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ABSTRACT

Recently there has been a surge in econometric work focusing on estimating average treatment effects
under various sets of assumptions. One strand of this literature has developed methods for estimating
average treatment effects for a binary treatment under assumptions variously described as exogeneity,
unconfoundedness, or selection on observables. The implication of these assumptions is that systematic
(e.g., average or distributional) differences in outcomes between treated and control units with the same
values for the covariates are attributable to the treatment. Recent analysis has considered estimation and
inference for average treatment effects under weaker assumptions than typical of the earlier literature
by avoiding distributional and functional form assumptions. Various methods of semiparametric
estimation have been proposed, including estimating the unknown regression functions, matching,
methods using the propensity score such as weighting and blocking, and combinations of these
approaches. In this paper I review the state of this literature and discuss some of its unanswered
questions, focusing in particular on the practical implementation of these methods, the plausibility of
this exogeneity assumption in economic applications, the relative performance of the various
semiparametric estimators when the key assumptions (unconfoundedness and overlap) are satisfied,
alternative estimands such as quantile treatment effects, and alternate methods such as Bayesian
inference.
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1 Introduction

Since the work by Ashenfelter (1978), Card and Sullivan (1988), Heckman and Robb (1984),
Lalonde (1986) and others, there has been much interest in econometric methods for estimating
the effects of active labor market programs such as job search assistance or classroom teaching
programs. This interest has led to a surge in theoretical work focusing on estimating average
treatment effects under various sets of assumptions. See for general surveys of this literature
Angrist and Krueger (2000), Heckman, Lalonde and Smith (2000), and Blundell and Costa-Dias
(2002).

One strand of this literature has developed methods for estimating the average effect of
receiving or not receiving a binary treatment under the assumption that the treatment satisfies
some form of exogeneity. Different versions of this assumption are referred to as unconfounded-
ness (Rosenbaum and Rubin, 1983a), selection on observables (Barnow, Cain, and Goldberger,
1980; Fitzgerald, Gottschalk, and Moffitt, 1998), or conditional independence (Lechner, 1998).
In the remainder of this paper I will use the terms unconfoundedness and exogeneity inter-
changeably to denote the assumption that the receipt of treatment is independent of the poten-
tial outcomes with and without treatment once certain observable covariates are held constant.
The implication of these assumptions is that systematic (e.g., average or distributional) differ-
ences in outcomes between treated and control units with the same values for these covariates
are attributable to the treatment.

Much of the recent work, building on the statistical literature by Cochran (1968), Cochran
and Rubin (1973), Rubin (1973ab, 1977, 1978), Rosenbaum and Rubin (1983ab, 1984), Hol-
land (1986) and others, considers estimation and inference without distributional and functional
form assumptions. Hahn (1998) derived efficiency bounds assuming only unconfoundedness and
some regularity conditions and proposed an efficient estimator. Various alternative estimators
have been proposed given these conditions. These estimation methods can be grouped into five
categories: (i) methods based on estimating the unknown regression functions of the outcome
on the covariates (Hahn, 1998; Heckman, Ichimura, and Todd, 1997; Heckman, Ichimura, Smith
and Todd, 1998), Imbens, Newey and Ridder (2003), (ii) matching on covariates (Rosenbaum,
1995; Abadie and Imbens, 2002) (iii) methods based on the propensity score including blocking
(Rosenbaum and Rubin, 1984) and weighting (Hirano, Imbens, and Ridder, 2003), (iv) combi-
nations of these approaches, for example weighting and regression (Robins and Rotnizky, 1995)
or matching and regression (Abadie and Imbens, 2002), and (v) Bayesian methods, which have
found relatively little following since Rubin (1978). In this paper I will review the state of this
literature – with particular emphasis on implications for empirical work – and discuss some of
the remaining questions.

The organization of the paper is as follows. In Section 2 I will introduce the notation and
the assumptions used for identification. I will also discuss the difference between population
and sample average treatment effects. The recent econometric literature has largely focused on
estimation of the population average treatment effect and its counterpart for the subpopulation
of treated units. An alternative, following the early experimental literature, (Fisher, 1925,
Neyman, 1923), is to consider estimation of the average effect of the treatment for the units in
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the sample. Many of the estimators proposed can be interpreted as estimating either the average
treatment effect for the sample at hand, or the average treatment effect for the population.
Although the choice of estimand may not affect the form of the estimator, it has implications
for the efficiency bounds and for the form of estimators of the asymptotic variance; the variance
of estimators for the sample average treatment effect are generally smaller. In Section 2 I will
also discuss alternative estimands. Almost the entire literature has focused on average effects.
However in many cases such measures may mask important distributional changes. These can
be captured more easily by focusing on quantiles of the distributions of potential outcomes, in
the presence and absence of the treatment (Lehman, 1974; Docksum, 1974; Firpo, 2003).

In Section 3 I will discuss in more detail some of the recently proposed semiparametric
estimators for the average treatment effect, including those based on regression, matching and
the propensity score. I will focus particularly on implementation, and compare the different
decisions faced regarding smoothing parameters using the various estimators.

In Section 4 I will discuss estimation of the variances of these average treatment effect
estimators. For most of the estimators introduced in the recent literature, corresponding esti-
mators for the variance have also been proposed, typically requiring additional nonparametric
regression. In practice, however, researchers often rely on bootstrapping, although this method
has not been formally justified. In addition, if one is interested in the average treatment effect
for the sample, bootstrapping is clearly inappropriate. Here I discuss in more detail a simple
estimator for the variance for matching estimators, developed by Abadie and Imbens (2002),
that does not require additional nonparametric estimation.

Section 5 discusses different approaches to assessing the plausability of the two key assump-
tions, exogeneity or unconfoundedness and overlap in the covariate distributions. The first of
these assumptions is in principle untestable. Nevertheless a number of approaches have been
proposed that are useful for addressing its credibility (Heckman and Hotz, 1989; Rosenbaum,
1984). One may also wish to assess the responsiveness of the results to this assumption using
a sensitivity analysis (Rosenbaum and Rubin, 1983; Imbens, 2003), or, in its extreme form, a
bounds analysis (Manski, 1990, 1995). The second assumption is that there exists appropri-
ate overlap in the covariate distributions of the treated and control units. The assumption of
overlap in the treated and control subpopulations is effectively an assumption on the joint dis-
tribution of observable variables. However, as it only involves inequality restrictions, there are
no direct tests of this null. Nevertheless, in practice it is often very important to assess whether
there is sufficient overlap to draw credible inferences. Lacking overlap for the full sample, one
may wish to limit inferences to the average effect for the subset of the covariate space where
there exists overlap between the treated and control observations.

In Section 6 I discuss a number of implementations of average treatment effect estimators.
The first set of implementations involve comparisons of the non-experimental estimators to
results based on randomized experiments, allowing direct tests of the unconfoundedness as-
sumption. The second set consists of simulation studies, using data created either to fulfill the
unconfoundedness assumption or to fail it a known way, designed to compare the applicability
of the various treatment effect estimators in these diverse settings.

This survey will not address alternatives for estimating average treatment effects that do not
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rely on exogeneity assumptions. This includes approaches where selected observed covariates are
not adjusted for, such as instrumental variables analyses (Björklund and Moffit, 1987; Heckman,
1990; Imbens and Angrist, 1994; Angrist, Imbens and Rubin, 1996; Ichimura and Taber, 2000;
Abadie, 2002; Chernozhukov and Hansen, 2001). I will also not discuss methods exploiting the
presence of additional data, such as difference-in-differences in repeated cross-sections (Abadie,
2001; Blundell, Gosling, Ichimura, and Meghir, 2002; Athey and Imbens, 2002), and regression
discontinuity where the overlap assumption is violated (VanderKlaauw, 2002; Hahn, Todd and
VanderKlaauw, 2000; Angrist and Lavy, 1999; Black, 1999; Lee, 2001; Porter, 2003). I will also
limit the discussion to binary treatments, excluding models with static multi-valued treatments
as in Imbens (2000) and Lechner (2001) and models with dynamic treatment regimes as in Ham
and Lalonde (1996), Gill and Robins (2002) and Abbring and Van Den Berg (2003). Reviews
of many of these methods can be found in Angrist and Krueger (2000), Heckman, Lalonde and
Smith (2000), and Blundell and Costa-Dias (2002).

2 Estimands, Identification and Efficiency Bounds

2.1 Definitions

In this paper I will use the potential outcome notation that dates back to the analysis of
randomized experiments by Fisher (1935) and Neyman (1923). After being forcefully advocated
in a series of papers by Rubin (1974, 1977, 1978), this notation is now standard in the literature
on both experimental and non-experimental program evaluation.

We begin with N units, indexed by i = 1, . . . , N , viewed as drawn randomly from a large
population. Each unit is characterized by a pair of potential outcomes, Yi(0) for the outcome
under the control treatment and Yi(1) for the outcome under the active treatment. In addition,
each unit has a vector of characteristics, referred to as covariates, pretreatment variables or
exogenous variables, and denoted by Xi.1 It is important that these variables are not affected
by the treatment. Often they take their values prior to the unit being exposed to the treatment,
although this is not sufficient for the conditions they need to satisfy. Importantly, this vector
of covariates can include lagged outcomes. Finally, each unit is exposed to a single treatment;
Wi = 0 if unit i receives the control treatment and Wi = 1 if unit i receives the active treatment.
We therefore observe for each unit the triple (Wi, Yi,Xi), where Yi is the realized outcome:

Yi ≡ Yi(Wi) =
{
Yi(0) if Wi = 0,
Yi(1) if Wi = 1.

Distributions of (W,Y,X) refer to the distribution induced by the random sampling from the
superpopulation.

Several additional pieces of notation will be useful in the remainder of the paper. First,
the propensity score (Rosenbaum and Rubin, 1983a) is defined as the conditional probability

1Calling such variables exogenous is somewhat at odds with several formal definitions of exogeneity (e.g.,
Engle, Hendry and Richard, 1974), as knowledge of their distribution can be informative about the average
treatment effects. It does, however, agree with common usage. See for example, Manski, Sandefur, McLanahan,
and Powers (1992, p. 28). See also Frölich (2002) and Hirano, Imbens and Ridder (2003) for additional discussion.
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of receiving the treatment,

e(x) ≡ Pr(W = 1|X = x) = E[W |X = x].

Also, define, for w ∈ {0, 1}, the two conditional regression and variance functions:

µw(x) ≡ E[Y (w)|X = x], σ2
w(x) ≡ V(Y (w)|X = x).

Finally, let ρ(x) be the conditional correlation coefficient of Y (0) and Y (1) given X = x. As
one never observes Yi(0) and Yi(1) for the same unit i, the data only contain indirect and very
limited information about this correlation coefficient.2

2.2 Estimands: Average Treatment Effects

In this discussion I will primarily focus on a number of average treatment effects (ATEs). This
is less limiting than it may seem, however, as this includes averages of arbitrary transformations
of the original outcomes. Later I will return briefly to alternative estimands that can not be
written in this form.

The first estimand, and the most commonly studied in the econometric literature, is the
population average treatment effect (PATE):

τP = E[Y (1) − Y (0)].

Alternatively we may be interested in the population average treatment effect for the treated
(PATT, e.g., Rubin, 1977; Heckman and Robb, 1984):

τP
T = E[Y (1) − Y (0)|W = 1].

Heckman and Robb (1984) and Heckman, Ichimura and Todd (1997) argue that the subpop-
ulation of treated units is often of more interest than the overall population in the context of
narrowly targeted programs. For example, if a program is specifically directed at individuals
disadvantaged in the labor market, there is often little interest in the effect of such a program
on individuals with strong labor market attachment.

I will also look at sample average versions of these two population measures. These esti-
mands focus on the average of the treatment effect in the specific sample, rather than in the
population at large. These include, the sample average treatment effect (SATE):

τS =
1
N

N∑

i=1

(
Yi(1) − Yi(0)

)
,

and the sample average treatment effect for the treated (SATT):

τS
T =

1
NT

∑

i:Wi=1

(
Yi(1) − Yi(0)

)
,

2As Heckman, Smith, and Clemens (1997) point out, however, one can draw some limited inferences about
the correlation coefficient from the shape of the two marginal distributions of Y (0) and Y (1).
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where NT =
∑N

i=1Wi is the number of treated units. The sample average treatment effects have
received little attention in the recent econometric literature, although it has a long tradition in
the analysis of randomized experiments (e.g., Neyman, 1923). Without further assumptions,
the sample contains no information about the population ATE beyond the sample ATE. To see
this, consider the case where we observe the sample (Yi(0), Yi(1),Wi,Xi), i = 1, . . . , N ; that is,
we observe for each unit both potential outcomes. In that case the sample average treatment
effect, τS =

∑
i(Yi(1)−Yi(0))/N , can be estimated without error. Obviously the best estimator

for the population average effect, τP , is τS . However, we cannot estimate τP without error
even with a sample where all potential outcomes are observed, because we lack the potential
outcomes for those population members not included in the sample. This simple argument
has two implications. First, one can estimate the sample ATE at least as accurately as the
population ATE, and typically more so. In fact, the difference between the two variances is
the variance of the treatment effect, which is zero only when the treatment effect is constant.
Second, a good estimator for one average treatment effect is automatically a good estimator for
the other. One can therefore interpret many of the estimators for PATE or PATT as estimators
for SATE or SATT, with lower implied standard errors as discussed in more detail in Section
2.5.

A third pair of estimands combines features of the other two. These estimands, introduced
in Abadie and Imbens (2002), focus on the average treatment effect conditional on the sample
distribution of the covariates. Formally, the conditional average treatment effect (CATE) is
defined as:

τ(X) =
1
N

N∑

i=1

E
[
Yi(1) − Yi(0)

∣∣∣Xi

]
,

and the sample average treatment effect for the treated (CATT):

τ(X)T =
1
NT

∑

i:Wi=1

E
[
Yi(1) − Yi(0)

∣∣∣Xi

]
.

Using the same argument as in the previous paragraph, it can be shown that one can estimate
CATE and CATT more accurately than PATE and PATT.

The difference in asymptotic variances forces the researcher to take a stance on what the
quantity of interest is. For example, in a specific application one can legitimately reach the
conclusion that there is no evidence, at the 95% level, that the PATE is different from zero,
whereas there may be compelling evidence that the SATE and CATE are positive. Typically
researchers in econometrics have focused on the PATE, but one can argue that it is of interest,
when one cannot ascertain the sign of the population-level effect, to know whether one can
determine the sign of the effect for the sample. Especially in cases, which are all too common,
where it is not clear whether the sample is representative of the population of interest, results
for the sample at hand may be of considerable interest.

2.3 Identification

We make the following key assumption about the treatment assignment:

[5]



Assumption 2.1 (Unconfoundedness)

(
Y (0), Y (1)

)
⊥ W

∣∣∣ X.

This assumption was first articulated in this form in Rosenbaum and Rubin (1983) who refer to
it as ”ignorable treatment assignment.” Lechner (1999) refers to this as the “conditional inde-
pendence assumption,” Following work by Barnow, Cain and Goldberger (1971) in a regression
setting it is also referred to as “selection on observables.”

To see the link with standard exogeneity assumptions, suppose that the treatment effect is
constant: τ = Yi(1) − Yi(0) for all i. Suppose also that the control outcome is linear in Xi:

Yi(0) = α+X ′
iβ + εi,

with εi ⊥ Xi. Then we can write

Yi = α+ τ ·Wi +X ′
iβ + εi.

Given the constant treatment effect assumption, unconfoundedness is equivalent to indepen-
dence of Wi and εi conditional on Xi, which would also capture the idea that Wi is exogenous.
Without this constant treatment effect assumption, however, unconfoundedness does not imply
a linear relation with (mean-)independent errors.

Next, we make a second assumption regarding the joint distribution of treatments and
covariates:

Assumption 2.2 (Overlap)

0 < Pr(W = 1|X) < 1.

For many of the formal results one will also need smoothness assumptions on the conditional
regression functions and the propensity score (µw(x) and e(x)), and moment conditions on
Y (w). I will not discuss these regularity conditions here. Details can be found in the references
for the specific estimators given below.

There has been some controversy about the plausibility of Assumptions 2.1 and 2.2 in
economic settings and thus the relevance of the econometric literature that focuses on estimation
and inference under these conditions for empirical work. In this debate it has been argued
that agents’ optimizing behavior precludes their choices being independent of the potential
outcomes, whether or not conditional on covariates. This seems an unduly narrow view. In
response I will offer three arguments for considering these assumptions. The first is a statistical,
data descriptive motivation. A natural starting point in the evaluation of any program is
a comparison of average outcomes for treated and control units. A logical next step is to
adjust any difference in average outcomes for differences in exogenous background characteristics
(exogenous in the sense of not being affected by the treatment). Such an analysis may not lead to
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the final word on the efficacy of the treatment, but its absence would seem difficult to rationalize
in a serious attempt to understand the evidence regarding the effect of the treatment.

A second argument is that almost any evaluation of a treatment involves comparisons of
units who received the treatment with units who did not. The question is typically not whether
such a comparison should be made, but rather which units should be compared, that is, which
units best represent the treated units had they not been treated. Economic theory can help in
classifying variables into those that need to be adjusted for versus those that do not, on the
basis of their role in the decision process (e.g., whether they enter the utility function or the
constraints). Given that, the unconfoundedness assumption merely asserts that all variables
that need to be adjusted for are observed by the researcher. This is an empirical question, and
not one that should be controversial as a general principle. It is clear that settings where some
of these covariates are not observed will require strong assumptions to allow for identification.
Such assumptions include instrumental variables settings where some covariates are assumed
to be independent of the potential outcomes. Absent those assumptions, typically only bounds
can be identified (e.g., Manski, 1990, 1995).

A third, related, argument is that even when agents optimally choose their treatment, two
agents with the same values for observed characteristics may differ in their treatment choices
without invalidating the unconfoundedness assumption if the difference in their choices is driven
by differencese in unobserved characteristics that are themselves unrelated to the outcomes of
interest. The plausability of this will depend critically on the exact nature of the optimization
process faced by the agents. In particular it may be important that the objective of the decision
maker is distinct from the outcome that is of interest to the evaluator. For example, suppose
we are interested in estimating the average effect of a binary input (e.g., a new technology)
on a firm’s output.3 Assume production is a stochastic function of this input because other
inputs (e.g., weather) are not under the firm’s control, or Yi = g(W, εi). Suppose that profits
are output minus costs, πi = Yi − ci ·Wi, and also that a firm chooses a production level to
maximize expected profits, equal to output minus costs:

Wi = arg max
w

E[π(w)|ci] = arg max
w

E[g(w, εi) − ci · w|ci],

implying

Wi = 1{E[g(1, ε) − g(0, εi) ≥ ci|ci]} = h(ci).

If unobserved marginal costs ci differ between firms, and these marginal costs are independent
of the errors εi in the firms’ forecast of production given inputs, then unconfoundedness will
hold as

(g(0, ε), g(εi)) ⊥ ci.

Note that under the same assumptions one cannot necessarily identify the effect of the input
on profits since (πi(0), π(1)) are not independent of ci. See for a related discussion, in the

3If we are interested in the average effect for firms who did adopt the new technology, PATT, the following
assumptions can be weakened slightly.
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context of instrumental variables, Athey and Stern (1998). Heckman, Lalonde and Smith
(2000) discuss alternative models that justify unconfoundedness. In these models individuals
do attempt to optimize the same outcome that is the variable of interest to the evaluator. They
show that selection on observables assumptions can be justified by imposing restrictions on the
way individuals form their expectations about the unknown potential outcomes. In general,
therefore, a researcher may wish to, either as a final analysis or as part of a larger investigation,
consider estimates based on the unconfoundedness assumption.

Given the two key assumptions, unconfoundedness and overlap, one can identify the average
treatment effects. The key insight is that given unconfoundedness, the following equalities holds:

µw(x) = E[Y (w)|X = x] = E[Y (w)|W = w,X = x] = E[Y |W = w,X = x],

and µw(x) is identified. Thus one can estimate the average treatment effect τ by first estimating
the average treatment effect for a subpopulation with covariates X = x:

τ(x) ≡ E[Y (1) − Y (0)|X = x] = E[Y (1)|X = x] − E[Y (0)|X = x]

= E[Y (1)|X = x,W = 1] − E[Y (0)|X = x,W = 0]

= E[Y |X,W = 1] − E[Y |X,W = 0].

To make this feasible, one needs to be able to estimate the expectations E[Y |X = x,W = w]
for all values of w and x in the support of these variables. This is where the second assumption
enters. If the overlap assumption is violated at X = x, it would be infeasible to estimate both
E[Y |X = x,W = 1] and E[Y |X = x,W = 0] because at those values of x there would be either
only treated or only control units.

Some researchers use weaker versions of the unconfoundedness assumption (e.g., Heckman,
Ichimura, and Todd, 1998). If the interest is in the population average treatment effect, it is
sufficient to assume that

Assumption 2.3 (Mean Independence)

E[Y (w)|W,X] = E[Y (w)|X],

for w = 0, 1.

Although this assumption is unquestionably weaker, in practice it is rare that a convincing case
is made for the weaker assumption 2.3 without the case being equally strong for the stronger
version 2.1. The reason is that the weaker assumption is intrinsically tied to functional form
assumptions, and as a result one cannot identify average effects on transformations of the
original outcome (e.g., logarithms) without the strong assumption.

One can weaken the unconfoundedness assumption in a different direction if one is only
interested in the average effect for the treated (e.g., Heckman, Ichimura and Todd, 1997). In
that case one need only assume
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Assumption 2.4 (Unconfoundedness for Controls)

Y (0) ⊥ W
∣∣∣ X.

and the weaker overlap assumption

Assumption 2.5 (Weak Overlap)

Pr(W = 1|X) < 1.

These two assumptions are sufficient for identification of PATT and SATT because moments
of the distribution of Y (1) for the treated are directly estimable.

An important result building on the unconfoundedness assumption shows that one need not
condition simultaneously on all covariates. The following result shows that all biases due to
observable covariates can be removed by conditioning solely on the propensity score:

Lemma 2.1 (Unconfoundedness given the Propensity Score, Rosenbaum and Ru-

bin, 1983a)

Suppose that Assumption 2.1 holds. Then:(
Y (0), Y (1)

)
⊥ W

∣∣∣ e(X).

Proof: We will show that Pr(W = 1|Y (0), Y (1), e(X)) = Pr(W = 1|e(X)) = e(X), implying
independence of (Y (0), Y (1)) and W conditional on e(X). First, note that

Pr(W = 1|Y (0), Y (1), e(X)) = E[W = 1|Y (0), Y (1), e(X)]

= E
[
E[W |Y (0), Y (1), e(X),X]

∣∣∣Y (0), Y (1), e(X)
]

= E
[
E[W |Y (0), Y (1),X]

∣∣∣Y (0), Y (1), e(X)
]

= E
[
E[W |X]

∣∣∣Y (0), Y (1), e(X)
]

= E [e(X)|Y (0), Y (1), e(X)] = e(X),

where the last equality follows from unconfoundedness. The same argument shows that

Pr(W = 1|e(X)) = E[W = 1|e(X)] = E
[
E[W = 1|X]

∣∣∣e(X)
]

= E [e(X)|e(X)] = e(X).

�
Extensions of this result to the multivalued treatment case are given in Imbens (2000) and

Lechner (2001). To provide intuition for the Rosenbaum-Rubin result, recall the textbook
formula for omitted variable bias in the linear regression model. Suppose we have a regression
model with two regressors:

Yi = β0 + β1 ·Wi + β′2Xi + εi.

The bias of omitting X from the regression on the coefficient on W is equal to β′2δ, where δ is
the vector of coefficients on W in regressions of the elements of X on W . By conditioning on
the propensity score we remove the correlation between X and W because X ⊥W |e(X). Hence
omitting X no longer leads to any bias (although it may still lead to some efficiency loss).
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2.4 Distributional and Quantile Treatment Effects

Most of the literature has focused on estimating average treatment effects. There are, how-
ever, many cases where one may wish to estimate other features of the joint distribution of
outcomes. Lehman (1974) and Doksum (1974) introduce quantile treatment effects as the
difference in quantiles between the two marginal treated and control outcome distributions.4

Gelbach and Hoynes (2002) estimate these in a randomized evaluation of a social program.
In instrumental variables settings Abadie, Angrist and Imbens (2002) and Chernozhukov and
Hansen (2001) investigate estimation of differences in quantiles of the two marginal potential
outcome distributions, either for the entire population or for subpopulations.

Assumptions 2.1 and 2.2 also allow for identification of the full marginal distributions of
Y (0) and Y (1). To see this, first note that we can identify not just the average treatment
effect τ(x), but also the averages of the two potential outcomes, µ0(x) and µ0(x). Second, by
these assumptions we can similarly identify the average of any function of the basic outcome,
E[g(Y (0))] and E[g(Y (1))]. Hence we can identify the average value of the indicator1 1{Y (0) ≤
y} and 1{Y (1) ≤ y}, and thus the distribution function of the potential outcomes at y. Given
identification of the two distribution functions, it is clear that one can also identify quantiles of
the two potential outcome distributions. Firpo (2002) develops an estimator for such quantiles
under unconfoundedness.

2.5 Efficiency Bounds and Asymptotic Variances for Population Average
Treatment Effects

Next I review some results on the effiency bound for estimators of the average treatment effects
τP , and τP

T . This requires both the assumptions of unconfoundedness and overlap (Assumption
2.1 and 2.2) and some smoothness assumptions on the conditional expectations of potential
outcomes and the treatment indicator (for details, see Hahn, 1998). Formally, Hahn (1998)
shows that for any regular estimator for τP , denoted by τ̂ , with

√
N · (τ̂ − τP ) d−→ N (0, V ),

we can show that

V ≥ E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

+ (τ(X) − τP )2
]
.

Knowing the propensity score does not affect this efficiency bound.
Hahn also shows that asymptotically linear estimators exist with such variance, and hence

such efficient estimators can be approximated as

τ̂ = τP +
1
N

N∑

i=1

ψ(Yi,Wi,Xi, τ
P ) + op(N−1/2),

4In contrast, Heckman, Smith and Clemens (1997), focus on estimation of bounds on the joint distribution
of (Y (0), Y (1)). One cannot without strong untestable assumptions identify the full joint distribution, since one
can never observe both potential outcomes simultaneously, but one can nevertheless derive bounds on functions
of the two distributions.
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where ψ(·) is the efficient score:

ψ(y,w, x, τP ) =
(
wy

e(x)
− (1 − w)y

1 − e(x)

)
− τP −

(
µ1(x)
e(x)

+
µ0(x)

1 − e(x)

)
· (w − e(x)). (2.1)

Hahn (1998) also reports the efficiency bound for τP
T , both with and without knowledge of

the propensity score. For τP
T the efficiency bound given knowledge of e(X) is

E
[
e(X)Var(Y (1)|X)

E[e(X)]2
+
e(X)2Var(Y (0)|X)
E[e(X)]2(1 − e(X))

+ (τ(X) − τP
T )2

e(X)2

E[e(X)]2

]
.

If the propensity score is not known, unlike the bound for τP , the efficiency bound for τP
T is

affected. For τP
T the bound without knowledge of the propensity score is

E
[
e(X)Var(Y (1)|X)

E[e(X)]2
+
e(X)2Var(Y (0)|X)
E[e(X)]2(1 − e(X))

+ (τ(X) − τP
T )2

e(X)
E[e(X)]2

]
,

which is higher by

E
[
(τ(X) − τP

T )2 · e(X)(1 − e(X))
E[e(X)]2

]
.

The intuition that knowledge of the propensity score affects the efficiency bound for the average
effect for the treated (PATT), but not for the overall average effect (PATE) goes as follows.
Both are weighted averages of the treatment effect conditional on the covariates, τ(x). For
PATE the weight is proportional to the density of the covariates, whereas for PATT the weight
is proportional to the produce of the density of the covariates and the propensity score (e.g.,
Hirano, Imbens, and Ridder, 2002). Knowledge of the propensity score implies one does not
need to estimate the weight function and thus improves precision.

2.6 Efficiency Bounds and Asymptotic Variances for Conditional and Sample
Average Treatment Effects

Consider the leading term of the efficient estimator for PATE, τ̃ = τP + ψ̄, where ψ̄ =
(1/N)

∑
ψ(Yi,Wi,Xi, τ

P ), and let us view this as an estimator for the sample average treatment
effect, SATE, instead of as an estimator for the population average, PATE. I will show that,
first, this estimator is unbiased, conditional on the covariates and the potential outcomes, and
second, that it has lower variance as an estimator of SATE than when viewed as an estimator
of PATE. To see that the estimator is unbiased note that with the efficient score ψ(y,w, x, τ)
given in (),

E[ψ(Y,W,X, τP |Y (0), Y (1),X)] = Y (1) − Y (0) − τP ,

and thus

E[τ̃ |(Yi(0), Yi(1),Xi)Ni=1]E[ψ̄] + τP =
1
N

N∑

i=1

(Yi(1) − Yi(0)) .
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Hence

E[τ̃ − τS |(Yi(0), Yi(1),Xi)Ni=1] =
1
N

N∑

i=1

(Yi(1) − Yi(0)) − τS = 0.

Next, consider the normalized variance:

V P = N · E
[(
τ̃ − τS

)2
]

= N · E
[(
ψ̄ + τP − τS

)2
]
.

Note that the variance of τ̃ as an estimator of τP is, using the fact that ψ(·) is the efficient
score,

N · E
[
(τ̃ − τP )2] = N · E[(ψ̄)2

]
= N · E

[(
ψ̄(Y,W,X, τP ) + (τP − τS) − (τP − τS)

)2
]
.

Because

E
[(
ψ̄(Y,W,X, τP ) + (τP − τS)

)
·
(
τP − τS

)]
= 0,

as follows by using iterated expectations, first conditioning on X, Y (0) and Y (1), it follows
that

N · E
[
(τ̃ − τP )2

]
= N · E

[
(τ̃ − τS)2

]
+N · E

[
(τS − τP )2

]

= N · E
[
(τ̃ − τS)2

]
+N · E

[
(Y (1) − Y (0) − τP )2

]
.

Thus, the same statistic that as an estimator of the population average treatment effect τP has
a normalized variance equal to V P , as an estimator of τS, has the property:

√
N(τ̃ − τS) d−→ N (0, V S),

with

V S = V P − E[Y (1) − Y (0) − τP )2].

As an estimator of τS the variance of τ̂P is lower than its variance as an estimator of τP , with
the difference equal to the variance of the treatment effect.

The same line of reasoning can be used to show that
√
N(τ̃ − τ(X) d−→ N (0, V τ(X)),

with

V τ(X) = V P − E[τ(X) − τP )2],

and

V S = V τ(X) + E[(Y (1) − Y (0) − τ(X))2].
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An example to illustrate these point may be helpful. Suppose that X ∈ {0, 1}, with Pr(X =
1) = px, and Pr(W = 1|X) = 1/2. Suppose that τ(x) = 2x− 1, and σ2

w(x) is very small for all
x and w. In that case the average treatment effect is px · 1 + (1 − px) · (−1) = 2px − 1. The
efficient estimator in this case, assuming only unconfoundedness, requires separately estimating
τ(x) for x = 0 and 1, and averaging these two by the empirical distribution of X. The variance
of

√
N(τ̂ −τS) will be small because σ2

w(x) is small, and following the math above, the variance
of

√
N(τ − τP ) will be larger by 4px(1 − px). If px differs from 1/2, and so PATE differs from

zero, the confidence interval for PATE in small samples will tend to include zero. In contrast,
with σ2

w(x) small enough and N odd (and both N0 and N1 at least equal to 2 so that one
can estimate σ2

w(x)), the standard confidence interval for τS will exclude zero with probability
one. The intuition is that τP is much more uncertain because it depends on the distribution
of the covariates, whereas the uncertainty about τS depends only on the conditional outcome
variances and the propensity score.

The difference in asymptotic variances riases the issue of how to estimate the variance of
the sample average treatment effect. Specific estimators for the variance will be discussed in
Section 4, but here I will introduce some general issues surrounding their estimation. Because
the two potential outcomes for the same unit are never observed simultaneously, one cannot
directy infer the variance of the treatment effect. This is the same issue as the non-identification
of the correlation coefficient. One can, however, estimate a lower bound on the variance of the
treatment effect, leading to an upper bound on the variance of the estimator of the SATE,
which is equal to V τ(X). Decomposing the variance as

E
[
(Y (1) − Y (0) − τP )2

]
= V (E[Y (1) − Y (0) − τ |X]) + E [V(Y (1) − Y (0) − τ |X)] ,

= V (τ(X) − τ) + E
[
σ2

1(X) + σ2
0(X) − 2ρ(X)σ0(X)σ1(X)

]
,

we can consistently estimate the first term, but generally say little about the second other than
that it is nonnegative. One can therefore bound the variance of τ̃ − τS from above by

E[ψ(Y,W,X, τP )2] − E[(Y (1) − Y (0)) − τP )2]

≤ E[ψ(Y,W,X, τP )2] − E[(τ(X) − τP )2] = E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

]
= V τ(X),

and use this upper-bound variance estimate to construct confidence intervals that are guaran-
teed to be conservative. Note the connection with Neyman’s (1923) discussion of conservative
confidence intervals for average treatment effects in experimental settings. It should be noted
that the difference between these variances is of the same order as the variance itself, and not a
small sample issue. Only when the treatment effect is known to be constant can it be ignored.
Depending on the correlation between the outcomes and the covariates, this may change the
standard errors considerably. It should also be noted that bootstrapping methods in general
lead to estimation of E[(τ̃ − τP )2], rather than E[(τ̃ − τ(X))2], which are generally too big.

3 Estimating Average Treatment Effects

There have been a number of statistics proposed for estimating the average treatment effects
PATE and PATT, all of which are also appropriate estimators of the sample versions SATE and
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SATT and the conditional average versions CATE and CATT. (The implications of focusing
on SATE or CATE rather than PATE only arise when estimating the variance, and so I will
return to this distinction in Section 4. In the current section all discussion applies equally to all
estimands.) Here I review some of these estimators, organized into five groups. The first set,
referred to as “regression” estimators, consists of measures that rely on consistent estimation
of the two conditional regression functions, µ0(x) and µ1(x). These estimators differ in the
way that they estimate these elements, but all rely on estimators that are consistent for these
regression functions. The second set of “matching” estimators compare outcomes across pairs
of matched treated and control units, with each unit matched to a fixed number of observations
with the opposite treatment. The bias of these within-pair estimates of the average treatment
effect disappears as the sample size increases, although their variance does not go to zero since
the number of matches remains fixed. The third set of estimators is characterized by a central
role for the propensity score. Four leading approaches in this set are weighting by the inverse
of the propensity score, blocking on the propensity score, regression on the propensity score,
and matching on the propensity score. The fourth category consists of estimators that rely
on a combination of these methods, typically combining regression with one of its alternatives.
The motivation for these combinations is that although in principle any one of these methods
can remove all of the bias associated with the covariates, combining two may lead to more
robust inference. For example, matching leads to consistent estimators for average treatment
effects under weak conditions, so matching and regression can combine some of the desirable
variance properties of regression with the consistency of matching. Similarly a combination
of weighting and regression, using parametric models for both the propensity score and the
regression functions, can lead to an estimator that is consistent even if only one of the models
is correctly specified (“doubly robust” in the terminology of Robins and Ritov, 1997). Finally,
in the fifth group I will discuss Bayesian approaches to inference for average treatment effects.

Only some of the estimators discussed below achieve the semiparametric efficiency bound,
yet this does not mean that these should necessarily to be preferred in practice – that is, in
finite samples. More generally, the debate concerning the practical advantages of the various
estimators, and the settings in which some are more attractive than others, is still ongoing,
with no firm conclusions yet reached. Although all estimators, either implicitly or explicitly,
estimate the two unknown regression functions or the propensity score, they do so in very
different ways. Differences in smoothness of the regression function or the propensity score, or
relative discreteness of the covariates in specific applications, may affect the relative desirability
of the estimators.

In addition, even the appropriateness of the standard asymptotic distributions as a guide
towards finite sample performance is still debated (see, for example, Robins and Ritov, 1997,
and Angrist and Hahn, 2001). A key feature that casts doubt on the relevance of the asymptotic
distributions is that the root-N consistency is obtained by averaging a nonparametric estimator
of a regression function which itself has a slow nonparametric convergence rate over the empirical
distribution of its argument. The dimension of this argument affects the rate of convergence for
the unknown function (the regression function µw(x) or the propensity score e(x)), but not the
rate of convergence for the estimator of the paramater of interest, the average treatment effect.
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In practice, however, the resulting approximations of the ATE can be poor if the argument is of
high dimension, in which case information about the propensity score is of particular relevance.
Although Hahn (1998) showed that, for the standard asymptotic distributions knowledge of
the propensity score is irrelevant (and conditioning only on the propensity score is in fact
less efficient than conditioning on all covariates), conditioning on the propensity score involves
only one–dimensional nonparametric regression, suggesting that the asymptotic approximations
may be more accurate. In practice, knowledge of the propensity score may therefore be very
informative.

Another issue that is important in judging the various estimators is how well they account
for non– or limited-overlap in the covariate distributions of the two treatment groups. If there
are regions in the covariate space with little overlap (the propensity score close to zero or one),
average treatment effect estimators should have relatively high variance. However, this is not
always the case for estimators based on tightly parametrized models for the regression functions,
where outliers in covariate values can lead to spurious precision for regression parameters.
Regions of limited overlap can also be difficult to detect directly in high-dimensional covariate
spaces as it can be masked for any single variable.

3.1 Regression

The first class of estimators relies on consistent estimation of µw(x) for w = 0, 1. Given µ̂w(x)
for these regression functions, the PATE, SATE and CATE are estimated by averaging their
difference over the empirical distribution of the covariates:

τ̂reg =
1
N

N∑

i=1

(
µ̂1(Xi) − µ̂0(Xi)

)
. (3.2)

In most implementations the average of the predicted treated outcome for the treated is equal
to the average observed outcome for the treated (so that

∑
iWi · µ̂1(Xi) =

∑
iWi · Yi), and

similarly for the controls, implying that τ̂reg can also be written as

1
N

N∑

i=1

Wi ·
(
Yi − µ̂0(Xi)

)
+ (1 −Wi) ·

(
µ̂1(Xi) − Yi

)
.

For the PATT and SATT typically only the control regression function is estimated; we only
need predict the outcome under the control treatment for the treated units. The estimator
then averages the difference between the actual outcomes for the treated and their estimated
outcomes under the control:

τ̂reg,T =
1
NT

N∑

i=1

Wi · (Yi − µ̂0(Xi)) . (3.3)

Early estimators for µw(x) included parametric regression functions, for example linear
regression (e.g., Rubin, 1977). Such parametric alternatives include least squares estimators
with the regression function specified as

µw(x) = β′x+ τ · w,

[15]



in which case the average treatment effect is equal to τ . In this case one can estimate τ directly
by least squares estimation using the regression function

Yi = α+ β′Xi + τ ·Wi + εi.

More generally, one can specify separate regression functions for the two regimes:

µw(x) = β′wx.

In that case one estimate the two regression functions separately on the two subsamples and
then substitute the predicted values in (3.2). These simple regression estimators may be very
sensitive to differences in the covariate distributions for treated and control units. The reason
is that in that case the regression estimators rely heavily on extrapolation. To see this, note
that the regression function for the controls, µ0(x) is used to predict missing outcomes for the
treated. Hence on average one wishes to use predict the control outcome at X̄T , the average
covariate value for the treated. With a linear regression function, the average prediction can
be written as ȲC + β̂′(X̄T − X̄C). With X̄T and the average covariate value for the controls,
X̄C very close, the precise specification of the regression function will not matter very much for
the average prediction. However, with the two averages very different, the prediction based on
a linear regression function can be very sensitive to changes in the specification.

More recently, nonparametric estimators have been proposed. Hahn (1998) recommends
estimating first the three conditional expectations g1(x) = E[WY |X], g0(x) = E[(1 −W )Y |X],
and e(x) = E[W |X] nonparametrically using series methods. He then estimates µw(x) as

µ̂1(x) =
ĝ1(x)
ê(x)

, µ̂0(x) =
ĝ0(x)

1 − ê(x)
,

and shows that the estimators for both PATE and PATT achieve the semiparametric efficiency
bounds discussed in Section 2.5 (the latter even when the propensity score is unkwnown).

Using this series approach, however, it is unnecessary to estimate all three of these condi-
tional expectations (E[YW |X], E[Y (1 −W )|X], and E[W |X]) to estimate µw(x). Instead one
can use series methods to directly estimate the two regression functions µw(x), eliminating the
need to estimate the propensity score (Imbens, Newey and Ridder, 2003).

Heckman, Ichimura and Todd (1997, 1998ab) consider kernel methods for estimating µw(x),
in particular focusing on local linear approaches. The simple kernel estimator has the form

µ̂w(x) =
∑

i:Wi=w

Yi ·K((Xi − x)/h)
/ ∑

i:Wi=w

K((Xi − x)/h),

with a kernel K(·) and bandwith h. In the local linear kernel regression the regression function
µw(x) is estimated as the intercept β0 in the minimization problem

min
β0,β1

∑

i:Wi=w

(
Yi − β0 − β′1(Xi − x)

)2
·K

(
Xi − x

h

)
.

In order to control the bias of their estimators, Heckman, Ichimura and Todd (1998) require
that the order of the kernel is at least as large as the dimension of the covariates. That is, they
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require the use of a kernel function K(z) such that
∫
z z

rK(z)dz = 0 for r ≤ dim(X), so that
the kernel must be negative on part of the range, and the implicit averaging involves negative
weights. We shall see this role of the dimension of the covariates again for other estimators.

For the average treatment effect for the treated, PATT, it is important to note that with
the propensity score known, the estimator given in (3.3) is generally not efficient, irrespective
of the estimator for µ0(x). Intuitively, this is because with the propensity score known, the
average

∑
WiYi/NT is not efficient for the population expectation E[Y (1)|W = 1]. An efficient

estimator (e.g., Hahn, 1998) can be obtained by weighting all the estimated treatment effects,
µ̂1(Xi) − µ̂0(Xi), by the probability of receiving the treatment:

τ̃reg,T =
N∑

i=1

e(Xi) · (µ̂1(Xi) − µ̂0(Xi))
/ N∑

i=1

e(Xi). (3.4)

In other words, instead of estimating E[Y (1)|W = 1] as
∑
WiYi/NT using only the treated

observations, it is estimated using all units, as
∑
µ̂1(Xi) · e(Xi)/

∑
e(Xi). Knowledge of the

propensity score improves the accuracy because it allows one to exploit the control observations
to adjust for imbalances in the sampling of the covariates.

For all of the estimators in this section an important issue is the choice of the smoothing
parameter. In Hahn’s case, after choosing the form of the series and the sequence, the smoothing
parameter is the number of terms in the series. In Heckman, Ichimura, and Todd it is the
bandwidth of the kernel chosen. The evaluation literature has been largely silent concerning the
optimal choice of the smoothing parameters, although the larger literature on nonparametric
estimation of regression functions does provide some guidance, offering data-driven methods
such as cross-validation criteria. The optimality properties of these criteria, however, are for
estimation of the entire function, in this case µw(x). Typically the focus is on mean-integrated-
squared-error criteria of the form

∫
x(µ̂w(x) − µw(x))2fX(x)dx, with possibly an additional

weight function. In the current problem, however, one is interested specifically in the average
treatment effect, and so such integrated mean-squared-error criteria are not necessarily optimal.
In particular, global smoothing parameters may be inappropriate because they can be driven
by the shape of the regression function and distribution of covariates in regions that are not
important for the average treatment effect of interest. Lalonde’s (1986) data set is a well known
example of this where much of probability mass of the non-experimental control group is in a
region with moderate to high earnings where few of the treated group are located. There is little
evidence whether results for average treatment effects are more or less sensitive to the choice
of smoothing parameter than results for estimation of the regression functions themselves.

3.2 Matching

As seen above, regression estimators impute the missing potential outcomes using the estimated
regression function. Thus, if Wi = 1, Yi(1) is observed and Yi(0) is missing and imputed
with a consistent estimator µ̂0(Xi) for the conditional expectation. Matching estimators also
impute the missing potential outcomes, but do so using only the outcomes of nearest neighbours
of the opposite treatment group. In that sense matching is similar to nonparametric kernel
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regression methods, with the number of neighbors playing the role of the bandwidth in the
kernel regression. A formal difference is that the asymptotic distribution is derived conditional
on the implicit bandwidth, that is, the number of neighbours, which is often fixed at one.
Using such asymptotics, the implicit estimate µ̂w(x) is (close to) unbiased, but not consistent
for µw(x). In contrast, the regression estimators discussed in the previous section relied on the
consistency of µw(x).

Matching estimators have the attractive feature that given the matching metric, the re-
searcher only has to choose the number of matches. In contrast, for the regression estimators
discussed above, the researcher must choose smoothing parameters that are more difficult to
interpret; either the number of terms in a series or the bandwidth in kernel regression. Within
the class of matching estimators, using only a single match leads to the most credible inference
with the least bias, at most sacrificing some precision. This can make the matching estimator
easier to use than those estimators that require more complex choices of smoothing parameters,
and may explain some of its popularity.

Matching estimators have been widely studied in practice and theory (e.g., Gu and Rosen-
baum, 1993; Rosenbaum, 1989, 1995; Rubin, 1973b, Heckman, Ichimura and Todd, 1998; Dehe-
jia and Wahba, 1999; Abadie and Imbens, 2002). Most often they have been applied in settings
with the following two characteristics: (i) the interest is in the average treatment effect for
the treated, and (ii), there is a large reservoir of potential controls. This allows the researcher
to match each treated unit to one or more distinct controls (referred to as matching without
replacement). Given the matched pairs, the treatment effect within a pair is then estimated
as the difference in outcomes, with an estimator for the PATT obtained by averaging these
within-pair differences. Since the estimator is essentially the difference in two sample means,
the variance is calculated using standard methods for differences in means or methods for paired
randomized experiments. The remaining bias is typically ignored in these studies. The litera-
ture has studied fast algorithms for matching the units, as fully efficient matching methods are
computationally cumbersome (e.g., Gu and Rosenbaum, 1993; Rosenbaum, 1995). Note that
in such matching schemes the order in which the units are matched is potentially important.

Abadie and Imbens (2002) study both bias and variance in a more general setting where both
treated and control units are (potentially) matched and matching is done with replacement (as in
Dehejia and Wahba, 1999). The Abadie-Imbens estimator is implemented in Matlab and STATA
(see Abadie, Drukker, Herr, and Imbens, 2003).5 Formally, given a sample, {(Yi,Xi,Wi)}N

i=1,
let `m(i) be the index l that satisfies Wl 6= Wi and

∑

j|Wj 6=Wi

1
{
‖Xj −Xi‖ ≤ ‖Xl −Xi‖

}
= m,

where 1{·} is the indicator function, equal to one if the expression in brackets is true and zero
otherwise. In other words, `m(i) is the index of the unit in the opposite treatment group that
is the m-th closest to unit i in terms of the distance measure based on the norm ‖ · ‖. In
particular, `1(i) is the nearest match for unit i. Let JM (i) denote the set of indices for the first

5See Becker and Ichino (2002) and Sianesi (2001) for alternative STATA implementations of matching esti-
mators.
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M matches for unit i: JM (i) = {`1(i), . . . , `M (i)}. Define the imputed potential outcomes as:

Ŷi(0) =
{
Yi if Wi = 0,
1
M

∑
j∈JM (i) Yj if Wi = 1,

and

Ŷi(1) =
{ 1

M

∑
j∈JM (i) Yj if Wi = 0,

Yi if Wi = 1.

The simple matching estimator discussed in Abadie and Imbens is then

τ̂ sm
M =

1
N

N∑

i=1

(
Ŷi(1) − Ŷi(0)

)
. (3.5)

They show that the bias of this estimator is of order O(N−1/K), where K is the dimension of
the covariates. Hence, if one studies the asymptotic distribution of the estimator by normalizing
by

√
N (as can be justified by the fact that the variance of the estimator is of order O(1/N)),

the bias does not disappear if the dimension of the covariates is equal to two, and will dominate
the large sample variance if K is at least three.

Let me make clear three caveats to the Abadie-Imbens result. First, it is only the continuous
covariates that should be counted in this dimension, k. With discrete covariates the matching
will be exact in large samples, therefore such covariates do not contribute to the order of the
bias. Second, if one matches only the treated, and the number of potential controls is much
larger than the number of treated units, one can justify ignoring the bias by appealling to an
asymptotic sequence where the number of potential controls increases faster than the number
of treated units. Specifically, if the number of controls, N0, and the number of treated, N1,
satisfy N1/N

4/k
0 → 0, then the bias disappears in large samples after normalization by

√
N1.

Third, even though the order of the bias may be high, the actual bias may still be small if the
coefficients in the leading term are small. This is possible if the biases for different units are
at least partially offsetting. For example, the leading term in the bias relies on the regression
function being nonlinear, and the density of the covariates having a nonzero slope. If one of these
two conditions is at least close to being satisfied, the resulting bias may be fairly limited. To
remove the bias, Abadie and Imbens suggest combining the matching process with a regression
adjustment, as I will discuss in Section 3.4.3.

Another point made by Abadie and Imbens is that matching estimators are generally not
efficient. Even in the case where the bias is of low enough order to be dominated by the variance,
the estimators are not efficient given a fixed number of matches. To reach efficiency one would
need to increase the number of matches with the sample size. If M → ∞, with M/N → 0,
then the matching estimator is essentially like a regression estimator, with the imputed missing
potential outcomes consistent for their conditional expectations. However, the efficiency gain
of such estimators is of course somewhat artificial. If in a given data set one uses M matches,
one can calculate the variance as if this number of matches increases at the appropriate rate
with the sample size, in which case the estimator would be efficient. Or, one could calculate
the variance conditional on the number of matches, in which case the same estimator would be

[19]



inefficient. Little is yet known about the optimal number of matches, or about data-dependent
ways of choosing this number.

In the above discussion the distance metric in choosing the optimal matches was the standard
Euclidan metric:

dE(x, z) = (x− z)′(x− z).

All of the distance metrics used in practice standardize the covariates in some manner. Abadie
and Imbens use the diagonal matrix of the inverse of the covariate variances:

dAI(x, z) = (x− z)′diag(Σ−1
X )(x− z),

where ΣX is the covariance matrix of the covariates. The most common choice is the Ma-
halanobis metric (e.g., Rosenbaum and Rubin, 1985) which uses the inverse of the covariance
matrix of the pretreatment variables:

dM (x, z) = (x− z)′Σ−1
X (x− z).

This metric has the attractive property that it reduces differences in covariates within matched
pairs in all directions.6 See for more formal discussions Rubin and Thomas (1992).

Zhao (2002), in an interesting discussion of the choice of metrics, suggests some alternatives
that depend on the correlation between covariates, treatment assignment and outcomes. He
starts by assuming that the propensity score has a logistic form

e(x) =
exp(x′γ)

1 + exp(x′γ)
,

and that the regression functions are linear:

µw(x) = αw + x′β.

He then considers two alternative metrics. The firsts weights absolute differences in the covari-
ates by the coefficient in the propensity score:

dZ1(x, z) =
K∑

k=1

|xk − zk| · |γk|,

6However, using the Mahalanobis metric can also have less attractive implications. Consider the case where
one matches on two highly correlated covariates, X1 and X2 with equal variances. For specificity, suppose that
the correlation coefficient is 0.9 and both two variances are 1. Suppose that we wish to match a treated unit i
with Xi1 = Xi2 = 0. The two potential matches are unit j with Xj1 = Xj2 = 5 and unit k with Xk1 = 4 and
Xk2 = 0. The difference in covariates for the first match is the vector (5, 5)′, and the difference in covariates for
the second match is (4, 0)′. Intuitively it may seem that the second match is better: it is strictly closer to the
treated unit than the first match for both covariates. Using the Abadie-Imbens metric diag(Σ−1

X ) this is in fact
true. Under that metric the distance between the second match and the treated unit is 16, considerably smaller
than 50, the distance between the first match and the treated unit. However, using the Mahalanobis metric the
distance for the first match is 26 and the distance for the second match is much higher at 84. Because of the
correlation between the covariates in the sample the difference between the matches is interpreted very differently
under the two metrics. To choose between the standard and Mahalanobis metric one needs to consider what the
appropriate match would be in this case.
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and the second weights them by the coefficients in the regression function:

dZ2(x, z) =
K∑

k=1

|xk − zk| · |βk|,

where xk and zk are the kth elements of the K-dimensional vectors x and z respectively.
In light of this discussion, it is interesting to consider optimality of the metric. Suppose,

following Zhao (2002), that the regression functions are linear with coefficients βw. Now consider
a treated unit with covariate vector x who will be matched to a control unit with covariate vector
z. The bias resulting from such a match is (z − x)′β0. If one is interested in minimizing for
each match the squared bias, one should choose the first match by minimizing over the control
observations (z − x)′β0β

′
0(z − x). Yet typically one does not know the value of the regression

coefficients, in which case one may wish to minimize expected squared bias. Using a normal
distribution for the regression errors, and a flat prior on β0, the posterior distribution for β0 is
normal with mean β̂0 and variance Σ−1

X σ2/N . Hence the expected squared bias from a match
is

E
[
(z − x)′β0β

′
0(z − x)

]
= (z − x)′

(
β̂0β̂

′
0 + σ2Σ−1

X /N
)

(z − x).

In this argument the optimal metric is a combination of the sample covariance matrix plus the
outer product of the regression coefficients, with the former scaled down by a factor 1/N :

d∗(z, x) = (z − x)′
(
β̂wβ̂

′
w + σ2

wΣ−1
X,w/N

)
(z − x).

A clear problem with this approach is that when the regression function is misspecified, match-
ing with this particular metric may not lead to a consistent estimator. On the other hand,
when the regression function is correctly specified, it would be more efficient to use the regres-
sion estimators than any matching approach. In practice one may want to use a metric that
combines some of the optimal weighting with some safeguards in case the regression function
is misspecified.

So far there is little experience with any alternative metrics beyond the Mahalanobis metric.
Zhao (2002) reports the results of some simulations using his proposed metrics, finding no clear
winner given his specific design, although his findings suggest that using the outcomes in defining
the metric is a promising approach.

3.3 Propensity Score Methods

Since the work by Rosenbaum and Rubin (1983a) there has been considerable interest in meth-
ods that avoid adjusting directly for all covariates, and instead focus on adjusting for differences
in the propensity score, the conditional probability of receiving the treatment. This can be im-
plemented in a number of different ways. One can weight the observations in terms of the
propensity score (and indirectly also in terms of the covariates) to create balance between
treated and control units in the weighted sample. Hirano, Imbens and Ridder show how such
estimators can achieve the semiparametric efficiency bound. Alternatively one can divide the
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sample into subsamples with approximately the same value of the propensity score, a tech-
nique known as blocking. Finally, one can directly use the propensity score as a regressor in a
regression approach.

In practice there are two important cases. First, suppose the researcher knows the propensity
score. In that case all three of these methods are likely to be effective in eliminating bias. Even
if the resulting estimator is not fully efficient, one can easily modify it by using a parametric
estimate of the propensity score to capture most of the efficiency loss. Furthermore, since these
estimators do not rely on high-dimensional nonparametric regression, this suggests that their
finite sample properties are likely to be relatively attractive.

If the propensity score is not known, the advantages of the estimators discussed below are
less clear. Although they avoid the high-dimensional nonparametric regression of the two con-
ditional expectations µw(x), they require instead the equally high-dimensional nonparametric
regression of the treatment indicator on the covariates. In practice the relative merits of these
estimators will depend on whether the propensity score is more or less smooth than the regres-
sion functions, or whether additional information is available about either the propensity score
or the regression functions.

3.3.1 Weighting

The first set of “propensity score” estimators use the propensity score as weights to create a
balanced sample of treated and control observations. Simply taking the difference in average
outcomes for treated and controls,

τ̂ =
∑
WiYi∑
Wi

−
∑

(1 −Wi)Yi∑
1 −Wi

,

is not unbiased for τP = E[Y (1) − Y (0)] because, conditional on the treatment indicator, the
distributions of the covariates differ. By weighting the units by the inverse of the probability
of receiving the treatment, one can undo this imbalance. Formally, weighting estimators rely
on the equalities:

E
[
WY

e(X)

]
= E

[
WY (1)
e(X)

]
= E

[
E

[
WY (1)
e(X)

∣∣∣∣X
]]

= E
[
E

[
e(X)Y (1)
e(X)

]]
= E[Y (1)],

and similarly

E
[
(1 −W )Y
1 − e(X)

]
= E[Y (0)],

implying

τP = E
[
W · Y
e(X)

− (1 −W ) · Y
1 − e(X)

]
.

With the propensity score known one can directly implement this estimator as

τ̃ =
1
N

N∑

i=1

(
WiYi

e(Xi)
− (1 −Wi)Yi

1 − e(Xi)

)
. (3.6)
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In this particular form this is not necessarily an attractive estimator. The main reason is
that, although the estimator can be written as the difference between a weighted average of
the outcomes for the treated units and a weighted average of the outcomes for the controls,
the weights do not necessarily add to one. Specifically, in (3.6), the weights for the treated
units add up to (

∑
Wi/e(Xi))/N . In expectation this is equal to one, but since its variance is

positive, in any given sample some of the weights are likely to deviate from one. One approach
for improving this estimator is simply to normalize the weights to unity. One can further
normalize the weights to unity within subpopulations as defined by the covariates. In the
limit this leads to an estimator proposed by Hirano, Imbens and Ridder (2002) who suggest
using a nonparametric series estimator for e(x). More precisely, they first specify a sequence
of functions of the covariates, e.g., a power series, hl(x), l = 1, . . . ,∞. Next, they choose a
number of terms, L(N), as a function of the sample size, and then estimate the L-dimensional
vector γL in

Pr(W = 1|X = x) =
exp((h1(x), . . . , hL(x))γL)

1 + exp((h1(x), . . . , hL(x))γL)
,

by maximizing the associated likelihood function. Let γ̂L be the maximum likelihood estimate.
In the third step, the estimated propensity score is calculated as:

ê(x) =
exp((h1(x), . . . , hL(x))γ̂L)

1 + exp((h1(x), . . . , hL(x))γ̂L)
.

Finally they estimate the average treatment effect as:

τ̂weight =
N∑

i=1

Wi · Yi

ê(Xi)

/ N∑

i=1

Wi

ê(Xi)
−

N∑

i=1

(1 −Wi) · Yi

1 − ê(Xi)

/ N∑

i=1

(1 −Wi)
1 − ê(Xi)

. (3.7)

Hirano, Imbens and Ridder show that with a nonparametric estimator for e(x) this estimator is
efficient, whereas with the true propensity score the estimator would not be fully efficient (and
in fact not very attractive).

This estimator highlights one of the interesting features of the problem of efficiently es-
timating average treatment effects. One solution is to estimate the two regression functions
µw(x) nonparametrically, as discussed in Section 3.1; that alternative completely ignores the
propensity score. A second approach is to estimate the propensity score nonparametrically,
ignoring entirely the two regression functions. If appropriately implemented, both approaches
lead to fully efficient estimators, but clearly their finite sample properties may be very different,
depending, for example, on the smoothness of the regression functions versus the smoothness of
the propensity score. If there is only a single binary covariate, or more generally with only dis-
crete covariates, the weighting approach with a fully nonparametric estimator for the propensity
score is numerically identical to the regression approach with a fully nonparametric estimator
for the two regression functions.

To estimate the average treatment effect for the treated rather than for the full population,
one should weight the contribution for unit i by the propensity score e(xi). If the propensity
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score is known, this leads to

τ̂weight,tr =
N∑

i=1

Wi · Yi ·
e(Xi)
ê(Xi)

/ N∑

i=1

Wi
e(Xi)
ê(Xi)

−
N∑

i=1

(1 −Wi) · Yi ·
e(Xi)

1 − ê(Xi)

/ N∑

i=1

(1 −Wi)
e(Xi)

1 − ê(Xi)
,

where the propensity score enters in some places as the true score (for the weights to get the
appropriate estimand) and in other cases as the estimated score (to achieve efficiency). In the
unknown case one always uses the estimated propensity score, leading to:

τ̂weight,tr =


 1
N1

∑

i:Wi=1

Yi


 −


 ∑

i:Wi=0

Yi ·
ê(Xi)

1 − ê(Xi)

/ ∑

i:Wi=0

ê(Xi)
1 − ê(Xi)


 .

One difficulty with the weighting estimators that are based on the estimated propensity
score is again the problem of choosing the smoothing parameters. Hirano, Imbens and Rid-
der (2002) use series estimators, which requires choosing the number of terms in the series.
Ichimura and Linton (2001) consider a kernel version, which involves choosing a bandwidth.
Theirs is currently one of the few studies considering optimal choices for smoothing parameters
that focuses specifically on estimating average treatment effects. A departure from standard
problems in choosing smoothing parameters is that here one wants to use nonparametric regres-
sion methods even if the propensity score is known. For example, if the probability of treatment
is constant, standard optimality results would suggest using a high degree of smoothing, as this
would lead to the most accurate estimator for the propensity score. However, this would not
necessarily lead to an efficient estimator for the average treatment effect of interest.

3.3.2 Blocking on the Propensity Score

In their original propensity score paper Rosenbaum and Rubin (1983a) suggest the following
“blocking propensity score” estimator. Using the (estimated) propensity score, divide the sam-
ple into M blocks of units of approximately equal probability of treatment, letting Jim be an
indicator for unit i being in block m. One way of implementing this is by dividing the unit
interval into M blocks with boundary values equal to m/M for m = 1, . . . ,M − 1, so that

Jim = 1{(m − 1)/M < e(Xi) ≤ m/M},

for m = 1, . . . ,M . Within each block there are Nwm observations with treatment equal to
w, Mwm =

∑
i 1{Wi = w, Jim = 1}. Given these subgroups, estimate within each block the

average treatment effect as if random assignment holds,

τ̂m =
1

N1m

N∑

i=1

JimWiYi −
1

N0m

N∑

i=1

Jim(1 −Wi)Yi.

[24]



Then estimate the overall average treatment effect as:

τ̂block =
M∑

m=1

τ̂m · N1m +N0m

N
.

If one is interested in the average effect for the treated, one would weight the within-block
average treatment effects by the number of treated units:

τ̂T,block =
M∑

m=1

τ̂m · N1m

NT
.

Blocking can be interpreted as a crude form of nonparametric regression where the unknown
function is approximated by a step function with fixed jump points. To establish asymptotic
properties for this estimator would require establishing conditions on the rate at which the
number of blocks increases with the sample size. With the propensity score known, these are
easy to determine; no formal results have been established for the unknown case.

The question arises how many blocks to use in practice. Cochran (1968) analyses a case
with a single covariate, and, assuming normality, shows that using five blocks removes at least
95% of the bias associated with that covariate. Since all bias, under unconfoudnedness, is
associated with the propensity score, this suggests that under normality five blocks removes
most of the bias associated with all the covariates. This has often been the starting point
of empirical analyses using this estimator (e.g., Rosenbaum and Rubin, 1983b; Dehejia and
Wahba, 1999), and has been implemented in STATA by Becker and Ichino (2002).7 Often,
however, researchers subsequently check the balance of the covariates within each block. If
the true propensity score per block is constant, the distribution of the covariates among the
treated and controls should be identical, or, in the evaluation terminology, the covariates should
be balanced. Hence one can assess the adequacy of the statistical model by comparing the
distribution of the covariates among treated and controls within blocks. If the distributions are
found to be different, one can either split the blocks into a number of subblocks, or generalize
the specification of the propensity score. Often some informal version of the following algorithm
is used: If within a block the propensity score itself is unbalanced, the blocks are too large and
need to be split. If, conditional on the propensity score being balanced, the covariates are
unbalanced, the specification of the propensity score is not adequate. No formal algorithm
exists for implementing these blocking methods.

An alternative approach to finding the optimal number of blocks is to relate this approach
to the weighting propensity score estimator discussed above. One can view the blocking esti-
mator as identical to a weighting version, with a modified estimator for the propensity score.
Specifically, given the original estimator, ê(x), in the blocking approach the estimator for the
propensity score is discretized to

ẽ(x) =
1
M

M∑

m=1

1{(m/M) ≤ ê(x)}.

7Becker and Ichino also implement estimators that match on the propensity score.
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Using ẽ(x) as the propensity score in the weighting estimator leads to an statistic for the
average treatment effect identical to that obtained by using the blocking estimator with ê(x)
as the propensity score and M blocks. With sufficiently large M , the blocking estimator is
sufficiently close to the original weighting estimator that it shares its first order asymptotic
properties, including its efficiency. This suggests that in general there is little harm in choosing
a relatively large number of blocks, at least in terms of asymptotic properties, although again
the relevance of this for finite samples has not been established.

3.3.3 Regression on the Propensity Score

The third method of using the propensity score is to estimate the conditional expectation of Y
given W and e(X). Define

νw(e) = E[Y (w)|e(X) = e].

By unconfoundedness this is equal to E[Y |W = w, e(X) = e]. Given an estimator ν̂w(e), one
can estimate the average treatment effect as

τ̂regprop =
1
N

N∑

i=1

(
ν̂1(e(Xi)) − ν̂0(e(Xi))

)
.

Heckman, Ichimura and Todd (1998) consider a local linear version of this for estimating the
average treatment effect for the treated. Hahn (1998) considers a series version and shows that
it is not as efficient as the regression estimator based on adjustment for all covariates.

3.3.4 Matching on the Propensity Score

The Rosenbaum-Rubin result implies that it is sufficient to adjust solely for differences in the
propensity score between treated and control units. Since one of the ways in which one can
adjust for differences in covariates is matching, another natural way to use the propensity score
is through matching. Because the propensity score is a scalar function of the covariates, the bias
results in Abadie and Imbens (2002) imply that the bias term is of lower order than the variance
term and matching leads to a

√
N -consistent, asymptotically normally distributed estimator.

The variance for the case with matching on the true propensity score also follows directly from
their results. More complicated is the case with matching on the estimated propensity score. I
do not know of any results that give the variance for this case.

3.4 Mixed Methods

A number of approaches have been proposed that combine two of the three methods described
in the previous sections, typically regression with one of its alternatives. The reason for these
combinations is that, although one method alone is often sufficient to obtain consistent or even
efficient estimates, incorporating regression may eliminate remaining bias and improve preci-
sion. This is particularly useful because neither matching nor the propensity score methods
directly address the correlation between the covariates and the outcome. The benifit associated
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with combining methods is made explicit in the notion developed by Robins and Ritov (1997) of
“double robustness.” They propose a combination of weighting and regression where, as long as
the parametric model for either the propensity score or the regression functions is specified cor-
rectly, the resulting estimator for the average treatment effect is consistent. Similarly, matching
leads to consistency without additional assumptions, thus methods that combine matching and
regressions are robust against misspecification of the regression function.

3.4.1 Weighting and Regression

One can rewrite the weighting estimator discussed above as estimating the following regression
function by weighted least squares,

Yi = α+ τ ·Wi + εi,

with weights equal to

λi =

√
Wi

e(Xi)
+

1 −Wi

1 − e(Xi)
.

Without the weights the least squares estimator would not be consistent for the average treat-
ment effect; the weights ensure that the covariates are uncorrelated with the treatment indicator
and hence the weighted estimator is consistent.

This weighted-least-squares representation suggests that one may add covariates to the
regression function to improve precision, for example as

Yi = α+ β′Xi + τ ·Wi + εi,

with the same weights λi. Such an estimator, using a more general semiparametric regression
model, is suggested in Robins and Rotnitzky (1995), Robins and Ritov (1997), and implemented
in Hirano and Imbens (2002). In the parametric context Robins and Ritov argue that the
estimator is consistent as long as either the regression model or the propensity score (and thus
the weights) are specified correctly. That is, in the Robins-Ritov terminology, the estimator is
doubly robust.

3.4.2 Blocking and Regression

Rosenbaum and Rubin (1983b) suggest modifying the basic blocking estimator by using least
squares regression within the blocks. Without the additional regression adjustment the esti-
mated treatment effect within blocks can be written as a least squares estimator of τm for the
regression function

Yi = αm + τm ·Wi + εi,

using only the units in block m. As above, one can also add covariates to the regression function

Yi = αm + β′mXi + τm ·Wi + εi,

again estimated on the units in block m.
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3.4.3 Matching and Regression

Since Abadie and Imbens (2002) show that the bias of the simple matching estimator can
dominate the variance if the dimension of the covariates is too large, additional bias corrections
through regression can be particularly relevant in this case. A number of such corrections have
been proposed, first by Rubin (1973b) in a parametric setting. Following the notation of Section
3.2, let Ŷi(0) and Ŷi(1) be the observed or imputed potential outcomes for unit i; where these
estimated potential outcomes equal observed outcomes for some unit i and its match `(i). The
bias in their comparison, E[Ŷi(1)−Ŷi(0)]−(Yi(1)−Yi(0)), arises from the fact that the covariates
for units i and `(i), Xi and X`(i) are not equal, although close because of the matching process.

To further explore this, focusing on the single match case, define for each unit:

X̂i(0) =
{
Xi if Wi = 0,
X`(i) if Wi = 1,

and

X̂i(1) =
{
X`(i) if Wi = 0,
Xi if Wi = 1.

If the matching is exact X̂i(0) = X̂i(1) for each unit. If not, these discrepancies will lead to
potential bias. The difference X̂i(1) − X̂i(0) will therefore be used to reduce the bias of the
simple matching estimator.

Suppose unit i is a treated unit (Wi = 1), so that Ŷi(1) = Yi(1) and Ŷi(0) is an imputed value
for Yi(0). This imputed value is unbiased for µ0(X`(i)) (since Ŷi(0) = Y`(i)), but not necessarily
for µ0(Xi). One may therefore wish to adjust Ŷi(0) by an estimate of µ0(Xi) − µ0(X`(i)).
Typically these corrections are taken to be linear in the difference in the covariates for units i
and its match, that is, of the form β′0(X̂i(1)− X̂i(0) = β′0(Xi −X`(i)). Rubin (1973b) proposed
three corrections which differ in how β0 is estimated.

To introduce Rubin’s first correction, note that one can write the matching estimator as the
least squares estimator for the regression function

Ŷi(1) − Ŷi(0) = τ + εi.

This representation suggests modifying the regression function to

Ŷi(1) − Ŷi(0) = τ + (X̂i(1) − X̂i(0))′β + εi,

and again estimating τ by least squares.
The second correction is to estimate µ0(x) directly by taking all control units, and estimate

a linear regression of the form

Yi = α0 + β′0Xi + εi,

by least squares. (If unit i is a control unit the correction would be done using an estimator
for the regression function µ1(x) based on a linear specification Yi = α1 + β′1Xi estimated on
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the treated units.) Abadie and Imbens (2002) show that if this correction is done nonparamet-
rically, the resulting matching estimator is consistent and asymptotically normal, with its bias
dominated by the variance.

The third method is to estimate the same regression function for the controls, but using
only those that are used as matches for the treated units, with weights corresponding to the
number of times a control observations is used as a match (see Abadie and Imbens, 2002).
Compared to the second method this approach is potentially less efficient as it discards some
control observations and weights some more than others. It has the advantage, however, of only
using the most relevant matches. The controls that are discarded in the matching process are
likely to be outliers relative to the treated observations, and they may therefore unduly affect
the least squares estimates. If the regression function is in fact linear this may be an attractive
feature, but if there is uncertainty over its functional form, one may not wish to allow these
observations such influence.

3.5 Bayesian Approaches

Little has been done using Bayesian methods to estimate average treatment effects, both in
terms of methodology or application. Rubin (1978) introduces a general approach to estimating
average and distributional treatment effects from a Bayesian perspective. Dehejia (1997) goes
further, studying the policy decision problem of assigning heterogenuous individuals to various
training programs with uncertain and variable effects.

To my knowledge, however, there are no applications using the Bayesian approach that
focuse on estimating the average treatment effect under unconfoundedness, either for the whole
population or just for the treated. Neither are there simulation studies comparing operating
characteristics of Bayesian methods to the frequentist methods discussed in the earlier sections
of this paper. Such a Bayesian approach can be easily implemented with the regression methods
discussed in Section 3.1. Interestingly, it is less clear how Bayesian methods would be used with
pairwise matching, which does not appear to have a natural likelihood interpretation.

A Bayesian approach to the regression estimators may be useful for a number of reasons.
First, one of the leading problems with regression estimators is the presence of many covariates
relative to the number of observations. Standard frequentist methods tend to either include
those covariates without any restrictions, or exclude them entirely. In constrast, Bayesian
methods would allow researchers to include covariates with more or less informative prior dis-
tributions. For example, if the researcher has a number of lagged outcomes, one may expect
recent lags to be more important in predicting future outcomes than longer lags; this can be
reflected in tighter prior distributions around zero for the older information. Alternatively, with
a number of similar covariates one may wish to use hierarchical models that avoid problems
with large dimensional parameter spaces.

A second argument for considering Bayesian methods is that in an area closely related
to this process of estimated unobserved outcomes—that of missing data with the Missing At
Random (MAR) assumption—Bayesian methods have found widespread applicability. As ad-
vocated by Rubin (1987, 2001), multiple imputation methods often rely on a Bayesian approach
for imputing the missing data, taking account of the parameter heterogeneity in a manner con-
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sistent with the uncertainty in the missing data model itself. The same methods could be used
with little modification for causal models, with the main complication that a relatively large
proportion—namely 50% of the total potential outcomes—is missing.

4 Estimating Variances

The variances of the estimators considered so far typically involve unknown functions. For
example, as discussed in Section 2.5 the variance of efficient estimators of the population average
treatment effect, PATE, is equal to

V P = E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

+ (µ1(X) − µ0(X) − τ)2
]
,

involving the two regression functions, the two conditional variances and the propensity score.
There are a number of ways we can estimate this asymptotic variance. The first is essentially

by brute force. All five components of the variance, σ2
0(x), σ

2
1(x), µ0(x), µ1(x), and e(x), are

consistently estimable using kernel methods or series, and hence the asymptotic variance can
be estimated consistently. However, if one estimates the average treatment effect using only
the two regression functions, it is an additional burden to estimate the conditional variances
and the propensity score in order to estimate V P . Similarly, if one efficiently estimates the
average treatment effect by weighting with the estimated propensity score, it is a considerable
additional burden to estimate the first two moments of the conditional outcome distributions
just to estimate the asymptotic variance.

A second method applies to the case where either the regression functions or the propensity
score is estimated using series or sieves. In that case one can interpret the estimators, given the
number of terms in the series, as parametric estimators, and calculate the variance this way.
Under some conditions that will lead to valid standard errors and confidence intervals.

A third approach is to use bootstrapping (Efron and Tibshirani, 1993; Horowitz, 2002).
Although there is little formal evidence specific for these estimators, given that the estimators
are asymptotically linear, it is likely that bootstrapping will lead to valid standard errors and
confidence intervals at least for the regression and propensity score methods. Bootstrapping
may be more complicated for matching estimators, as the process introduces discreteness in the
distribution that will lead to ties in the matching algorithm. Subsampling (Politis and Romano,
1999) will still work in this setting.

These first three methods provide variance estimates for estimators of τP . As argued above,
however, one may instead wish to estimate τS or τ(X), in which case the appropriate (conser-
vative) variance is

V S = E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

]
.

As above, this variance can be estimated by estimating the conditional moments of the outcome
distributions, with the accompanying inherent difficulties. V S cannot, however, be estimated
by bootstrapping, since the estimand itself changes across bootstrap samples.
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There is, however, an alternative method for estimating this variance that does not require
additional nonparametric estimation. The idea behind this matching variance estimator, as
developed by Abadie and Imbens (2002), is that even though the asymptotic variance depends
on the conditional variance σ2

w(x), one need not actually estimate this variance consistently at all
values of the covariates. Rather, one needs only the average of this variance over the distribution,
weighted by the inverse of either e(x) or its complement 1−e(x). The key is therefore to obtain
a close-to-unbiased estimator for the variance σ2

w(x). More generally, suppose we can find two
treated units with X = x, say units i and j. In that case an unbiased estimator for σ2

1(x) is

σ̂2
1(x) = (Yi − Yj)

2 /2.

In general it is again difficult to find exact matches, but again, this is not necessary. Instead,
one uses the closest match within the set of units with the same treatment indicator. Let vm(i)
be the mth closest unit to i with the same treatment indicator (Wvm(i) = Wi), and

∑

l|Wl=Wi

1
{
‖Xl − x‖ ≤ ‖Xvm(i) − x‖

}
= m.

Given a fixed number of matches M , this gives us M units with the same treatment indicator
and approximately the same values for the covariates. The sample variance of the outcome
variable for these M units can then be used to estimate σ2

1(x). Doing the same for the control
variance function, σ2

0(x), we can estimate σ2
w(x) at all values of the covariates and, for w = 0, 1.

Note that these are not consistent estimators of the conditional variances. As the sample
size increases, the bias of these estimators will disappear, just as we saw that the bias of the
matching estimator for the average treatment effect disappears under similar conditions. The
rate at which this bias disappears depends on the dimension of the covariates. The variance
of the estimators for σ2

w(Xi), namely at specific values of the covariates, will not go to zero;
however this is not important, as we are interested not in the variances at specific points in the
covariates distribution, but in the variance of the average treatment effect, V S. Following the
process introduce above, this last step is estimated as:

V̂ S =
1
N

N∑

i=1

(
σ̂2

1(Xi)
ê(Xi)

+
σ̂2

0(Xi)
1 − ê(Xi)

)
.

Under standard regularity conditions this is consistent for the asymptotic variance of the average
treatment effect estimator. For matching estimators even estimation of the propensity score
can be avoided. Abadie and Imbens show that one can estimate the variance of the matching
estimator as

V̂ E =
1
N

N∑

i=1

(
1 +

KM (i)
M

)2

σ̂2
Wi

(Xi),

where M is the number of matches and KM (i) is the number of times unit i is used as a match.
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5 Assessing the Assumptions

5.1 Indirect Tests of the Unconfoundedness Assumption

The unconfoundedness assumption relied upon throughout this discussion is not directly testable.
As discussed above, it states that the conditional distribution of the outcome under the control
treatment, Y (0), given receipt of the active treatment and given covariates, is identical to the
distribution of the control outcome given receipt of the control treatment and given covariates.
The same is assumed for the distribution of the active treatment outcome, Y (1). Yet since the
data are completely uninformative about the distribution of Y (0) for those who received the
active treatment and of Y (1) for those receiving the control, the data cannot directly reject
the unconfoundedness assumption. Nevertheless, there are often indirect ways of assessing the
this, a number of which are developed in Heckman and Hotz (1989) and Rosenbaum (1987).
These methods typically rely on estimating a causal effect that is known to equal zero. If the
test then suggests that this causal effect varies from zero, the unconfoundedness assumption is
considered less plausible. These tests can be divided into two broad groups.

The first set of tests focuses on estimating the causal effect of a treatment that is known not
to have an effect, relying on the presence of multiple control groups (Rosenbaum, 1987). Suppose
one has two potential control groups, for example eligible nonparticipants and ineligibles, as
in Heckman, Ichimura and Todd (1997). One interpretation of the test is to compare average
treatment effects estimated using each of the control groups. This can also be interpreted as
estimating an “average treatment effect” using only the two control groups, with the treatment
indicator now a dummy for being a member of the first group. In that case the treatment effect
is known to be zero, and statistical evidence of a non-zero effect implies that at least one of the
control groups is invalid. Again, not rejecting the test does not imply the unconfoundedness
assumption is valid (as both control groups could suffer the same bias), but non-rejection in the
case where the two control groups are likely to have different biases makes it more plausible that
the unconfoundness assumption holds. The key for the power of this test is to have available
control groups that are likely to have different biases, if at all. Comparing ineligibles and
eligible nonparticipants as in Heckman, Ichimura and Todd (1997) is a particularly attractive
comparison. Alternatively one may use different geographic controls, for example from areas
bordering on different sides of the treatment group.

One can formalize this test by postulating a three-valued indicator Ti ∈ {−0, 1, 1} for
the groups (e.g., ineligibles, eligible nonnonparticipants and participants), with the treatment
indicator equal to Wi = 1{Ti = 1}. If one extends the unconfoundedness assumption to
independence of the potential outcomes and the group indicator given covariates,

Yi(0), Yi(1) ⊥ Ti

∣∣∣∣∣ Xi,

then a testable implication is

Yi ⊥ 1{Ti = 0}

∣∣∣∣∣ Xi, Ti ≤ 0.
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An implication of this independence condition is being tested by the tests discussed above.
Whether this test has much bearing on the unconfoundedness assumption depends on whether
the extension of the assumption is plausible given unconfoundedness itself.

The second set of tests of unconfoundedness focuses on estimating the causal effect of the
treatment on a variable known to be unaffected by it, typically because its value is determined
prior to the treatment itself. Such a variable can be time-invariant, but the most interesting
case is in considering the treatment effect on a lagged outcome. If it is not zero, this implies that
the treated observations are distinct from the controls; namely that the distribution of Y (0) for
the treated units is not comparable to the distribution of Y (0) for the controls. If the treatment
is instead zero, it is more plausible that the unconfoundedness assumption holds. Of course this
does not directly test this assumption; in this setting, being able to reject the null of no effect
does not directly reflect on the hypothesis of interest, unconfoundedness. Nevertheless, if the
variables used in this proxy test are closely related to the outcome of interest, the test arguably
has more power. For these tests it is clearly helpful to have a number of lagged outcomes.

To formalize this, let us suppose the covariates consist of a number of lagged outcomes
Yi,−1, . . . , Yi,−T as well as time-invariant individual characteristics Zi, so thatXi = (Yi,−1, . . . , Yi,−T , Zi).
By construction only units in the treatment group after period −1 receive the treatment; all
other observed outcomes are control outcomes. Also suppose that the two potential outcomes
Yi(0) and Yi(1) correspond to outcomes in period zero. Now consider the following two assump-
tions. The first is unconfoundedness given only T − 1 lags of the outcome:

Yi(1), Yi(0) ⊥ Wi

∣∣∣∣ Yi,−1, . . . , Yi,−(T−1), Zi,

and the second assumes stationarity and exchangeability:

fYi,s(0)|Yi,s−1(0),...,Yi,s−(T−1)(0),Zi,Wi
(ys|ys−1, . . . , ys−(T−1), z, w), does not depend on i and s.

Then it follows that

Yi,−1 ⊥ Wi

∣∣∣∣ Yi,−2, . . . , Yi,−T , Zi,

which is testable. This hypothesis is what the test describe above tests. Whether this test
has much bearing on unconfoundedness depends on the link between the two assumptions and
the original unconfoundedness assumption. With a sufficient number of lags unconfoundedness
given all lags but one appears plausible conditional on unconfoundedness given all lags, so the
relevance of the test depends largely on the plausibility of the second assumption, stationarity
and exchangeability.

5.2 Choosing the Covariates

The discussion so far has focused on the case where the covariates set is known a priori. In
practice there can be two issues with the choice of covariates. First, there may be some variables
that should not be adjusted for. Second, even with variables that should be adjusted for in
large samples, expected mean squared error may be reduced by ignoring those that have only
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weak correlation with the treatment indicator and the outcomes. This second issue is essen-
tially a statistical one. Including a covariate in the adjustment procedure, through regression,
matching or otherwise, will not lower asymptotic precision of the average treatment effect if
the assumptions are correct. In finite samples, however, a covariate that is not, or only weakly,
correlated with outcomes and treatment indicators may reduce precision. There are few proce-
dures currently available for optimally choosing the set of covariates to be included in matching
or regression adjustments, taking into account such finite sample properties.

The first issue is a substantive one. The unconfoundedness assumption may apply with one
set of covariates but it need not apply with an expanded set. A particular concern is the inclusion
of covariates that are themselves affected by the treatment such as intermediate outcomes.
Suppose, for example, that in evaluating a job training program, the primary outcome of
interest is earnings two years later. In that case, employment status prior to the program
is unaffected by the treatment and thus a valid element of the set of adjustment covariates.
In contrast, employment status one year after the program is an intermediate outcome and
should not be controlled for. It could itself be an outcome of interest, and should therefore
never be a covariate in an analysis of the effect of the training program. One guarantee that
a covariate is not affected by the treatment is that it was measured before the treatment
was choosen. In practice, however, the covariates are often recorded at the same time as the
outcomes, subsequent to treatment. In that case one has to assess on a case-by-case basis
whether a particular covariate should be used in adjusting outcomes. See Rosenbaum (1984b)
and Angrist and Krueger (2000) for more discussion.

5.3 Assessing the Overlap Assumption

The second of the key assumptions in estimating average treatment effects requires that the
propensity score—the probability of receiving treatment—is strictly between zero and one.
Although in principle this is testable, as it restricts the joint distribution of observables, formal
tests are not necessarily the main concern. In practice, this assumption raises a number of
issues. The first question is how to detect a lack of overlap in the covariate distributions. A
second is how to deal with it, given that such a lack exists. A third is how the individual
methods discussed in Section 3 address this lack of overlap. Ideally such a lack would result in
large standard errors for the average treatment effects.

The first method to detect lack of overlap is to plot distributions of covariates by treatment
groups. In the case with one or two covariates one can do this directly. In high dimensional
cases, however, this becomes more difficult. One can inspect pairs of marginal distributions by
treatment status, but these are not necessarily informative about lack of overlap. It is possible
that for each covariate the distribution for the treatment and control groups are identical, even
though there are areas where the propensity score is zero or one.

A more useful method is therefore to inspect the distribution of the propensity score in
both treatment groups, which can directly reveal lack of overlap in the covariate distributions.
Its implementation requires nonparametric estimation of the propensity score, however, and
misspecification may lead to failure in detecting a lack of overlap, just as inspecting various
marginal distributions may be insufficient. In practice one may wish to undersmooth the
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estimation of the propensity score, either by choosing a bandwidth smaller than optimal for
nonparametric estimation or by including higher order terms in a series expansion.

A third way to detect lack of overlap is to inspect the quality of the worst matches in a
matching procedure. Given a set of matches, one can, for each component k of the vector of
covariates, inspect maxi |xi,k − x`1(i),k|, the maximum over all observations of the matching
discrepancy. If this difference is large relative to the sample standard deviation of the kth
component of the covariates, there would be reason for concern. The advantage of this method
is that it does not require additional nonparametric estimation.

Once one determines that there is a lack of overlap one can either conclude that the average
treatment effect of interest cannot be estimated with sufficient precision, and/or decide to focus
on an average treatment effect that is estimable with greater accuracy. To do the latter it can be
useful to discard some of the observations on the basis of their covariates. For example one may
decide to discard control (treated) observations with propensity scores below (above) a cutoff
level. The desired cutoff may be sample size dependent; in a very large sample one may not be
concerned with a propensity score of 0.01, whereas in small samples such a value may make it
difficult to find reasonable comparisons. To judge such tradeoffs, it is useful to understand the
relationship between a unit’s propensity score and its implicit weight in the average treatment
effect estimation. Using the weighting estimator the average outcome under the treatment is
estimated by summing up outcomes for the control units with weight approximately equal to
one over their propensity score (and one over one minus the propensity score for treated units).
Hence with N units, the weight of unit i is approximately 1/(N · (1 − e(Xi))) if it is a treated
unit and 1/(N · e(Xi)) if it is a control. One may wish to limit this weight to some fraction,
for example, 0.05, so that no unit will have a weight of more than 5% in the average. Under
that approach, the limit on the propensity score in a sample with 200 units is 0.1; units with a
propensity score less than 0.1 or greater than 0.9 would be discarded. In a sample with 1000
units, only units with a propensity score outside the range [0.02, 0.98] would be ignored.

In matching procedures one need not rely entirely on comparisons of the propensity score
distribution in discarding the observations with insufficient match quality. Whereas Rosenbaum
and Rubin (1984) suggest accepting only matches where the difference in propensity scores is
below a cutoff point, alternatively one may wish to drop matches where individual covariates
are severely mismatched.

Finally, let us consider the three approaches to inference—regression, matching and propen-
sity score methods—and assess how each handle lack of overlap. Suppose one is interested in
estimating the average effect on the treated, and one has a data set with sufficient overlap.
Now suppose one adds a few treated or control observations with covariate values rarely seen
in the alternative treatment group. Adding treated observations with outlying values implies
one cannot estimate the average treatment effect for the treated very precisely, because we lack
suitable controls against which to compare these additional units. Thus with methods appro-
priately dealing with limited overlap one would see the variance estimates increase. In contrast,
adding control observations should have little effect since additional control units with outlying
covariates are irrelevant for the average treatment effect for the treated. Therefore methods
appropriately dealing with limited overlap should in this case show estimates approximately
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unchanged in terms of bias and precision.
Consider first the regression approach. Conditional on a particular parametric specification

for the regression function, adding observations with outlying values of the regressors leads
to considerably more precise parameter estimates; such observations are influential precisely
because of their outlying values. If the added observations are treated units, the precision of
the estimated control regression function at these outlying values will be lower (since few if any
control units are found in that region), thus the variance will increase as it should. One should
note, however, that the estimates in this region may be sensitive to the specification chosen.
In contrast, by the nature of regression functions adding control observations with outlying
values will lead to a spurious increase in precision of the control regression function. Regression
methods can therefore be misleading in cases with limited overlap.

Next, consider matching. In estimating the average treatment effect for the treated, adding
control observations with outlying covariate values will likely have little affect on the results,
since such observations are unlikely to be used as matches. The results would, however, be
sensitive to adding treated observations with outlying covariate values, because these observa-
tions would be matched to inappropriate controls, leading to possibly biased estimates. The
standard errors would largely be unaffected.

Finally, consider propensity score estimates. Estimates of the probability of receiving treat-
ment now include values close to zero and one. The values close to zero for the control obser-
vations would cause little difficulty because these units would get close to zero weight in the
estimation. The control observations with a propensity score close to one, however, would be
heavily weighted leading to an increase in the variance of the average treatment effect estimator,
correctly infering that one cannot estimate the average treatment effect very precisely. Blocking
on the propensity score would lead to similar conclusions.

Overall, propensity score and matching (and similarly kernel-based regression methods) are
better designed to cope with limited overlap in the covariate distributions than are parametric
or semiparametric (series) regression models. In all cases it is useful to inspect histograms of
the estimated propensity score in both groups to assess whether limited overlap is an issue.

6 Applications

There are many studies using some form of unconfoundedness or selection on observables,
ranging from simple least squares analyses to matching on the propensity score (e.g., Ashenfelter
and Card, 1978; Lalonde, 1986; Card and Sullivan, 1988; Heckman, Ichimura and Todd, 1997;
Angrist, 1998; Dehejia and Wahba, 1999; Lechner, 1998; Friedlander and Robins, 1995, and
many others). Here I focus primarily on two sets of analyses that can help us assess the value of
the methods surveyed in this paper. First, studies attempting to assess the plausibility of the
assumptions, often using randomized experiments as a yard stick. Second, simulation studies
focusing on the performance of the various techniques in settings where the assumptions are
known to hold.
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6.1 Applications: Randomized Experiments as Checks on Unconfounded-
ness

The basic idea behind these studies is simple: namely to use experimental results as a check on
the attempted “non-experimental” estimates. Given a randomized experiment one can obtain
unbiased estimates of the average effect of a program. Then, put aside the experimental control
group, and attempt to replicate these results using a non-experimental control. If one can
successfully replicate the experimental results, this suggests that the assumptions and methods
are plausible. Such investigations are of course not generally conclusive, but are invaluable
in assessing the plausibility of the approach. The first such study, and one that made an
enormous impact in the econometrics literature, was by Lalonde (1986). Fraker and Maynard
(1986) conducted a similar investigation, and many more have followed.

Lalonde (1986) took the National Supported Work program, a fairly small program aimed
at particularly disadvantaged people in the labor market (individuals with poor labor market
histories and skills). Using this data, he set aside the experimental control group and in its place
constructed alternative controls from the Panel Study of Income Dynamics (PSID) and Current
Population Survey (CPS), using various selection criteria depending on prior labor market ex-
perience. He then used a number of methods—ranging from a simple difference, to least squares
adjustment, a Heckman selection correction, and difference-in-differences techniques—to create
non-experimental estimates of the average treatment effect. His general conclusion was that
the results were very unpredictable and that no method could consistently replicate the exper-
imental results using any of the six non-experimental control groups constructed. A number of
researchers have subsequently tested new techniques using this same data. Heckman and Hotz
(1989) focused on testing the various models and argued that the testing procedures they de-
veloped would have eliminated many of Lalonde’s particularly inappropriate estimates. Dehejia
and Wahba (1999) used several of the semiparametric methods based on the unconfoundedness
assumption discussed in this survey, and found that for the subsample of the Lalonde data that
they used (with two years of prior earnings), these methods replicated the experimental results
more accurately – both overall, as wellas within subpopulations. Smith and Todd (2001) ana-
lyze the same data and conclude that for other subsamples, including those for whom only one
year of prior earnings is available, the results are less robust. See Dehejia (2003) for additional
discussion of these results.

Others have used different experiments to carry out the same or similar analyses, using
varying sets of estimators, and alternative control groups. Friedlander and Robins (1995) focus
on least squares adjustment, using data from the WIN (Work INcentive) demonstration pro-
grams conducted in a number of states, and construct control groups from other counties in the
same state, as well as from different states. They conclude that non-experimental methods are
unable to replicate the experimental results. Hotz, Imbens and Mortimer (2001) use the same
data and consider matching methods with various sets of covariates, using single or multiple
alternative states as non-experimental control groups. They find that for the subsample of
individuals with have positive earnings at some date prior to the program non-experimental
methods work better than for those with no known positive earnings.

Heckman, Ichimura and Todd (1997, 1998ab) study the national Job Training Partnership
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Act (JPTA) program, using data from different geographical locations to investigate the nature
of the biases associated with different estimators, and the importance of overlap in the covari-
ates, including labor market histories. Their conclusions provide the type of specific guidance
that should be the aim of such studies. They give clear and generalizable conditions that make
the assumptions of unconfoundedness and overlap—at least according to their study of a large
training program—more plausible; the need to include detailed earnings histories, and the use
of control groups that are geographically close to the treatment group, preferably groups of
ineligibles, or eligible nonparticipants from the same location. In contrast, control groups from
very different locations are found to be poor non-experimental controls. Although such conclu-
sions are only clearly generalizable to evaluations of social programs, they are potentially very
useful in providing analysts with concrete guidance as to the applicability of these assumptions.

Dehejia (1997) uses the Greater Avenues to INdependence (GAIN) data, using different
counties as well as different offices within the same county as nonexperimental control groups.
Similarly, Hotz, Imbens and Klerman (2001) use the basic GAIN data set supplemented with ad-
minstrative data of long-term quarterly earnings information (both prior and subsequent to the
randomization date), to investigate the importance of detailed earnings histories. Such detailed
histories can also provide more evidence on the plausibility of non-experimental evaluations for
long-term outcomes.

Two complications make this literature difficult to evaluate. One is the differences in co-
variates used; it is rare that variables are measured consistently accross different studies. For
instance, some have yearly earnings data, others quarterly, others only earnings indicators on
a monthly or quarterly basis. This makes it difficult to consistently investigate the level of
detail in earnings history necessary for the unconfoundedness assumption to hold. A second
complication is that different estimators are generally used, thus any differences in results can
be attributed to either estimators or assumptions. This is likely driven by the fact that few
of the estimators have been sufficiently standardized that they can be implemented easily by
empirical researchers.

All of these studies just discussed took data from actual randomized experiments to test
the “true” treatment effect against the estimators used on the non-experimental data. To some
extent, however, such experimental data are not required. The question of interest is whether an
alternative control group is an adequate proxy for a randomized control in a particular setting;
note that this question does not require data on the treatment group. Although these questions
have typically been studied by comparing experimental to non-experimental results, all that is
really relevant is whether the non-experimental control group can predict the average outcomes
for the experimental control. As in the Heckman, Ichimura, Smith and Todd (1998) analysis
of the JTPA data, one can take two groups, neither subject to the treatment, and ask the
question whether—using data on the covariates for the first control group in combination with
outcome and covariate information for the second—one can predict the average outcome in the
first. If yes, this implies that, had there been an experiment on the population from which the
first control group was drawn, the second group would provide an acceptable non-experimental
control. From this perspective one can use data from many different surveys. In particular,
one can more systematically investigate whether control groups from different counties, states,
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regions or even different time periods make acceptable non-experimental controls.

6.2 Simulations

A second question that is often confounded with that of the validity of the assumptions is
that of the relative performance of the various estimators. Suppose one is willing to accept
the unconfoundedness and overlap assumptions. Which estimation method is most appropriate
in a particular setting? In many of the studies comparing non-experimental to experimental
outcomes, researchers compare results for a number of the techniques described here. Yet in
these settings we cannot be certain that the underlying assumptions hold. Thus, although it
is useful to compare these techniques in such realistic settings, it is also important to compare
them in an artificial environment where one is certain that the underlying assumptions are
valid.

There exist a few studies that specifically set out to do just this. Frölich (2000) compares a
number of matching estimators and local linear regression methods, carefully formalizing fully
data-driven procedures for the estimators considered. To make these comparisons he consid-
ers a large number of data generating processes, based on eight different regression functions
(including some highly nonlinear and multimodal ones), two different sample sizes, and three
different density functions for the covariate (one important limitation is that he restricts the
investigation to a single covariate). For the matching estimator Frölich considered a single
match with replacement; for the local linear regression estimators he uses data-driven optimal
bandwidth choices based on minimizing mean-squared-error of the average treatment effect.
The first local linear estimator considered is the standard one; at x the regression function µ(x)
is estimated as β0 in the minimization problem

min
β0,β1

N∑

i=1

(Yi − β0 − β1 · (Xi − x))2 ·K
(
Xi − x

h

)
,

with an Epanechnikov kernel. He finds that this has computational problems, as well as poor
small-sample properties. He therefore also considers a modification suggested by Seifert and
Gasser (1996, 2000). For given x, define x̄ =

∑
XiK((Xi − x)/h)/

∑
K((Xi − x)/h), so that

one can write the standard local linear estimator as

µ̂(x) =
T0

S0
+
T1

S2
· (x− x̄),

where, for r = 0, 1, 2, Sr =
∑
K((Xi − x)/h)(Xi − x)r and Tr =

∑
K((Xi − x)/h)(Xi − x)rYi.

The Seifert-Gasser modification is to use instead

µ̂(x) =
T0

S0
+

T1

S2 +R
· (x− x̄),

where the recommended ridge parameter is R = |x− x̄|(5/(16h)), given the Epanechikov kernel
k(u) = (3/4)(1−u2)1{|u| < 1}. Note that with high-dimensional covariates, such a nonnegative
kernel would lead to biases that do not vanish fast enough to be dominated by the variance
(see the discussion in Heckman, Ichimura and Todd, 1998). This is not a problem in Frölich’s
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simulations as he considers only cases with a single covariate. Frölich finds that the local linear
estimator, with the Seifert and Gassert modification, performs better than either the matching
or standard local linear estimator.

Zhao (2002) uses simulation methods to compare matching and parametric regression esti-
mators. He uses metrics based on the propensity score, the covariates, and estimated regression
functions. Using designs with varying numbers of covariates and linear regression functions,
Zhao finds there is no clear winner among the different estimators, although he notes that using
the outcome data in choosing the metric appears a promising strategy.

Abadie and Imbens (2002) study their matching estimator using a data generating process
inspired by the Lalonde study to allow for substantial nonlinearity, fitting a separate binary
response model to the zeros in the earnings outcome and a log linear model for the positive
observations. The regression estimators include linear and quadratic models (the latter with
a full set of interactions), with seven covariates. This study finds that the matching esti-
mators, and in particular the bias-adjusted alternatives, outperform the linear and quadratic
regression estimators (the former using 7 covariates, the latter 35, after dropping squares and
interactions that lead to perfect collinarity). Their simulations also suggest that with relatively
few matches—between one and four—matching estimators are not sensitive to the number of
matches use, and that their confidence intervals have actual coverages rates close to the nominal
values.

The results from these simulation studies are overall somewhat inconclusive; it is clear
that more work is required. Future simulations may usefully focus on some of the following
issues. First, it is obviously important to closely model the data generating process on actual
data sets, to ensure that the results have some relevance for practice. Ideally one would build
the simulations around a number of specific data sets through a range of data generating
processes. Second, it is important to have fully data-driven procedures that define an estimator
as a function of (Yi,Wi,Xi)Ni=1, as seen in Frölich (2000). For the matching estimators this is
relatively straightforward, but for some others this requires more care. This will allow other
researchers to consider meaningful comparisons across the various estimators.

Finally, we need to learn which features of the data generating process are important for
the properties of the various estimators. For example, do some estimators deteriorate more
rapidly than others when a dataset holds many covariates and few observations? Are some
estimators more robust against high correlations between covariates and outcomes, or high
correlations between covariates and treatment indicators? Which estimators are more likely to
give conservative answers in terms of precision? Since it is clear that no estimator is always
going to dominate all others, what is important here is to isolate salient features of the data
generating processes that lead to preferring one alternative over another. Ideally we need
descriptive statistics summarizing the features of the data that provide guidance in choosing
the estimator that will perform best in a given situation.
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7 Conclusion

In this paper I have attempted to review the current state of the literature on inference for
average treatment effects under the assumption of unconfoundedness. This has recently been a
very active area of research where many new semi- and non-parametric econometric methods
have been applied and developed. The research has moved a long way from relying on simple
least squares methods for estimating average treatment effects.

The primary estimators in the current literature include propensity score methods and
pairwise matching, as well as nonparametric regression methods. Efficiency bounds have been
established for a number of the average treatment effects estimable with these methods, and
a variety of these estimators rely on the weakest assumptions that allow point identification.
Researchers have suggested several ways for estimating the variance of these average treatment
effect estimators. One, more cumbersome, approach requires estimating each component of
the variance non-parametrically. A more common method relies on bootstrapping. A third
alternative, developed by Abadie and Imbens (2002) for the matching estimator, requires no
non-parametric estimation. There is, as of yet, however, no consensus on which are the best
estimation methods to apply in practice. Nevertheless, the applied researcher has now a large
number of new estimators at her disposal.

Challenges remain in making the new tools more easily applicable. Although software
is available to implement some of the estimators (see Becker and Ichino, 2002; Sianesi, 2001;
Abadie, Drukker, Herr and Imbens, 2003), many remain difficult to apply. A particularly urgent
task is therefore to provide fully implementable versions of the various estimators that do not
require the applied researcher to choose bandwidths or other smoothing parameters. This is
less of a concern for matching methods and probably explains a large part of their popularity.
Another outstanding question is the relative performance of these methods in realistic settings
with large numbers of covariates and varying degrees of smoothness in the conditional means
of the potential outcomes and the propensity score.

Once these issues have been resolved, today’s applied evaluators will benefit from a new set of
reliable, econometrically defendable, and robust methods for estimating the average treatment
effect of current social policy programs.
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