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Generalized Moments Estimation for Spatial Panel Data 
 
 
 
Abstract: 
This paper considers estimation of a panel data model with disturbances that are 
autocorrelated across cross-sectional units.  It is assumed that the disturbances are 
spatially correlated, based on some geographic or economic proximity measure.  If the 
time dimension of the data is large, feasible and efficient estimation proceeds by using 
the time dimension to estimate spatial dependence parameters.  For the case where the 
time dimension is small (the usual panel data case), we develop a generalized moments 
estimation approach that is a straight-forward generalization of a cross-sectional model 
due to Kelejian and Prucha.  We apply this approach in a stochastic frontier framework to 
a panel of Indonesian rice farms where spatial correlations are based on geographic 
proximity, altitude and weather. The correlations represent productivity shock spillovers 
across the rice farms in different villages on the island of Java.  Test statistics indicate 
that productivity shock spillovers may exist in this (and perhaps other) data sets, and that 
these spillovers have effects on technical efficiency estimation and ranking. 
 

1.  Introduction 

Over the last few years much has been written on the subject of the spatial 

dependence in cross-sectional economic data.  These are data in which observations can 

be characterized by absolute or relative location, based on some form of coordinate 

system or distance measure.  For example, data on employment or wealth can be 

organized by county, state, census tract or country, and spatial dependence can be 

modeled across these units.   This spatial dependence stems from the existence of implicit 

functional relations between units.  Anselin provides an excellent textbook treatment of 

this phenomenon.  Theoretical or empirical spatial issues have also been addressed in 

Case; Conley; Delong and Summers; Dubin; Fishback, Horrace and Kantor;  Kelejian 

and Robinson; Moulton; Quah; and Topa. These cross-sectional specifications address 

the important phenomena of spatial aggregation,  infrastructure effects or economic spill-

overs, to name a few.  
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In a recent article, Kelejian and Prucha consider generalized moments estimation 

of a certain class of these models which allows for spatial autocorrelation of econometric 

disturbances across cross-sectional units. This “spatial autocorrelation or dependence” 

can be likened to the autocorrelation theory of the time series literature, however in this 

case estimation hinges on the ex ante specification of a “spatial weighting matrix” in the 

cross-sectional dimension of the error process.  The form of the weighting matrix is at the 

discretion of the analyst, but very often can be based on some underlying economic, 

geographic, of meteorological theory.  The specification of the spatial weighting matrix 

may seem like a fairly strong parametric assumption to impose on the model, however 

the hypothesis of ‘no spatial dependence’ is testable and is the price paid for lack of a 

time dimension in the data.  “Of course, if panel data are available one can consider, e.g., 

a seemingly unrelated regression model, or an error component model to permit for cross-

sectional correlation, and estimate the cross-sectional correlations via the time dimension 

of the panel if the time dimension is large” (Kelejian and Prucha, p. 1).  Unfortunately, in 

the usual panel data case, the cross-sectional dimension is large and the time dimension is 

small (fixed), so consistent estimation of the cross-sectional correlations is typically not 

justified.  

This paper is concerned with generalized moments estimation of this class of 

models under normal panel data conditions.  Specifically, we apply the Kelejian and 

Prucha estimator to the usual panel data case and introduce a generalization of their 

estimator based on certain restrictions on the evolution of the spatial dependence over 

time.  It is important to stress that the panel data theory presented is for the case where T 

is fixed, consequently the current discussion also hinges on the ex ante specification of a 



 4

spatial weighting matrix.  Once we allow the time dimension to grow, the specification of 

the weighting matrix becomes unnecessary as the estimation techniques presented herein, 

become empirically inferior to more standard approaches that hinge on T asymptotics.  

This paper also presents an empirical application of these spatial panel techniques 

to the efficiency measurement problem of the well-developed stochastic frontier 

literature, which attempts to model a common production function for a sample of firms 

based on observables (inputs and outputs) and an unobservable, one-sided component 

viewed as technical or production inefficiency.  Cross-sectional estimation of these 

models is usually traced back to Aigner, Lovell and Schmidt; and  Meeusen and van den 

Broeck , while panel estimation is due to Schmidt and Sickles.  Our concern is, of course, 

the panel specification, and we select a panel of 171 Indonesian rice farms observed over 

6 periods for our example.  Output is rice, and inputs are things like seed, fertilizer and 

land acreage.  The time dimension of the data is small, so consistent estimation of cross-

sectional correlations in the error process may not be justified.  Consequently, we specify 

a spatial weighting scheme in the error process which allows for spillovers across farms 

based on geographic proximity, altitude and weather conditions.  The results indicate that 

spatial correlations exist in the data and have ramifications for the estimation of the 

production function and the estimation of farm-level technical efficiency. 

The paper is organized as follows.  The next section presents an unrestricted, 

general panel data model based on the Kelejian and Prucha technique and also fully- and 

partially-restricted models that are used in the application.  Section 3 discusses feasible 

estimation of these models.  Section 4 presents the Indonesian rice farm example.  

Section 5 summarizes and concludes.  
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2.1  A Panel Model with  Spatial Disturbances 

Consider the standard fixed effect (FE) model:  

yit = αi + β′xit  + uit; i = 1, ..., N; t = 1, ..., T, 

where β is (k×1) and xit is (1×k).  Here we assume that T is fixed, so we cannot rely on T-

asymptotics.  Collecting i the model becomes 

(1) yt = α + xtβ  + ut, t = 1, ..., T, 

where α′  = [α1, ..., αN] and xt is (N×k).  Now suppose that the error term is spatially 

lagged such that 

(2) ut = ρtMtut  + εt; t = 1, ..., T, 

where ρt is a scalar, spatial autoregressive parameter and Mt is a (N×N) spatial weighting 

matrix of known constants, which captures the spatial correlations across cross-sectional 

units.  (In the sequel we allow for a time-invariant spatial parameter and weighting 

matrix.)  Elements of Mt are mijt and are chosen based on some geographic or economic 

proximity measure such are contiguity or physical, economic or climatic distances or 

dissimilarities.  For example, in section 4, we select mijt to be the inverse of the physical 

distance (1/km) between unit i and unit j in time period t. 

The application of interest is the stochastic frontier model, where yit and xit are the 

productive output and exogenous inputs, respectively, of farm i in period t.  Traditional 

treatments of the stochastic frontier model hypothesize output as a linear function of a) 

farm-level technical (in)efficiency (an unobserved factor imputed to each farm),  b) a 

representative log-production function (deterministic and within the control of each farm) 

and c) productivity shocks (random and out of the farmer’s control).  These three additive 

elements of output are captured in equation (1) by the matrices α, xtβ and ut , 



 6

respectively.  When augmented by equation (2), the specification implies that, in each 

period t, productivity shocks are correlated across i, and specifically that the productive 

output of farm i is a function of the spatial lag of productivity shocks experienced by 

other farms in the sample.  This would seem reasonable if productivity shocks included 

geographic or climatic unobservables that effected farms in similar ways, but were 

location or climate specific (e.g. unmeasured rainfall, temperature and sunlight).  Notice 

that there is no spatial lag of yt on the right-hand side of equation (1).  (Indeed, the spatial 

econometric literature addresses estimation of models with spatially lagged endogenous 

explanatory variables.)  Therefore,  the specification also implicitly assumes that, in each 

period t, the productive output of farm i is not a function of the output of other farms in 

the sample.  This would seem reasonable if the production function is viewed as a purely 

deterministic (engineering) process, where the farmer controls all inputs.  We will also 

have need of the additional assumptions:  

Assumption 1: The elements of εt are independently and identically distributed 
with zero-mean and finite variance 2

tσ  , the fourth moment of εt is finite, and εt  is 
independent of εs , ∀  t ≠ s.  
 
Assumption 2:  All diagonal elements of Mt are zero.  The matrix (IN - ρtMt) is 
non-singular.  |ρt| < 1. 
 
Notice that under Assumptions 1 and 2, ut = (IN - ρtMt)-1εt,  so E(ut) = 0 for all t, 

but E(utut′) has a general, non-spherical structure, which is a function of ρt, Mt and 2
tσ .  

Since Mt is known, E(utut′) is known up to ρt and 2
tσ , parameters which we will 

ultimately estimate.  Estimation of ρt and 2
tσ  allows feasible and efficient estimation of 

equation (1).  Also, notice that if ρt = ρ, Mt = M and 2
tσ  = σ2, then E(utut′) is a constant, 

which can be consistently estimated as T→∞.  Here, we assume that T is fixed, so 



 7

consistent estimation of E(utut′) is unreasonable, and we must assume that Mt is known to 

identify an estimate of equation (1).  For now, assume that ρt and 2
tσ  are known.  

Collecting t, 

(3) y = ιT⊗α  + xβ  + u, u = (ρ*⊗ IN) M*u  + ε, 

where ιT is a T dimensional column vector of ones, x is (TN×k) and 
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so the disturbance in equation (2) is heteroskedastic. Define tttNt MI σρ /)( −=Φ   then 

we can pre-multiply the model in equations (1) and (2)  to get, 

(4) ****
tttt xy εβα ++= , 

where ttt yy Φ=* , ttt xx Φ=* , αα tt Φ=*  and ttttt σεεε /* =Φ= .   Collecting t 

(5) y* = α* + x*β  + ε*, 

where ]',...,'[' **
1

*
Tααα = , a TN dimensional column vector.  Equation (5) possess a “well-

behaved” disturbance.  That is, E(ε*) = 0 and E(ε*ε*′) = ITN.  Identification of any 

estimates of the parameters in equation (5) hinges on estimation of the unknown 

parameters Mt, ρt,σt
2, which will be ultimately undertaken in the sequel.  The Kelejian 

and Prucha cross-sectional procedure could be directly applied to equation (4) T times 

over N observations to recover estimates of Mt, ρt,σt
2.  These estimates could then be 
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used to estimate the parameters in equation (5).i  We refer to this estimation technique as 

“unrestricted estimation”.  However, our particular application implies some restrictions 

on the model in equation (5) that we can exploit to improve the efficiency of the 

estimation (as long as those restrictions hold in the sample).  In particular, our definitions 

of spatial dependence are based on distinct physical characteristics of the farming villages 

on the island of Java (altitude, longitude, latitude, infrastructure, etc.) which are certainly 

constant over the short time period of the data (6 years). Therefore, it may be particularly 

useful to impose some additional structure on equation (5), and it is this additional 

structure that produces a modest but meaningful generalization of the Kelejian and 

Prucha results. 

2.1  A Fully Restricted Specification. 

One obvious restriction would be to assume that some subset of the weighting 

matrices, autoregressive parameters and variance parameters are equal.  As an extreme 

case we could assume that M1 = … = MT = M, ρ1 = …  = ρT = ρ , 2
1σ  = … = 2

Tσ   = σ2 , 

implying Φ1 = … = ΦT = Φ .  Then ** αα Φ=t  in equation (4) and α* = ιT⊗Φα  in 

equation (5).  Of course, the error term ε of equation (3) is no longer heteroskedastic ; it 

has variance matrix E(εε′) = σ2ITN, so Φ need not be a function of σ for efficiency. Fixed 

effect estimation of equation (5) under this full restriction, will then be efficient for α* 

and β, if ρ and σ2 are known, and if the restriction is true.  It is also consistent for fixed T 

as N→∞.  Additionally, an estimate of α can be recovered by transforming the estimate 

of α* with Φ.  Of course ρ and σ2 are not known, so the challenge is to consistently 

estimate them, so that equation (5) can be feasibly estimated;  this is undertaken in 

section 3. 
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2.2  A Partially Restricted Specification. 

As another example of a reasonable restriction on the parameters of the model, 

briefly consider the empirical example of the sequel.  We observe N = 171 Indonesian 

rice farms over T = 6 periods.  Periods 1, 3 and 5 are “wet or rainy seasons” and periods 

2, 4 and 6 are “dry seasons”.  It may be reasonable to suspect that ρ1 = ρ3 = ρ5 = ρW  

(wet) and ρ2 = ρ4 = ρ6 = ρD (dry), similarly for Mt, 2
tσ  and Φt. (This may be true on the 

island of Java, since during the rainy season many roads in the low country are 

impassable, and hence spill-overs based on infrastructure are potentially diminished 

relative to the dry season.)  Then  

α*= [(ΦW α)' (ΦD α)' (ΦW α)' (ΦD α)' (ΦW α)' (ΦD α)' ]',   

in equation (5), a TN dimensional column vector, consisting of 2N parameters.  The 

system in (5) then consists of 2N + k parameters and can effectively be treated as 2×171 = 

342 farms observed over 6/2 = 3 periods, so fixed effect estimation of equation (5)  is 

feasible, since  it has been assumed that realizations of the error εt are independent across 

both t and i.  Of course, there will be an efficiency loss in the estimate of α* relative to 

the fully restricted estimate, since the time series dimension has been effectively cut in 

half from 6 to 3, but the slope parameter β will still be efficient (and consistent in N) 

since it is still based on the same number of observations, TN.  Again the challenge is 

estimation of ρW, ρD, 2
Wσ  and 2

Dσ , which is undertaken in the following section. 

3.  Feasible Estimation  

Kelejian and Prucha develop a moments estimator of the parameters ρt and 2
tσ  in 

the cross-sectional setting (T = 1).  We now generalize their results for the case where ρt 
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and 2
tσ  are different across t.ii  Using their notation, let tu~  be a predictor of ut  from the 

fixed effect (or within) regression implied by equation (1), ignoring equation (2). That is, 

tu~  converges in distribution to the random variable ut .  Additionally, let tu~ =Mt tu~ , 

tu
~

=Mt tu~ , tε =Mtεt, and tε =Mt tε .  Consider the following 3T moment conditions implied 

by equations (1) and (2) and assumptions 1 and 2. 

 21 ]'[ tttNE σεε =− , )'(]'[ 121
ttttt MMtrNNE −− = σεε ,  0]'[ 1 =−

ttNE εε , 

t = 1, ..., T.   Noting that εt = (IN - ρtMt)ut, these moment conditions imply the following 

system of 3T equations, 

 0],,[ 22 =−′Γ ttttt γσρρ ,  
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t = 1, ..., T.  Here νt is the usual error associated with a sample of statistical realizations 

(i.e. it will ultimately be squared, summed, then minimized by selecting parameters 

optimally).  The system consists of 3T equations and 3T unknowns, but the system is 

actually T separate subsystems of 3 equations and 3 unknowns.  If these T  subsystems 

satisfy Assumptions 1 and 2 above and Assumptions 3, 4 and 5 of Kelejian and Prucha, 
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then Theorem 1 of Kelejian and Prucha is applicable to the individual subsystems.iii  That 

is, tρ̂  and 2ˆ tσ  that solve  the non-linear optimization 

 ]0:),()',([minarg)ˆ,ˆ( 222

,

2

2
≥= ssrsr tt

sr
tt ννσρ  

are consistent for ρt and 2
tσ  as N→∞.  For a proof see Kelejian and Prucha.  Let  

 2ˆ/)ˆ(ˆ
tttNt MI σρ−=Φ  . 

(We could substitute tΦ̂  for Φt  and estimate equation (5), but we ultimately chose to 

restrict the model.)  Let us called the tρ̂  and 2ˆ tσ  unrestricted estimates.  We now 

consider feasible estimation of the fully restricted and partially restricted models 

discussed in the last section. 

3.1  Feasible Estimation of the Fully Restricted System. 

If we can assume that M1 = … = MT  = M, ρ1 = …  = ρT = ρ , 2
1σ  = … = 2

Tσ   = σ2 

as before, then we can impose the assumption M1 = … = MT = M in equation (6) and 

estimate tρ̂  and 2ˆ tσ , t = 1, ..., T as above.iv  Then average estimates of  ρ and σ2 are  

 ∑−=
t

tT ρρ ˆˆ 1  and ∑−=
t

tT 212 ˆˆ σσ . 

We shall call these estimates the fully restricted average estimates.  The estimates will be 

consistent as N→∞, so long as the restriction is true.  These are essentially two-stage 

estimates, where in the first stage unrestricted estimates are calculated ( tρ̂  and 2ˆ tσ , t = 1, 

..., T), and the restriction is imposed in the second stage of averaging over t.  Since the 

estimates are based on the unrestricted estimates they do not exploit all the information in 
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the data set simultaneously.  That is, each tρ̂  and 2ˆ tσ  is calculated from one of T separate 

sub-samples of the data of size N.  These estimates imply 

 )ˆ(ˆ MI N ρ−=Φ , 

which can be substituted into equation (5).  Then fixed effect estimation of equation (5) 

with α* = ιT⊗ Φ̂ α is consistent for α* and β. 

If we can a) impose the restriction, b) estimate the parameters in a single step and 

c) do so such that the data is not divided into T sub-samples, then the resulting parameter 

estimates should be more efficient than the average fully restricted estimates.  One such 

estimate is based on the moment conditions: 

 21 ]')[( σεε =−TNE , )'()(]')[( 121 MMtrNTNE −− = σεε , 0]')[( 1 =− εεTNE , 

whereε =M*ε, and ε =M*ε .v Letting let u~  be a predictor of u  from the fixed effect (or 

within) regression implied by equation (3), u~ =M* u~ and u
~

=M* u~ , equation (6) becomes 

(7) ),(],,[ 222 σρνσρρ =−′ gG , 
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The system consists of 3 equations and 3 unknowns and is exactly the Kelejian and 

Prucha result.  Then estimates ρ~  and 2~σ  follow from  

]0:),()',([minarg)~,~( 222

,

2

2
≥= ssrsr

sr
ννσρ  

We shall call these the fully restricted moment estimates (to differentiate them from the 

fully restricted average estimates).  The potential efficiency gain over the estimates ρ̂  
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and the 2σ̂  hinges on the fact that equation (7) exploits the information contained in TN 

observations and imposes a hypothetically correct restriction, while equation (6) exploits 

that contained in N observations over t = 1, …, T, and no restriction.  Again, ρ~  and 2~σ  

imply Φ~ , which can be inserted in equation (5); then fixed effect estimation of equation 

(5) with α* = ιT⊗Φ
~ α is consistent for α* and β.  Estimation of α follows by transforming 

the estimate of α* by Φ~ . 

3.2  Feasible Estimation of the Partially Restricted System. 

For our 171 Indonesian rice farms observed over 6 periods, if we can assume that 

M1 = … = M6 = M, ρ1 = ρ3 = ρ5 = ρW , ρ2 = ρ4 = ρ6 = ρD , 2
1σ  = 2

3σ   = 2
5σ  = 2

Wσ  , 2
2σ  = 

2
4σ   = 2

6σ  = 2
Dσ , then we can impose the assumption M1 = … = M6 = M in equation (6) 

and estimate tρ̂  and 2ˆ tσ , t = 1, ..., 6 as above. Then consistent estimates of  ρW, ρD, 2
Wσ  

and 2
Dσ  are the partially restricted average estimates. 

 )ˆˆˆ(ˆ 5313
1 ρρρρ ++=W ,  )ˆˆˆ(ˆ 6423

1 ρρρρ ++=D   

and  

)ˆˆˆ(ˆ 2
5

2
3

2
13

12 σσσσ ++=W ,  )ˆˆˆ(ˆ 2
6

2
4

2
23

12 σσσσ ++=D . 

Again, these are two-stage estimates, which imply 

 2ˆ/)ˆ(ˆ
WWNW MI σρ−=Φ  , 2ˆ/)ˆ(ˆ

DDND MI σρ−=Φ , 

which can be substituted into equation (5).  Then fixed effect estimation of equation (5) 

with  

α*= [( Φ̂ W α)' ( Φ̂ D α)' ( Φ̂ W α)' ( Φ̂ D α)' ( Φ̂ W α)' ( Φ̂ D α)' ]', 

is consistent for α* and β. 
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Define εW′ = [ε1′ ε3′ ε5′], εD′ = [ε2′ ε4′ ε6′], '~
Wu  = [ '~

1u '~
3u '~

5u ] and '~
Du  = 

[ '~
2u '~

4u '~
6u ].  Additionally, let ju~ =M ju~ , ju

~
=M ju~ , jε =Mεj, and jε =M jε , j = W, D. 

It follows analogously that the single stage estimates are: 

]0:),()',([minarg)~,~( 222

,

2

2
≥= ssrsr jj

sr
jj ννσρ ,  j = W, D, 

where, 

 jjjjjjjj gG −′= ],,[),( 222 σρρσρν ,  j = W, D, 

and where Gj and gj are Gt and gt of equation (6), but with j substituted for t and 3N 

substituted for N.  Call these estimates the partially restricted moment estimates.  The jρ~  

and 2~
jσ  imply jΦ~  for wet and dry seasons, and fixed effect estimation of equation (5) is 

again consistent for α* and β. 

 So to summarize, the unrestricted estimation procedure yields tρ̂  and 2ˆ tσ .  These 

estimates imply fully restricted average estimates ( ρ̂  and 2σ̂ ) or partially restricted 

average estimates ( jρ̂  and 2ˆ jσ ,  j = W, D).  These are two-stage estimates.  Fully 

restricted moment estimates ( ρ~  and 2~σ ) and partially restricted moments estimates ( jρ~  

and 2~
jσ ,  j = W, D) are single stage estimates.  We now illustrate these estimates in an 

empirical example. 

4.  Application to Indonesian Rice Farms 

We now apply the estimators to a balanced panel of Indonesian rice farms.  The 

data  were previously analyzed by e.g. Erwidodo;  Lee and Schmidt; and Horrace and 

Schmidt (1996, 2000).  For detailed discussion of the data see Erwidodo.  For the panel 

specification of a stochastic frontier model, y is the natural logarithm of output (ln(rice)), 
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x is a vector of inputs (e.g. seed and fertilizer)  and αi  embodies farm-level technical 

inefficiency.  This is a standard stochastic frontier specification based on a Cobb-Douglas 

production function, which has been extensively applied to this data set.  Per Schmidt and 

Sickle a measure of technical efficiency for farm i based on this specification is 

calculated by plugging estimates of the αi into the expression:  TEi = exp(αi - maxjαj).   

In order to perform the spatial analysis we first specify the spatial weighting 

matrix, Mt  for the error process, which captures productivity spillovers across farms.  

The following section considers geographical and climate characteristics of the island of 

West Java, which motivate the construction of three different weighting matrixes used in 

subsequent analyses. 

4.1 Geographical and Climatic Characteristics of West Java. 

In 1977 the Indonesian Ministry of Agriculture began to survey 171 rice farms 

concerning farming practices over 6 (3 wet and 3 dry) growing seasons.  The farms were 

selected from 6 villages located in the production area of Cimanuk River Basin in West 

Java. Of the six villages included in the sample, two are located on the north coast of the 

island in an area with average altitudes of 10-15 meters above sea level; these are 

classified as lowland villages. Another three villages are situated in a highland area (600-

1100 meters) in the central part of West Java. The last village with average altitude of 

375 meters is classified as a midland village (for lack of better terminology). The 

infrastructure in the Cimanuk River Basin is fairly heterogeneous.  Some of the villages 

(in both high and lowland areas) lack reliable transportation systems with local roads 

being almost impassable in the wet (rainy) season. Other villages, located in close 



 16

proximity to province capital cities, are highly accessible along paved, all-weather 

roadsvi. 

Across the island of West Java average weather conditions are also highly 

variable.  Annual temperatures average in the range of 72-84˚F (22-29˚C) with average 

humidity of 75%. However, the north coastal plains are usually hotter in the dry season, 

94˚F (34˚C), and are more humid then the rest of the island. Highlands of the island 

receive an average annual rainfall of 156 inches (4000 mm) while lowlands of the north 

coast receive less than one forth of that amount, 35 inches (900 mm). 

Based on these facts, we construct and perform our analysis using three different 

weighting matrixes M1t, M2t and M3t. The first one, M1t, is based on the inverse of 

geographical distance between individual farms.vii We use geographical coordinates of 

the villages to determine physical distances between producing units. Distances between 

individual villages are between 31 and 91 km. The individual distances between farms 

within the same village is unavailable and is therefore arbitrarily chosen to be 10 km.viii 

The M1 weighting matrix then consists of the inverse values of these distances.  That is, 

mijt equals the inverse of the distance between farms i and j.  In the second weighting 

matrix we employ an intra-village contiguity scheme.ix For M2t we let mijt equal 1 if 

farms i and j are in the same village, equal 0 otherwise.  That is the weighting scheme is 

based on common villages.  The last weighting scheme, M3t, reflects the geographic and 

climate conditions of villages at different altitudes. The highland villages receive 

substantially more precipitation than low land villages and are characterized by lower 

average temperature than lowland villages. Moreover, certain villages are inaccessible 
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during the rainy season.  Therefore in the last weighting matrix, M3t, we assign values 

based on differences in altitudes as follows.   

mijt = 1.00 if farms i and j are in the same village 

mijt = 0.75 if farms i and j are in different villages but at same altitudes. 

mijt = 0.50 if farms i is highland and farm j is in midland. 

mijt = 0.50 if farms i is midland and farm j is in lowland. 

mijt = 0.00 if farms i is highland and farm j is in lowland. 

For subsequent computational simplification and as a standard practice in forming 

weighting matrixes we normalize each weighting matrix, so the elements of each row 

sum to one.   Additionally, all the weighting schemes are assumed time invariant, so the t 

subscript can be dropped. 

4.2  Spatial Analysis of Indonesian Rice Farms. 

We first estimate the standard fixed effect model of stochastic production frontier 

described by (1) and (2).  Inputs to the production of rice included in the data set are seed 

(kg), urea (kg), trisodium phosphate (TSP) (kg), labor (labor-hours) and land (hectares).  

Output is measured in kilograms of rice.  The data also include dummy variables.  DP 

equals 1 if pesticides were used and 0 otherwise.  DV1 equals 1 if high yield varieties of 

rice were planted and DV2 equals 1 if mixed varieties were planted;  the omitted category 

represents that traditional varieties were planted.  DSS equals 1 if it was a wet season, 

zero otherwise.  Results are contained in column I of Table 1 and are based on the 

restriction that ρ1 = ... = ρ6 = 0.   These results are identical to those contained in Horrace 

and Schmidt (1996).  
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Before embarking on a spatial analysis, we use the residuals from the standard 

fixed effect estimation to determine whether or not spatial dependence (based on each of 

our three weighting schemes) exists in the data.  As before, let the usual fixed effect 

residuals in period t be tu~ .  We employ two tests for spatial dependence, the first of 

which is the Moran I statistic (see e.g. Anselin). (To preclude confusion with the symbol 

for the identity matrix we adopt the script ϑ .)  The ϑ  statistic for period t is: 

ϑ t = }~'~/]~'~]{[/[ tttt uuuMuSN  

where N is the number of farms, S is the sum of all elements in weighting matrix M (S 

equals N if M is normalized so that sum of row elements equals one.) The null hypothesis 

for this test is “absence of spatial dependence”.x  Notice that we have dropped the t 

subscript on the weighting matrix M, because our empirical analysis assumes time 

invariance for this matrix.  As shown by Cliff and Ord the asymptotic distribution for the 

Moran statistic is standard normal, if ϑ  is transformed in the usual manner: 

 zt = {ϑ t – E[ ϑ t]}/ V[ϑ t]1/2 

where E[ ϑ t] is the mean, and V[ϑ t] is the variance of Moran ϑ  statistics in period t, 

derived under the null of no spatial dependence.  In the general case of a non-normalized 

weighting matrix these can be expressed in the form: 

E[ϑ t ] = (N/S)tr(PM)/(N – k)  

V[ϑ t ] = (N/S)2{tr(PMPM′) + tr(PM)2  + [tr(PM)]2/(N – k)(N – k +2) – {E[ϑ t ]}2 , 

where P is the projection matrix ')'( 1 xxxxI N
−− , and x is the demeaned exogenous 

variables from the standard model in equation (1). The test is conducted for each 

weighting scheme (M1, M2, M3) in each time period t = 1, ..., 6.  The zt -scores for 

weighting scheme M1 are contained in the top row (zt) of Table 2 and range from 6.0702 
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in period t = 2 to 26.4159 in period t = 4.  It is therefore safe to conclude that at the 95% 

confidence level, we reject the hypothesis of no spatial dependence based on weighting 

scheme M1.  Test results for weighting schemes M2 and M3 were similar and are 

contained in the top rows (zt) of Table 4 and Table 6, respectively. 

 As pointed out by an anonymous referee, the Moran I statistic is sensitive to 

heteroskedasticity and tends to over-reject the null hypothesis when compared to the 

standard normal critical value.  An alternative LM test procedure for the null-hypothesis 

of no spatial dependence is presented by Anselin, Bera, Florax and Yoon (equation 9, p 

83).  The test statistic: 

])'[(
]ˆ/~~[ 22'

MMMtr
uMu

LM ttt
t +

=
σ

  

is distributed 2
1χ  with critical values of 3.84 (95% level) and 6.63 (99% level).  Results 

are contained in the last row of Tables 2, 4 and 6 for weighting schemes M1, M2 and M3, 

respectively, and confirm the Moran I results:  we reject the null in all cases. 

 Based on these test results, each of our proposed weighting schemes appears 

justified in each period.  Consequently, we estimate the unrestricted spatial 

autoregressive parameters and error variances for each period for each scheme, using 

equation (6).  Estimation results are contained in Tables 2, 4 and 6 for schemes M1, M2 

and M3, respectively. Note that for all weighting schemes, the ρ-parameter tends to be 

larger in period 1 than in period 2, larger in period 3 than period 4, and larger in period 5 

than in period 6.  These differences correspond to differences in wet seasons (t = 1, 3, 5) 

and dry seasons (t = 2, 4, 6).  All autoregressive parameters are positive, and in only a 

single case does it exceed unity (scheme M3, period 3).xi 
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To identify parameter estimates for α* and β in equation (5) we feasibly estimated 

the fully and partially-restricted systems described of sections 3.1 and 3.2, respectively.  

The fully restricted system, ρ1 = … = ρ6 = ρ, is estimated using both the average 

autoregressive parameter, ρ̂ , and the moments autoregressive parameter, ρ~ , for each 

weighting scheme.  Estimation results for ρ̂  = 0.7248 and for ρ~  = 1.0557 using 

weighting scheme M1 are contained in Table 1, columns II and III, respectively. There is 

little difference in the slope parameter estimates based on ρ̂  or ρ~  or the standard FE 

model of column I.  This is not surprising, given that ignoring the spatial dependence 

manifests itself as an efficiency loss in the slope parameter estimates (not a bias).  Indeed, 

the most noticeable differences in the estimates of columns I, II and III are in the standard 

error estimates, with Columns II and III being generally smaller than column I, the 

standard model.  The sign of the coefficient on the pesticide variable (DP) changes from 

positive to negative when we include spatial effects, however it is always insignificant.  

The difference in magnitudes of ρ̂ and ρ~  is troublesome. Perhaps this difference 

indicates that the restriction ρ1 = … = ρ6 = ρ, does not hold.  We did not attempt to test 

this, however it would be possible if the variance matrix of the ρt were estimable; this is 

currently under investigation by the authors.  The results of the fully restricted model 

under weighting schemes M2 and M3 are contained in columns II and III in Tables 3 and 

5, respectively.  The results are similar to the M1 case: slope coefficients do not change 

much, standard error estimates decrease, and there is a large difference between the two 

estimates of ρ.  

Feasible estimation of the partially-restricted system follows the same pattern, 

except that instead of only one correlation coefficient fixed for all time periods now we 
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estimate and utilize two correlation coefficients – one for wet and one for dry season. We 

calculate the average parameter estimates ( Wρ̂ , Dρ̂ ) and the moments estimates ( Wρ~ , 

Dρ~ ) for each weighting scheme. Fixed effect estimation results for ( Wρ̂ , Dρ̂ ) and for  

( Wρ~ , Dρ~ ), based on weighting scheme M1, are contained in Table 1, columns IV and V, 

respectively.  The differences between the average and moments parameter estimates are 

much less pronounced than the fully restricted case (compare estimates Wρ̂  = 0.7584  to 

Wρ~  = 0.8218, estimates Dρ̂  = 0.6914 to Dρ~  = 0.7476, and estimates ρ̂  = 0.7248 to ρ~  = 

1.0557).  One might conclude that the partially restricted model seems to fit the data 

better, however this is not formally tested.    (Additionally, the fact that the estimates are 

now all less than unity may suggest that the partially restricted model is favored over the 

fully restricted model.)  Again, the standard errors of the slope parameter estimates are 

smaller for the partially restricted model than for the standard model (column I).  Of 

course the coefficient on the season variable (DSS) is not identified, since it is effectively 

time invariant now that the data set have been dichotomized into “wet” and “dry” sub-

samples.xii  The coefficients on the partially restricted system are generally higher than 

those of the fully restricted system (columns II and III) and the standard model (column 

I).  As in the fully restricted system, the coefficient on the pesticide variable (DP) is 

negative and insignificant.  Even though it is insignificant, this is troubling, since 

economic theory usually dictates the a production function be non-decreasing in its 

arguments.  However, one could argue that too much pesticide might have a negative 

effect on output.  Alternatively, one could argue that we have not adequately controlled 

for the interaction between pesticides (DP), output (y)  and weather (DSS, ρW and ρD).  

Perhaps, pesticide use is higher during the wet season (more water, more insects), and our 
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simple dummy variable for pesticide does not adequately capture a more complex 

relationship.  Nonetheless, the results are compelling and the coefficient is insignificant.  

Estimation results for weighting schemes M2 and M3 are similarly presented in columns 

IV and V of Table 3 and Table 5, respectively.  Again, results are similar to scheme M1 

for this particular sample. 

4.3  Technical Efficiency Rankings. 

Stochastic frontier analyses are often concerned with estimating firm-level 

technical inefficiency and, in particular, determining the relative magnitudes of the 

resulting inefficiency measures, using a rank or order statistic.  In the next analysis we 

demonstrate how the various weighting schemes effect the technical efficiency rankings 

of the farms.  Specifically, for each weighting scheme we estimate and rank the estimated 

technical efficiencies, exp(α i - maxjα j), for each farm.  This was performed for the 

standard fixed effect model (corresponding to column I of Table 1) and for the fully 

restricted moments estimator (corresponding to column III of Tables 1, 3, and 5).xiii  The 

idea was to see how the rankings differed between the standard model and the spatial 

model for each of the three weighting schemes.   Order statistics for each model are 

contained in Table 7.  The first three columns of the table are results for the standard 

fixed effect model.  Since there are 171 farms we only report results for the four farms 

with the highest technical efficiency, the four farms with the median technical efficiency, 

and the four farms with the lowest technical efficiency.  Column 1 contains the farm 

number, column 2 contains the ordered estimates of farm-level technical efficiency, and 

column 3 contains the ordinal rankings for the standard fixed effect model (numbered 1 

to 171).   To see the effects of the spatial dependence on technical efficiency estimation, 
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we also report the ordinal rankings for the same 12 farms for the fully restricted spatial 

model under weighting schemes M1, M2 and M3 in columns 4, 5 and 6, respectively.xiv  

While there are some changes across weighting schemes in the rank ordering of the most- 

and least-efficient farms, these are minor.  For instance in the standard model farm 152 

had a technical efficiency rank of 4, but it has a rank of 6 under weighting schemes M1 

and M2 and a rank of 4 under weighting scheme M3.  Notice that the ranking of the most 

efficient farm (farm 164) is always 1 and that of the least efficient farm (farm 45) is 

always 171.  Most of the largest differences in ranking appear in the median farms.  For 

example, farm 166 has a standard fixed effect ranking of 85 but spatial rankings of 166, 

166 and 108 for M1, M2 and M3, respectively.  These are potentially large changes in the 

median technical efficiency ranking, that could only be detected with a spatial analysis.  

To further summarize the changes in the efficiency ranking in Table 7, we 

calculate Spearman’s rho (rs) for each weighting scheme, using the standard fixed effect 

model as the baseline.  Spearman’s rho is a standard measure of rank correlation between 

two rank statistics given by 
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where δi is the difference in the rankings for the ith farm. For example when comparing 

the rank statistic for the standard model and the M1 model in Table 7,  δ164 = 0 and δ15 = 

86 – 62 = 24.  Here we always compare the rankings of the M1, M2 and M3 models to the 

standard model ranking.  It is true that rs ∈  [-1, 1], rs = 1 when the two rank statistics are 

identical and rs = -1 when the rank statistics are completely reversed (i.e. as we move 

from one order statistic to the other, the most efficient farm becomes the least efficient, 
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the second most efficient farm become the second-least efficient....).  Spearman statistics 

are contained in the last row of Table 7 and are on the order of 0.8 for each of the three 

weighting schemes.  We can interpret this result as saying that only 80% of the rank 

statistic is preserved when we use a spatial weighting specification over the standard 

fixed effect specification.   

 To better understand the changes in technical efficiency under the various 

weighting schemes, we present some summary statistics and density estimates of 

estimates of the parameters, αi.  Technically, there is no distribution of αi of which to 

speak, since it is assumed to be a fixed parameter and not a random variable.  The 

estimates of the αi are indeed random and each estimate has its own marginal distribution 

from the joint distribution of the estimate of the N-dimensional vector, α.  However, for 

the purposes of exposition, we treat the estimates of the αi as if they random draws from 

a univariate distribution in what follows.  According to the panel data specification of 

Schmidt and Sickles, αi = αmax - τi, where τi is the non-negative technical efficiency of 

farm i and αmax is a parameter representing maximal efficiency.  The implication is that 

for fixed αmax, the “distribution” of αi is just a relocation of the “distribution” of technical 

inefficiency.  Therefore to make inferences on the effects of various weighting schemes 

on the estimates of technical efficiency is to make inferences on the estimates of αi. 

 Table 8 contains summary statistics for the 171 estimates of αi under various 

weighting schemes: standard fixed effect model, weighting scheme M1, weighting 

scheme M2, and weighting scheme M3.  The results of Table 8 are best summarized in 

the kernel density plots for the various models contained in Figure 1.  Density estimates 

are based on maximum likelihood cross validation bandwidth selection and a standard 
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Gaussian kernel.xv  Fixing αmax across models, some generalizations about this data set 

can be made.  First, the standard fixed effect model (FE in the figure) without spatial lags 

in the errors tends to underestimate αi (overestimate technical inefficiency) in comparison 

to the spatial models (M1, M2 and M3).   That is, without a spatial lag in the error, there 

is on average more technical inefficiency in the Indonesian rice farming industry than 

with a spatial lag.  This is technical inefficiency in an absolute sense, since we are fixing 

α* across models at some unknown value.  This is reflected in Figure 1 as the density of 

the standard fixed effect model (FE) being shifted to the left of the densities for the 

spatial models (with little to no rescaling).  This has implications for predictions of the 

conditional mean output implied by equation (1): the fixed effect model (on average) 

gives lower predictions of productive output than the spatial models (all things being 

equal).  That is, for fixed technology and input factors, the spatial models impute more of 

the observed output to unobserved technical ability (αi) and less of it to luck (uit) in this 

data set.  Indonesian rice farms may be operating closer to the efficient frontier than 

previous studies may have suggested. 

Of course in a relative sense, the technical inefficiency will be about the same across 

models, since in all models in Table 8 the difference between the maximal αi and the 

average αi is about the same (between 0.59 and 0.62).  This is to say, that if we estimate 

maximal efficiency α* as the maximum of the estimated αi in each model, then the value 

of the difference between the estimate of maximal efficiency and the average of the 

estimates of αi is about the same across models.  However, as pointed out by Horrace and 

Schmidt (2000), this relative efficiency estimate will be biased in finite samples (small 

N), so perhaps viewing differences in relative technical inefficiency across models is ill-
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advised in this data set, and our attention should be focused on the absolute differences 

across models, depicted in Figure 1. 

  

5. Conclusions 

This paper has presented a straight-forward generalization of the cross-sectional 

model of Kelejian and Prucha.  However, the implications of the results transcend the 

spatial econometrics literature.  Because economic agents and entities have finite lives, 

one cannot always rely on large T in economic panel data sets.  There can be no denying 

that most panel data sets (with the exception of perhaps microeconomic financial data) 

have large N and small T.  Moreover, the often high cost of empirical research necessarily 

impedes long, protracted data collection exercises; it is just cheaper to collect data sets 

with large N and small T. Additionally, if T is somewhat large, the usually time-invariant 

unobserved heterogeneity models (e.g. fixed effect) may not be applicable, since it is 

widely held that heterogeneity may change in long-run dynamic economic systems 

(particularly when it is viewed as technical inefficiency).  The result is that consistency 

arguments usually must hinge on N→∞.  This is fine for estimating conditional means 

(the model’s slope parameters).  However, any second moment parameters (such as the 

elements of M) that embody cross-sectional dependence cannot be consistently estimated 

in the sense that they will necessarily rely on T→∞.  This is unfortunate, because there 

can also be no denying that cross-sectional dependencies do exist in economic field data. 

 When faced with this dilemma, empirical economic researchers have two 

recourses, 1) collect more data or 2) impose more structure on the model and hope that 

the structure will be testable.  Given the aforementioned arguments against large T, it 
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would seem that we are faced with the alternative of imposing more structure on our 

models.  The question then becomes, “what structure is reasonable”?  Spatial weighting 

schemes based on some geographic or economic proximity measures seem to be a 

reasonable and natural approach.  The theoretical economic literature is rife with 

arguments for economic spill-overs, and spatial analysis provides a means to make these 

spill-overs explicit.  Moreover, tests of ‘no spatial dependence’ do exist in the literature.  

Therefore, if we must make assumptions about the second moments of our data, spatial 

weighting schemes may be a viable approach. 

 We have presented two special cases of a more general model: the fully-restricted 

case and the partially-restricted case.  Clearly, the possibilities for the partially restricted 

case are limitless.  Our partial restriction based on wet and dry seasons was obviously 

data driven, so alternative restrictions for different types of data sets are possible.  For 

example, infrastructure changes, catastrophic events or political dynamics may imply a 

different set of restrictions on the spatial correlation parameterization.  Tests of these 

partial restrictions should be a high priority in subsequent research.   

Notice that, dynamic spatial dependence in the second moment of our estimators 

has implications for dynamics in the first moment.  The original model in equation (1) 

has a time invariant α vector, but the transformed model had time-varying α*.  It is this 

loss of time-invariance that makes the general model not-identified, and forces us to 

impose some restrictions on the dynamics of the spatial dependence.  This could be 

important.  Most panel data models that attempt to make the heterogeneity term dynamic, 

do so by imposing structure on the first moments of the models.  For instance, several 

papers in the stochastic frontier literature impose special structure on the conditional 
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mean moment of α.  For example, αt = µ + δt + γt2 is a specification that has been 

considered.  (For other examples see Cornwell, Schmidt and Sickles; Lee and Schmidt; 

Battese and Coelli; and Kumbhakar.)  The models presented here create dynamic α 

through second moment conditions on ut.  What the implications of this difference will be 

for models of dynamic heterogeneity are unknown, but it is interesting to speculate.  

Clearly, the decision of whether to make α dynamic through the first moment or the 

second moment, should be driven by the application in mind.  If it is safe to assume that 

errors are spherical, or if estimation efficiency is not a concern, or if there is strong 

evidence that dynamic effects are deterministic, then perhaps parameterizing the first 

moment is justified.  However, if one believes that dynamic heterogeneity is caused by 

difference in spatial interactions, then perhaps parameterizing the second moment is 

appropriate. Either way, identification can only be achieved through a highly parametric 

specification, such as a parametric form for the dynamic α (in the first moment case) or a 

parametric form for the spatial weighting matrix (in the second moment case), so the 

decision may reduce to that of the selection of “the lesser of two evils”, but this remains 

to be seen. 

Additionally, spatial dependence may be a way to indirectly incorporate time-

invariant regressors into a fixed effect model.  For example, Horrace and Schmidt (1996) 

analyze the same data and incorporate five dummy variables for the six villages into a 

GLS or random effects specification, but they are forced to exclude these dummy 

variables from a fixed effect specification, because they are time-invariant at the farm 

level.  In the application presented here, village effects are incorporated into second 

moment of the residual in the form of distances between villages in weighting matrix M1 
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and in the form of contiguity or “common village” in matrix M2.  While there are 

commonly employed techniques for incorporating time-invariant regressors into a fixed 

effect model, the research presented here provides analysts with an alternative means.  

(See Hausman and Taylor for a technique for time-invariant regressors.) 

Our empirical example demonstrates the utility of this research; there are direct 

applications of this procedure to the stochastic frontier literature.  We have illustrated the 

dangers associated with ignoring spatial dependence: a) a potential efficiency loss and b) 

the possibility of incorrect assessment of the technical efficiency rank statistics implied 

by the model.  However, this modeling approach has much broader empirical 

implications.  Any fixed effect model for a panel of data with fixed T could benefit from 

this type of analysis tool, if there are compelling reasons to believe that spatial 

dependence exists and if there are additional data (such as geographic or economic 

proximity measures) that motivate selection of a reasonable spatial weighting scheme. 
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Table 1.  Weighting Scheme M1 – Inverse of Distance 
 Standard FE 

Model 
 
I 

Fully Restricted 
Average 

 
II 

Fully Restricted 
Moment  

 
III 

Partially 
Restricted 
Average 

IV 

Partially 
Restricted 
Moment 

V 
ρ̂  - 0.7248 - - - 
ρ~  - - 1.0557 - - 

wρ̂  - - - 0.7584 - 

Dρ̂  - - - 0.6914 - 

Wρ~  - - - - 0.8218 

Dρ~  - - - - 0.7476 
      

Seed 0.1208 0.1038 0.0998 0.1292 0.1248 
 (0.030) (0.025) (0.024) (0.024) (0.024) 

Urea 0.0918 0.0894 0.0901 0.1405 0.1440 
 (0.021) (0.018) (0.017) (0.015) (0.015) 

TSP 0.0892 0.0353 0.0244 0.0340 0.0307 
 (0.013) (0.012) (0.012) (0.011) (0.011) 

Labor 0.2431 0.2366 0.2379 0.2254 0.2204 
 (0.032) (0.029) (0.028) (0.026) (0.026) 

Land 0.4521 0.4879 0.4931 0.5046 0.5141 
 (0.035) (0.031) (0.030) (0.027) (0.027) 

DP 0.0338* -0.0178* -0.0298* -0.0224* -0.0212* 
 (0.032) (0.028) (0.028) (0.025) (0.025) 

DV1 0.1788 0.1084 0.0935 0.1250 0.1320 
 (0.041) (0.038) (0.038) (0.034) (0.035) 

DV2 0.1754 0.1060 0.0952 0.0917 0.0947 
 (0.057) (0.049) (0.048) (0.048) (0.048) 

DSS 0.0533 0.0759* 0.1062* - - 
 (0.022) (0.063) (0.302) - - 

      
R-sq  0.910228 0.9246 0.9271 0.9190 0.9177 
Note: Numbers in parenthesis are standard errors. All estimates are significant at least at 
5% significance level except those marked with an asterisk. 
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Table 2.  Unrestricted Estimates, Weighting Scheme M1. 

Time period 1 2 3 4 5 6 
zt 8.2420 6.0702 24.9468 26.4159 14.1925 12.3016 

tρ̂  0.6217 0.5217 0.8694 0.8375 0.7705 0.7101 
2ˆ tσ  0.0405 0.0828 0.0782 0.0713 0.0485 0.0658 

LMt 65.4080 30.5015 1461.0130 1680.6947 254.8534 175.9849 
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Table 3.  Weighting Scheme M2 – Common Villages 
 Standard FE 

Model 
 
I 

Fully Restricted 
Average 

 
II 

Fully Restricted 
Moment  

 
III 

Partially 
Restricted 
Average 

IV 

Partially 
Restricted 
Moment 

V 
ρ̂  - 0.6604 - - - 
ρ~  - - 0.9882 - - 

wρ̂  - - - 0.6811 - 

Dρ̂  - - - 0.6398 - 

Wρ~  - - - - 0.7388 

Dρ~  - - - - 0.6999 
      

Seed 0.1208 0.1035 0.0996 0.1255 0.1248 
 (0.030) (0.025) (0.024) (0.024) (0.024) 

Urea 0.0918 0.0909 0.0901 0.1435 0.1446 
 (0.021) (0.018) (0.017) (0.015) (0.015) 

TSP 0.0892 0.0356 0.0239 0.0326 0.0301 
 (0.013) (0.012) (0.012) (0.011) (0.011) 

Labor 0.2431 0.2385 0.2376 0.2201 0.2198 
 (0.032) (0.029) (0.028) (0.026) (0.026) 

Land 0.4521 0.4855 0.4934 0.5131 0.5148 
 (0.035) (0.031) (0.030) (0.028) (0.027) 

DP 0.0338* -0.0189* -0.0306* -0.0208* -0.0219* 
 (0.032) (0.028) (0.028) (0.025) (0.025) 

DV1 0.1788 0.1116 0.0928 0.1335 0.1326 
 (0.041) (0.038) (0.038) (0.034) (0.035) 

DV2 0.1754 0.1080 0.0947 0.0970 0.0961 
 (0.057) (0.049) (0.048) (0.049) (0.049) 

DSS 0.0533 0.0789* 0.0844* - - 
 (0.022) (0.051) (1.424) - - 
     

R-sq  0.910228 0.9240 0.9271 0.9171 0.9174 

Note: Numbers in parenthesis are standard errors. All estimates are significant at least at 
5% significance level except those marked with an asterisk. 
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Table 4.  Unrestricted Estimates, Weighting Scheme M2. 
Time period 1 2 3 4 5 6 
zt 7.4954 5.0873 23.5416 23.5057 13.6687 11.1836 

tρ̂  0.5682 0.4803 0.7875 0.7889 0.6875 0.6501 
2ˆ tσ  0.0407 0.0842 0.0774 0.0718 0.0481 0.0661 

LMt 57.0245 21.6164 1409.1248 1386.3032 256.7318 153.0266 
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Table 5.  Weighting Scheme M3 – Altitude Differences 
 Standard FE 

Model 
 
I 

Fully Restricted 
Average 

 
II 

Fully Restricted 
Moment  

 
III 

Partially 
Restricted 
Average 

IV 

Partially 
Restricted 
Moment 

V 
ρ̂  - 0.8648 - - - 
ρ~  - - 1.0673 - - 

wρ̂  - - - 0.9130 - 

Dρ̂  - - - 0.8166 - 

Wρ~  - - - - 0.9929 

Dρ~  - - - - 0.8446 
      

Seed 0.1208 0.1114 0.1095 0.1430 0.1500 
 (0.030) (0.025) (0.025) (0.023) (0.023) 

Urea 0.0918 0.0943 0.0963 0.1377 0.1342 
 (0.021) (0.018) (0.018) (0.015) (0.015) 

TSP 0.0892 0.0325 0.0283 0.0330 0.0341 
 (0.013) (0.012) (0.012) (0.011) (0.011) 

Labor 0.2431 0.2489 0.2522 0.2362 0.2407 
 (0.032) (0.028) (0.028) (0.026) (0.026) 

Land 0.4521 0.4794 0.4800 0.4902 0.4803 
 (0.035) (0.031) (0.030) (0.028) (0.027) 

DP 0.0338* -0.0185* -0.0256* 0.0033* -0.0057* 
 (0.032) (0.028) (0.028) (0.023) (0.023) 

DV1 0.1788 0.1216 0.1203 0.1631 0.1610 
 (0.041) (0.037) (0.036) (0.034) (0.035) 

DV2 0.1754 0.1304 0.1309 0.1205 0.1168 
 (0.057) (0.049) (0.048) (0.050) (0.048) 

DSS 0.0533 0.0804* 0.0683* - - 
 (0.022) (0.128) (0.254) - - 

      
R-sq  0.910228 0.9280 0.9289 0.9180 0.9196 
Note: Numbers in parenthesis are standard errors. All estimates are significant at least at 
5% significance level except those marked with an asterisk. 
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Table 6. Unrestricted Estimates, Weighting Scheme M3. 
Time period 1 2 3 4 5 6 
zt 14.0899 15.9659 57.4523 54.5444 25.3519 26.3768 

tρ̂  0.7510 0.7129 1.0384 0.9044 0.9497 0.8325 
2ˆ tσ  0.0415 0.0811 0.0765 0.0764 0.0501 0.0661 

LMt 89.4159 119.9479 3658.9348 3222.0965 368.5170 413.4162 
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Table 7.  Technical Efficiency Orders Statistics, Various Models 
Standard FE Model Spatial Models 

Farm # Standard 
FE 

Efficiency 

Standard 
FE 

Model 

Weight 
Scheme 

M1 

Weight 
Scheme 

M2 

Weight 
Scheme 

M3 
164 100% 1 1 1 1 
118 93.23% 2 2 2 3 
163 93.03% 3 3 3 2 
152 89.93% 4 6 6 4 
13 55.62% 84 106 106 114 
166 55.47% 85 116 116 108 
15 55.40% 86 62 62 72 
40 55.35% 87 54 54 64 
86 39.80% 168 165 165 166 
143 38.37% 169 169 169 170 
117 37.90% 170 168 168 168 
45 36.55% 171 171 171 171 
 rs: 1.0000 0.8027 0.8095 0.8674 

Spatial results are for the fully restricted moments estimator. 
Technical Efficiency for farm i = exp{α i -maxjα j }. 
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Table 8.  Summary Statistics for α i 
  -------Spatial Models------- 

 
 
Statistic 

Standard 
FE  

Model 

Weight 
Scheme

M1 

Weight 
Scheme

M2 

Weight 
Scheme

M3 
Average αi 4.97 5.31 5.33 5.17 
Median αi 4.97 5.30 5.32 5.16 
Std. Dev. αi 0.18 0.19 0.19 0.18 
Max αi 5.56 5.93 5.94 5.78 
Min αi 4.55 4.81 4.83 4.70 

Spatial results are for the fully restricted moments estimator. 
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Figure 1. Density Estimates of αi for Various Models. 
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FE = Fixed Effect with no spatial weighting, M1 = M1 Weighting Scheme, 

M2 = M2 Weighting Scheme, M3 = M3 Weighting Scheme 
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Appendix 
Assumptions 3, 4, and 5 from Kelejian and Prucha (1999).  Let P(ρt) = (IN - ρtMt)-1 with 
typical element pij(ρt). 
 
Assumption 3:  (i) The sums Σi|mijt| and Σj|mijt| are bounded by say, cm < ∞ for all 1 ≤ i, j ≤ 
N, N ≥1.  (ii)  The sums Σi| pij(ρt)| and Σj| pij(ρt)| are bounded by say, cp < ∞ for all 1 ≤ i, j 
≤ N, N ≥1, |ρt| < 1. 
 
Assumption 4:  Let  itu~  be the ith element of tu~ .  There exists finite dimensional random 
vectors dit and ∆t such that | itu~ -uit| ≤ ||dit|| ||∆t|| with N-1Σi||dit||2+δ = Op(1) for some δ > 0 
and N-1/2Σi||∆t|| = Op(1). 
 
Assumption 5:  The smallest eigen value of Γt′Γ t is bounded away from zero. 
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End Notes 
 
                                                 
i  The Conley technique could also be applied here and could conceivably produce more 

flexible results insofar as Conley’s technique accommodates less restrictive assumptions 

on the error process.  However, our intent here is to specifically examine the Kelejian and 

Prucha results. 
ii We present no proofs of our results, because they are all straight-forward extensions of 

Kelejian and Prucha’s proofs.  Proofs are available from the second author upon request. 

iii Assumptions 3, 4 and 5 of Kelejian and Prucha are contained in the Appendix. 

iv The fact that we estimate ρt t = 1, ..., T, implies a test of the hypothesis ρ1 = …  = ρT = 

ρ.  We are not aware of any such test, nor are we aware of a standard error calculation for 

the estimate of  ρt.  Of course, the standard error could be boot-strapped.  In the sequel 

we use the Moran I test and the Lagrange Multiplier test to test the significance of the 

over-all weighting scheme in each period. 

v Notice that the middle moment condition contains N-1 and not (TN)-1, since it is based 

on M and not M*. 

vi The survey ended in 1983, so the infrastructure description may be different from the 

current state. 

vii Cliff and Ord (1973) first measured potential interactions between spatial units using a 

combination of distance measures and relative length of the common border (contiguity). 

Since there is no true measure of contiguity available in our case we use physical distance 

only as a proxy for interdependence between spatial units. 

viii Experimentation with the weighting matrix suggested that the analysis was fairly 

robust to this arbitrary selection. 
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ix Both Moran and Geary advanced initial measures of spatial dependence (spatial 

correlation) that were based on the notion of binary contiguity between spatial units. 

Underlying spatial structure is expressed by 0-1 values: if spatial units have common 

border (are contiguous) value of 1 is assigned. 

x In the words of Anselin, interpretation of the test is not always straightforward, even 

though it is by far the most widely used approach.  Indeed, while the null hypothesis is 

obviously absence of spatial dependence, a  precise expression for the alternative does 

not exist.    

xi   Although there is no widely accepted interpretation of this phenomenon, we view an 

estimated ρ greater than unity as a specification error.  Therefore, weighting scheme M3 

may not be justified. 

xii Note that even though the time dimension have effectively been cut in half by this 

dichotomy, the estimates of the slope parameters are still based on the entire sample (TN) 

after the observables have been demeaned based on whether they are “dry” or “wet”. 

xiii We did not consider comparing the rankings of the partially-restricted system, since 

the α estimates are based on only 3 observations and in the other cases (standard and 

fully restricted systems) they are based on 6 observations. 

xiv To save space we do not report the actual technical efficiency estimates for the spatial 

models, only the efficiency ranking. 

xv  Details of the kernel estimations are available by request from the second author. 




