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1 Introduction

Latent variable models arise in many well-posed economic problems. The latent variables

can be utilities, potential wages (or home wages as in Gronau, 1974 and Heckman, 1974) or

potential pro�tability. This class of models, which originates in psychology in the work of

Thurstone (1930, 1959), has been widely developed in the econometrics of discrete choice

(see McFadden, 1981, and the survey of index models in labor economics presented by

Heckman and MaCurdy, 1985).

This paper uses the latent variable or index model of econometrics and psychometrics

to impose structure on the Neyman (1923) - Fisher (1935) - Cox (1958) - Rubin (1978)

model of potential outcomes used to de�ne treatment e�ects. That model is isomorphic

to the Roy model (1951) as summarized by Heckman and Honor�e (1990) and to Quandt's

switching regression model (1972, 1988). For a comprehensive discussion of these models,

see Heckman and Vytlacil (2000b).

A recent development in econometrics has been an emphasis on the estimation of certain

features of economic models under weaker assumptions about functional forms of estimating

equations and error distributions than are conventionally maintained in estimating struc-

tural econometric models. The recent \treatment e�ect" literature is the most agnostic in

this regard, focusing on the estimation of certain \treatment e�ects" that can be nonpara-

metrically identi�ed under general conditions. Two major limitations of this literature are

(a) that the economic questions answered by the estimated \treatment e�ects" are usually
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not clearly stated and (b) that the connection of this literature to the traditional parametric

index function literature is not well established. The parameters estimated in the classical

parametric discrete choice literature can be used to answer a variety of policy questions.

In contrast, the parameters in the modern \treatment e�ect" literature answer only nar-

rowly focused questions, but typically under weaker conditions than are postulated in the

parametric literature.

This paper unites the treatment e�ect literature and the latent variable literature. The

economic questions answered by the commonly used treatment e�ect parameters are con-

sidered. We demonstrate how the marginal treatment e�ect (MTE) parameter introduced

in Heckman (1997) can be used in a latent variable framework to generate the average

treatment e�ect (ATE), the e�ect of treatment on the treated (TT) and the local aver-

age treatment e�ect (LATE) of Imbens and Angrist (1994), thereby establishing a new

relationship among these parameters. The method of local instrumental variables (LIV)

introduced in Heckman and Vytlacil (1999b) directly estimates the MTE parameter, and

thus can be used to estimate all of the conventional treatment e�ect parameters when the

index condition holds and the parameters are identi�ed. When they are not, LIV can be

used to produce bounds on the parameters with the width of the bounds depending on the

width of the support for the index generating the choice of the observed potential outcome.

As a consequence of the analysis of Vytlacil (1999a), the latent variable framework

used in this paper is more general than might �rst be thought. He establishes that the
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assumptions used by Imbens and Angrist (1994) to identify LATE using linear instrumental

variables both imply and are implied by the latent variable set up used in this paper. Thus

our analysis applies to the entire class of models estimated by LATE.

LATE analysis focuses on what linear instrumental variables can estimate. LIV extends

linear IV analysis and estimates (or bounds) a much wider class of treatment parameters.

Under conditions presented in this paper, suitably weighted versions of LIV identify the

Average Treatment E�ect (ATE) and Treatment on the Treated (TT) even in the general

case where responses to treatment are heterogeneous and agents participate in the program

being evaluated at least in part on the basis of this heterogeneous response. Heckman

(1997) shows that in this case the linear instrumental variable estimator does not identify

ATE or TT. We establish conditions under which LIV identi�es those parameters.

The plan of this paper is as follows. Section 2 presents a model of potential outcomes

in a latent variable framework. Section 3 de�nes four di�erent mean treatment parameters

within the latent variable framework. Section 4 establishes a new relationship among the

parameters using MTE as a unifying device. Section 5 presents conditions for identi�cation

of treatment e�ect parameters, and presents bounds for them when they are not identi�ed.

The LIV estimator is introduced as the empirical analog to MTE that operationalizes our

identi�cation analysis. Section 6 compares the LIV estimator to the linear IV estimator.

Weighted versions of LIV identify the treatment on the treated parameter (TT) and the

average treatment e�ect (ATE) in cases where the linear instrumental variable estimator
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does not. The leading case where this phenomenon arises is the additively separable cor-

related random coeÆcient model which is developed in this section. Section 7 extends the

analysis of the additively separable case and applies it to classical results in the selection

bias literature. Section 8 concludes the paper. The Appendix explores the sensitivity of

the analysis presented in the text to the assumptions imposed on the latent index model.

2 Models of Potential Outcomes in a Latent Variable Frame-

work

For each person i, assume two potential outcomes (Y0i; Y1i) corresponding, respectively,

to the potential outcomes in the untreated and treated states. Our methods generalize

to the case of multiple outcomes, but in this paper we consider only two outcomes.1 Let

Di = 1 denote the receipt of treatment; Di = 0 denotes nonreceipt. Let Yi be the measured

outcome variable so that

Yi = DiY1i + (1�Di)Y0i.

This is the Neyman-Fisher-Cox-Rubin model of potential outcomes. It is also the switching

regression model of Quandt (1972) and the Roy model of income distribution (Roy, 1951;

Heckman and Honor�e, 1990).

1See Heckman and Vytlacil (2000b) for the multi-outcome extension.
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This paper assumes that a latent variable model generates the indicator variable Di.

Speci�cally, we assume that the assignment or decision rule for the indicator is generated

by a latent variable D�
i :

D�
i = �D(Zi)� UDi

Di = 1 if D�
i � 0; = 0 otherwise,

(1)

where Zi is a vector of observed random variables and UDi is an unobserved random variable.

D�
i is the net utility or gain to the decision-maker from choosing state 1. The index structure

underlies many models in econometrics (see, e.g., the survey in Amemiya 1985) and in

psychometrics (see, e.g., Junker and Ellis, 1997).

The potential outcome for the program participation state is

Y1i = �1(Xi; U1i);

and the potential outcome for the nonparticipation state is

Y0i = �0(Xi; U0i);

where Xi is a vector of observed random variables and (U1i; U0i) are unobserved random

variables. No assumptions are imposed restricting the joint distribution of (U0i; U1i) beyond
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the regularity conditions presented below.2 It is assumed that Y0i and Y1i are de�ned for

everyone and that these outcomes are independent across persons so that there are no in-

teractions among agents.3 Important special cases include models with (Y0i; Y1i) generated

by latent variables. These models include �j(Xi; Uji) = �j(Xi) + Uji if Y is continuous

and �j(Xi; Uji) = 1(Xi�j + Uji � 0) if Y is binary, where Xi is independent of Uji and

where 1(A) is the indicator function that takes the value 1 if the event A is true and takes

the value 0 otherwise. We do not restrict the (�1; �0) functions except for the regularity

conditions noted below. Let �i denote the treatment e�ect for individual i:

�i = Y1i � Y0i: (2)

The treatment e�ect is a person-speci�c counterfactual. For person i it answers the question,

what would be the outcome if the person received the treatment compared to the case where

the person had not received the treatment? For notational convenience, we will henceforth

suppress the i subscript.

In this paper we assume that:

2A common restriction is that U0i = U1i. If U1i; U0i are additively separable from Xi, this restriction

generates a common treatment e�ect model (Heckman and Robb, 1986; Heckman, 1997). The restriction

U0i = U1i also aids in identi�cation of treatment e�ects in nonseparable models if at least one instrument

is continuous (Vytlacil, 1999b). We do not impose these restrictions in this paper.
3The problem of interactions among agents in the analysis of treatment e�ects was extensively discussed

by Lewis (1963) although he never used the term \treatment e�ect." See the papers by Davidson and

Woodbury (1993) and Heckman, Lochner and Taber (1998) for empirical demonstrations of the importance

of these social interaction e�ects, and the general discussion of general equilibrium treatment e�ects in

Heckman, LaLonde and Smith (1999).
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(i) �D(Z) is a nondegenerate random variable conditional on X

(ii) (UD; U1), and (UD; U0) are absolutely continuous with respect to Lebesgue measure

on <2

(iii) (UD; U1) and (UD; U0) are independent of (Z;X)

(iv) Y1 and Y0 have �nite �rst moments

(v) 1 > Pr(D = 1jX = x) > 0 for every x 2 Supp(X)

Assumption (i) requires an exclusion restriction: there exists a variable that determines the

treatment decision but does not directly a�ect the outcome. Variables that satisfy these

conditions are commonly called instrumental variables. Assumption (ii) is imposed for

convenience, both to simplify the notation and to impose smoothness on certain conditional

expectations; it can readily be relaxed. Assumption (iii) can be weakened to the assumption

that (UD; U0) and (UD; U1) are independent of Z conditional on X: We work with the

stronger condition (iii) to simplify the notation. The modi�cations required for the more

general case are trivial. If assumption (v) is relaxed so that Pr(D = 1jX = x) = 1 or 0

for some x values, then the analysis of this paper will still hold for any x value for which

1 > Pr(D = 1jX = x) > 0.

For any random variable A, let FA denote the variable's distribution function and let a

denote a possible realization of A. Let P (z) denote the probability of receiving treatment
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conditional on the observed covariates,

P (z) � Pr(D = 1jZ = z) = FUD(�D(z)): (3)

P (z) is sometimes called the \propensity score" by statisticians following Rosenbaum and

Rubin (1983) and is called a \choice probability" by economists4

Without loss of generality, we assume that UD � Unif[0; 1], in which case �D(z) = P (z).

To see that there is no loss of generality, note that if the underlying index is D� = �(Z)�V ,

with assumptions (ii) and (iii) satis�ed for V , taking �(Z) = FV (�(Z)) and U = FV (V )

equates the two models. This transformation is innocuous, since any CDF is left-continuous

and non-decreasing and thus �(z) � UD , �(z) � V .5 In addition, since UD is distributed

Unif[0; 1] and independent of Z, we have �(z) = P (z).

Note that the latent variable assumption does not impose testable restrictions on choice

behavior.6 If we take Z to include all observed covariates, and de�ne �(z) = Pr(D =

1jZ = z) and UD � Unif[0; 1], the latent index assumption imposes no restrictions on

the observed choice behavior.7 However, it does impose two restrictions on counterfactual

4Heckman and Robb (1986) present a discussion of how the propensity score is used di�erently in selection

models and in matching models for program evaluation. See also Heckman, LaLonde and Smith (1999) and

Heckman and Vytlacil (2000b).
5More precisely, �(z) � V ) FV (�(z)) � FV (V ) and FV (�(z)) � FV (V ) ) �(z) � V for any V 2

Supp(V ), so that the equivalence holds w.p.1.
6However, it does impose a testable restriction on the conditional distribution of the outcome variable.

In particular, it imposes the index suÆciency restriction that, for any set A, Pr(Yj 2 AjZ = z;D = j) =

Pr(Yj 2 AjP (Z) = P (z);D = j). See Heckman, Ichimura, Smith and Todd (1998) for a nonparametric test

of this restriction.
7This argument is also used in Das and Newey (1998).

10



outcomes. First, consider the following hypothetical intervention. If we take a random

sample of individuals, and externally set Z at level z, with what probability would they

have D = 1 after the intervention? Using the assumption that UD is independent of Z, the

answer is Pr(D = 1jZ = z), that is, the probability that D = 1 among those individuals

who were observed to have Z = z. Second, if we instead took individuals with Z = z and

externally set their Z characteristics to z0, where Pr(D = 1jZ = z) < Pr(D = 1jZ = z0),

then the threshold crossing model implies that some individuals who would have had D = 0

with the Z = z characteristic will now have D = 1 with the Z = z0 characteristics, but

that no individual who would have had D = 1 with the Z = z characteristics will have

D = 0 with the Z = z0 characteristics. These two properties are the only restrictions

imposed by the threshold crossing model as we have de�ned it. Under these conditions

on counterfactual outcomes, there is no loss of generality in imposing a threshold crossing

model (Vytlacil, 1999a).

Imbens and Angrist (1994) invoke these two properties of independence and monotonic-

ity in their LATE analysis. Thus our latent variable model is equivalent to the LATE

model. If we remove the assumption that UD is independent of Z, while leaving the as-

sumptions otherwise unchanged, then the monotonicity property continues to hold but not

the independence property. If instead we remove the assumption that UD is additively

separable from Z (i.e., we consider �D(Z;UD) instead of �D(Z) � UD), while leaving the

model otherwise unchanged, then the independence property will hold but not in general,
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the monotonicity property.8 If we remove both assumptions, while imposing no additional

restrictions, then the threshold crossing model becomes completely vacuous, imposing no

restrictions on the observed outcomes or counterfactual outcomes.

The Appendix investigates the sensitivity of the analysis presented in the text to the

index assumption by alternatively dropping the independence or monotonicity assumptions

(allowing UD and Z to be dependent or allowing UD and Z to be additively nonseparable

in the latent index in a general way). We show that the de�nition of the parameters and

the relationships among them as described below in Sections 3 and 4 generalize with only

minor modi�cations to the case where UD and Z are additively nonseparable or are stochas-

tically dependent. The separability and independence assumptions allow us to de�ne the

parameters in terms of P (z) instead of z and allow for slightly simpler expressions, but are

not crucial for the de�nition of parameters or the relationship among them. However, the

assumptions of independence and monotonicity are essential for establishing the connec-

tion between the LATE or LIV estimators and the underlying parameters as described in

Section 5, and are essential to the identi�cation analysis that accompanies that discussion.

8Note monotonicity is implied by additively separability, but additive separability is not required; su-

permodular �D(Z;UD) is all that is required, i.e. in the di�erentiable case a uniform positive (or negative)

cross partial of �D with respect to Z and UD is all that is required. However, Vytlacil (1999a) shows that

any latent index that satis�es the monotonicity condition will have an additively separable representation,

so that having an additively separable representation is required.

12



3 De�nition of Parameters

A recent shift in econometric research is toward estimating features of a model rather than

estimating the full model, as is emphasized in structural econometrics. In the context

of the program evaluation problem, this comes down to estimating parameters like ATE,

TT, LATE and MTE directly, rather than estimating all the ingredients of the underlying

structural model separately that can be built up to estimate these parameters. In general,

these special parameters can be identi�ed under weaker conditions than are required to

estimate the full structural parameters, but at the same time, they cannot generate the

complete array of policy counterfactuals produced from estimates of the full model. The

weaker identifying assumptions make estimators based on them more widely accepted. At

the same time, the estimates produce answers to more narrowly focused questions.

In this paper, we consider four di�erent mean treatment parameters within this frame-

work: the average treatment e�ect (ATE), the e�ect of treatment on the treated (TT), the

marginal treatment e�ect (MTE), and the local average treatment e�ect (LATE). ATE and

TT are the traditional parameters. Each of these parameters is a mean of the individual

treatment e�ect, � = Y1 � Y0, but with di�erent conditioning sets. The average treatment

e�ect is de�ned as

�ATE(x) � E(�jX = x):9
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The mean e�ect of treatment on the treated is the most commonly estimated parameter

for both observational data and social experiments (see Heckman and Robb, 1985, 1986,

and Heckman, LaLonde and Smith, 1999). It is de�ned as

�TT (x;D = 1) � E(�jX = x;D = 1):10

It will be useful for the analysis of this paper to de�ne a version of �TT (x;D = 1) that

conditions on the propensity score, P (z), de�ned in equation (3):

�TT (x; P (z);D = 1) � E(�jX = x; P (Z) = P (z);D = 1)11

so that

�TT (x;D = 1) =

Z 1

0
�TT (x; p;D = 1)dFP (Z)jX;D(pjx; 1): (4)

The third parameter that we analyze is the marginal treatment parameter introduced in

Heckman (1997) and de�ned in the context of a latent variable model as:

�MTE(x; u) � E(�jX = x;UD = u):12

9From assumption (iv), it follows that E(�jX = x) exists and is �nite a.e. FX .
10From assumption (iv), �TT (x;D = 1) exists and is �nite a.e. FXjD=1, where FXjD=1 denotes the

distribution of X conditional on D = 1:
11From our assumptions, �TT (x;P (z); D = 1) exists and is �nite a.e. FX;P (Z)jD=1.
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The �nal parameter we analyze is the LATE parameter of Imbens and Angrist (1994)

de�ned by an instrumental variable. Using P (Z) as the instrument:

�LATE(x; P (z); P (z0)) �

E(Y jX = x; P (Z) = P (z))�E(Y jX = x; P (Z) = P (z0))

P (z)� P (z0)
:

We require that P (z) 6= P (z0) for any (z; z0) where the parameter is de�ned. We will assume

that P (z) > P (z0), with no loss of generality given the restriction that P (z) 6= P (z0). This

de�nition of the treatment parameter, while consistent with that used by Imbens and

Angrist, is somewhat peculiar because it is based on an estimator rather than a property

of a model. An alternative, more traditional, de�nition is given below.

A more general framework de�nes the parameters in terms of Z. As a consequence of

the latent variable or index structure, de�ning the parameters in terms of Z or P (Z) results

in equivalent expressions.13 In the index model, Z enters the model only through the index,

so that for any measurable set A,

Pr(Yj 2 AjX = x;Z = z;D = 1) = Pr(Yj 2 AjX = x;UD � P (z))

= Pr(Yj 2 AjX = x; P (Z) = P (z);D = 1)

Pr(Yj 2 AjX = x;Z = z;D = 0) = Pr(Yj 2 AjX = x;UD > P (z))

12From our assumptions, �MTE(x; u) exists and is �nite a.e. FX;UD .
13As discussed in the Appendix, we can equivalently de�ne the parameters in terms of Z or P (Z) because

of both our additive separability and independence assumptions.
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= Pr(Yj 2 AjX = x; P (Z) = P (z);D = 0):

4 Relationship Among Parameters Using the Index Struc-

ture

Given the index structure, a simple relationship exists among the four parameters. From

the de�nition it is immediate that

�TT (x; P (z);D = 1) = E(�jX = x;UD � P (z)): (5)

Next consider �LATE(x; P (z); P (z0)). Note that

E(Y jX = x; P (Z) = P (z))

= P (z)

�
E(Y1jX = x; P (Z) = P (z);D = 1)

�

+(1� P (z))

�
E(Y0jX = x; P (Z) = P (z);D = 0)

�

=

Z P (z)

0
E(Y1jX = x;UD = u)du+

Z 1

P (z)
E(Y0jX = x;UD = u)du;

(6)

so that

E(Y jX = x; P (Z) = P (z))�E(Y jX = x; P (Z) = P (z0))

=

Z P (z)

P (z0)
E(Y1jX = x;UD = u)du�

Z P (z)

P (z0)
E(Y0jX = x;UD = u)du;
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and thus

�LATE(x; P (z); P (z0)) = E(�jX = x; P (z0) � UD � P (z)):

Notice that this expression could be taken as an alternative de�nition of LATE.

We can rewrite these relationships in succinct form in the following way:

�MTE(x; u) = E(�jX = x;UD = u)

�ATE(x) =

Z 1

0
E(�jX = x;UD = u)du

P (z)[�TT (x; P (z);D = 1)] =

Z P (z)

0
E(�jX = x;UD = u)du

(P (z) � P (z0))[�LATE(x; P (z); P (z0))] =

Z P (z)

P (z0)
E(�jX = x;UD = u)du:

(7)

Each parameter is an average value of MTE, E(� j X = x;UD = u), but for values of

UD lying in di�erent intervals and with di�erent weighting functions. MTE de�nes the

treatment e�ect more �nely than do LATE, ATE, or TT.14

�MTE(x; u) is the average e�ect for people who are just indi�erent between participa-

tion in the program (D = 1) or not (D = 0) if the instrument is externally set so that

14As suggested by a referee, the relationship between MTE and LATE or TT conditional on P (z) is closely

analogous to the relationship between a probability density function and a cumulative distribution function.

The probability density function and the cumulative distribution function represent the same information,

but for some purposes the density function is more easily interpreted. Likewise, knowledge of TT for all

P (z) evaluation points is equivalent to knowledge of the MTE for all u evaluation points, so it is not the

case that knowledge of one provides more information than knowledge of the other. However, in many

choice theoretic contexts it is often easier to interpret MTE than the TT or LATE parameters. It has the

interpretation as a measure of willingness to pay for people on a speci�ed margin of participation in the

program.
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P (Z) = u. �MTE(x; u) for values of u close to zero is the average e�ect for individuals

with unobservable characteristics that make them the most inclined to participate in the

program (D = 1), and �MTE(x; u) for values of u close to one is the average treatment

e�ect for individuals with unobserved (by the econometrician) characteristics that make

them the least inclined to participate. ATE integrates �MTE(x; u) over the entire support

of UD (from u = 0 to u = 1). It is the average e�ect for an individual chosen at random

from the entire population. �TT (x; P (z);D = 1) is the average treatment e�ect for persons

who chose to participate at the given value of P (Z) = P (z). �TT (x; P (z);D = 1) integrates

�MTE(x; u) up to u = P (z). As a result, it is primarily determined by the MTE parameter

for individuals whose unobserved characteristics make them the most inclined to partici-

pate in the program. LATE is the average treatment e�ect for someone who would not

participate if P (Z) � P (z0) and would participate if P (Z) � P (z). �LATE(x; P (z); P (z0))

integrates �MTE(x; u) from u = P (z0) to u = P (z).

Using the third expression in equation (7) to substitute into equation (4), we obtain an

alternative expression for the TT parameter as a weighted average of MTE parameters:

�TT (x;D = 1) =

Z 1

0

1

p

�Z p

0
E(�jX = x;UD = u)du

�
dFP (Z)jX;D(pjx; 1):
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Using Bayes' rule, it follows that

dFP (Z)jX;D(pjx; 1) =
Pr(D = 1jX = x; P (Z) = p)

Pr(D = 1jX = x)
dFP (Z)jX(pjx): (8)

Since Pr(D = 1jX = x; P (Z) = p) = p; it follows that

�TT (x;D = 1) =
1

Pr(D = 1jX = x)

Z 1

0

�Z p

0
E(�jX = x;UD = u)du

�
dFP (Z)jX(pjx): (9)

Note further that since Pr(D = 1jX = x) = E(P (Z)jX = x) =

Z 1

0
(1 � FP (Z)jX(tjx))dt,

we can reinterpret (9) as a weighted average of local IV parameters where the weighting is

similar to that obtained from a \length-biased," \size-biased," or \P -biased" sample:

�TT (x;D = 1) =
1

Pr(D = 1jX = x)

Z 1

0

�Z 1

0
1(u � p)E(�jX = x;UD = u)du

�
dFP (Z)jX(pjx)

=
1R

(1� FP (Z)jX(tjx))dt

Z 1

0

�Z 1

0
E(�jX = x;UD = u)1(u � p)dFP (Z)jX(pjx)

�
du

=

Z 1

0
E(�jX = x;UD = u)

�
1� FP (Z)jX(ujx)R
(1� FP (Z)jX(tjx))dt

�
du

=

Z 1

0
E(�jX = x;UD = u)gx(u)du

where gx(u) =
1�FP (Z)jX(ujx)R
(1�FP (Z)jX(tjx))dt . Thus gx(u) is a weighted distribution (Rao, 1985). Since

gx(u) is a nonincreasing function of u, we have that drawings from gx(u) oversample persons

with low values of UD; i.e., values of unobserved characteristics that make them the most
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likely to participate in the program no matter what their value of P (Z). Since

�MTE(x; u) = E(�jX = x;UD = u)

it follows that

�TT (x;D = 1) =

Z 1

0
�MTE(x; u)gx(u)du:

The TT parameter is thus a weighted version of MTE, where �MTE(x; u) is given the

largest weight for low u values and is given zero weight for u � pmaxx , where pmaxx is the

maximum value in the support of P (Z) conditional on X = x.

Figure 1 graphs the relationship between �MTE(u), �ATE and �TT (P (z);D = 1),

assuming that the gains are the greatest for those with the lowest UD values and that

the gains decline as UD increases. The curve is the MTE parameter as a function of

u, and is drawn for the special case where the outcome variable is binary so that MTE

parameter is bounded between �1 and 1. The ATE parameter averages �MTE(u) over the

full unit interval (i.e. is the area under A minus the area under B and C in the �gure).

�TT (P (z);D = 1) averages �MTE(u) up to the point P (z) (is the area under A minus the

area under B in the �gure). Because �MTE(u) is assumed to be declining in u, the TT

parameter for any given P (z) evaluation point is larger then the ATE parameter.

Equation (7) relates each of the other parameters to the MTE parameter. One can also
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relate each of the other parameters to the LATE parameter. This relationship turns out to

be useful later on in this paper when we encounter conditions where LATE can be identi�ed

but MTE cannot. MTE is the limit form of LATE:

�MTE(x; p) = lim
p0!p

�LATE(x; p; p0):

Direct relationships between LATE and the other parameters are easily derived. The rela-

tionship between LATE and ATE is immediate:

�ATE(x) = �LATE(x; 0; 1):

Using Bayes' rule, the relationship between LATE and TT is

�TT (x;D = 1) =

Z 1

0
�LATE(x; 0; p)

p

Pr(D = 1jX = x)
dFP (Z)jX(pjx): (10)

5 Identi�cation and Bounds for the Treatment E�ect Pa-

rameters

Assume access to an in�nite i.i.d. sample of (D;Y;X;Z) observations, so that the joint

distribution of (D;Y;X;Z) is known. Let Px denote the closure of the support of P (Z)

conditional on X = x, and let Pc
x = (0; 1) n Px: Let p

max
x and pminx be the maximum and
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minimum values in Px. We show that the identi�cation of the treatment parameters and

the width of the bounds on the unidenti�ed parameters depend critically on Px.
15

We de�ne the Local IV (LIV) estimand to be

�LIV (x; P (z)) �

@E(Y jX = x; P (Z) = P (z))

@P (z)
:

LIV is the limit form of the LATE expression as P (z)! P (z0).16 In equation (6), E(Y1jX =

x;UD) and E(Y0jX = x;UD) are integrable with respect to dFU a.e. FX . Thus, E(Y1jX =

x; P (Z) = P (z)) and E(Y0jX = x; P (Z) = P (z)) are di�erentiable a.e. with respect to

P (z), and thus E(Y jX = z; P (Z) = P (z)) is di�erentiable a.e. with respect to P (z) with

derivative given by:

@E(Y jX = x; P (Z) = P (z))

@P (z)
= E(Y1 � Y0jX = x;UD = P (z)); 17 (11)

15Heckman, Ichimura, Smith and Todd (1996), Heckman, Ichimura, Smith and Todd (1998), and Heck-

man, Ichimura, and Todd (1998) emphasize that the identi�cation of treatment parameters critically depends

on the support of the propensity score and present empirical evidence that failure of a full support condition

is a major source of evaluation bias.
16The limit form of LATE was introduced in this context by Heckman (published 1997; �rst draft, 1995)

and Heckman and Smith (published 1998; �rst draft, 1995). Those authors introduced the limit form of

LATE within the context of a selection model as a way to connect the LATE parameter to economic theory

and to policy analysis. Angrist, Graddy and Imbens (NBER Working Paper, 1995) also develop a limit form

of LATE within the context of a model of supply and demand, but use it only as a device for interpreting the

linear IV estimand and place no direct economic interpretation on the limit LATE parameter. Bjorklund

and MoÆtt (1987) consider a parametric version of this parameter for the Roy model. These papers do not

develop the relationships among the parameters or the identi�cation analysis that are the primary concerns

of this paper and of Heckman and Vytlacil (1999b, 2000a).
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and thus

�LIV (x; P (z)) = �MTE(x; P (z)):

Note that while �LIV (x; P (z)) is de�ned for individuals with a given value of P (Z),

P (Z) = P (z), it gives the marginal e�ect for individuals with a given value of UD, UD =

P (z). In other words, it is estimated conditional on an observed P (Z) = P (z) but de�nes

a treatment e�ect for those with a given unobserved proclivity to participate that is equal

to the evaluation point, UD = P (z).

LATE and LIV are de�ned as functions (Y;X;Z), and are thus straightforward to

identify. �LATE(x; P (z); P (z0)) is identi�ed for any (P (z); P (z0)) 2 Px � Px such that

P (z) 6= P (z0). �LIV (x; P (z)) is identi�ed for any P (z) that is a limit point of Px. The

larger the support of P (Z) conditional on X = x, the bigger the set of LIV and LATE

parameters that can be identi�ed.

ATE and TT are not de�ned directly as functions of (Y;X;Z), so a more involved

discussion of their identi�cation is required. We can use LIV or LATE to identify ATE and

TT under the appropriate support conditions:

(i) If Px = [0; 1], then �ATE(x) is identi�ed from f�LIV (x; p) : p 2 [0; 1]g. If f0; 1g 2 Px,

17See, e.g., Kolmogorov and Fomin (1970), Theorem 9.8 for one proof. From assumption (iv), the deriva-

tive in (11) is �nite a.e. FX;UD . The same argument could be used to show that �LATE(x;P (z); P (z0)) is

continuous and di�erentiable in P (z) and P (z0).
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then �ATE(x) is identi�ed from �LATE(x; 0; 1).

(ii) If [0; P (z)] � Px, then �TT (x; P (z);D = 1) is identi�ed from f�LIV (x; p) : p 2

[0; P (z)]g. If f0; P (z)g 2 Px, then �
TT (x; P (z);D = 1) is identi�ed from�LATE(x; 0; P (z)).

(iii) If Px = [0; pmaxx ], then �TT (x;D = 1) is identi�ed from f�LIV (x; p) : p 2 [0; pmaxx ]g.

If f0g 2 Px, then �TT (x;D = 1) is identi�ed from f�LATE(x; 0; p) : p 2 Pxg. (see

equation 10).

Note that TT (not conditional on P (z)) is identi�ed under weaker conditions than is

ATE. To identify TT , one needs to observe P (z) arbitrarily close to 0 (pminx = 0) and

to observe some positive P (z) values, while to identify ATE one needs to observe P (z)

arbitrarily close to 0 and also P (z) arbitrarily close to 1 (pmaxx = 1 and pminx = 0).

5.1 Bounds for the Parameters

When the preceding support conditions do not hold, it is still possible to construct bounds

for the treatment parameters if Y1 and Y0 are known to be bounded w.p.1. To simplify the

notation, assume that Y1 and Y0 have the same bounds, so that:

Pr(ylx � Y1 � yux jX = x) = 1

and
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Pr(ylx � Y0 � yux jX = x) = 1:18

For example, if Y is an indicator variable, then the bounds are ylx = 0 and yux = 1 for

all x. One set of bounds follows directly from the fact that MTE can be integrated up to

the other parameters. For example, for ATE

�ATE(x) =

Z
Px

�LIV (x; p)dp+

Z
Pcx

�LIV (x; p)dp:

Since �LIV (x; P (z)) is bounded by (ylx � yux) and (yux � ylx), we obtain

�ATE(x) �

R
Px �

LIV (x; p)dp+ (yux � ylx)
R
Pcx dp

�ATE(x) �

R
Px �

LIV (x; p)dp+ (ylx � yux)
R
Pcx dp:

(12)

A similar analysis applies to the expressions for TT.

Figures 2 and 3 present a graphical analysis of these bounds for ATE, drawn for the

same assumptions about MTE as is used in Figure 1. As before the outcome variable is

assumed binary so that ylx = 0 and yux = 1. Figures 2 and 3 are drawn assuming that the

support of the propensity score is an interval, with the vertical dotted lines in the �gure

denoting the end points of the interval. Figure 2 is drawn to represent the lower bound on

ATE, with the lower bound being the area under the curve after the curve has been set to

ylx � yux = 0� 1 = �1 for u outside the support. Figure 3 is drawn to represent the upper

18The modi�cations required to analyze the more general case are straightforward.
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bound on ATE, with the upper bound being the area under the curve after the curve has

been set to yux � ylx = 1� 0 = 1 for u outside the support.

These bounds can be tightened substantially by virtue of the following argument. We

do not identify E(Y1jX = x; P (Z) = p) or E(Y0jX = x; P (Z) = p) pointwise for p < pminx

or p > pmaxx , and thus cannot use LIV to identify �MTE(x; u) for u < pminx or u > pmaxx .

However, it turns out that the latent index structure allows us to identify an averaged

version of E(Y1jX = x;U = u) for u < pminx and averaged version of E(Y0jX = x;U = u)

for u > pmaxx , and we can use this additional information to construct tighter bounds.

Our argument is of interest in its own right, because it shows how to use information on

E(Y0jX = x; P (Z) = p;D = 0), something we can observe within the proper support,

to attain at least partial information on E(Y0jX = x; P (Z) = p;D = 1), an unobserved,

counterfactual quantity.

To apply this type of reasoning, note that DY = DY1 is an observed random variable,

and thus for any x 2 Supp(X), P (z) 2 Px, we identify the expectation of DY1 given

X = x; P (Z) = P (z):

E

�
DY1

����X = x; P (Z) = P (z)

�
= E(Y1jX = x;D = 1; P (Z) = P (z))P (z)

= E(Y1jX = x; P (z) � UD)P (z)

=

Z P (z)

0
E(Y0jX = x;UD = u)du:

(13)
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By similar reasoning,

E

�
(1�D)Y0jX = x; P (Z) = P (z)

�
=

Z 1

P (z)
E(Y0jX = x;UD = u)du: (14)

We can evaluate (13) at P (z) = pmaxx and evaluate (14) at P (z) = pminx . The distribution of

(D;Y;X;Z) contains no information on
R 1
pmaxx

E(Y1jX = x;UD = u)du and
R pminx
0 E(Y0jX =

x;UD = u)du, but we can bound these quantities:

(1� pmaxx )ylx �

R 1
pmaxx

E(Y1jX = x;UD = u)du � (1� pmaxx )yux

pminx ylx �

R pminx
0 E(Y0jX = x;UD = u)du � pminx yux :

(15)

We can thus bound �ATE(x) by:

�ATE(x) � pmaxx

�
E(Y1jX = x; P (Z) = pmaxx ; D = 1)

�
+ (1� pmaxx )yux

�(1� pminx )

�
E(Y0jX = x; P (Z) = pminx ;D = 0)

�
� pminx ylx

�ATE(x) � pmaxx

�
E(Y1jX = x; P (Z) = pmaxx ; D = 1)

�
+ (1� pmaxx )ylx

�(1� pminx )

�
E(Y0jX = x; P (Z) = pminx ;D = 0)

�
� pminx yux :

19

The width of the bounds is thus

19The bounds on ATE can also be derived by applying Manski's (1990) bounds for \Level-Set Restrictions

on the Outcome Regressions." The bounds for the other parameters discussed in this paper cannot be derived

by applying his results.
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�
(1� pmaxx ) + pminx

�
(yux � ylx):

If Px is an interval, then the width of these bounds is half the width of the bounds given

by equation (12). If P(x) is not an interval, then the width of these bounds is less than

half the width of the bounds given by equation (12).

The width of the bounds is linearly related to the distance between pmaxx and 1 and the

distance between pminx and 0. These bounds are directly related to the \identi�cation at

in�nity" results of Heckman (1990) and Heckman and Honor�e (1990). Such identi�cation

at in�nity results require the condition that �D(Z) takes arbitrarily large and arbitrarily

small values if the support of UD is unbounded. This type of identifying condition is

sometimes criticized as not being credible. However, as is made clear by the width of the

bounds just presented, the proper metric for measuring how close one is to identi�cation

at in�nity is the distance between pmaxx and 1 and the distance between pminx and 0: It

is credible that these distances may be small. In practice, semiparametric econometric

methods that use identi�cation at in�nity arguments to identify ATE implicitly extrapolate

E(Y1jX = x;UD = u) for u > pmaxx and E(Y0jX = x;UD = u) for u < pminx .

We can construct analogous bounds for �TT (x; P (z);D = 1) for P (z) 2 Px in terms of

observed objects in an analogous fashion. Recall that

�TT (x; P (z);D = 1) = E(Y1 � Y0jX = x; P (Z) = P (z);D = 1)

= E(Y1jX = x; P (Z) = P (z);D = 1)�E(Y0jX = x; P (Z) = P (z);D = 1)
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We know the �rst term for P (z) 2 P(x). The second term is the missing counterfactual,

which we can rewrite as

E(Y0jX = x; P (Z) = P (z); D = 1) =
1

P (z)

Z P (z)

0
E(Y0jX = x;U = u)du:

For P (z) 2 Px, we identify

E(Y0jX = x; P (Z) = P (z);D = 0) =
1

1� P (z)

Z 1

P (z)
E(Y0jX = x;U = u)du;

and we identify

E(Y0jX = x; P (Z) = pminx ;D = 0) =
1

1� pminx

Z 1

pminx

E(Y0jX = x;U = u)du:

We therefore identify

(1�pminx )E(Y0jX = x; P (Z) = pminx ; D = 0)� (1�P (z))E(Y0 jX = x; P (Z) = pminx ;D = 0)

=

Z P (z)

pminx

E(Y0jX = x;U = u)du:

We do not identify

Z pminx

0
E(Y0jX = x;U = u)du: However, we can bound it by

ylxp
min
x �

Z pminx

0
E(Y0jX = x;U = u)du � yuxp

min
x
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We thus have that

E(Y0jX = x; P (Z) = P (z);D = 1) �

1

P (z)

�
pminx ylx + (1� pminx )E(Y0jX = x; P (Z) = pminx ;D = 0)

�(1� P (z))E(Y0jX = x; P (Z) = P (z);D = 0)

�

E(Y0jX = x; P (Z) = P (z);D = 1) �

1

P (z)

�
pminx yux + (1� pminx )E(Y0jX = x; P (Z) = pminx ;D = 0)

�(1� P (z))E(Y0jX = x; P (Z) = P (z);D = 0)

�
:

Using these inequalities, we can bound �TT (x; P (z); D = 1) as follows:

�TT (x; P (z);D = 1) � E(Y1jX = x; P (Z) = P (z);D = 1)

�

1

P (z)

�
pminx ylx + (1� pminx )E(Y0jX = x; P (Z) = pminx ;D = 0)

�(1� P (z))E(Y0jX = x; P (Z) = P (z);D = 0)

�

�TT (x; P (z);D = 1) � E(Y1jX = x; P (Z) = P (z);D = 1)

�

1

P (z)

�
pminx yux + (1� pminx )E(Y0jX = x; P (Z) = pminx ; D = 0)

�(1� P (z))E(Y0jX = x; P (Z) = P (z);D = 0)

�
:

The width of the bounds for �TT (x; P (z); D = 1) is thus

pminx

P (z)
(yux � ylx):
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As in the analysis of ATE, the width of the bounds is linearly decreasing in the distance

between pminx and 0. Note that the bounds are tighter for larger P (z) evaluation points,

because the higher the P (z) evaluation point, the less weight is placed on the unidenti�ed

quantity
R pminx
0 E(Y0jX = x;UD = u)du.

We can integrate the bounds on �TT (x; P (z); D = 1) to bound �TT (x;D = 1):

�TT (x;D = 1) �

Z pmaxx

0

�
E(Y1jX = x; P (Z) = p;D = 1)

�

1

p

�
pminx ylx + (1� pminx )E(Y0jX = x; P (Z) = pminx ;D = 0)

�(1� p)E(Y0jX = x; P (Z) = p;D = 0)

��
dFP (Z)jX;D(pjx; 1)

�TT (x;D = 1) �

Z pmaxx

0

�
E(Y1jX = x; P (Z) = p;D = 1)

�

1

p

�
pminx yux + (1� pminx )E(Y0jX = x; P (Z) = pminx ; D = 0)

�(1� p)E(Y0jX = x; P (Z) = p;D = 0)

��
dFP (Z)jX;D(pjx; 1):

The width of the bounds on �TT (x;D = 1) is thus

pminx (yux � ylx)

Z pmaxx

pminx

1

p
dFP (Z)jX;D(pjx; 1):

Using (8), we obtain

pminx (yux � ylx)

Z pmaxx

pminx

1

p
dFP (Z)jX;D(pjx; 1)
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= pminx (yux � ylx)

Z pmaxx

pminx

1

Pr(D = 1jX = x)
dFP (Z)jX(pjx)

= pminx (yux � ylx)
1

Pr(D = 1jX = x)
:20

Unlike the bounds on ATE, the bounds on TT depend on the distribution of P (Z), in

particular, on Pr(D = 1jX = z) = E(P (Z)jX = x). The width of the bounds is linearly

related to the distance between pminx and 0, holding Pr(D = 1jX = x) constant. The larger

Pr(D = 1jX = x), the tighter the bounds, since the larger P (Z) is on average, the less

probability weight is being placed on the unidenti�ed quantity
R pminx
0 E(Y0jX = x;UD =

u)du.

6 Linear IV vs. Local IV

Our analysis di�ers from that of Imbens and Angrist (1994) because we use a local version

of instrumental variables and not linear instrumental variables. This section compares these

two approaches. As before, we condition on X, and use the propensity score, P (Z), as the

instrument.

The linear IV estimand is

�IV (x) =
COV(Y; P (Z) j X = x )

COV(D;P (Z) j X = x)
:

20Recall that, by the de�nition of pmaxx and pminx , we have that the support of P (Z) is a subset of the

interval [pminx ; pmaxx ].
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Using the law of iterated expectations, we obtain

COV(Y; P (Z) j X = x)

COV(D;P (Z) j X = x)
=

COV(Y; P (Z) j X = x)

VAR(P (Z) j X = x)
:

The linear IV estimand can thus be interpreted as the slope term on p from the linear least

squares approximation to E(Y jP (Z) = p;X = x), holding x �xed. The local IV estimand

can be interpreted in the following way. Take a Taylor series expansion of E(Y jP (Z) =

p;X = x) for a �xed x in a neighborhood of p = p0:

E(Y jP (Z) = p;X = x) = E(Y jP (Z) = p0;X = x) + (p� p0)
@E(Y jX = x; P (Z) = p)

@p

����
p=p0

+o(jp� p0j)

= E(Y jP (Z) = p0;X = x) + (p� p0)�
LIV (x; p0) + o(jp� p0j):

Local IV evaluated at the point p0 estimates the slope term from a linear approximation

to E(Y jP (Z) = p;X = x) for p in a neighborhood of the point p0, conditional on X = x.

Linear IV is the slope term from a global (but conditional on X), linear least squares

approximation to E(Y jP (Z) = p;X = x), while local IV is the slope term from a local,

linear approximation to E(Y jP (Z) = p;X = x) at a prespeci�ed point. If the treatment

e�ect, � = Y1 � Y0, does not vary over individuals conditional on X, then it can easily be
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shown that

E(Y jP (Z) = p;X = x) = E(Y0jX = x) +E(Y1 � Y0jX = x)p:21

Thus, if the treatment e�ect does not vary over individuals, E(Y jP (Z) = p;X = x) will

be a linear function of p with slope given by E(Y1 � Y0jX = x) and the linear IV estimand

and the local IV estimand coincide. If the treatment e�ect varies over individuals, then in

the general case

E(Y jP (Z) = p;X = x) = E(Y0jX = x) +E(Y1 � Y0jX = x;Z = z;D = 1)p

= E(Y0jX = x) +E(Y1 � Y0jX = x; P (Z) = p;D = 1)p:

Then, if Y1 � Y0 is not mean independent of P (Z) conditional on (X;D), we have that

E(Y jP (Z) = p;X = x) will not be a linear function of p and the linear IV estimand and

the local IV estimand will not coincide. We present an economic interpretation of this

condition later on in this section.

By estimating the slope term locally, LIV is able to identify the MTE parameter point-

wise:

�LIV (x; p) = �MTE(x; p):

21Thus Y = Y0 +D(Y1 � Y0), E(Y jX = x; P (Z) = p) = E(Y0jX = x) +E(Y1� Y0jX = x; P (Z) = p;D =

1)p, and the result follows using that E(Y1 � Y0jX = x;P (Z) = p;D = 1) = E(Y1 � Y0jX = x) from the

assumption that the treatment e�ect does not vary over individuals conditional on X.
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In contrast, linear IV identi�es a weighted average of the LIV estimands, and thus a

weighted average of the MTE parameter. Using the law of iterated expectations, and

assuming that the relevant second moments exist and are �nite, one can show that

�IV (x) =

Z 1

0
�LIV (x; u)hx(u)du =

Z 1

0
�MTE(x; u)hx(u)du; (16)

where

hx(u) =
(E(P (Z)jP (Z) � u;X = x)) Pr(P (Z) � u;X = x)

E[(P (Z))2jX = x]
; (17)

and

Z 1

0
hx(u)du = 1:22 (18)

As shown by Imbens and Angrist (1994), linear IV converges to some weighted average

of treatment e�ects. However, the implicit weighting of the MTE parameter implied by

linear IV does not in general equal the weighting corresponding to the parameters de�ned in

Section 3. One can show that the IV weighting equals the weighting corresponding to LATE

only if the support of P (Z) conditional on X = x only contains two values, Px = fp0; pg.

The linear IV weighting equals the weighting of MTE corresponding to TT in the special

case where Px = f0; pg, and equals the weighting corresponding to ATE in the special case

where Px = f0; 1g. The IV weighting cannot correspond to the MTE parameter at a given

22This result is essentially the same as Theorem 2 of Imbens and Angrist (1994) except that it is explicitly

based on the latent index representation.
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evaluation point. Linear IV is a global approach (conditional on X) which estimates a

weighted average of the MTE parameters. Local IV is a form of instrumental variables,

conditional on X = x0 and within a neighborhood of P (Z) = p0, that estimates a given

MTE parameter, which when suitably weighted and integrated, produces both TT and

ATE.

To summarize the discussion of this section and to link the treatment e�ect parameters

de�ned and discussed in the previous section to the familiar switching regression model, or

correlated random coeÆcient model, it is useful to consider the following separable version

of it. Let

Y1 = �1(X) + U1;

Y0 = �0(X) + U0;

and de�ne D as arising from a latent index crossing a threshold as before. Assume E(U1) =

0 and E(U0) = 0.23 We maintain assumptions (i) - (v). Let F denote the distribution

function of UD, and let ~UD = F (UD). In this case, we can write the outcome equation as

a random coeÆcient model:

Y = DY1 + (1�D)Y0

= �0(X) + [�1(X)� �0(X) + U1 � U0]D + U0;

23Because of the additive separability assumption, it is more natural to consider (Y0; Y1) to be continuous

variables in this example.
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where the coeÆcient of D is a random or variable coeÆcient. From the de�nition, it follows

that

E(Y1jX = x;Z = z;D = 1) = �1(X) +E(U1jX = x;Z = z;D = 1)

= �1(X) +E(U1jUD � �D(z))

= �1(X) +K11(P (z));

and

E(Y0jX = x;Z = z;D = 0) = �0(X) +E(U0jX = x;Z = z;D = 0)

= �0(X) +E(U1jUD > �D(z))

= �0(X) +K00(P (z));

where Kij(P (z)) = E(UijZ = z;D = j) is a control function (see Heckman, 1980 and

Heckman and Robb, 1985, 1986).

In this setup,

�ATE(x) = E(Y1 � Y0 j X = x) = �1(x)� �0(x)

�TT (x; z;D = 1) = E(Y1 � Y0 j X = x;Z = z;D = 1)

= �1(x)� �0(x) +E

�
U1 � U0

����X = x;Z = z;D = 1

�

= �1(x)� �0(x) +E

�
U1 � U0

����UD � �D(z)

�
:

We develop these expressions further in the next section.

Again consider the relationship between the LIV and linear IV estimators. Using the
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additive separability assumption, we obtain

�LIV (x; p) = �MTE(x; p) = �1(x)� �0(x) +E(U1 � U0j
~UD = p);

and using equation (16),

�IV (x) = �1(x)� �0(x) +

Z 1

0
E(U1 � U0j

~UD = u)hx(u)du; (19)

where hx(u) is de�ned in equation (17).

To compare what LIV and the linear instrumental variable estimator identify, it is useful

to follow Heckman (1997) in comparing three cases. Case 1 (C-1) is the homogeneous

response model:

U1 = U0: (C-1)

In this case, �MTE(x; u) = �1(x) � �0(x) for all u. The e�ect of treatment does not

vary over individuals given X. Using equation (19) and the fact that hx(u) integrates to

one, we obtain �IV (x) = �ATE(x) = �TT (x;D = 1): Because �MTE(x; u) does not vary

with u, this is a case where linear IV will identify the parameters of interest even though

the implicit weighting of MTE implied by linear IV will not generally equal the weighting

corresponding to the parameters of interest.

In the case of heterogeneous responses, U1 6= U0, it is useful to distinguish two further
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cases: (C-2) where agent enrollment into the program does not depend on U1�U0 and case

(C-3) where it does. Case (C-2) is (C-2a) plus (C-2b) or (C-2b0):

U1 6= U0 (C-2a)

and

E(U1 � U0jX = x;Z = z;D = 1) = E(U1 � U0jX = x;D = 1) (C-2b)

for z a.e. FZjX=x s.t. P (z) 6= 0, or

E(U1 � U0jX = x;Z = z;D = 1) =M (C-2b0)

for z a.e. FZjX=x s.t. P (z) 6= 0, for some constant M . Under (C-2a) and (C-2b),

�IV (x) = �TT (x;D = 1); under (C-2a) and (C-2b0), �IV (x) = �ATE(x) (see Heck-

man, 1997; Heckman and Smith, 1998; and Heckman, Smith and LaLonde, 1999). From

assumption (iii), ((UD; U1) and (UD; U0) are independent of (Z;X)), we obtain that U1�U0

is mean independent of X conditional on (D;Z), and thus (C-2b) can be rewritten as

E(U1 � U0jZ = z;D = 1) = E(U1 � U0jX = x;D = 1)
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and (C-2b0) can be rewritten as

E(U1 � U0jZ = z;D = 1) =M:24

Although we impose assumption (iii) to simplify the argument, it can be weakened sub-

stantially. Since all the IV analysis is performed conditional on X = x, assumption (iii) can

be weakened to allow U1, U0 to depend on X (see Heckman, 1997; Heckman and Smith,

1998; Heckman, Smith and LaLonde, 1999).

A suÆcient condition for both (C-2b) and (C-2b0) is that Pr(D = 1 j X;Z;U1 � U0) =

Pr(D = 1 j X;Z); i.e., UD is independent of U1 � U0. This condition implies that

�MTE(x; u) = �1(x)��0(x) for all u, and thus �
IV (x) = �ATE(x) = �TT (x;D = 1): This

is another case where the implicit weighting of MTE implied by linear IV need not equal

the weighting corresponding to ATE or TT and linear IV still identi�es the parameters of

interest since �MTE(x; u) does not vary with u. In this case, the treatment e�ect varies

over individuals conditional on X, but individuals do not participate in the program being

evaluated on the basis of this variation.

The conditions under which (C-2b) and (C-2b0) hold, and whether these conditions are

equivalent to each other or not, depend on the support of P (Z) conditional on X = x (Px).

First consider the case where the support of P (Z) conditional on X = x is the full unit

24Conditioning on X is necessary on the right hand side of assumption (C-2b) since, in general, U1 � U0

will be mean dependent on X conditional on D even though U1�U0 are mean independent of X conditional

on (D;Z).
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interval (Px = [0; 1]). Then both conditions are equivalent to the assumption that U1 �U0

is mean independent of UD. To see this, note that the left hand side of (C-2b) can be

rewritten as

E(U1 � U0jX = x;Z = z;D = 1) = E(U1 � U0jZ = z;D = 1) = E(U1 � U0jUD � �D(z)):

By assumption, the support of �D(Z) contains the support of UD conditional on X = x,

so we have that (C-2b) is equivalent to assuming that U1 �U0 is mean independent of UD.

Now consider the left hand side of (C-2b0),

E(U1 � U0jX = x;Z = z;D = 1) = E(U1 � U0jZ = z;D = 1) = E(U1 � U0jUD � �D(z)):

Again using the fact that the support of �D(Z) contains the support of UD conditional on

X = x, we have that condition (C-2b0) is equivalent to assuming that U1 � U0 is mean

independent of UD. This is another case where the implicit weighting of MTE implied

by linear IV will not equal the weighting corresponding to ATE or TT but linear IV still

identi�es these parameters since �MTE(x; u) does not vary with u.

Next consider the case where the support of P (Z) conditional on X = x is a set of two

values, p0 and p (i.e., Px = fp0; pg). We then have that �IV (x) = �LATE(x; p0; p). Following

the analysis of Section 5, if p0 = 0, p = 1, we have that �IV (x) = �LATE(x; 0; 1) =

�ATE(x) = �TT (x;D = 1), and both conditions (C-2b) and (C-2b0) are satis�ed allowing
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�MTE(x; u) to vary freely with u (i.e., allowing arbitrary dependence between U1�U0 and

UD). In this special case, the implicit weighting of MTE implied by linear IV equals the

weighting corresponding to ATE and TT, so that the parameters are equal even though

�MTE(x; u) varies freely with u.

Next consider the case where p0 = 0 and 0 < p < 1. The implicit weighting im-

plied by linear IV equals the weighting corresponding to TT, �IV (x) = �LATE(x; 0; p) =

�TT (x;D = 1), and condition (C-2b) is satis�ed, even though �MTE(x; u) may vary ar-

bitrarily with u, thus allowing U1 � U0 to be arbitrarily dependent on UD.
25 However, in

this case, the weighting implied by �IV (x) is not the same as the weighting corresponding

to �ATE(x). Thus �IV (x) = �ATE(x) and condition (C-2b0) is satis�ed i� �ATE(x) =

�TT (x;D = 1), i.e., i� 1�p
p

Z p

0
E(U1 �U0jUD = u)du =

Z 1

p

E(U1 �U0jUD = u)du: This will

not be satis�ed in general. Imposing this condition is equivalent to imposing a particular

restriction on the dependence of U1 � U0 on UD. This restriction does not require mean

independence, but is implied by mean independence. Thus, in the case where the support of

P (Z) conditional on X = x is the set of two values, 0 and p (Px = f0; pg), conditions (C-2b)

and (C-2b0) di�er with (C-2b) satis�ed without restrictions on the dependence of U1 � U0

on UD but (C-2b0) is satis�ed only if a peculiar restriction is imposed on this dependence.

Finally, consider the case where 0 < p0 < p < 1. In this case, �IV (x) = �LATE(x; p0; p),

and the implicit weighting produced by linear IV will not equal the weighting correspond-

25Arbitrary subject to the maintained assumption (ii) in Section 2.
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ing to TT or ATE, and conditions (C-2b) and (C-2b0) will not hold, unless a particular

restriction is imposed on the dependence between U1 � U0 and UD, with the restriction

being weaker than a mean independence assumption.

We have thus considered two extreme cases. First, where the support of P (Z) condi-

tional on X = x is the full unit interval (Px = [0; 1]), in which case (C-2b) and (C-2b0)

are both equivalent to the assumption that U1 � U0 is mean independent of UD. Second,

we have also considered the case where the support of P (Z) conditional on X = x is a set

of two points (Px = fp0; pg), in which case (C-2b) and (C-2b0) will generally be di�erent

assumptions and will require restrictions on the dependence of U1�U0 on UD weaker than

a mean independence assumption. Following the same arguments, we can consider any

other support for the propensity score. In general, (C-2b) is a weaker condition than (C-

2b0). Both conditions will be satis�ed under a condition weaker than mean independence

of U1�U0 on UD if the support of P (Z) conditional on X = x is a strict subset of the unit

interval (Px � [0; 1]). Both conditions will impose some restriction on the dependence of

U1�U0 on UD except in the extreme case where the support of P (Z) conditional on X = x

is only two points, with one of the two points being 0 (Px = f0; pg) for (C-2b) or only two

points with one point being 0 and one point being 1 (Px = f0; 1g) for (C-2b0).

In the general case of a correlated random coeÆcient model where agents select into the
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program partly based on U1 � U0, or information correlated with it, we have

U1 6= U0 (C-3a)

and

E(U1 � U0jZ = z;D = 1) 6= E(U1 � U0jX = x;D = 1) (C-3b)

for a set of z values having positive probability (FZjX=x), or

E(U1 � U0jZ = z;D = 1) =M(z) (C-3b0)

whereM(z) is a nondegenerate function of z for z in the support of Z conditional on X = x.

In this case the linear instrumental variable estimator does not identify TT if (C-3b) holds

or ATE if (C-3b0) applies (Heckman, 1997). These cases arise in the Roy model discussed

in the next section.

Even though the linear instrumental variable estimator breaks down for identifying TT

or ATE in the third case, it still identi�es LATE if the support of P (Z) conditional on

X = x only contains two elements. In this general case, LIV can be used to identify all

three treatment parameters. Under the support conditions presented in section 5, suitably

reweighted and integrated versions of LIV identify or bound TT and ATE while linear IV
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does not.

We now show how to relate this analysis to the familiar case of the Roy model.

7 Additive Separability and the Roy Model

Pursuing the additively separable case further we obtain the following representation:

�TT (x; z;D = 1) = �1(x)� �0(x) +K(P (z))26

where K(P (z)) = E(U1 � U0j
~UD � P (z)) = K11(P (z)) �K01(P (z)).

Integrating out over the support of Z given X = x and D = 1,

�TT (x;D = 1) = E(Y1 � Y0 j X = x;D = 1)

=

Z
�TT (x; z;D = 1)dFZjX;D(zjx; 1)

= �1(x)� �0(x) +
R
K(p)dFP (Z)jX;D(pjx; 1)

= �1(x)� �0(x) +
R
K(p)

p

E(P (Z)jX = x)
dFP (Z)jX(pjx)

(20)

where
R
K(p)

p

E(P (Z)jX = x)
dFP (Z)jX(pjx) = E(U1 � U0j

~UD � P (Z)).

For a �xed X, and two distinct values of Z;

�LATE(x; P (z); P (z0)) = �1(x)� �0(x) +
P (z)K(P (z)) � P (z0)K(P (z0))

P (z) � P (z0)
:

In the limit as z0 ! z,

26This representation is due to Heckman (1980), and Heckman and Robb (1985, 1986).

45



lim
z0!z

�LATE(x; P (z); P (z0)) = �1(x)� �0(x) +K(P (z))
@P (z)
@z

+ P (z)
@K(P (z))

@z
.

This limit exists as a consequence of our assumptions. Working directly with limit P (z0)!

P (z),

lim
P (z0)!P (z)

�LATE(x; P (z); P (z0)) = �1(x)� �0(x) +K(P (z)) +
@K(P (z))

@P (z)
P (z)

= �1(x)� �0(x) +K(P (z))[1 + �];

where � =
@ lnK(P (z))

@ lnP (z)
is the elasticity of the conditional mean of the unobservables with re-

spect to the propensity score. The above is LIV as previously de�ned, and since �LIV (x; P (z)) =

�MTE(x; P (z)), we obtain

�MTE(x; u) = �1(x)� �0(x) +K(u)[1 + �]:

As noted by Heckman (1997) and Heckman and Smith (1998), �MTE(x; u) is the \treat-

ment on the treated" parameter for those with characteristics X = x who would be indif-

ferent between sector 1 and sector 0 if the instrument were externally set so that P (Z) = u.

This is the parameter required for evaluating the marginal gross gain (exclusive of any costs

of making the move) for persons of characteristics P (Z) = u at the margin of indi�erence

between sector 1 and sector 0. This is the parameter required for evaluating the e�ect of a

marginal change in Z on the persons induced into (or out) of the program by the change.
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It is one of the three parameters required in a cost-bene�t analysis of the change.27

For the case of the classical selection model, (U0; U1; UD) are mean zero joint normal

random variables, independent of (Z;X). In this case, we obtain the following expressions

for P (z) and the treatment parameters:

P (z) = �(
�D(z)
�DU

)

K(P (z)) = [�1U��0U
�U

]
expf� 1

2
[��1(P (z))]2g
P (z)

�ATE(x) = �1(x)� �0(x)

�TT (x; P (z);D = 1) = �1(x)� �0(x) + [�1U��0U
�U

] 1p
2�

expf� 1
2
[��1(P (z)]2g
P (z)

�LATE(x; P (z); P (z0)) = �1(x)� �0(x)+

[�1U��0U
�U

] 1p
2�
[
expf� 1

2
(��1(P (z))2g�expf(� 1

2
(��1(P (z0))2))g

P (z)�P (z0)
]

�MTE(x; u) = �1(x)� �0(x)� [�1U��0U
�DU

]��1(u)

where �jU = [V ar(Uj)]
1
2 . The expression for �TT (x;D = 1) is obtained from Equation (20)

and depends on the distribution of P (Z). Observe that in the normal case, �MTE(x; 1
2
) =

�ATE(x) and �LATE(x; p; 1 � p) = �ATE(x) as a result of the symmetry of the normal

distribution.28

27The other parameters are the cost of the change C0(Z) (where C(Z) is the cost function) and the

e�ects of the change in Z on the outcomes of persons who are not a�ected by the change in Z. For the

complete de�nition, see Heckman (1997) and Heckman and Smith (1998) or see the discussion in Heckman

and Vytlacil (2000b).
28These equalities will hold for any distribution such that (UD; U1) and (UD; U0) are jointly symmetric

around their means. As in the work of Powell (1987) and Chen (1999), symmetry is one assumption that

can be exploited to achieve identi�cation without large support assumptions.
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7.1 The Roy Model

Next consider the special case of a Roy model with sector-speci�c costs. In particular,

consider a case where

D� = (Y1 � Y0)� '(W )� V

=

�
(�1(x)� �0(x))� '(W )

�
+

�
(U1 � U0)� V

�
;

and

D = 1 if D�
� 0; = 0 otherwise,

where '(W ) + UD is the cost of being in sector 1, Y1 � Y0 is the gross bene�t of being in

sector 1, and D� is the net bene�t of being in sector 1. The agent will choose to be in sector

1 if the gross bene�t exceeds the cost, i.e., if Y1 � Y0 � '(W ) + UD. This model is similar

to models used to analyze labor supply, unionism and educational and occupational choice.

Taking Z = (W;X), UD = U1�U0�V , and �D(z) = �1(x)��0(x)�'(w); this model is a

special case of the model previously developed. If we continue to maintain assumptions (i) -

(v) from Section 2, then all analysis of section 5 continues to hold.29 Recall assumption (i),

that �D(Z) is a nondegenerate random variable conditional on X = x. In the Roy model

considered here, �D(Z) = �1(X) � �0(X) � '(W ), so that this assumption requires that

29In addition, by imposing the Roy model structure, one can identify average cost of treatment parameters

without observing any direct information on the cost of treatment. See Heckman and Vytlacil (2000b).
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'(W ) is a nondegenerate random variable conditional on X. In other words, we require

variables that do not a�ect the outcome equations but that a�ect the cost of selecting into

treatment. The requirement for '(W ) to be a nondegenerate random variable conditional

on X rules out the special case of the original Roy model with no costs. To analyze such

a model, restrict '(W ) = 0 and V = 0, so D� = Y1 � Y0 = �1(X) � �0(X) + U1 � U0 and

UD = �(U1 � U0). Assumption (i) no longer holds, but we impose conditions (ii) - (v).

The treatment parameters are still well de�ned, the relationship between the parameters

continues to hold, but we are no longer able to identify the parameters from LIV. To

establish these claims, note that

�MTE(x; u) = �1(x)� �0(x) +E(U1 � U0jU1 � U0 = �u)

= �1(x)� �0(x)� u

�ATE(x; u) = �1(x)� �0(x)

=

Z
�MTE(x; u)dFU

�TT (x;D = 1) = �1(x)� �0(x) +E

�
U1 � U0

�����(U1 � U0) � �1(x)� �0(x)

�

= 1
Pr(D=1jX=x)

Z �1(x)��0(x)

�1
�MTE(x; u)dFU

so that the same relationships exist among the parameters as established in the case when

exclusion restrictions are present. However, there is no longer a well de�ned LIV estimator,

since it is no longer possible to shift the index for the decision rule while holdingX constant.

Hence the instrumental variable argument breaks down in this case.
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8 Conclusion

This paper uses an index model or latent variable model to model selection variable D to

impose structure on a model of potential outcomes that originates with Neyman (1923),

Fisher (1935), and Cox (1958). We introduce the Marginal Treatment E�ect (MTE) param-

eter and its sample analogue, the local IV (LIV) estimator, as devices for unifying di�erent

treatment parameters. Di�erent treatment e�ect parameters are averaged versions of the

marginal treatment parameter which di�er according to how they weight the marginal pa-

rameter. ATE weights all marginal parameters equally. LATE gives equal weight to the

marginal treatment parameters within a given interval. TT gives a larger weight to those

marginal treatment parameters corresponding to the treatment e�ect for individuals who

have larger values of the unobserved proclivity to participate in the program. The weight-

ing of the marginal treatment parameter for the treatment on the treated parameter is like

that obtained in length-biased or sized-biased samples.

The local IV estimator identi�es the marginal treatment e�ect under conditions (i)-(v).

Identi�cation of LATE and LIV depends on the support of the propensity score, P (Z).

The larger the support of P (Z), the larger the set of LATE and LIV parameters that are

identi�ed. Identi�cation of ATE depends on observing P (Z) values arbitrarily close to 1

and P (Z) values arbitrarily close to 0. When such P (Z) values are not observed, ATE

can be bounded and the width of the bounds is linearly related to the distance between 1

and the largest P (Z) and the distance between 0 and the smallest P (Z) value. For TT,
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identi�cation requires that one observe P (Z) values arbitrarily close to 0. If this condition

does not hold, then the TT parameter can be bounded and the width of the bounds will be

linearly related to the distance between 0 and the smallest P (Z) value, holding Pr(D = 1jX)

constant.

Under full support conditions, the local IV estimator, when suitably weighted, can be

used to estimate LATE, TT, and ATE in cases where linear IV cannot estimate these

parameters. When support conditions fail, local IV can be use to bound LATE, TT, and

ATE. Local IV is thus a more general and exible estimation principle than linear IV, which

in case of heterogeneous response to treatment, at most identi�es LATE.

Implementation of the methods developed in this paper through either parametric or

nonparametric estimators is straightforward. In joint work with Arild Aakvik, we have de-

veloped the sampling theory for the LIV estimator and empirically estimated and bounded

various treatment parameters for a Norwegian vocational rehabilitation program (Aakvik,

Heckman and Vytlacil, 1999). We have discussed several economic models where the LIV

estimator can be fruitfully applied and we have examined the economic questions that the

treatment e�ect parameters answer.
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Appendix: Relaxing Additive Separability and Independence

There are two central assumptions that underlie the latent index representation used in

this paper: that UD is independent of Z, and that UD and Z are additively separable in the

index. The latent index model with these two restrictions implies the independence and

monotonicity assumptions of Imbens and Angrist (1994) and the latent index model implied

by the Imbens and Angrist assumptions imply a latent index model with a representation

that satis�es both the independence and the monotonicity assumptions. In this appendix,

we consider the sensitivity of the analysis presented in the text to relaxation of either of

these assumptions.

First, consider allowing UD and Z to be nonseparable in the treatment index:

D� = �D(Z;UD)

D = 1 if D�
� 0; = 0 otherwise

while maintaining the assumption that Z is independent of (UD; U1; U0). We do not impose

any restrictions on the cross partials of �D. The monotonicity condition of Imbens and An-

grist (1994) is that for any (z; z0) pair, �D(z; u) � �D(z
0; u) for all u, or �D(z; u) � �D(z

0; u)

for all u.30 Vytlacil (1999a) shows that monotonicity always implies one representation of

�D as �D(z; u) = �(z)+u. We now reconsider the analysis in the text without imposing the

30Note that the monotonicity condition is a restriction across u. For a given �xed u, it will always trivially

have to be the case that either �D(z; u) � �D(z
0; u) or �D(z; u) � �D(z

0; u).
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monotonicity condition by considering the latent index model without additive separability.

Since we have imposed no structure on the �D(z; u) index, one can easily show that this

model is equivalent to imposing the independence condition of Imbens and Angrist (1994)

without imposing their monotonicity condition. A random coeÆcient discrete choice model

with �D = Z�+ " where � and " are random, and � can assume positive or negative values

is an example of this case, i.e. UD = (�; ").

We impose the regularity condition that, for any z 2 Supp(Z), �D(z; UD) is absolutely

continuous with respect to Lebesgue measure.31 Let


(z) = fu : �D(z; u) � 0g;

so that

P (z) � Pr(D = 1jZ = z) = Pr(UD 2 
(z)):

Under additive separability, P (z) = P (z0), 
(z) = 
(z0). This equivalence enables us to

de�ne the parameters in terms of the P (z) index instead of the full z vector. In the more

general case without additive separability, it is possible to have (z; z0) s.t. P (z) = P (z0)

and 
(z) 6= 
(z0). In this case, we can no longer replace Z = z with P (Z) = P (z) in the

conditioning sets.

31We impose this condition to ensure that Pr
�
�D(z; UD) = 0

�
= 0 for any z 2 Supp(Z).
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De�ne as before

�MTE(x; u) = E(�jX = x;UD = u):

For ATE, we obtain the same expression as before:

�ATE(x) =

Z 1

0
E(�jX = x;UD = u)du:

For TT, we obtain a similar but slightly more complicated expression:

�TT (x; z;D = 1) � E(�jX = x;Z = z;D = 1)

= E(�jX = x;UD 2 
(z))

=
1

P (z)

Z

(z)

E(�jX = x;UD = u)du:

Because it is no longer the case that we can de�ne the parameter solely in terms of P (z)

instead of z, it is possible to have (z; z0) such that P (z) = P (z0) but �TT (x; z;D = 1) 6=

�TT (x; z0;D = 1).

Following the same derivation as used in the text for the TT parameter not conditional

on Z,

�TT (x;D = 1) � E(�jX = x;D = 1)

=

Z
E(�jX = x;Z = z;D = 1)dFZjX;D(zjx; 1)
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=
1

Pr(D = 1jX = x)

Z �Z 1

0
1[u 2 
(z)]E(�jX = x;UD = u)du

�
dFZjX(zjx)

=
1

Pr(D = 1jX = x)

Z 1

0

�Z
1[u 2 
(z)]E(�jX = x;UD = u)dFZjX(zjx)

�
du

=

Z 1

0
E(�jX = x;UD = u)gx(u)du

where

gx(u) =

Z
1[u 2 
(z)]dFZjX(zjx)

Pr(D = 1jX = x)
=

Pr(D = 1jUD = u;X = x)

Pr(D = 1jX = x)
:

Thus the de�nitions of the parameters and the relationships among them that are developed

in the main text of this paper generalize in a straightforward way to the nonseparable case.

Separability allows us to de�ne the parameters in terms of P (z) instead of z and allows

for slightly simpler expressions, but is not crucial for the de�nition of parameters or the

relationship among them.

Separability is, however, crucial to the form of LATE when we allow UD and Z to be

additively nonseparable in the treatment index. For simplicity, we will keep the conditioning

on X implicit. This analysis essentially replicates the analysis of Imbens of Angrist (1994)

using a latent index representation. De�ne the following sets

A(z; z0) = fu : �D(z; u) � 0; �D(z
0; u) � 0g

B(z; z0) = fu : �D(z; u) � 0; �D(z
0; u) < 0g
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C(z; z0) = fu : �D(z; u) < 0; �D(z
0; u) < 0g

D(z; z0) = fu : �D(z; u) < 0; �D(z
0; u) � 0g:

Monotonicity implies that either B(z; z0) or D(z; z0) is empty. Suppressing the z; z0 argu-

ments, we have:

E(Y jZ = z) = Pr(A
S
B)E(Y1jA

S
B) + Pr(C

S
D)E(Y0jC

S
D)

E(Y jZ = z0) = Pr(A
S
D)E(Y1jA

S
D) + Pr(B

S
C)E(Y0jB

S
C)

so that

E(Y jZ = z)�E(Y jZ = z0)

Pr(D = 1jZ = z)� Pr(D = 1jZ = z0)
=

E(Y jZ = z)�E(Y jZ = z0)

Pr(A
S
B)� Pr(A

S
D)

=
Pr(B)E(Y1 � Y0jB)� Pr(D)E(Y1 � Y0jD)

Pr(B)� Pr(D)

= wBE(�jB)� wDE(�jD)

with

wB =
Pr(BjB

S
D)

Pr(BjB
S
D)� Pr(DjB

S
D)

wD =
Pr(DjB

S
D)

Pr(BjB
S
D)� Pr(DjB

S
D)

:

Under monotonicity, either Pr(B) = 0 and LATE identi�es E(�jD) or Pr(D) = 0 and

63



LATE identi�es E(�jB). Without monotonicity, the IV estimator used as the sample

analogue to LATE converges to the above weighted di�erence in the two terms, and the

relationship between LATE and the other treatment parameters presented in the text no

longer holds.

Consider what would happen if we could condition on a given u. For u 2 A
S
C, the

denominator is zero and the parameter is not well de�ned. For u 2 B, the parameter is

E(�jUD = u), for u 2 D, the parameter is E(�jUD = u). If we could restrict conditioning

to u 2 B (or u 2 D), we would obtain monotonicity within the restricted sample.

Now consider LIV. For simplicity, assume z is a scalar. Assume �D(z; u) is continuously

di�erentiable in (z; u), with �j(z; u) denoting the partial derivative with respect to the

jth argument. Assume that �D(z; UD) is absolutely continuous with respect to Lebesgue

measure. Fix some evaluation point, z0. One can show that there may be at most a

countable number of u points s.t. �D(z0; u) = 0. Let j 2 J = f1; :::; Lg index the

set of u evaluation points s.t. �D(z0; u) = 0, where L may be in�nity, and thus write:

�D(z0; uj) = 0 for all j 2 J . Both the number of such evaluation points and the evaluation

points themselves depends on the evaluation point, z0, but we suppress this dependence for

notational convenience.) One can show that

@

@z

�
E(Y jZ = z0)

�
=

LX
k=1

�1(z0; uk)

j�2(z0; uk)j
E(�jUD = uk)
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and

@

@z
[Pr(D = 1jZ = z)] =

LX
k=1

�1(z; uk)

j�2(z; uk)j
:

LIV is the ratio of these two terms, and does not in general equal the MTE. Thus, the

relationship between LIV and MTE breaks down in the nonseparable case.

As an example, take the case where L is �nite and j
�1(z;uk)

�2(z;uk)
j does not vary with k. Using

the fact that UD is distributed unit uniform, we have

�LIV (z0) = Pr(�1(z0; UD) > 0j�(z0; UD) = 0)E

�
�

�����D(z0; UD) = 0; �1(z0; UD) > 0

�

�Pr(�1(z0; UD) < 0j�(z0; UD) = 0)E

�
�

�����D(z0; UD) = 0; �1(z0; UD) < 0

�
:

Thus, while the de�nition of the parameters and the relationship among them does not de-

pend crucially on the additive separability assumption, the connection between the LATE

or LIV estimators and the underlying parameters crucially depends on the additive sepa-

rability assumption.

Next consider the assumption that UD and Z are separable in the treatment index while

allowing them to be stochastically dependent:

D� = �D(Z)� UD

D = 1 if D�
� 0; = 0 otherwise

with Z independent of (U1; U0), UD distributed unit uniform, but allowing Z and UD to

be stochastically dependent. The analysis of Vytlacil (1999a) can be easily adapted to
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show that the latent index model with separability but without imposing independence

is equivalent to imposing the monotonicity assumption of Imbens and Angrist without

imposing their independence assumption.32

We have


(z) = fu : �(z) � ug

and

P (z) � Pr(D = 1jZ = z) = Pr(U 2 
(z)jZ = z):

Note that 
(z) = 
(z0)) �D(z) = �D(z
0), but 
(z) = 
(z0) does not imply P (z) = P (z0)

since the distribution of U conditional on Z = z need not equal the distribution of U

conditional on Z = z0. Likewise, P (z) = P (z0) does not imply 
(z) = 
(z0). As occurred

in the nonseparable case, we can no longer replace Z = z with P (Z) = P (z) in the

conditioning sets.33

Consider the de�nition of the parameters and the relationship among them. The de�-

nition of MTE and ATE in no way involves Z, nor does the relationship between them, so

that both their de�nition and their relationship remains unchanged by allowing Z and UD

32To show that the monotonicity assumption implies a separable latent index model, one can follow

the proofs of Vytlacil (1999a) with the only modi�cation being replacing P (z) = Pr(D = 1jZ = z) with

Pr(Dz = 1), where Dz is the indicator variable for whether the agent would have received treatment if Z

had been externally set to z.
33However, we again have equivalence between the alternative conditioning sets if we assume index suÆ-

ciency, i.e., that FUjZ(ujz) = FUjP (Z)(ujP (z)).
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to be dependent. Now consider the TT parameter:

�TT (x; z;D = 1) = E(�jX = x;Z = z; UD � �D(z))

= 1
P (z)

Z �D(z)

0
E(�jX = x;UD = u)dFU jZ;X(ujz; x)

= 1
P (z)

Z �D(z)

0
E(�jX = x;UD = u)

fZjU;X(zju;x)
fZjX(zjx) dFU (u)

where fZjX and fZjU;X denote the densities corresponding to FZjX and FZjU;X with respect

to the appropriate dominating measure. We thus obtain

�TT (x;D = 1) = E(�jX = x;UD � �D(Z))

=
1

Pr(D = 1jX = x)

Z �Z �D(z)

0
E(�jX = x;UD = u)

fZjU;X(zju; x)

fZjX(zjx)
dFU (u)

�
dFZjX(zjx)

=
1

Pr(D = 1jX = x)

Z �Z
1[u � �D(z)]E(�jX = x;UD = u)

fZjU;X(zju; x)

fZjX(zjx)
dFZjX(zjx)

�
dFU (u

=
1

Pr(D = 1jX = x)

Z �Z
1[u � �D(z)]E(�jX = x;UD = u)dFZjU;X(zju; x)

�
dFU (u)

=

Z 1

0
E(�jX = x;UD = u)gx(u)du

where again

gx(u) =
Pr(D = 1jUD = u;X = x)

Pr(D = 1jX = x)
:

We thus have that the de�nition of parameters and the relationships among the param-

eters that is developed in the text generalize naturally to the case where Z and UD are
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stochastically dependent. Independence (combined with the additive separability assump-

tion) allows us to de�ne the parameters in terms of P (z) instead of z and allows for slightly

simpler expressions, but is not crucial for the de�nition of parameters or the relationship

among them.

We next investigate LATE when we allow UD and Z to be stochastically dependent.

We have

E(Y jX = x;Z = z)

= P (z)

�
E(Y1jX = x;Z = z;D = 1)

�
+ (1� P (z))

�
E(Y0jX = x;Z = z;D = 0)

�

=

Z �D(z)

0
E(Y1jX = x;UD = u)dFU jX;Z(ujx; z) +

Z 0

�D(z)
E(Y0jX = x;UD = u)dFU jX;Z(ujx; z);

For simplicity, take the case where �D(z) > �D(z
0). Then

E(Y jX = x;Z = z)�E(Y jX = x;Z = z0)

=

�Z �D(z)

�D(z0)
E(Y1jX = x;UD = u)dFU jX;Z(ujx; z)�

Z �D(z)

�D(z0)
E(Y0jX = x;UD = u)dFU jX;Z(ujx; z

0)

�

+

Z �D(z0)

0
E(Y1jX = x;UD = u)

�
dFU jX;Z(ujx; z) � dFU jX;Z(ujx; z

0)

�

+

Z 1

�D(z)
E(Y0jX = x;UD = u)

�
dFU jX;Z(ujx; z) � dFU jX;Z(ujx; z

0)

�
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and thus

�LATE(x; z; z0)

= Æ0(z)E(Y1jX = x;Z = z; �D(z
0) � UD � �D(z))

�Æ0(z
0)E(Y0jX = x;Z = z0; �D(z

0) � UD � �D(z))

+

�
Æ1(z)E(Y1jX = x;Z = z; UD � �D(z

0))� Æ1(z
0)E(Y1jX = x;Z = z0; UD � �D(z

0))

�

+

�
Æ2(z)E(Y0jX = x;Z = z; UD > �D(z))� Æ2(z

0)E(Y1jX = x;Z = z0; UD > �D(z))

�

with

Æ0(t) =
Pr(�D(z

0) � UD � �D(z)jZ = t)

Pr(UD � �D(z)jZ = z;X = x)� Pr(UD � �D(z
0)jZ = z0; X = x)

Æ1(t) =
Pr(UD � �D(z

0)jZ = t)

Pr(UD � �D(z)jZ = z;X = x)� Pr(UD � �D(z
0)jZ = z0; X = x)

Æ2(t) =
Pr(UD > �D(z)jZ = t)

Pr(UD � �D(z)jZ = z;X = x)� Pr(UD � �D(z
0)jZ = z0; X = x)

Note that Æ0(z) = Æ0(z
0) = 1 and the two terms in brackets are zero in the case where

Z and UD are independent. In the more general case, Æ0 may be bigger or smaller than 1,

and the terms in brackets are of an unknown sign. In general, LATE may be negative even

when � is positive for all individuals.

Now consider LIV. For simplicity, take the case where Z is a continuous scalar r.v. Let
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fU jZ(ujz) denote the density of UD conditional on Z = z, and assume that this density is

di�erentiable in z. Then, using equation (21), we have

@E(Y jX = x;Z = z)

@z
= E(�jX = x;UD = �D(z))�

0
D(z)

+

�Z �D(z)

0
E(Y1jX = x;UD = u)

@fU jZ(ujz)

@z
du

+

Z 1

�D(z)
E(Y0jX = x;UD = u)

@fU jZ(ujz)

@z
du

�
;

and

@ Pr(D = 1jZ = z)

@z
= �0D(z) +

Z �D(z)

0

@fU jZ(ujz)

@z
du:

LIV is the ratio of the two terms. Thus, without the independence condition, the relation-

ship between LIV and the MTE breaks down.
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Figure 1: MTE integrates to ATE and TT under full support
(for dichotomous outcome)
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Figure 2: Lower bound on ATE under limited support
(for dichotomous outcome)
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Figure 3: Upper bound on ATE under limited support
(for dichotomous outcome)
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