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1. Introduction

We develop and implement in this paper a technique for closed-form maximum likelihood estimation of

multivariate affine yield models of the term structure of interest rates, and for statistical comparison of nested

and non-nested families of these models. Affine yield models are popular among both practitioners and

academics, largely because they have desirable analytical properties and allow for straightforward pricing of

bonds and other interest rate derivatives. Bond prices, in general, are solutions to a second-order linear partial

differential equation. For most non-affine term structure models, solutions to this differential equation must be

found through numeric methods, which become increasingly impractical as the number of factors underlying

the model increases. However, for affine yield models, this partial differential equation decomposes into a

system of Ricatti-type ordinary differential equations (see, for example, Duffie and Kan, 1996) which can be

solved quickly, even with a large number of underlying factors.

Despite their desirable analytic properties, the estimation of affine yield models still poses many challenges.

The likelihood function for a vector of yields in an affine yield model is known in closed-form only for a few

special cases. Most studies of estimation of affine yield models outside this relatively restricted subclass have

therefore focused either on numeric techniques or method of moments estimators. Each of these methods has

its advantages and disadvantages, which we will briefly discuss in turn.

Moments of affine diffusions can be found in closed-form,1 so estimation of affine yield models through the

generalized method of moments (GMM) is feasible. As an early example, Gibbons and Ramaswamy (1993)

use this method to estimate the model of Cox et al. (1985). Chacko and Viceira (2003) and Singleton (2001)

consider estimation methods based on moments derived from the characteristic function of the transition

density, which is known in closed-form for affine diffusions, even though the density itself is, in general, not

known in closed-form.

Dai and Singleton (2000) estimate several affine yield models using the simulation-based efficient method of

moments. At least in theory, efficiency can be achieved if the number of moment conditions goes to infinity with

the number of data observations. This method is computationally intensive, requiring many simulations, and

is also highly flexible, requiring the a priori selection of an auxiliary model and resulting moment conditions.

Little is known about its behavior in repeated simulation trials, although its performance has been questioned

in the context of dynamic term structure models (see Duffee and Stanton, 2001; and Tauchen, 2004). In

addition, most affine yield models have lower bounds on one or more state variables. Most implementations of

the method of moments techniques calculate moments of bond yields directly, and never explicitly calculate

the values of the state variables implied by the observed bond yields. The implied values of some of the state

1For some models with multiple factors, “closed-form” must be interpreted to include finding the spectral or Jordan decom-
position of a non-symmetric matrix. See Fisher and Gilles (1996b) for a detailed discussion of the calculation of first and second
moments of affine diffusions.
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variables may lie on the wrong side of the boundary for some observations, in which case the estimated model

implies that the observed data could not have occurred. Duffee (2002) notes that the parameters estimated

by Dai and Singleton (2000) imply that many of the observations in the data set could not have occurred if

the estimated model were in fact the true data-generating model.

One alternative to method of moments estimation is the use of Gaussian likelihood approximations, in

which the conditional density of the state vector is assumed to have a multivariate Gaussian distribution.

The mean vector and covariance matrix of the state vector can be assumed to be proportional to the length

of time between observations (i.e., the properties of the process at a finite time horizon are approximated

by an Euler discretization). Alternately, the true means, variances, and covariances of the state vector can

be used; this latter approach in the literature on affine processes is usually referred to as quasi-maximum

likelihood (QML); see, for example, Fisher and Gilles (1996a) and Duffee (2002). With either approach, if

the number of observed yields is greater than the number of state variables in the model being estimated (as

is necessary for full identification of all parameters for some affine yield models), it must be assumed that at

least some of the yields are observed with error; see, for example, Piazzesi (2002). Estimation using Euler or

QML approximation of the likelihood function has the advantages that it is feasible for all affine yield models,

and avoids the problem of estimated models that imply the state vector took on unattainable values for some

observations. Use of the Euler approximate likelihood produces inconsistent estimates; QML is consistent but

inefficient, except in the cases where the true likelihood is Gaussian.

Instead of quasi-maximum likelihood, one can consider approximate maximum likelihood estimation with

the likelihood function calculated numerically or through simulation techniques. The transition function can

be found as a solution to the Kolmogorov forward equation; in general, this partial differential equation must

be solved numerically. Maximum likelihood estimation can be implemented via simulations. Pedersen (1995)

develops a technique for estimating the likelihood function of discrete observations of a diffusion process by

simulations, which Brandt and Santa-Clara (2002) extend to multivariate diffusions. When applied to term

structure models, likelihood methods usually assume, as do Chen and Scott (1993) and Duffee (2002), that an

arbitrary set of benchmark yields are observed without error, with all remaining yields observed with some

error; Brandt and He (2002) perform simulated maximum likelihood estimation of a model when all yields

are observed with some error. However, because new simulations are required for each parameter vector

considered during the likelihood search, the computing time required is substantial, as is generally the case

with simulation-based methods. On the other hand, their method does not require that an arbitrary set of

bond yields be assumed to be observed without error. Finally, Liu et al. (2001) propose to Fourier-invert

numerically the known characteristic function of an affine diffusion to recover an approximation of its density.

The transition density must be calculated for each data observation, and for each value of the parameter vector
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considered during a likelihood search, which quickly becomes computationally very intensive; see Jensen and

Poulsen (2002) for a comparison of different methods which demonstrates this in the univariate case. Already

numerically intensive in the univariate case, estimation by numerical methods becomes exponentially more

difficult for multivariate diffusions, which typically involve large numbers of parameters.

As an alternative to the above techniques, we propose maximum likelihood estimation with the likelihood

function approximated by a series of accurate expansions for the log-likelihood function (or equivalently the

density) due to Aı̈t-Sahalia (2008), which generalizes to arbitrary multivariate processes the univariate results

developed in Aı̈t-Sahalia (2002).2 What we do in this paper is a natural but not quite straightforward appli-

cation of these results, because unlike the standard maximum-likelihood theory developed there, multifactor

term structure models typically rely on a state vector that is at least partly unobservable, or latent. The key

aspect of the method is that, unlike the approaches described above, the resulting density expansion from

this approach is in closed-form. Furthermore, because it is maximum-likelihood, it is efficient, achieving the

Cramér-Rao lower bound for the asymptotic variance of the estimators.

The affine class of models has been studied extensively by Dai and Singleton (2000). They show the

existence of N + 1 distinct non-nested families of affine models with N state variables, M of which entering

the diffusion matrix; we use the notation AM (N) with 0 ≤M ≤ N to identify each family of models. Without

parameter restrictions, the likelihood function is known in closed-form for only one of these N + 1 families,

corresponding to M = 0. (The only exception is N = 1; in this case, both single-factor affine models have

closed-form likelihoods.) Duffie et al. (2003) propose a decomposition of the likelihood function of an affine

model, an approach that requires independence of the volatility variables and the simulation of the remaining

part of the likelihood. The independence assumption is, in general, not satisfied when M > 1.

By contrast, we derive closed-form approximations to the likelihood functions for all N + 1 families for all

N ≤ 3 (a total of nine models, four of which have known likelihood functions). No simulations are required in

our approach, and we are not limited to any particular affine model, such as those with independent volatility

variables as in Duffie et al. (2003), nor for that matter to affine specifications, although they are our focus

here. We show how maximum-likelihood estimation can be implemented using, for instance, bond yields as

the observables. The likelihood expansions computed in this paper for affine term structure models are also

being used by Mosburger and Schneider (2005), Cheridito et al. (2007), Thompson (2008), and Egorov et al.

(2008), the latter two of which apply this method in the four-factor case. Expansions using the same method

but for stochastic volatility models are used by Bakshi et al. (2006) and Aı̈t-Sahalia and Kimmel (2007).

2Aı̈t-Sahalia (1999) contains examples of application of the univariate method to models in finance. Jensen and Poulsen (2002),
Stramer and Yan (2005), and Hurn et al. (2007) conducted extensive comparisons of different techniques for approximating the
transition function and demonstrated that the method described is both the most accurate and the fastest to implement for the
types of problems and sampling frequencies one encounters in finance. The method has been extended to time inhomogeneous
processes by Egorov et al. (2003) and to jump-diffusions by Schaumburg (2001) and Yu (2007). DiPietro (2001) has extended the
methodology to make it applicable in a Bayesian setting. Bakshi and Ju (2005) propose an alternative centering in the univariate
case. Li (2005) considers the case of “damped diffusion” processes.
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Maximum likelihood estimation allows us to use likelihood ratio tests to evaluate the fit of non-nested

models (see Vuong, 1989), which is difficult or impossible for other methods, such as the method of moments.

Although other studies, such as Dai and Singleton (2000) and Cheridito et al. (2007), have evaluated non-nested

models, these studies have used ad-hoc model selection criteria, rather than rigorous statistical tests. Based

on synthetic US Treasury strips data, we implement a likelihood ratio test for non-nested models to compare

the fit of different models with the same number of state variables. We find that, with the simple market price

of risk specification for affine models proposed by Dai and Singleton (2000), models with fewer state variables

entering the diffusion matrix (i.e., AM (N) models with smaller values of M) are usually preferred to models

with more state variables in the diffusion matrix (although the preference is not always significant at the

conventional 95% confidence level). However, when the more flexible market price of risk specification used

by Cheridito et al. (2007) is used, this preference sometimes reverses; models with very non-Gaussian state

variable processes are preferred to those with more Gaussian state processes. Although these authors have

commented on the apparent reversal of preference when the market price of risk specification is extended, they

do not perform any rigorous statistical tests; the tests they do perform are confined to comparison of different

market price of risk within the same class of affine model (that is, with the same values of M and N). Our

procedure allows rigorous statistical testing of such hypotheses involving non-nested models. We also consider

nested likelihood ratio tests of the Dai-Singleton market price of risk relative to the Cheridito-Filipović-Kimmel

specifications, and also of parameter restrictions needed for existence of closed-form likelihoods. We find to

some extent that these two sets of parameters are substitutes; although each set is still statistically significant

(at the 95% level) in almost every model considered, the degree of statistical significance of either set is usually

much reduced when the other set is introduced. We also perform the likelihood ratio tests using Euler and

QML likelihood approximations, and find that they are sometimes much less accurate than our likelihood

approximation method.

The paper is organized as follows. We start with a brief review of affine term structure models in Section 2.

Next, we describe our estimation technique in Section 3, including the construction of the closed-form likelihood

expansions. We then examine in Section 4, through Monte Carlo simulations, the accuracy of this method by

imposing necessary parameter restrictions so that closed-form likelihood functions are available, and compare

estimates derived using the true likelihoods on simulated data to those derived using our approximations on

the same data. We also compare these estimates to those obtained using Euler and QML approximations to

the likelihood function. We find uniformly that the maximum-likelihood estimates produced by our method

are very close to the estimates produced by the exact likelihood function; the Euler and QML approximations

are much less accurate (except in the case of Gaussian models, for which the QML likelihood approximation is

exact). In Section 5, we apply the estimation technique to US Treasury security data and discuss the results,

4



and also perform nested and non-nested model selection tests using the approximate likelihoods. We compare

these results to those obtained using Euler and QML approximations to the likelihood function, and, as with

the simulated data, find our method approximates true maximum likelihood much more closely than the other

two methods. Section 6 concludes. The explicit formulae we derive for the affine term structure models are

contained in Appendix Appendix B for the bivariate models. They are available in computer form from the

authors in any dimension upon request.

2. Affine term structure models

A multivariate term structure model typically specifies that the instantaneous riskless rate rt is a deter-

ministic function of an N × 1 vector of state variables, Xt

rt = r (Xt; θ) . (1)

Under an equivalent martingale measure Q, the state vector follows the dynamics

dXt = µQ (Xt; θ) dt+ σ (Xt; θ) dW
Q
t , (2)

where Xt and µ
Q (Xt; θ) are N × 1 vectors, σ (Xt; θ) is an N ×N matrix, θ is a vector containing the model

parameters, and WQ
t is an N × 1 vector of independent Brownian motions.

In order to avoid arbitrage opportunities, the price at t of a zero-coupon bond maturing at T is given by

the Feynman-Kac representation

P (x, t, T ; θ) = EQ

[
exp

(
−
∫ T

t

rudu

)∣∣∣∣∣Xt = x

]
, (3)

where the expectation is taken with respect to the risk-neutral dynamics of X specified in (2). It is also

well-known that P satisfies the partial differential equation (PDE)

∂P

∂t
+ µQ (x; θ)

′ ∂P

∂x
+

1

2
Trace

[
v (x; θ)

∂2P

∂x∂x′

]
− r (x; θ)P = 0, (4)

where v (x; θ) ≡ σ (x; θ)σ′ (x; θ) (with ′ denoting transposition). The bond price must also satisfy the final

condition P (x, T, T ; θ) = 1 for all x, T , and θ. Such a model is well-defined provided that (2) is well-defined,

and the expected value (3) is finite, or, equivalently, the PDE (4) has a well-defined solution (subject only to

technical regularity conditions).

Although there are several different ways to define affine yield term structure models, we use the following

definition. An affine yield model is any model where the short rate (1) is an affine function of the state vector
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and the risk-neutral dynamics (2) are affine. We write the risk-neutral dynamics of the state vector as

dXt =
(
Ã+ B̃Xt

)
dt+Σ

√
S (Xt;α, β)dW

Q
t , (5)

where Ã is an N–element column vector, B̃ and Σ are N × N matrices, and S (Xt;α, β) is the diagonal

matrix with elements Sii = αi +X ′
tβi, with each αi a scalar and each βi an N × 1 vector, 1 ≤ i ≤ N . The

parameters of Ã, B̃, Σ, α, and β cannot be chosen arbitrarily; as discussed in Dai and Singleton (2000),

there are admissibility restrictions required for the existence of the process Xt. These authors demonstrate

the existence, for each value of N , of N + 1 disjoint admissible regions of the parameter space. Let β denote

the N ×N matrix whose i-th column is the vector βi, and let M denote the rank of β. M is the number of

independent linear combinations of state variables entering the diffusion structure for the state variables.

With N factors, there are N + 1 non-nested families of affine models corresponding to M = 0, 1, ..., N ;

in each of these families different restrictions are imposed on the parameters of Ã, B̃, Σ, α, and β. Dai and

Singleton (2000) also note that affine models do not have a unique representation, that is, there exist different

choices of the model parameters that generate identical behavior of the interest rate and yield processes. They

proceed to describe a canonical representation for each family of affine yield models, in which the Σ matrix is

equal to the identity matrix; this choice does not result in a loss of generality, since, for a Σ matrix not equal

to identity, we can construct a new set of state variables

Yt = Σ−1Xt. (6)

The diffusion matrix of Yt is then diagonal. We consider N = 1, N = 2, and N = 3, in which case there are

two, three, and four, respectively, non-nested families of models, each with its own form of likelihood function.3

We characterize the affine yield models with three or fewer state variables, as per Dai and Singleton (2000)

(with our alternate parameterization for the drift), in Appendix Appendix A.

It can then be shown that, in affine models, bond prices have the exponential affine form

P (x, t, T ; θ) = exp
(
−γ0 (τ ; θ)− γ (τ ; θ)

′
x
)
, (7)

where τ = T − t is the bond’s time to maturity. That is, bond yields (non-annualized, and denoted by

g (x, t, T ; θ) = − ln [P (x, t, T ; θ)]) are affine functions of the state vector

g(x, t, T ; θ) = γ0 (τ ; θ) + γ (τ ; θ)
′
x. (8)

Alternatively, one can start with the requirement that the yields be affine, and show that the dynamics of the

3Gouriéroux and Sufana (2004) identify some affine diffusions that do not fit into the classification scheme of Dai and Singleton
(2000). We do not consider this class of diffusions. Cheridito et al. (2008) show that the assumption of a diffusion matrix of the
form shown in (5) also excludes some affine diffusions with four or more factors. However, in this paper, we consider only models
with three or fewer factors, for which (5) is not restrictive.
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state vector must be affine; see Duffie and Kan (1996). The same authors also show that, when the coefficients

are affine, (4) is equivalent to a system of Ricatti-type ordinary differential equations, for which numeric

solution is typically much faster than a general PDE with non-linear coefficients. This analytic tractability of

bond prices accounts for much of the popularity of affine models.

3. Estimation procedure

Maximum-likelihood estimation requires evaluation of the likelihood of the observed panel of yield data for

each parameter vector considered during a search procedure. The procedure for evaluating the likelihood of

the observed yields at a particular value of the parameter vector consists of four steps. First, we extract the

value of the state vector Xt (which is not directly observed) from a set of benchmark yields, which are assumed

to be observed without error. Second, we evaluate the joint likelihood of the series of implied observations of

the state vector Xt, using accurate closed-form approximations to the likelihood function. Third, we multiply

this joint likelihood by a Jacobian determinant, to find the likelihood of the panel of observations of the

benchmark yields. Finally, for a set of additional yields assumed to be observed with error (the additional

yields are needed to identify some model parameters; see below), we calculate the likelihood of the observation

errors, and multiply this likelihood by the likelihood of the benchmark yields found in the previous step, to find

the joint likelihood of the panel of all yields. This procedure is repeated for different values of the parameter

vector, until the maximum likelihood estimate is found.

Fig. 1 summarizes our estimation method: for each parameter vector, we can evaluate the likelihood of the

observed bond yields using a combination of the affine pricing model and our closed-form likelihood expansions.

As the figure shows, the only role the affine structure plays in our estimation method consists in allowing the

transformation from observed yields to state variables (i.e., the pricing model) to be easily solvable.

3.1. Extracting state from yields

We estimate the parameter vector θ based on a panel of observed bond prices or, equivalently, yields. The

state vector Xt is not directly observable, and must be inferred from the cross-section of bond yields at date

t. In affine yield models, zero-coupon yields are affine functions of the state vector, so the likelihood function

of yields is readily determined from the likelihood function of the state vector.

It is well-known that, in general, affine models are not identified under both true and risk-neutral probability

measures if the number of observed yields is equal to the number of state variables. Following Chen and Scott

(1993) and Duffee (2002), we use N+H observed yields, H > 0, in the postulated model AM (N), and include

observation errors for H of those yields. At each date t, the state vector Xt is then exactly identified by the

yields observed without error, and these N yields jointly follow a Markov process. Denoting the times to

maturity of the yields observed without error as τ1, ..., τN , the observed values of these yields, on the left-hand
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side, are equated with the predicted values from (8) given the model parameters and the current values of the

state variables, X1t, ..., XNt:
g (Xt, t, t+ τ1; θ)

...

g (Xt, t, t+ τN ; θ)

 =


γ0 (τ1; θ)

...

γ0 (τN ; θ)

+


γ (τ1; θ)

′

...

γ (τN ; θ)
′




X1t

...

XNt

 . (9)

By introducing a vector Γ0 (θ) whose elements are γ0 (τ1; θ) through γ0 (τN ; θ), and a matrix Γ (θ) whose

columns are γ (τ1; θ) through γ (τN ; θ), this equation can be expressed in matrix form,

gt = Γ0 (θ) + Γ (θ)
′
Xt. (10)

The current value of the state vector Xt can be found by inverting this equation:

Xt =
[
Γ (θ)

′]−1
[gt − Γ0 (θ)] . (11)

3.2. Likelihood of the state vector

While the only parameters entering the transformation from observed yields to the state variables are the

parameters of the risk-neutral (or Q-measure) dynamics of the state variables, once we have constructed our

time series of values of Xt sampled at dates t0, t1, ..., tn, the dynamics of the state variables that can be

inferred from this time series are the dynamics under the physical measure (denoted by P ). In the first step

of the estimation procedure, we rely on the tractability of the affine bond pricing model, but in this step,

we do not. In particular, we can now specify freely (that is, without regard for considerations of analytical

tractability) the market prices of risk of the different Brownian motions, or equivalently the Radon-Nikodym

derivative dQ/dP . The P -measure dynamics are

dXt = µP (Xt; θ) dt+ σ (Xt; θ) dW
P
t

=
{
µQ (Xt; θ) + σ (Xt; θ) Λ (Xt; θ)

}
dt+ σ (Xt; θ) dW

P
t . (12)

For example, Dai and Singleton (2000) use the simple market price of risk specification

Λ (Xt; θ) = σ (Xt; θ)
′
λ (13)

with λ an N × 1 vector of constant parameters, so that under P , the instantaneous drift of each state variable

is its drift under the risk-neutral measure, plus a constant times its volatility squared. Under this specification,

the drift of the state vector is then affine under both the physical and risk-neutral measures, since

µP (Xt; θ) =
(
Ã+ B̃Xt

)
+ΣS (Xt;β)Σ

′λ ≡ A+BXt.
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We consider a canonical representation of affine models where A, B, α, and β have the normalized form

A =

 AM×1

0(N−M)×1

 , B =

 BM×M 0M×(N−M)

B(N−M)×M B(N−M)×(N−M)

 , (14)

α =

 0M×1

1(N−M)×1

 , β =

 IM×M βM×(N−M)

0(N−M)×M 0(N−M)×(N−M)

 .
This normalization is similar, but not identical, to that of Dai and Singleton (2000), who, as discussed earlier,

write the drift of the state variables as B (A−Xt), and who also normalize the last (N −M) elements of θ

to be zero. In our normalization, the last (N −M) state variables (when M < N) differ by a constant from

their counterparts under the Dai and Singleton (2000) normalization.

Given the identification normalization in which Σ is taken to be the identity matrix, existence of the process

and non-attainment of the boundaries require that the parameters governing the state variable dynamics be

constrained as follows

(AM×1)i ≥
1

2
, 1 ≤ i ≤M (15)

(BM×M )ij ≥ 0, 1 ≤ i, j ≤M, i ̸= j (16)(
βM×(N−M)

)
ij
≥ 0, 1 ≤ i ≤M, M + 1 ≤ j ≤ N . (17)

We further discuss these restrictions, and additional restrictions for stationarity, in Appendix Appendix A.

Note that, in an AM (N) model with M > 0, there are restrictions on the values of the state variables,

but (at least for the more complicated models), there is no straightforward way to restrict a search to those

parameter values which imply that the panel of state variables extracted from the observed yields satisfies

these restrictions. We deal with this problem simply by setting the likelihood equal to zero whenever a state

variable violates the model restrictions.

As mentioned above, an affine µP is not required for our likelihood expansions. See Duarte (2004) for a

model that is affine under the risk-neutral probability measure, but not under the true probability measure.

However, we do rely on the affine character of the dynamics under Q, because those allow us to go from state

to yields in the tractable manner given by (9).

3.3. Likelihood of yields observed without error

Since the relationship between the state vector and bond yields is affine, as given by (10), the transition

function of the bond yields can be derived from the transition function of the state vector by a change of

variables and multiplication by a Jacobian determinant, which is a constant (i.e., not dependent on the state

vector) in this case. Specifically, consider the stochastic differential equation describing the dynamics of the
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state vector Xt under the measure P, as specified by (12). Let pX (∆, x|x0; θ) denote its transition function,

that is the conditional density of Xt+∆ = x given Xt = x0. Let pG(∆, g|g0; θ) similarly denote the transition

function of the vector of yields observed ∆ time units apart. Since x = Γ′−1(θ)(g − Γ0(θ)), we have

pG(∆, g|g0; θ) = det
∣∣Γ′−1(θ)

∣∣ pX(∆,Γ′−1(θ)(g − Γ0(θ))|Γ′−1(θ)(g0 − Γ0(θ)); θ). (18)

Then, recognizing that the vector of yields is Markovian and applying Bayes’ Rule, the log-likelihood function

for discrete data on the yield vector gt sampled at dates t0, t1, ..., tn has the simple form

ℓn (θ) ≡ n−1
∑n

i=1
lG
(
ti − ti−1, gti |gti−1 ; θ

)
, (19)

where lG ≡ ln pG. As usual in likelihood estimation, we discard the unconditional distribution of the first

observation since it is asymptotically irrelevant.

We assume in this paper that the sampling process is deterministic [see Aı̈t-Sahalia and Mykland (2003)

for a treatment of maximum likelihood estimation in the case of randomly spaced sampling times]. In typical

practical situations for term structure models, and hence in our Monte Carlo experiments below, these types

of models are estimated on the basis of weekly or monthly data, so that ti − ti−1 = ∆ = 7/365 or ti − ti−1 =

∆ = 1/12 is a fixed number.

3.4. Likelihood of all yields

From the coefficients γ0 (τ ; θ) and γ (τ ; θ) and the value of the state vector Xt found in the first step, we

can calculate the implied values of the yields which are assumed to be observed with error, whose maturities

are denoted by τN+1, ..., τN+H
g (Xt, t, t+ τN+1; θ)

...

g (Xt, t, t+ τN+H ; θ)

 =


γ0 (τN+1; θ)

...

γ0 (τN+H ; θ)

+


γ (τN+1; θ)

′

...

γ (τN+H ; θ)
′




X1t

...

XNt

 . (20)

The observation errors, denoted by ε (t, t+ τN+i), are the difference between these implied yields and the

yields from the data. By assumption, these errors are Gaussian with zero mean and constant variance, and

are independent across time and maturity (and also independent of the state variable processes). The joint

likelihood of the observation errors can be calculated from the Gaussian density function, where σi is the

standard deviation of the observation error for the yield with maturity τN+i

σi =
√
V ar [ε (t, t+ τN+i)]. (21)
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Since the observation errors are independent of the state variable process, the joint likelihood of the panel of

all observed yields is simply the product of the likelihood of the yields observed without error, multiplied by

the likelihood of the observation errors. Equivalently, the two log-likelihoods can simply be added to find the

joint log-likelihood of the panel of all yields.

3.5. Closed-form likelihood expansions

We now describe how we obtain closed-form approximations to lG, hence to the log-likelihood function of

the discretely sampled vector of yields in light of (19). To construct an expansion for lG, we first construct an

expansion for lX ≡ ln pX and then take logs on both sides of (18) to recover the corresponding expansion for

lG. So we can reduce the problem to one of approximating lX , and for that we use the closed-form method of

Aı̈t-Sahalia (2008), which extends to multivariate diffusions the univariate results of Aı̈t-Sahalia (1999) and

Aı̈t-Sahalia (2002).

The expansion of the log-likelihood has the form of a Taylor series in ∆ at order K

l
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) +

C
(−1)
X (x|x0; θ)

∆
+
∑K

k=0
C

(k)
X (x|x0; θ)

∆k

k!
, (22)

with

Dv (x; θ) ≡
1

2
ln (Det[v(x; θ)]) , (23)

for v (x; θ) ≡ σ (x; θ)σT (x; θ) .

As defined in Aı̈t-Sahalia (2008), a diffusion X is reducible if and only if there exists a one-to-one transfor-

mation of the diffusion X into a diffusion Y whose diffusion matrix σY is the identity matrix. That is, there

exists an invertible function γ (x; θ) such that Yt ≡ γ (Xt; θ) satisfies the stochastic differential equation

dYt = µY (Yt; θ) dt+ dWP
t . (24)

Every univariate diffusion is reducible. However, this is not the case for every multivariate diffusion, and Aı̈t-

Sahalia (2008) gives necessary and sufficient conditions for reducibility. In the reducible case, the coefficients

C
(k)
X for k = −1, 0, ...,K are obtained in closed-form.

In the irreducible case, the approach is to calculate in closed-form a Taylor series in (x − x0) of each

coefficient C
(k)
X , at order jk in (x − x0). Such an expansion is denoted by C

(jk,k)
X and it turns out that the

order should be jk = 2(K − k) for k = −1, 0, ...,K. The resulting expansion will then be

l̃
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) +

C
(j−1,−1)
X (x|x0; θ)

∆
+
∑K

k=0
C

(jk,k)
X (x|x0; θ)

∆k

k!
. (25)

Such a further Taylor expansion in x−x0 is unnecessary in the reducible case; however, even for an irreducible
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diffusion, it is still possible to compute the coefficients C
(jk,k)
X in closed-form. For details, we refer to Aı̈t-

Sahalia (2008). The specific expressions for the models under consideration in dimension 2 are reproduced in

Appendix Appendix B; they are available in computer form from the authors for dimensions 1, 2, and 3 upon

request.

3.6. Alternate methods

It is possible to substitute other approximations for the closed-form likelihood expressions described in

Section 3.5. One such method is what we call the Euler method, in which the conditional likelihood of the vector

of state variables is approximated by a Gaussian density, with mean and variance equal to its instantaneous

mean and variance, multiplied by the time between observations. Although an accurate approximation when

consecutive observations are very close together in time, the Euler approximate likelihood is inaccurate for

longer time periods, because, for any AM (N) with m > 0, the true transition density is not Gaussian, and

the mean and variance of the state vector is calculated as if its drift and diffusion were constant over the

entire time between observations, when in fact, they are state dependent. Nonetheless, the Euler approximate

likelihood is very simple to calculate, and may be a reasonable alternative to our method, despite its potential

inaccuracy. In Section 4, we therefore examine the performance of this method, alongside our method, to

judge whether the inaccuracy from use of the Euler method is sizable or not.

Another alternative method, often used in the literature, is usually referred to as Quasi-Maximum Likeli-

hood (QML); see Fisher and Gilles (1996a). (These authors do not use the term quasi-maximum likelihood

or its acronym.) With this method, the transition density is approximated (as with the Euler method) by a

Gaussian density. However, the mean and variance of this Gaussian transition density are the true mean and

variance, rather than Euler approximations. The only source of inaccuracy is therefore the assumption of a

Gaussian density, although in the case of A0 (N) models, the true transition density is Gaussian, and conse-

quently coincides with the QML likelihood. We calculate the conditional means and variances numerically,

as solutions to the Chapman-Kolmogorov backward equation; with affine coefficients, this partial differential

equation decomposes into a system of ordinary differential equations, the solution to which can be found by

fast numeric methods. It is also possible to find these moments in closed-form, provided the definition of

“closed-form” includes calculation of the Jordan decomposition of the slope matrix in the drift of the state

vector.4 However, the expressions for the conditional means and variances are subject to numeric instability

in some cases; they frequently contain expressions of the form [f (b)− f (a)] / (b− a). If the parameters of

the model are such that a and b are very close together, calculation of this expression is problematic, due

4The spectral decomposition is a special case of the Jordan decomposition. However, since there is no requirement that the
slope matrix in the drift of the state vector be symmetric, there is no guarantee that it has a spectral decomposition. The Jordan
decomposition coincides with the spectral decomposition, when the latter exists. See Fisher and Gilles (1996b) for a derivation
of the first and second conditional moments of affine processes.
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to the finite numeric precision of computers.5 One potential solution is to use a Taylor approximation to

f (b) (around a) when a and b are close together; we instead avoid the problem entirely by using numerically

calculated moments, as discussed above. Since the QML method uses more accurate moments than Euler,

but still retains the simplicity of the Gaussian approximation, we examine in Section 4 the performance of the

QML method (with moments calculated numerically), alongside our method and the Euler method, to judge

whether the inaccuracy from use of this method is sizable or not.

4. Monte Carlo results

To assess the accuracy of our technique, we now consider models for which the likelihood function is

known in closed-form, and compare parameter estimates using our technique to those obtained using the true

likelihood functions. We also compare estimates by alternate approximation methods, Euler and QML, to the

true MLE. We calculate the conditional means and variances for QML numerically; estimates calculated with

exact expressions for the conditional moments (not shown—see the discussion in Section 3.6) produce nearly

identical results. In all models considered but one, we find our parameter estimates are very close to the

true maximum likelihood estimates for simulated data at the weekly frequency; in the one case for which the

approximate estimates are not close to the true MLE, the deviation can be traced to an identification issue,

and we find that, when the model is rewritten in terms of observed yields, the results using our technique are

extremely close to the true MLE results. The deviations between the Euler and QML methods and the true

MLE are substantially larger (except for QML estimates of the A0 (N) models, since QML then coincides with

the true likelihood). Since our estimation approach is based on Taylor expansions in the sampling interval ∆,

observations at the daily frequency would result in even greater accuracy.

4.1. Procedure

The full parameter vector θ consists of all the elements of (A,B, α, β, δ0, δ, λ, σ); with our normalization,

the α vector contains no free parameters. We consider all nine models corresponding to N = 1, 2, and 3 and

estimate each AM (N) model using n time series observations of N +H zero-coupon bond yields.

The individual models themselves are described in Appendix Appendix A, and parameter restrictions

needed for existence, boundary non-attainability, and stationarity are shown in Table 1. For the purpose of

studying the accuracy of our likelihood expansion approach, we also consider further parameter restrictions

whenever necessary to obtain a closed-form likelihood to which we can then compare our expansion. These

further parameter restrictions are shown in Table 2. Note again that our method does not require these

further restrictions, and remains closed-form in all cases. The only reason we impose them is to have an exact

likelihood to which our expansion can be compared in these Monte Carlo simulations.

5The same problem arises when the true likelihood function is used, for those cases in which it is known explicitly.

13



For each canonical model, we simulate 1, 000 data series of 501 weekly observations (∆ = 7/365) of the

vector of N state variables, giving n = 500 pairs of discrete transitions of that process. Each of the simulated

sample paths is produced by an Euler discretization of the process, using 30 intervals per week. Twenty-

nine out of every 30 observations are discarded, leaving only the observations at the weekly frequency. Each

simulated data series is initialized based on the unconditional distribution of the yields.

From this time series of the canonical state variables, we calculate the instantaneous interest rate and

yields of varying maturities. Including the instantaneous interest rate (which can be interpreted as a yield

with maturity of zero), we generate twice as many yields as state variables in each model (i.e., H = N),

with maturities spaced evenly every two years. For example, for the three-factor models, we calculate the

instantaneous interest rate and yields with maturities of two, four, six, eight, and ten years. As discussed, more

yields than state variables are needed to ensure identification of all model parameters, including the market

price of risk. For an N -factor model, the N longest maturity yields include observation errors, which are

assumed to be Gaussian with mean zero and constant variance, and further assumed to be uncorrelated across

maturities and over time. Since the parameter restrictions which ensure existence of closed-form likelihoods

also ensure existence of closed-form yield expressions, we calculate yields exactly rather than through numeric

solution of the pricing partial differential equation.

From the time series observations of 2 × N yields for each N -factor model, we then proceed to estimate

the model parameters, using the true likelihoods, the 2-term reducible approximate likelihoods, and also the

Euler and QML approximate likelihood functions. For some models, numeric instability was encountered in

evaluating the true MLE; this occurred for three of the 1,000 simulations for the A1 (2) model, seven of the

1,000 simulations for the A2 (3) model, and 82 of the 1,000 simulations for the A3 (3) model. In these cases,

the true MLE was calculated with considerable error, and was very far from estimates produced by all the

approximation methods; these particular simulations therefore do not allow meaningful comparison of the

error introduced by different approximation techniques, and were excluded in the presentation of the results.6

Because there are nine models, some of them containing many parameters, we show results only for the

three-factor models; these results for simulations with weekly observations are shown in Tables 3 through 6,

which also show the data-generating values of the parameters.7 The results for the one-factor and two-factor

models (not shown) are qualitatively similar. We show the results in a common format that allows for the

comparison of the sampling noise error in the parameter estimates, θ̂(MLE) − θ(TRUE), to the error due to the

approximation of the true likelihood by our approach, θ̂(2) − θ̂(MLE), as well as the corresponding error for

the approximation of the likelihood by the Euler and QML methods, θ̂(Euler)− θ̂(MLE) and θ̂(QML)− θ̂(MLE),

6The problem is with the implementation of the modified Bessel function of the first kind in Matlab, which has difficulty with
certain combinations of inputs. Specifically, in some cases, the function returns an error code indicating a loss of accuracy at the
estimated parameter vector. In other cases, it returns zero, instead of a very small positive number, for some parameter vectors,
so the search algorithm avoids these values.

7The data-generating values are based on estimates from Cheridito et al. (2007).
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respectively. The notation θ̂(2) indicates that we use an expansion at order 2 in ∆ (i.e., K = 2 in Section

3.5) to obtain the approximate likelihood estimator. The bias (i.e., the average deviation from θ(TRUE)) and

the standard deviation for θ̂(MLE) are reported, as well as the mean and standard deviation of the differences

between θ̂(2), θ̂(Euler), and θ̂(QML), respectively, from θ̂(MLE). The biases and standard deviations of the

differences between the approximate MLE, θ̂(2), and the true MLE, θ̂(MLE), are reported as percentages of

the corresponding biases and standard deviations of the difference between the true MLE θ̂(MLE) and the

data-generating values θ(TRUE). The biases and standard deviations of the differences between the alternative

approximations, θ̂(Euler) and θ̂(QML), and the true MLE, θ̂(MLE), are reported as multiples of the biases and

standard deviations of the differences between θ̂(2) and θ̂(MLE).

4.2. Identification

Affine models do not have unique representations; given any affine yield model, an equivalent model can be

constructed by replacing the state vector with a non-singular affine transformation of itself. To ensure that the

estimated models have a unique representation, additional restrictions are needed. We use the parameterization

of the Dai-Singleton canonical models, with the modification to the drift of the state variables discussed earlier.

However, we make two additional modifications to the parameterization when reporting the results. The Dai-

Singleton normalizations, although useful in characterizing the varying families of affine yield models, are

unstable at certain values of the parameter vector, and result in poor identification of some parameters near

these values. For example, consider the single-factor affine yield model

drt = (c1 + c2rt) dt+ c3dWt. (26)

This model is in the A0 (1) family, and is equivalent to the model of Vasicek (1977). In the Dai-Singleton

canonical form (with our alternate drift parameterization), this model is described as

dX1t = (b11Xt) dt+ dWt (27)

rt = δ0 + δX1t, (28)

where b11 = c2, δ0 = −c1/c2, and δ = c3. If c1 = c2 = 0, then the δ0 parameter is unidentified. When c2

is very small and c1 is not, then the δ0 parameter is very poorly identified; even small sampling variation in

the estimated c2 parameter (i.e., the constant term in the drift of the observed quantity, rt) results in huge

variation in the estimated δ0 parameter. When a large number of simulations are performed, it is likely that

some of the estimated values of b11 (and therefore c2, in the above representation) will be close to zero, and

the δ0 parameter estimates then take on very extreme values. In this case, the distribution of the estimated

δ0 parameter provides little useful information about the accuracy of the estimation; although the δ0 estimate
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may be very far from the true value, this deviation has little effect on the implied process followed by the

interest rate and bond yields. This problem is exacerbated in models with multiple state variables, where δ0 is

poorly identified when any of the eigenvalues of the B matrix are close to zero. We therefore report instead of

δ0 a modified parameter δM0 , which is the δ0 parameter multiplied by the harmonic average of the eigenvalues

of B, that is

δM0 = δ0/
∑N

i=0

1

vi
, (29)

where v1, ..., vN are the eigenvalues of B. For consistency, this normalization is used in all models, even those

for which non-identification of the δ0 parameter is not an issue.

A similar problem occurs in some models when elements of the δ vector are very small. Consider the single

factor affine yield in which the interest rate process is

drt = (c1 + c2rt) dt+
√
c3 + c4rtdWt. (30)

(These parameters must be restricted to ensure existence of this process.) This model is in the A1 (1) family

[which is a slight generalization of the model of Cox et. al. (1985], and the Dai-Singleton canonical represen-

tation (with our modified parameterization of the drift) is

dX1t = (a1 + b11Xt) dt+
√
X1tdWt (31)

rt = δ0 + δX1t, (32)

where a1 = c1/c4 − c2c3/c
2
4, b11 = c2, δ0 = −c3/c4, and δ = c4.

Note that, when c4 is very small, two of the parameters may take on very large values; the a1 parameter is

more severely affected, since the square of c4 appears in the denominator. The distribution of the estimated

values of a1 therefore provides little useful information by which we can judge the quality of the estimation.

In multiple-factor models, this problem can occur with the ai parameter for any 1 ≤ i ≤ M . We therefore

report instead a scaled version of ai parameter8

aMi = aiδi. (33)

With some models, even with the normalizations discussed, another identification issue can arise, which

is the reordering of state variables (see Babbs and Nowman, 1999). For example, in the A3 (3) model, if

the off-diagonal elements of the drift are zero, then it is possible simply to reorder the three state variables.

The parameter vector is then different, even though the implied interest rate and bond yield processes are

8Collin-Dufresne et al. (2003) propose an alternative to the parameterization scheme in which the choice of state variables is
based on observed quantities such as level and slope of the term structure. Although our parameterization is based on Dai and
Singleton (2000), the modifications to this scheme we propose are similar in spirit to those of Collin-Dufresne et al. (2003).
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exactly the same as without the reordering. To guard against this problem, we sort by the eigenvalues of

the drift matrix. With the parameter restrictions imposed on this model in the Monte Carlo simulations, the

eigenvalues of the drift matrix are simply the diagonal elements, and each one is clearly associated with a state

variable. When reporting the results, if the size ordering of the eigenvalues of the estimated drift matrix is

different than the size ordering of the eigenvalues from the data-generating drift matrix, we reorder the state

variables. This procedure eliminates this final identification problem for the A2 (2), A2 (3), and A3 (3) models.

A similar identification issue potentially arises in the A0 (2), A0 (3), and A1 (3) models, although in our

simulations, it has manifested itself only in the A0 (3) case. For this latter model, the matrix of slope coefficients

in the drift, in the Dai-Singleton canonical form, is

B =


b11 0 0

b21 b22 0

b31 b32 b33

 . (34)

For over 400 of the 1,000 simulations for this model, the ordering of the diagonal elements is different, for at

least one of the estimation methods, from the data-generating values. In this case, the state variables cannot

simply be reordered while still preserving the Dai-Singleton canonical form, because a reordering would cause

some of the elements of B above the diagonal to be non-zero. Investigation of these estimates shows, for

these simulations, that the true likelihood function is extremely flat in some directions in the parameter space.

In one extreme case, the true likelihoods of the MLE estimated with and without an ordering constraint

on the diagonal elements of B differ beginning only in the twelfth significant decimal place. The reversal

of the diagonal elements is therefore indicative of poor identification, and, absent any convenient alternate

parameterization that is better identified, we present the results for this model in a second form as well,

expressing the state variable dynamics in terms of observed quantities.

Affine yield models are usually expressed (as we express them) in terms of latent variables, rather than

directly observable quantities such as yields. As noted by Duffie and Kan (1996), these models can be expressed

in terms of bond yields instead of latent state variables; however, expressing the parameter restrictions needed

to satisfy existence and no-arbitrage conditions in a straightforward way, and imposing them in estimation, has

proved challenging; see Collin-Dufresne et al. (2003) for one approach. However, given an estimated model

(expressed in a latent variable form), it is relatively easy to construct an observationally equivalent model

in terms of bond yields. Furthermore, since bond yields are well-defined and observable quantities, there

are no identification problems. Therefore, even though the models are estimated using their latent variable

representations (with the Dai-Singleton normalizations, and the modifications discussed above), we can also
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report the results in yield autoregressive form

ym = φm +
N∑

n=1

ψmnyn + ηm, (35)

where y1, ..., yN are the first N yields generated (i.e., those observed without error); unlike the yields referenced

in Section 3, these yields are annualized. The residuals η1, ..., ηN have mean zero and covariance structure

Cov [ηi, ηj ] = ωij0 +

M∑
k=1

ωijkyk (36)

with the stipulation that ωijk = ωjik for any 1 ≤ i, j ≤ N and 0 ≤ k ≤M .

Presenting the results for the A0 (3) model in yield autoregressive form resolves the final identification issue

for this model; these results are shown in Table 7, and, as discussed in the next section, confirm the accuracy

of our method. The same issue could also have affected other models, but an examination of the parameter

estimates shows that it did not; for these models, not a single simulation experienced a reversal of the diagonal

elements of the drift matrix, for either the true MLE, or for the estimates using any of the approximation

methods.

4.3. Results

Tables 3 through 6 show the Monte Carlo results for the three-factor models with weekly observations,

in terms of the model parameters. Deferring discussion of the A0 (3) model for now, our technique produces

parameter estimates for the other models that are extremely close to the MLE based on the true likelihood,

both in absolute terms and relative to the sampling distribution of the latter relative to the true parameter.

The mean difference between the two estimates is typically very small compared to the mean difference between

the true maximum likelihood estimator and the true parameter value; the standard deviation of the difference

between the two estimators is also typically very small compared to the standard deviation of the MLE itself;

the ratios are no more than a few percent, and for many parameters, much less than 1%. These results suggest

that the approximation error introduced by our likelihood approximation is swamped by the sampling error

of the MLE estimator, i.e., the noise resulting from the fact that the parameters are estimated from random

data. Consequently, the exact MLE can be replaced by our estimator at almost no cost (and of course, our

estimator can always be calculated, unlike the exact MLE, which is only available for models which have a

known closed-form likelihood).

Tables 3 through 6 also show the difference between estimates obtained using the Euler approximate

likelihood and the true MLE, and between estimates using the QML approximate likelihood and the true

MLE (for those models for which these two are different). For QML, the conditional means and variances

were calculated numerically; estimates using explicit expressions for the conditional moments for the one- and
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two-factor models (not shown) are very close to the estimates using numeric moments. QML estimates are

only shown when they are different from the true MLE, i.e., for all models except A0 (3). Again deferring

discussion of the A0 (3) model, both of these methods produce for the other models estimates with substantially

larger deviations from the true MLEs than our method. For nearly all parameters in all models, the mean of

the difference between the estimates using these two methods and the true MLE is much larger (in absolute

magnitude) than the mean difference between estimates from the 2-term approximate likelihood and the true

MLE; in all cases, the Euler and QML methods have much larger standard deviation from the true MLE

than the 2-term approximate likelihood.9 Even in the few cases where the other two methods have smaller

mean differences, the standard deviation of the difference is much larger, so that the 2-term likelihood method

produces much smaller mean-squared error. Perhaps surprisingly, the QML method usually produces only

a small improvement over the Euler method (except for the Gaussian models, for which the QML estimates

coincide with the true MLE); most of the differences from the true MLE seem to be driven by the use of a

Gaussian density when the true density is non-Gaussian, rather than the Euler method’s use of approximate

rather than true conditional moments.

The results for the unmodified ai and δ0 parameters (not shown) are characterized by a few very extreme

outliers, in both the true and approximate MLE results. The estimates, as well as the conformance between

the true and approximate estimates, of the modified versions of these parameters suggest that the extreme

values of the ai parameters occur only when the corresponding δi parameters are very close to zero, and the

extreme values of the δ0 parameter occur only when the B matrix contains a very small eigenvalue. As argued

above, these extreme values are then indicative of the poor identification of the parameter which is intrinsic

to the parameterization method, rather than poor performance of the estimation technique. The results in

yield autoregressive form are shown only for the A0 (3) model in Table 7, to save space, but were calculated

for all models, and confirm this interpretation. The dynamics of observed yields implied by the approximate

MLE closely conform to those implied by the true MLE.

From Table 3, our method appears to perform relatively poorly for the A0 (3) model;10 however, closer

examination shows that this is not the case. The errors in estimation of the parameter vector introduced by

our method as reported in the table are still substantially smaller than the sampling variability inherent in

maximum likelihood estimation, but are relatively larger than in the other models. However, much of the

deviation of our approximate MLE from the true MLE is symptomatic of an identification issue, as discussed

9Note that the biases for the Euler and QML estimates are reported as multiples of the corresponding biases for the reducible
estimates. In a few cases, the sample bias for the reducible estimates was very close to zero, with the result that the biases for the
other two methods are many times larger. In these cases, it does not necessarily follow that the bias for the other two methods
is extreme, merely that it is very small for the reducible method. This phenomenon did not occur for any parameter estimates
in reverse, that is, none of the Euler or QML estimates had extremely small bias, so that this multiple was extremely close to
zero. Also, this phenomenon does not occur with the standard deviations. In any event, the tables contain all the information
necessary to back out the absolute instead of relative estimation errors, if so desired.

10It is unlikely that anyone would use our method to estimate an A0 (3) model, since the true likelihood function is known
explicitly, but we include results anyway for completeness.
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in the previous section, not a problem with our method. The results for the A0 (3) model are shown in yield

autoregressive form as well in Table 7. As shown, the parameters of the yield autoregressive representation

of the model estimated using our method are extremely close to those parameters estimated using the exact

likelihood function; the mean difference and standard deviation of difference are, in all cases, much smaller

than 1% of the bias and standard deviation of the true MLE itself. The Euler estimates are much less accurate,

with biases and standard deviations always dozens, and often hundreds of times larger than our technique.11

For this model, the QML likelihood coincides with true likelihood, so results are not shown.

In summary, we find that any additional bias and variance introduced by the use of an approximate

likelihood are insignificant in magnitude relative to the bias and variance of the MLE estimator itself, so that

use of our approximations does not result in a degradation of the quality of the MLE estimates. We further

find that estimates using the Euler and QML methods deviate much more from the MLE estimate, with the

additional error sometimes nearly as large as the intrinsic variability of MLE itself. Although the A0 (3) model

(for which the QML likelihood approximation is exact) appears to be an exception, in which Euler performs

as well as our method for at least some of the parameters, this is the side-effect of an identification problem;

when the results for this model are viewed in yield autoregressive form, our method strongly outperforms the

Euler method, as it does in the other models. This outperformance relative to Euler occurs with the A0 (3)

model, despite the fact that the Gaussian likelihood of the state vector for this model would seem to give

Gaussian approximation methods an advantage.

5. Empirical application

We now estimate the nine affine models with one, two, and three factors on a data set of synthetic US

Treasury strips, constructed by the method of McCulloch (1975). This method for construction of strips

prices from prices of coupon securities was used to construct the data set of McCulloch and Kwon (1993); the

method was evaluated by Bliss (1997), who also produces periodic extensions of the data set. We use synthetic

strips for a period of 31 years, from January of 1972 until December of 2002; although the data set includes

yields from January 1970, yields for the longer maturities used in this study are not available for the first two

years. The selection of maturities, parameterization of the models, etc., follows that of Section 4 closely. In

particular, we use the modified aMi parameters; however, since poor identification of the δ0 parameter is not

evident in the estimates for any of the models, we do not use the modified version of this parameter. We use

a number of observed yields equal to twice the number of factors in the model, with maturities spaced every

11Further confirmation that the results shown in Table 3 are affected by an identification problem comes from the dM0 , σ1,
σ2, and σ3 results. These parameters are invariant to linear transformation of the state vector, and therefore not subject to an
identification problem. As shown, our method strongly outperforms Euler for these parameters.
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two years, except that the shortest maturity is one month rather than zero.12 For an N -factor model, the

N shortest maturities are considered observed without error, and the remaining yields are considered to have

observation error. For example, in the AM (3) models, maturities of one month, two years, and four years are

assumed observed without error, and maturities of six, eight, and ten years are observed with error. All models

are estimated four ways: with and without the parameter restrictions used in Section 4 to ensure existence

of a closed-form likelihood, and with the Dai-Singleton and Cheridito-Filipović-Kimmel market price of risk

specifications. For the A0 (N) models, there are no parameter restrictions needed for existence of a closed-

form likelihood, so there are only two distinct estimations to perform; for the other models, all four possible

combinations are estimated. In all cases, the estimates are found using the 2-term approximate likelihoods as

well as the Euler and QML approximations; the true MLE is also estimated when the exact likelihood function

is known in closed-form.

The parameter estimates, with standard errors, for the three-factor models with the Dai-Singleton market

price of risk specification, are shown in Tables 8, 10, and 12 using the 2-term approximate likelihoods, Euler

approximations, and QML approximations, respectively. Analogous estimates using the Cheridito-Filipović-

Kimmel market price of risk specification are shown in Tables 9, 11, and 13. Standard errors have been

calculated by evaluating the sample means of the cross products of the score functions, which in turn have

been calculated by numeric differentiation of the log likelihood. All six tables show results for all three-

factor models, both with and without the parameter restrictions for existence of a closed-form likelihood,

from Table 2. Not all parameters appear in all model specifications, so the tables contain some blank entries.

Estimates using the true likelihood function and for the one- and two-factor models are not shown, although

those estimates are used in the likelihood ratio tests discussed later. An examination of the true estimates

(which are available only for the restricted versions of the models, and, as per the above, are not shown)

suggests that they are generally quite close to the estimates using reducible likelihoods. Estimates for the

A3 (3) restricted model, with the Dai-Singleton market price of risk, using the true likelihood function, were

not calculated, due to a numeric stability problem in evaluating the likelihood function.13

A few common features are evident. The estimates for the standard deviations of the observation errors

across different models, market price of risk specifications, and likelihood method, are quite close, suggesting

that neither the choice of M for an AM (3) model, nor choice of the market price of risk specification, has

a strong influence on the implied cross-sectional shape of the yield curve. However, the implied time series

behavior of the yield curve may be very different across models and market price of risk specification. Note,

for example, that some combinations of model and market price of risk specification have a very slowly mean-

12Although the original data sets of McCulloch (1975) and McCulloch and Kwon (1993) included zero-maturity yields, the
subsequent extensions do not always do so.

13The search algorithm attempts to explore a region of the parameter space in which the Matlab function for the modified Bessel
function of the first kind reports an overflow. The same type of overflow occurs at the parameter vectors estimated using the
approximation methods, suggesting that the true MLE is in a region in which the true likelihood cannot be evaluated accurately.
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reverting (or non-mean-reverting) component, with an eigenvalue of the B matrix very close to zero; other

combinations do not. This particular feature of the estimates, as well as some others, does vary somewhat

across likelihood methods, as well as across models and market price of risk specifications.

However, rather than focusing on the many individual parameter estimates across a wide variety of model

specifications and estimation methods, we examine likelihood ratio tests for groups of parameters. Specifically,

we test the significance of the Cheridito-Filipović-Kimmel market price of risk specification, relative to the

Dai-Singleton specification, both with and without the parameter restrictions of Table 2. We also test for the

significance of the unrestricted models, relative to those with the restrictions of Table 2 imposed, under both

market price of risk specifications. These likelihood ratio tests are shown in Table 14, and are performed using

the 2-term approximate likelihood, the Euler and QML approximate likelihoods, and the true likelihood (when

known), allowing comparison of the likelihood methods, in addition to the empirical results. As previously

discussed, numeric instability occurs when calculating the true likelihood of the restricted A3 (3) model with

the Dai-Singleton market price of risk at the estimated parameter vector; likelihood ratio tests involving this

model are therefore not shown.

As shown, the Cheridito-Filipović-Kimmel specification is significant at the 95% level for every model,

both restricted and unrestricted, except the A0 (1) model, and often at much higher levels of significance. Our

method, using the 2-term reducible likelihood approximation, closely reproduces the true likelihood ratios for

all cases where the true likelihood is known, providing further confirmation of the accuracy of our approach.

The likelihood ratios using the Euler and QML approximations are typically not as close to the true likelihood

ratios as our methods.

The parameter restrictions in Table 2 are statistically significant in every case. No comparison of the

various likelihood approximation methods to the true likelihood is possible for these tests, although we note

that the 2-term approximate likelihood ratio and QML ratio are usually closer to each other than to the Euler

likelihood ratio. In all cases, the parameter restrictions are much less significant under the Cheridito-Filipović-

Kimmel market price of risk than under the Dai-Singleton market price of risk. Similarly, the more general

market price of risk is much less significant, in all cases, when the parameter restrictions of Table 2 are not

imposed. Together, these results suggest that the additional parameters of the more general market price of

risk and the additional parameters included when the restrictions of Table 2 are relaxed are, to some extent,

substitutes; when one group of parameters is included, the other is much less statistically significant.

Tests of nested models (for example, an AM (N) model with the Cheridito-Filipović-Kimmel market price

of risk specification, relative to the same model with the Dai-Singleton model) are possible, if perhaps more

difficult, to perform when the estimation is by method of moments or other techniques. However, the use of

maximum likelihood estimation allows us to perform likelihood ratio tests of non-nested models, as described
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in Vuong (1989). Such tests would be difficult or impossible with estimation methods other than maximum

likelihood. We perform tests of AM (N) models with the same N but differentM , using both the Dai-Singleton

and Cheridito-Filipović-Kimmel market price of risk specifications, and with and without the parameter re-

strictions of Table 2, in Table 15. As shown, our method (the reducible MLE) closely approximates the results

for the true MLE, for all cases in which the true likelihood ratio statistic can be calculated. (As discussed

above, there is numeric instability in calculating the true likelihood of the restricted A3 (3) model with the

Dai-Singleton market price of risk.) With the Dai-Singleton market price of risk and the parameter restrictions

of Table 2 imposed, smaller values of M are usually preferred to larger values of M ; the only exceptions are

that the A1 (1) model is preferred to the A0 (1) model, and the A3 (3) model is preferred to the A2 (3). The

Euler and QML likelihood ratios are sometimes quite different from the true likelihood ratio, although not

enough to reverse the model preference. Dai and Singleton (2000) discussed choice of non-nested three-factor

models, and argued that the A1 (3) model provided the best fit, but this conclusion was based on ad-hoc

model comparison criteria. Here, we reach a rather different conclusion, using a rigorous statistical test, made

possible by the use of maximum likelihood estimation (although it should be noted that those authors use a

different data set and a different estimation method). Some of the model preferences are statistically significant

at the 95% level, and some are not.

From the analogous results for the Cheridito-Filipović-Kimmel market price of risk specification, the pre-

ferred model is always the model with the higher M , although the preference is not always statistically

significant. As with the previous set of results, the likelihood ratio statistic using our method closely approx-

imates the true likelihood ratio statistic. The Euler and QML likelihood ratios are generally less accurate.

Considering the three-factor models, the A1 (3) model is preferred to the A0 (3) model, and the A3 (3) model is

preferred to the A2 (3) model, neither preference is statistically significant. By contrast, comparisons between

these two groups of models are all statistically significant at the 95% level.

For the unrestricted models, under the Dai-Singleton market price of risk, whichever AM (N) model has

the higher M value is preferred when comparing single- or three-factor models; for two-factor models, the

preference is usually for smallerM . Some results are statistically significant, and some are not; no comparison

with the true likelihood ratio is possible. When the Cheridito-Filipović-Kimmel market price of risk is used,

the preference is always for higher values of M , and is usually statistically significant.

Perhaps surprisingly, the QML likelihood ratios are sometimes further from the true ratios (when known),

or from ratios using our approximate likelihood, than the Euler likelihood ratios are. A possible explanation

for this phenomenon is that there are two sources of error in the Euler likelihood; a Gaussian likelihood is used

in place of the true density, and approximate moments are used in place of the true first and second moments.

With the QML likelihood, only the first source of error is present. Although the two types of errors in the
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Euler likelihood may sometimes reinforce each other, it is possible that sometimes they will pull in opposite

directions, with the effect that the combined error of the two sources may be smaller in magnitude than the

first source alone. To take an example from Table 15, in the non-nested likelihood ratio tests comparing

the unrestricted versions of the A2 (3) and A3 (3) models, using the Cheridito-Filipović-Kimmel market price

of risk, the Euler results reproduce the reducible likelihood results more closely than the QML results do.

Although comparison to the true likelihood results in this case is not possible, the reducible likelihoods have

been found to be quite accurate in all cases where a comparison is possible. The actual QML log-likelihood

(not reported—only differences are shown in the table) for the A2 (3) model in this case is quite close to

the reducible likelihood for the same model; most of the discrepancy in the likelihood ratio test comes from

the difference between the reducible and QML likelihoods for the A3 (3) model. Tables 9 and 13 show that

the QML parameter estimates for this model are often further from the reducible estimates than the Euler

estimates are, suggesting that the discrepancy (across methods) in the likelihood ratio has led to discrepancy

in the parameter estimates as well.

In summary, for all results in which comparison is possible, our method closely reproduces results obtained

using the true likelihood function. The Euler and QML likelihood approximations are almost always less

accurate; sometimes the reduction in accuracy is small, but in other cases, the loss of accuracy is quite

noticeable.

6. Conclusions

We have developed and implemented a technique for maximum likelihood estimation of affine yield models,

implemented this technique for several families of such models, and performed likelihood ratio tests, both nested

and non-nested, on various pairs of models. In those cases where the likelihood function for a model is known

in closed-form, we find through simulations that estimates obtained through our technique are very close to the

true maximum-likelihood estimates, and substantially more accurate than alternative methods, such as Euler

or QML approximation. Our technique, which applies to all affine yield models (including those for which the

likelihood function is not known in closed-form), therefore promises to be an accurate and computationally

efficient estimation method. The bias and variance introduced by using an approximation to the likelihood

function, rather than the true likelihood function, are trivial compared to the bias and variance of the true

maximum likelihood estimator itself; alternate approximation methods, such as Euler or QML, generate much

larger approximation errors. Not only do we produce maximum-likelihood estimates (as opposed to second-

best solutions such as GMM or other estimators), but we do so at a small computational cost given the

closed-form nature of our formulae. Furthermore, we use the likelihood statistics generated by the estimation

process to perform rigorous statistical tests of both nested and non-nested pairs of models, comparing models
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with different market price of risk specifications, models with and without parameter restrictions needed to

ensure existence of a closed-form likelihood, and models with different numbers of bounded state variables.

For the cases where the true likelihood is available, we find likelihood ratio tests performed using our method

reproduce the true results more accurately, and often much more accurately, than Euler or QML likelihood

approximations.

Although we have focused exclusively on affine models, much broader application of our method is possible.

For example, our technique can be applied to models that are affine under the risk-neutral probability measure,

but non-affine under true probabilities. The affine property is useful only for pricing; it is irrelevant as far as

deriving closed-form likelihood expansions, which are available for unconstrained multivariate diffusions. Such

models have been proposed by several papers, but have been estimated only in restricted special cases. For

other implementations of our method in various contexts and with various data sets, see Bakshi et al. (2006),

Cheridito et al. (2007), Mosburger and Schneider (2005), Thompson (2008), and Egorov et al. (2008).
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Appendix A. Families of admissible affine diffusions

Several practical issues arise when we study affine yield models. First, as discussed in Duffie and Kan (1996),

existence considerations impose constraints on the coefficients of both the drift vector and diffusion matrix.

Furthermore, there will typically be infinitely many model specifications that produce identical interest rate

dynamics. Dai and Singleton (2000) consider these issues, and, for affine yield models with N state variables,

specify N + 1 non-nested canonical models that very nearly achieve three goals: (1) each canonical model

satisfies all existence and uniqueness requirements, (2) each affine yield model is observationally equivalent to

a canonical model, and (3) each canonical model is observationally different from all others. As we show in

this appendix, neither of the last two goals is completely achieved, although Dai and Singleton (2000) come

very close. We detail in Table 1 the parameter restrictions corresponding to the various models.

Each affine diffusion can be assigned to a family AM (N), in which N is the number of state variables

and M is the number of independent linear combinations of those state variables that appear in the diffusion

matrix. The vector of state variables is premultiplied by a non-singular matrix of constants; the result is taken

to be a new state vector. If the diffusion is affine in the old state vector, the diffusion followed by the alternate

state vector is also affine, and by judicious choice of the matrix of constants, also corresponds to one of the

canonical models.

Considering affine yield models with one, two, or three state variables, there are a total of nine observation-

ally distinct canonical models, not counting the trivial zero-factor model with a constant interest rate. The

likelihood function for each of the nine models is different, so we discuss each model in turn. The likelihood

function is known in closed-form for four of the nine canonical models (as well as for special cases of the

other five). Those models for which a closed-form likelihood function is known provide useful test cases for

evaluating our estimation technique.

A.1. One-factor models

In single-factor affine yield models, the interest rate is a linear function of a single state variable

rt = δ0 + δX1t. (A.1)

The dynamics of the state variable (under the physical measure P ) may take one of two distinct forms. In the

A0 (1) model, we have

dX1t = b11X1tdt+ dWP
1t . (A.2)

This model is an Ornstein-Uhlenbeck process, corresponding to the model of Vasicek (1977), and has a Gaussian

transition function.
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The A1 (1) model has the dynamics

dX1t = (a1 + b11X1t) dt+
√
X1tdW

P
1t . (A.3)

When δ0 = 0, the A1 (1) model reduces to Feller’s square-root model, corresponding to the model of Cox

et al. (1985), and the transition density of the state variable is non-central chi-squared. When δ0 ̸= 0, the

transition function readily follows by a simple change of variable. The likelihood function is therefore known

for all single-factor affine yield models.

Under the risk-neutral probability measure Q, the dynamics of the state variables of the A0 (1) and A1 (1)

model are, respectively,

dX1t = [−λ1 + b11X1t] dt+ dWQ
1t , (A.4)

dX1t = [a1 + (b11 − λ1)X1t] dt+
√
X1tdW

Q
1t . (A.5)

A.2. Two-factor models

There are three families of two-factor affine yield models. In all three the interest rate is specified as

rt = δ0 + δ1X1t + δ2X2t. (A.6)

In the A0 (2) family, the dynamics of the state variables are (under the physical measure P )

d

 X1t

X2t

 =

 b11 0

b21 b22

 X1t

X2t

 dt+ d

 WP
1t

WP
2t

 . (A.7)

The transition function for this type of diffusion is known in closed-form, and is bivariate Gaussian.

The A1 (2) model has dynamics under P

d

 X1t

X2t

 =

 a1

0

+

 b11 0

b21 b22

 X1t

X2t

 dt+

 √
X1t 0

0
√
1 + β21X1t

 d
 WP

1t

WP
2t

 . (A.8)

In general, the likelihood function for this type of diffusion is not known in closed-form; however, if we impose

the constraints b21 = 0 and β21 = 0, then the two state variables are independent, and their joint transition

density is the product of the two marginal transition densities, which are Gaussian and non-central chi-squared,

respectively (after translation of the first state variable by a constant).
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The A2 (2) model has the representation

d

 X1t

X2t

 =

 a1

a2

+

 b11 b12

b21 b22

 X1t

X2t

 dt+

 √
X1t 0

0
√
X2t

 d
 WP

1t

WP
2t

 . (A.9)

The transition density of this type of diffusion is known only if b12 = 0 and b21 = 0, in which case the two

state variables are (after translation) independent non-central chi-squared random variables.

The three canonical specifications are as presented in Dai and Singleton (2000), apart from our modified

parameterization of the drift; however, there are at least two types of two-variable affine diffusions that are

not observationally equivalent to any of the three canonical models. An example of the first type is

d

 X1t

X2t

 =

 b11 b12

b21 b22

 X1t

X2t

 dt+ d

 WP
1t

WP
2t

 , (A.10)

with the constraint (b11 − b22)
2
< 4b12b21. This diffusion shares many properties of the A0 (2) model (the

transition density is bivariate Gaussian, both state variables are unbounded, etc.), but cannot be expressed

in the A0 (2) canonical form unless we allow b11 and b22 to be complex conjugate pairs. An example of the

second type of non-conforming diffusion is

d

 X1t

X2t

 =

 a1

0

+

 b11 0

b21 b22

 X1t

X2t

 dt+

 √
X1t 0

0
√
X1t

 d
 WP

1t

WP
2t

 . (A.11)

This diffusion most closely resembles the A1 (2) canonical form, but no change of variables can generate the

non-zero constant coefficient in the diffusion term of the second state variable in the A1 (2) model.

In all but a few special cases, each canonical model is observationally unique. In the A2 (2) model,

the two state variables can switch places; in the A0 (2), model, there are infinitely many representations of

observationally equivalent models for some restricted values of the B matrix.

Under the risk-neutral probability measure Q, the dynamics of the state vector in the three models are,

respectively,

d

 X1t

X2t

 =

−

 λ1

λ2

+

 b11 0

b21 b22

 X1t

X2t

 dt+ d

 WQ
1t

WQ
2t

 , (A.12)

d

 X1t

X2t

 =

 a1

−λ2

+

 b11 − λ1 0

b21 − λ2β21 b22

 X1t

X2t

 dt (A.13)

+

 √
X1t 0

0
√
1 + β21X1t

 d
 WQ

1t

WQ
2t

 ,
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d

 X1t

X2t

 =

 a1

a2

+

 b11 − λ1 b12

b21 b22 − λ2

 X1t

X2t

 dt (A.14)

+

 √
X1t 0

0
√
X1t

 d
 WQ

1t

WQ
2t

 .

A.3. Three-factor models

In three-factor affine yield models, the instantaneous interest rate is defined as

rt = δ0 + δ1X1t + δ2X2t + δ3X3t. (A.15)

The first of the four canonical three-factor models is the A0 (3) family, in which the state variables have the

following dynamics:

d


X1t

X2t

X3t

 =


b11 0 0

b21 b22 0

b31 b32 b33



X1t

X2t

X3t

 dt+ d


WP

1t

WP
2t

WP
3t

 . (A.16)

The transition density of the state vector is trivariate Gaussian.

The A1 (3) model has the following dynamics:

d


X1t

X2t

X3t

 =



a1

0

0

+


b11 0 0

b21 b22 b23

b31 b32 b33



X1t

X2t

X3t


 dt (A.17)

+


√
X1t 0 0

0
√
1 + β21X1t 0

0 0
√
1 + β31X1t

 d

WP

1t

WP
2t

WP
3t

 .

The transition density function is known in closed-form only if the first state variable is independent of the

other two, i.e., if b21 = 0, b31 = 0, β21 = 0, and β31 = 0. In this case, the joint transition density is

the product of a non-central chi-squared (the distribution of the first state variable, after translation) and a

bivariate Gaussian (the distribution of the other two).

In the A2 (3) model, the state vector has the following dynamics:

d


X1t

X2t

X3t

 =



a1

a2

0

+


b11 b12 0

b21 b22 0

b31 b32 b33



X1t

X2t

X3t


 dt (A.18)
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+


√
X1t 0 0

0
√
X2t 0

0 0
√
1 + β31X1t + β32X2t

 d

WP

1t

WP
2t

WP
3t

 .

The transition density is known in closed-form only if the three state variables are independent of each other,

i.e., if b12 = b21 = b31 = b32 = β31 = β32 = 0. In this case, the density is the product of two non-central

chi-squared densities and a Gaussian density (after translation of the first two state variables).

Finally, in the A3 (3) model, the dynamics are:

d


X1t

X2t

X3t
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 . (A.19)

The transition density is known in closed-form only if the three state variables are independent of each other,

i.e., if b12 = b13 = b21 = b23 = b31 = b32 = 0. In this case, the density is the product of three independent

non-central chi-squared densities (after translation of the state variables).

As in the two-factor case, there are two types of affine diffusions with three state variables that are not

observationally equivalent to any of the canonical models. The model

d


X1t

X2t

X3t

 =


b11 b12 b13

b21 b22 b23

b31 b32 b33



X1t

X2t

X3t

 dt+ d


WP

1t

WP
2t

WP
3t

 (A.20)

is similar to the A0 (3) canonical model, but there is no change of variables that results in the A0 (3) model if

any two eigenvalues of the B matrix are complex conjugate pairs. Similarly, the model

d


X1t

X2t

X3t

 =



a1

0

0

+


b11 0 0

b21 b22 b23

b31 b32 b33



X1t

X2t

X3t


 dt (A.21)

+


√
X1t 0 0

0
√
X1t 0

0 0
√
1 + β31X1t

 d

WP

1t

WP
2t

WP
3t


resembles the A1 (3) model, but the absence of a constant coefficient in the diffusion of the second state variable

makes it impossible to convert this model into the A1 (3) model by a change of variables. Similar variants of

the A2 (3) model exist.

Under the risk-neutral probability measure Q, the dynamics of the state vector in the four models are,
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respectively,

d


X1t

X2t

X3t

 =




−λ1

−λ2

−λ3

+


b11 0 0

b21 b22 0

b31 b32 b33



X1t

X2t

X3t


 dt+ d


WQ

1t

WQ
2t

WQ
3t

 , (A.22)

d


X1t

X2t

X3t

 =




a1

−λ2

−λ3

+


b11 − λ1 0 0

b21 − λ2β21 b22 b23

b31 − λ3β31 b32 b33



X1t

X2t

X3t


 dt (A.23)

+


√
X1t 0 0

0
√
1 + β21X1t 0

0 0
√
1 + β31X1t

 d

WQ

1t

WQ
2t

WQ
3t

 ,

d


X1t

X2t

X3t

 =




a1

a2

−λ3

+


b11 − λ1 b12 0

b21 b22 − λ2 0

b31 − λ3β31 b32 − λ3β32 b33



X1t

X2t

X3t


 dt (A.24)

+


√
X1t 0 0

0
√
X2t 0

0 0
√
1 + β31X1t + β32X2t

 d

WQ

1t

WQ
2t

WQ
3t

 ,

d


X1t

X2t

X3t

 =


a1

a2

a3

+


b11 − λ1 b12 b13

b21 b22 − λ2 b23

b31 b32 b33 − λ3



X1t

X2t

X3t

 dt (A.25)

+


√
X1t 0 0

0
√
X2t 0

0 0
√
X3t

 d

WQ

1t

WQ
2t

WQ
3t

 .

Appendix B. Formulae for the log-transition functions

In this section, we give the coefficients of the closed-form expansions for the log-transition functions cor-

responding to the three two-dimensional models. Expansions for the two univariate models (Vasicek (1977);

and Cox et al. (1985) respectively) can be found in Aı̈t-Sahalia (1999), while the expressions for the four

three-dimensional models are not reported here to save space. They are available in computer form from the

authors upon request.
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B.1. The A0(2) model

The coefficients below correspond to the stochastic differential equation (SDE) (A.7).

C
(−1)
X (x|x0; θ) =− (x1 − x10)

2

2
− (x2 − x20)

2

2

C
(0)
X (x|x0; θ) =

x1 − x10
2

b11 (x1 + x10) +
x2 − x20

2
(b21 (x1 + x10) + b22 (x2 + x20))

C
(1)
X (x|x0; θ) =− b11 + b22

2
− b211

6

(
x21 + x1x10 + x210

)
− b222

6

(
x22 + x2x20 + x220

)
− b221

8
(x1 + x10)

2
+
b221
24

(x2 − x20)
2 − b21b22

6
(2x1x2 + x1x20 + x10x2 + 2x10x20)

C
(2)
X (x|x0; θ) =− 2b211 + b221 + 2b222

12
− b11b21

12
(x2 − x20) b11 (x1 + x10)

+

(
b21b22
12

(x1 − x10)−
b221
12

(x2 − x20)

)
(b21 (x1 + x10) + b22 (x2 + x20))

B.2. The A1(2) model

The coefficients below correspond to the SDE (A.8).

C
(−1)
X (x|x0; θ) =− 21(x1 − x10)

6

256x510
+

7(x1 − x10)
5

64x410
− 5(x1 − x10)

4

32x310
+

(x1 − x10)
3

4x210
+
x10(x2 − x20)

6
β3
21 (3− 7x10β21)

11520(1 + x10β21)
7 +

x10(x2 − x20)
4
β2
21

96(1 + x10β21)
4

+
(x1 − x10) (x2 − x20)

2
β21

4(1 + x10β21)
2 − (x1 − x10)

2
(x2 − x20)

2
β21 (1 + 7x10β21)

48x10(1 + x10β21)
3 − x10(x2 − x20)

2
+ (x1 − x10)

2
(1 + x10β21)

2 (x10 + x210β21)

+
(x1 − x10)

3
(x2 − x20)

2
β21
(
1 + 4x10β21 + 9x210β

2
21

)
96x210(1 + x10β21)

4 +
(x1 − x10)

2
(x2 − x20)

4
β2
21

(
−7− 114x10β21 + 193x210β

2
21

)
11520x10(1 + x10β21)

6

+
(x1 − x10) (x2 − x20)

4 (
β2
21 − 3x10β

3
21

)
192(1 + x10β21)

5 −
(x1 − x10)

4
(x2 − x20)

2
β21
(
15 + 71x10β21 + 133x210β

2
21 + 149x310β

3
21

)
2304x310(1 + x10β21)

5

C
(0)
X (x|x0; θ) =

(x2 − x20) (b21x10 + b22x20)

1 + x10β21
+

(x1 − x10) (x2 − x20) (b21 − b22x20β21)

2(1 + x10β21)
2 − x10(x2 − x20)

3
β21 (−b21 + b22x20β21)

24(1 + x10β21)
4

+
(x1 − x10) (x2 − x20)

3
β21 (−1 + 3x10β21) (−b21 + b22x20β21)

48(1 + x10β21)
5

+
(x1 − x10)

2
(x2 − x20) (1 + 7x10β21) (−b21 + b22x20β21)

24x10(1 + x10β21)
3

+
(x1 − x10)

3
(x2 − x20) (b21 − b22x20β21)

(
1 + 4x10β21 + 9x210β

2
21

)
48x210(1 + x10β21)

4

+
(x1 − x10) (−1 + 4a1 (1 + x10β21) + 4b11x10 (1 + x10β21))

4x10 (1 + x10β21)

+
(x1 − x10)

2
(
6 + 13x10β21 − 2x210β

2
21 − 24a1(1 + x10β21)

2
)

48x210(1 + x10β21)
2

+
(x2 − x20)

2
(
β21 − 2x10β

2
21 + 24b22(1 + x10β21)

2
)

48(1 + x10β21)
3

−
(x1 − x10) (x2 − x20)

2
β21

(
β21 (5− 4x10β21) + 32b22(1 + x10β21)

2
)

96(1 + x10β21)
4

−
(x2 − x20)

4
β2
21

(
−2 + 61x10β21 − 42x210β

2
21 + 240b22x10(1 + x10β21)

2
)

11520(1 + x10β21)
6

+
(x1 − x10)

3
(
−8− 25x10β21 − 27x210β

2
21 + 4x310β

3
21 + 32a1(1 + x10β21)

3
)

96x310(1 + x10β21)
3

+
(x1 − x10)

4
(
144 + 591x10β21 + 922x210β

2
21 + 659x310β

3
21 − 86x410β

4
21 − 576a1(1 + x10β21)

4
)

2304x410(1 + x10β21)
4

+
(x1 − x10)

2
(x2 − x20)

2
β21

(
120b22(1 + x10β21)

2
(1 + 11x10β21) + β21

(
31 + 377x10β21 − 194x210β

2
21

))
5760x10(1 + x10β21)

5
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C
(1)
X (x|x0; θ) =− (a1b11)−

5b22
8

− 7b211x1
24

− 47x21
1440x310

− 3 (−1 + a1) a1x
2
1

16x310
+

77x1
720x210

+
5 (−1 + a1) a1x1

8x210
− b22x

2
1

24x210
− 227

1440x10
− 15 (−1 + a1) a1

16x10

+
b22x1
6x10

+
b211x

2
1

48x10
− 11b211x10

48
− (x2 − x20)

2

48x210(1 + x10β21)
5 +

3x21

128x310(1 + x10β21)
4 − 3x1

64x210(1 + x10β21)
4 +

3b21x1 (x2 − x20)

16x10(1 + x10β21)
4

+
49(x2 − x20)

2

768x210(1 + x10β21)
4 +

b221x10(x2 − x20)
2

16(1 + x10β21)
4 +

3b22x1 (x2 − x20)x20

16x210(1 + x10β21)
4 +

b21 (x2 − x20) (−3 + 2b22 (x2 − x20)x20)

16(1 + x10β21)
4

+
3 + 8b22 (x2 − x20)x20 (−3 + b22 (x2 − x20)x20)

128x10(1 + x10β21)
4 − b221x

2
1

8(1 + x10β21)
3 − 29x21

384x310(1 + x10β21)
3 +

35x1

192x210(1 + x10β21)
3

+
b221x1x10

4(1 + x10β21)
3 − b221x

2
10

8(1 + x10β21)
3 − 13b21x1x2

48x10(1 + x10β21)
3 − 787(x2 − x20)

2

11520x210(1 + x10β21)
3 +

b21b22x1x20

2(1 + x10β21)
3 +

13b21x1x20

48x10(1 + x10β21)
3

− b21b22x
2
1x20

4x10(1 + x10β21)
3 − b21b22x10x20

4(1 + x10β21)
3 − 11b22x1x2x20

24x210(1 + x10β21)
3 +

11b22x1x
2
20

24x210(1 + x10β21)
3 − b222x

2
1x

2
20

8x210(1 + x10β21)
3 +

b222x1x
2
20

4x10(1 + x10β21)
3

− 6b222x
2
20 + b21 (x2 − x20) (−19 + 6b22 (x2 − x20)x20)

48(1 + x10β21)
3 −

41 + 8b22 (x2 − x20)
(
−3x2 − 25x20 + 6b22x2x

2
20 − 6b22x

3
20

)
384x10(1 + x10β21)

3

+
b221x

2
1

48(1 + x10β21)
2 +

959x21

11520x310(1 + x10β21)
2 − 1349x1

5760x210(1 + x10β21)
2 − b22x

2
1

24x210(1 + x10β21)
2 +

b22x1

12x10(1 + x10β21)
2 − 7b221x1x10

24(1 + x10β21)
2

+
13b221x

2
10

48(1 + x10β21)
2 +

b21x1x2

12x10(1 + x10β21)
2 − (−71 + 60 (−1 + a1) a1) (x2 − x20)

2

2880x210(1 + x10β21)
2 − b21x1x20

12x10(1 + x10β21)
2 +

7b21b22x
2
1x20

24x10(1 + x10β21)
2

+
13b222x

2
1x

2
20

48x210(1 + x10β21)
2 − 17b22x1x20 (−x2 + x20)

48x210(1 + x10β21)
2 − b21b22x1 (5x2 + 8x20)

12(1 + x10β21)
2 − b222x1x20 (10x2 + 9x20)

24x10(1 + x10β21)
2

+
−2b22 +

(
−8b21 + b211 (x2 − x20)

)
(x2 − x20) + 5b222x20 (4x2 + x20)

48(1 + x10β21)
2 −

b21x10

(
b21(x2 − x20)

2 − 2b22 (10x2 + 9x20)
)

48(1 + x10β21)
2

+
2099 + 240b22 (x2 − x20)

(
−5x2 − 22x20 + 3b22x2x

2
20 − 3b22x

3
20

)
11520x10(1 + x10β21)

2 +
b221x

2
1

48 (1 + x10β21)
− 97x21

2880x310 (1 + x10β21)

+
157x1

1440x210 (1 + x10β21)
+

b22x
2
1

12x210 (1 + x10β21)
− b22x1

4x10 (1 + x10β21)
− 7b221x1x10

24 (1 + x10β21)
− 11b221x

2
10

48 (1 + x10β21)
+
b21b22x1 (x2 − x20)

12 (1 + x10β21)

+

(
1− 30a1 + 30a21

)
(x2 − x20)

2

1440x210 (1 + x10β21)
− 7b222x

2
1x

2
20

48x210 (1 + x10β21)
+
b22x1x20 (−x2 + x20)

12x210 (1 + x10β21)
+
b222x1x20 (10x2 + 3x20)

24x10 (1 + x10β21)
− b21b22x10 (7x2 + 5x20)

12 (1 + x10β21)

−
337− 120b22

(
x22 + 2x2x20 − 3x220

)
2880x10 (1 + x10β21)

−
−8b22 + b211(x2 − x20)

2
+ b222

(
8x22 + 28x2x20 + 7x220

)
48 (1 + x10β21)

C
(2)
X (x|x0; θ) =

−
(
23− 120a1 + 120a21 + 120b222x

2
10

)
720x210

+
1

96x210(1 + x10β21)
4 − 11 + 48b221x

3
10 + 96b21b22x

2
10x20 + 48b222x10x

2
20

384x210(1 + x10β21)
3

− −73 + 120b221x
3
10 − 480b21b22x

2
10x20 − 600b222x10x

2
20

2880x210(1 + x10β21)
2 +

1− 30a1 + 30a21 − 30b211x
2
10 − 60b222x10x

2
20

720x210 (1 + x10β21)

B.3. The A2(2) model

The coefficients below correspond to the SDE (A.9).

C
(−1)
X (x|x0; θ) =

−21(x1 − x10)
6

256x510
+

7(x1 − x10)
5

64x410
− 5(x1 − x10)

4

32x310
+

(x1 − x10)
3

4x210
− (x1 − x10)

2

2x10
− (x2 − x20)

2

2x20
− 21(x2 − x20)

6

256x520
+

7(x2 − x20)
5

64x420

− 5(x2 − x20)
4

32x320
+

(x2 − x20)
3

4x220

C
(0)
X (x|x0; θ) =

(1− 4a2 − 4b21x10) (x2 − x20)
4

16x420
+

(−1 + 4a2 + 4b21x10) (x2 − x20)
3

12x320
+

(1− 4a2 − 4b21x10) (x2 − x20)
2

8x220

+
(x1 − x10)

4
(1− 4a1 − 4b12x20)

16x410
+

(x1 − x10)
2
(1− 4a1 − 4b12x20)

8x210
+

(x1 − x10)
2
(x2 − x20)

2
(b21x10 + b12x20)

48x210x
2
20

+
(x1 − x10) (x2 − x20) (b21x10 + b12x20)

2x10x20
− (x1 − x10) (x2 − x20)

2
(7b21x10 + b12x20)

24x10x220

+
(x1 − x10) (x2 − x20)

3
(10b21x10 + b12x20)

48x10x320
+

(x1 − x10)
3
(−1 + 4a1 + 4b12x20)

12x310

+
(x1 − x10) (−1 + 4a1 + 4b11x10 + 4b12x20)

4x10
− (x1 − x10)

2
(x2 − x20) (b21x10 + 7b12x20)

24x210x20

+
(x1 − x10)

3
(x2 − x20) (b21x10 + 10b12x20)

48x310x20
+

(x2 − x20) (−1 + 4a2 + 4b21x10 + 4b22x20)

4x20
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C
(1)
X (x|x0; θ) =

(x1 − x10) (x2 − x20)
(
(−9 + 16a2) b21x

2
10 + 16b221x

3
10 + b12x

2
20 (−9 + 16a1 + 16b12x20)

)
48x210x

2
20

+
(x2 − x20) (−1 + 2a2) b21x10

4x220

+
(x2 − x20)

(
48b221x

3
10 − 8b12x

2
20 (−7 + 12a1 + 12b12x20) + x10

(
9− 48a2 + 48a22 + 8b21x20 − 96b11b12x

2
20 − 48b222x

2
20

))
192x10x220

+
(x1 − x10)

2 (−4b221x10 + b21 (−1 + 2a2 − 4b12x20 + 2b22x20)
)

48x10x20
+

(x1 − x10)
(
−12b221x10 − b21 (−7 + 12a2 + 12b22x20)

)
24x20

+
(x1 − x10)

2 (
x20

(
−27− 144a1

2 + 16b211x
2
10 − 16b12 (x10 − 9x20) + 16b212 (2x10 − 9x20)x20 − 144a1 (−1 + 2b12x20)

))
768x310x20

+
(x1 − x10)

(
9 + 48a1

2 − 48b211x
2
10 + 8b12 (x10 − 6x20) + 48b212x

2
20 + 48a1 (−1 + 2b12x20)

)
192x210

+
(x2 − x20)

2 (−9b221x
3
10 − b12x

2
20 (1− 2a1 + 4b12x20) + b21x

2
10 (9− 18a2 + 2b21x20)

)
48x10x320

+
(x2 − x20)

2 (−27 + 144a2 − 144a22 + 32b11b12x
2
20 + 16b222x

2
20 − 16b21x20 (1 + 4b12x20)

)
768x320

−
(
3 + 16a1

2 − 16b12x20 + 16b212x
2
20 + 16a1 (−1 + 2b12x20)

)
32x10

−
16b221x

2
10 +

(
3 + 16a22 + 32a1b11x20 + 32b11b12x

2
20 + 16b222x

2
20 + 16a2 (−1 + 2b22x20)

)
+ 16x10

(
b211x20 + b21 (−1 + 2a2 + 2b22x20)

)
32x20

C
(2)
X (x|x0; θ) =− b221x

2
10

8x220
− b12 (−1 + 2a1 + 4b12x20)

24x10
− b21x10 (−3 + 6a2 + 4b21x20)

24x220
− 3 + 16a1

2 − 16b12x20 + 16b212x
2
20 + 16a1 (−1 + 2b12x20)

128x210

− 9 + 48a22 + 16b211x
2
20 + 32b11b12x

2
20 + 16b222x

2
20 + 16a2 (−3 + 2b21x20) + 16b21x20 (−1 + 4b12x20 + 2b22x20)

384x220
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Model Existence Boundary Stationarity

A0 (1) − − b11 < 0

A1 (1) a1 ≥ 0, δ1 ≥ 0 a1 ≥ 1
2 b11 < 0

A0 (2) − − b11 < 0, b22 < 0

A1 (2) a1 ≥ 0, δ1 ≥ 0, β21 ≥ 0 a1 ≥ 1
2 b11 < 0, b22 < 0

A2 (2)

a1 ≥ 0, a2 ≥ 0

δ1 ≥ 0, δ2 ≥ 0

b12 ≥ 0, b21 ≥ 0

a1 ≥ 1
2 , a2 ≥ 1

2 Re

Eigen
 b11 b12

b21 b22

 < 0

A0 (3) − − b11 < 0, b22 < 0, b33 < 0

A1 (3)
a1 ≥ 0, δ1 ≥ 0

β21 ≥ 0, β31 ≥ 0
a1 ≥ 1

2

b11 < 0

Re

Eigen
 b22 b23

b32 b33

 < 0

A2 (3)

a1 ≥ 0, a2 ≥ 0

δ1 ≥ 0, δ2 ≥ 0

b12 ≥ 0, b21 ≥ 0

β31 ≥ 0, β32 ≥ 0

a1 ≥ 1
2 , a2 ≥ 1

2

Re

Eigen
 b11 b12

b21 b22

 < 0

b33 < 0

A3 (3)

a1 ≥ 0, a2 ≥ 0, a3 ≥ 0

δ1 ≥ 0, δ2 ≥ 0, δ3 ≥ 0

b12 ≥ 0, b13 ≥ 0, b21 ≥ 0

b23 ≥ 0, b31 ≥ 0, b32 ≥ 0

a1 ≥ 1
2 , a2 ≥ 1

2 , a3 ≥ 1
2 Re

Eigen

b11 b12 b13

b21 b22 b23

b31 b32 b33


 < 0

Table 1
Parameter restrictions for the models

This table shows the parameter restrictions imposed on the different models under consideration, which are suf-
ficient to ensure existence of the state variable process, non-attainment of the boundaries (if any), and stationarity.
“Eigen” denotes the eigenvalues of the indicated matrix. In some cases (e.g., the A2 (2) model), the eigenvalues must be
real due to restrictions for existence. The restriction in the table refers to the real part anyway, since eigenvalues may
be complex conjugate pairs for some other models. Note that, although the data-generating values used in simulations
satisfy the stationarity constraints, these constraints were not imposed during the estimation procedure. Finally, to
be able to apply the closed-form likelihood expansion to square-root variables, we need to strengthen the condition
ai ≥ 1/2 to ai ≥ 3/4. After reduction to unit diffusion of a square-root variable dXt = β(θ − Xt)dt + σX

1/2
t dWt,

the process becomes dYt = µY (Yt)dt + dWt, where µY (y) = κ/y − βy/2. So µY (y) diverges near 0 like κ/y, with
κ = 2βθ/σ2 − 1/2. But in the limiting case represented by square-root variables, to make zero an entrance boundary
requires κ ≥ 1/2; for technical reasons, namely the ability to apply Girsanov’s Theorem, we require slightly more for
the likelihood expansion for this model, specifically κ ≥ 1: see Assumption 3.1 in Aı̈t-Sahalia (2002), page 228. That
translates here into ai ≥ 3/4. A divergence faster than κ/y (such as µY (y) ∼ κ/yγ , γ > 1) generates exponential
convergence of the transition density, so this is only an issue in the limiting case represented by square-root processes.
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Model Restrictions for exact density

A0 (1) none

A1 (1) none

A0 (2) none

A1 (2) b21 = β21 = 0

A2 (2) b12 = b21 = 0

A0 (3) none

A1 (3) b21 = b23 = b31 = β21 = β31 = 0

A2 (3) b12 = b21 = b31 = b32 = β31 = β32 = 0

A3 (3) b12 = b21 = b13 = b31 = b23 = b32 = 0

Table 2
Parameter restrictions for Monte Carlo simulations of canonical affine processes

This table shows the additional parameter restrictions (relative to those in Table 1) needed to ensure existence
of a known exact likelihood function. The method does not require these restrictions, and remains closed-form in all
cases. The only reason we impose them here is to have an exact likelihood so that the method’s performance can be
assessed in these Monte Carlo simulations. These restrictions are not imposed in the empirical work that follows. The
purpose of imposing these restrictions is to allow us to test the accuracy of our expansion in Monte Carlo simulations by
comparing it to the exact, closed-form, likelihood function. The restriction b23 = 0 for the A1 (3) model is not actually
needed for existence of a closed-from likelihood function, but is inherent to that model: it is required for identification
of that affine model if the other restrictions are imposed.
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Likelihood ratio tests Likelihood ratio tests
Market price of risk specifications Parameter restrictions

Model Likelihood Restricted Unrestricted Degrees of Degrees of
model model freedom Cutoff value DS CFK freedom Cutoff value

A0 (1)
MLE 2.45 -

1 3.84 - - - -Reducible 2.45 2.45
Euler 2.44 2.44

A1 (1)

MLE 7.82 -

1 3.84 - - - -
Reducible 7.83 7.83
Euler 10.69 10.69
QML 10.55 10.55

A0 (2)
MLE 20.65 -

4 9.49 - - - -Reducible 20.57 20.57
Euler 21.52 21.52

A1 (2)

MLE 182.68 -

3 7.82

- -

1 3.84
Reducible 182.72 10.75 183.41 11.43
Euler 181.02 11.34 181.10 11.42
QML 181.37 10.77 182.09 11.49

A2 (2)

MLE 636.55 -

4 9.49

- -

2 5.99
Reducible 636.95 278.03 373.92 15.00
Euler 700.79 293.38 420.42 13.01
QML 685.17 297.53 402.47 14.83

A0 (3)
MLE 54.84 -

9 16.92 - - - -Reducible 55.01 55.01
Euler 64.42 64.42

A1 (3)

MLE 74.89 -

7 14.07

- -

2 5.99
Reducible 74.97 45.59 42.44 13.06
Euler 81.19 54.75 39.44 13.00
QML 74.77 45.14 42.64 13.01

A2 (3)

MLE 326.02 -

7 14.07

- -

4 9.49
Reducible 328.25 158.56 196.63 26.95
Euler 369.65 182.46 214.14 26.94
QML 338.50 166.57 199.18 27.24

A3 (3)

MLE N/A -

9 16.92

- -

6 12.59
Reducible 299.87 132.94 221.27 54.34
Euler 341.17 160.22 234.74 53.79
QML 311.84 153.27 219.69 61.12

Table 14
Likelihood ratio tests for market price of risk specifications and parameter restrictions

This table reports likelihood ratio statistics for nested versions of each of the nine basic models. The third through
sixth columns show likelihood ratio statistics for the Cheridito et al. (2007) (CFK) market price of risk specification,
relative to the Dai and Singleton (2000) (DS) specification, at the estimated parameter vector for both the restricted
(i. e., with the parameter restrictions of Table 2 imposed) and unrestricted versions of each model. The seventh through
tenth columns show likelihood ratio statistics for the restricted version of each model, relative to the unrestricted version.
For comparisons involving two restricted models, the likelihood ratio is calculated using the true likelihood function,
and the two-term reducible, Euler, and QML approximate likelihoods. For comparisons in which at least one of the
models is unrestricted, the true likelihood is not known, and therefore not used. Comparisons involving the restricted
A3 (3) model with the DS market price of risk are not made using the true likelihood, due to numeric instability in
calculating the modified Bessel function at the estimated parameter vector. The results using QML for the A0 (1),
A0 (2), and A0 (3) models are not shown, since for these models, QML coincides with true MLE. For these models
and the A1 (1) model, the restricted and unrestricted models coincide, so no comparison is made. As shown, the CFK
market price of risk specification is statistically significant, for each feasible likelihood method for both restricted and
unrestricted models, in all cases except the A0 (1) model. The difference between the restricted and unrestricted models
is also statistically significant, using every feasible likelihood method under both market price of risk specifications. As
shown, the two-term reducible likelihood approximations reproduce the results of the true likelihoods (when known)
more closely, and often much more closely, than either the Euler or the QML likelihoods.
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Restricted model Unrestricted model
Model DS CFK DS CFK

comparison Likelihood Preferred Preferred Preferred Preferred
Statistic model Statistic model Statistic model Statistic model

A0 (1) vs. A1 (1)

MLE -6.78 A1 (1) -7.68 A1 (1) - - - -
Reducible -6.78 A1 (1) -7.68 A1 (1) -6.78 A1 (1) -7.68 A1 (1)
Euler -6.62 A1 (1) -7.91 A1 (1) -6.62 A1 (1) -7.91 A1 (1)
QML -6.62 A1 (1) -7.91 A1 (1) -6.62 A1 (1) -7.91 A1 (1)

A0 (2) vs. A1 (2)

MLE 2.84 A0 (2) -1.33 A1 (2) - - - -
Reducible 2.85 A0 (2) -1.34 A1 (2) -2.76 A1 (2) -2.11 A1 (2)
Euler 2.81 A0 (2) -1.15 A1 (2) -2.65 A1 (2) -1.88 A1 (2)
QML 2.82 A0 (2) -1.17 A1 (2) -2.67 A1 (2) -1.92 A1 (2)

A0 (2) vs. A2 (2)

MLE 8.14 A0 (2) -4.97 A2 (2) - - - -
Reducible 8.16 A0 (2) -4.98 A2 (2) 1.69 A0 (2) -5.99 A2 (2)
Euler 8.16 A0 (2) -5.14 A2 (2) 1.83 A0 (2) -6.07 A2 (2)
QML 7.90 A0 (2) -5.18 A2 (2) 1.86 A0 (2) -6.09 A2 (2)

A1 (2) vs. A2 (2)

MLE 9.09 A1 (2) -6.68 A2 (2) - - - -
Reducible 9.12 A1 (2) -6.68 A2 (2) 3.17 A1 (2) -6.56 A2 (2)
Euler 9.16 A1 (2) -7.21 A2 (2) 3.16 A1 (2) -7.11 A2 (2)
QML 8.86 A1 (2) -7.20 A2 (2) 3.18 A1 (2) -7.08 A2 (2)

A0 (3) vs. A1 (3)

MLE 0.66 A0 (3) -0.31 A1 (3) - - - -
Reducible 0.65 A0 (3) -0.32 A1 (3) -2.64 A1 (3) -1.59 A1 (3)
Euler 0.59 A0 (3) -0.24 A1 (3) -2.60 A1 (3) -1.48 A1 (3)
QML 0.72 A0 (3) -0.24 A1 (3) -2.59 A1 (3) -1.47 A1 (3)

A0 (3) vs. A2 (3)

MLE 2.85 A0 (3) -3.35 A2 (3) - - - -
Reducible 2.88 A0 (3) -3.37 A2 (3) -0.85 A2 (3) -4.73 A2 (3)
Euler 3.02 A0 (3) -3.29 A2 (3) -0.77 A2 (3) -4.47 A2 (3)
QML 2.75 A0 (3) -3.29 A2 (3) -0.91 A2 (3) -4.49 A2 (3)

A0 (3) vs. A3 (3)

MLE N/A - -4.18 A3 (3) - - - -
Reducible 1.83 A0 (3) -4.22 A3 (3) -4.09 A3 (3) -6.54 A3 (3)
Euler 1.90 A0 (3) -4.55 A3 (3) -3.71 A3 (3) -6.52 A3 (3)
QML 1.61 A0 (3) -4.55 A3 (3) -3.71 A3 (3) -6.53 A3 (3)

A1 (3) vs. A2 (3)

MLE 2.96 A1 (3) -2.78 A2 (3) - - - -
Reducible 3.01 A1 (3) -2.79 A2 (3) -0.16 A2 (3) -4.31 A2 (3)
Euler 3.16 A1 (3) -2.72 A2 (3) -0.10 A2 (3) -4.13 A2 (3)
QML 2.83 A1 (3) -2.71 A2 (3) -0.26 A2 (3) -4.14 A2 (3)

A1 (3) vs. A3 (3)

MLE N/A - -3.98 A3 (3) - - - -
Reducible 1.81 A1 (3) -4.01 A3 (3) -3.28 A3 (3) -6.19 A3 (3)
Euler 1.91 A1 (3) -4.12 A3 (3) -2.93 A3 (3) -6.29 A3 (3)
QML 1.54 A1 (3) -4.12 A3 (3) -2.95 A3 (3) -6.32 A3 (3)

A2 (3) vs. A3 (3)

MLE N/A - -1.18 A3 (3) - - - -
Reducible -4.35 A3 (3) -1.19 A3 (3) -4.62 A3 (3) -3.44 A3 (3)
Euler -4.22 A3 (3) -1.48 A3 (3) -4.46 A3 (3) -3.69 A3 (3)
QML -4.22 A3 (3) -1.51 A3 (3) -4.45 A3 (3) -4.17 A3 (3)

Table 15
Non-nested likelihood ratio tests

This table reports likelihood ratio statistics comparing non-nested models (with the same number of factors). For
each pair of models, both the Dai and Singleton (2000) (DS) and Cheridito et al. (2007) (CFK) market price of risk
specification are used. For the restricted models (i. e., those satisfying the restrictions of Table 2), the likelihood ratio
is calculated using the exact likelihood function, and the two-term reducible, Euler, and QML approximations. For
the unrestricted models, the true likelihood is not known, and therefore not used. The comparison is not made for the
restricted A3 (3) model with the DS market price of risk using the true likelihood function, due to numeric instability
in calculating the modified Bessel function at the estimated parameter value. As shown, the approximate likelihood
closely reproduces the results obtained using the true likelihood (when known), sometimes much more closely than the
Euler and QML likelihoods.
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Observed bond yields: y 

Vector of latent state variables: S  

Transition density: p
X
(∆,S∆|S0;θ)

For a given θ

Ordinary      differential equations

Closed-form          approximation

ln(θ)

Fig. 1. The likelihood-based estimation method.

This figure describes the steps involved in implementing the estimation method. The derivation of the
closed-form expression for the log-likelihood is done once and for all for each model. Given that expression,
maximum-likelihood proceeds as in the standard case with the additional step (requiring for affine models the
solution of ordinary differential equations) necessary to transform the observed yields into the latent state
variables of the model.

53




