. fixed Drukker
manteau to first-order effects first
test autocovariances differences

DGP1: no serial correlation 0.053 0.048 0.049 0.047 0.049 0.041
DGP2: AR(1) 1.000 1.000 1.000 1.000 1.000 0.042
DGP3: MA(2) 1.000 1.000 1.000 1.000 0.055 0.044
DGP4: individual-specific 1.000 0.997 0.256 0.198 0.824 0.045

trend

Notes: The nominal size is 0.05, T = 8, and N = 500. We implement the test of Bhargava et al.

with critical values based on an asymptotic normal approximation.
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