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ABSTRACT

We areinterested in estimating the average effect of abinary treatment on ascalar outcome.
If assignment to thetreatment isindependent of the potential outcomesgiven pretreatment variables,
biases associated with simple treatment-control average comparisons can be removed by adjusting
for differences in the pre-treatment variables. Rosenbaum and Rubin (1983, 1984) show that
adjusting solely for differences between treated and control units in a scalar function of the pre-
treatment, the propensity score, also removes the entire bias associated with differences in pre-
treatment variables. Thusit ispossible to obtain unbiased estimates of the treatment effect without
conditioning on apossibly high-dimensional vector of pre-treatment variables. Although adjusting
for the propensity score removes all the bias, this can come at the expense of efficiency. We show
that weighting with the inverse of a nonparametric estimate of the propensity score, rather than the
truepropensity score, leadsto efficient estimatesof thevariousaveragetreatment effects. Thisresult
holds whether the pre-treatment variables have discrete or continuous distributions. We provide
intuition for this result in a number of ways. First we show that with discrete covariates, exact
adjustment for the estimated propensity score is identical to adjustment for the pre-treatment
variables. Second, we show that weighting by the inverse of the estimated propensity score can be
interpreted as an empirical likelihood estimator that efficiently incorporates the information about
the propensity score. Finally, wemake aconnection to resultsto other results on efficient estimation
through weighting in the context of variable probability sampling.
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1. INTRODUCTION

Estimating the average effect of a binary treatment on a scalar outcome is a basic goal of
many empirical studies in economics. If assignment to the treatment is unconfounded, that
is, independent of the potential outcomes conditional on pre-treatment variables, the average
treatment effect for the subpopulation with a given value of the pre-treatment variables can
be estimated by simply taking the difference between the treatment and control averages
in that subpopulation. The population average treatment effect can then be estimated by
weighting these subpopulation estimates by the distribution of the pre-treatment variables.
If there are many pre-treatment variables, this strategy may not be desirable or even feasible.
An appealing alternative approach is based on the propensity score, the conditional probabil-
ity of receiving treatment given pre-treatment variables. Rosenbaum and Rubin (1983, 1984)
show that adjusting solely for differences in the propensity score between treated and con-
trol units removes all bias associated with differences in the pre-treatment variables. Recent

applications of these methods in economics include Heckman, Ichimura and Todd (1997),

Dehejia and Wahba (1999), Hotz, Imbens and Mortimer (1999), and Lechner (1999).

Although adjusting for the propensity score removes all bias, it may do so at the expense
of efficiency. Hahn (1998) and Heckman, Ichimura and Todd (1998) show that adjusting
only for the known propensity score can result in efficiency losses compared to adjusting
for all pre-treatment variables. However, Rosenbaum (1987) and Rubin and Thomas (1997)
demonstrate that using parametric estimates of the propensity score, rather than the true
propensity score, can avoid some of these efficiency losses. Rotnitzky and Robins (1995)
make a similar point in the context of regression models in the presence of missing data
where the missing data are missing at random (Rubin, 1976; Little and Rubin, 1987). They
show that weighting by the inverse of a parametric estimate of the selection probability is

more efficient than weighting by the inverse of the true selection probability.

In this paper we propose estimators based on the estimated propensity score that are



fully efficient for estimation of population average treatment effects. Our estimators weight
observations by the inverse of nonparametric estimates of the propensity score, rather than
the true propensity score. We use results from Newey (1994) to calculate the variances of
these semiparametric estimators, and show that they achieve the semiparametric efficiency
bounds obtained in Hahn (1998). We provide intuition for this result in a number of different
ways. First, we show that with discrete covariates, the estimator based on weighting by the
inverse of the estimated propensity score is identical to an efficient estimator that directly
controls for all pre-treatment variables (e.g., Hahn, 1998). Second, we show in the case where
the propensity score is known, the proposed estimator can be interpreted as an empirical
likelihood estimator (e.g., Imbens, Spady and Johnson, 1998) that efficiently incorporates the
information about the propensity score. Finally, we make a connection to results involving
efficient estimation with estimated rather than population weights in the context of stratified

sampling (e.g., Lancaster, 1990; Wooldridge, 1999).

In the next section we lay out the problem and discuss earlier work. In Section 3 we
provide some intuition for our efficiency results by examining a simplified version of the
problem. In Section 4 we give the formal conditions under which weighting by the estimated
propensity score results in an efficient estimator, in four separate cases. The first case is
the missing data case studied by Robins and Rotnitzky (1995) and Rotnitzky and Robins
(1995), with the missing data assumed to be missing at random. In the second case we focus
on efficient estimation of the population average treatment effect, one of the cases studied
by Hahn (1998). In the third case we focus on a weighted average treatment effect with a
known weight function. Finally we look at the case where the weight function is proportional
to the propensity score, and thus the parameter of interest is the average treatment effect
for the treated (Rubin, 1977; Heckman and Robb, 1985). Recent work on estimation of this
parameter includes Heckman, Ichimura and Todd (1997, 1998) and Hahn (1998).



2. THE BAsic SETUP AND PREVIOUS RESULTS
2.1 THE MODEL

We have a random sample of size N from a large population. For each unit ¢ in the
sample, let T; indicate whether the treatment of interest was received, with 7; = 1 if unit ¢
receives the treatment of interest, and T; = 0 if unit ¢ receives the control treatment. Using
the potential outcome notation, let Y;(0) denote the outcome for unit i under control and

Y;(1) the outcome under treatment.! We observe T; and Y;, where
Yi=1-Yi(1) + (1= ) - ;(0)

In addition, we observe a vector of pre-treatment variables, or covariates, denoted by Xj.

We shall focus on the population average treatment effect:
T = FE[Y(1) =Y (0)].

We shall also discuss estimation of weighted average treatment effects

_JEY (@) —Y(0)|X = 2]g(z)dF (z)
Jg(x)dF(x) ’

and the average effect for the treated:

Tg

Ttreated — E[Y(l) - Y(0)|T = ].]

The central problem of evaluation research is that for unit ¢ we observe Y;(0) or Y;(1), but
never both. Without further restrictions, the treatment effects are not consistently estimable.
To solve the identification problem, we maintain throughout the paper the unconfounded-
ness assumption (Rubin, 1978; Rosenbaum and Rubin, 1983), which asserts that conditional
on the pre-treatment variables, the treatment indicator is independent of the potential out-

comes. Formally:

"mplicit in this notation is the stability assumption or SUTVA (Rubin, 1978) that units are not affected
by receipt of treatment by others, and that there is only one version of the treatment.
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Assumption (Unconfoundedness)
T 1L (Y(0),Y(1)) | X. (1)
Define the average effect conditional on pre-treatment variables:
7(x) = E[Y(1) = Y(0)|X = 2]
Note that 7(z) is estimable under the unconfoundedness assumption, because

EY(1) = Y(0)|X = ]

E[Y(D)|T =1,X =a] — E[Y(0)|T =0, X = ]
= EY|T=1,X=2a]-E[Y|T=0X =a].

The population average treatment effect can be obtained by averaging the 7(x) over the

distribution of X:
T = E[7(X)].

In practice, the strategy of forming cells and comparing units with exactly the same value
of X may fail if X takes on too many distinct values. To avoid having to match units by
the values of all pre-treatment variables, Rosenbaum and Rubin (1983, 1984) developed an

approach based on the propensity score, the probability of selection into the treatment group:
e(x) = Pr(T =1|X = x). (2)

We assume that this probability is bounded away from zero and one. Their key insight was
that if treatment and potential outcomes are independent conditional on all pre-treatment
variables, they are also independent conditional on the conditional probability of receiv-
ing treatment given pre-treatment variables, that is, conditional on the propensity score.

Formally, unconfoundedness implies

T L (Y(0),Y(1)) |e(X). (3)



(See Rosenbaum and Rubin (1983) for the proof of this result and further discussion.) Thus,
to obtain unbiased estimates of the average treatment effect, it is only necessary to match
on a scalar variable. An alternative approach, analogous to the Horvitz-Thompson (1952)
estimator, is to reweight the observations by the inverse of their selection probabilities and
take the weighted average as an estimate of the treatment effect. See also Rosenbaum (1987).

This weighting estimator can be written as

. ti yz (L —t)- v
7' —
e Z e(x;) 1 —e(x;)
Although adjusting for differences in the propensity score, either through weighting
or through regression adjustment, removes all bias associated with differences in the pre-

treatment variables, it may do so at a price. Compared to estimators that adjust for differ-

ences in all pre-treatment variables there may be a loss of efficiency, as pointed out by Hahn

(1998) and Heckman, Ichimura and Todd (1998).2
2.2 PREVIOUS RESULTS

The model set out above, and related models, have been examined by many researchers.
Hahn (1998) studies the same model as the current paper, calculates the efficiency bound,
and proposes an efficient estimator. His estimator imputes the missing potential outcomes
given covariates, and requires nonparametric estimation of the two conditional expectations
pi(z) = EY|T = t,X = z| for t = 0,1. Hahn also shows that the estimator for the
population average treatment effect based conditioning on the true propensity score does
not in general reach the efficiency bound, and that in fact knowledge of the propensity score
does not affect the semiparametric efficiency bound. In addition Hahn considers inference for
the average treatment effect on the treated and concludes that for that estimand knowledge

of the propensity score is indeed informative. He also derives efficient estimators for that

2A separate issue is whether standard asymptotic theory provides adequate approximations to the sam-
pling distributions of estimators based on initial nonparametric estimates of conditional means, when the
dimension of the conditioning variable is high. See for example Robins and Ritov (1995) and Angrist and
Hahn (1999). We do not address this issue here.



case.

Heckman, Ichimura and Todd (1998) focus on the average treatment effect for the subpop-
ulation of the treated. They consider estimators based on nonparametric kernel regressions
of the outcome on treatment status and either covariates or the propensity score. They
conclude that in general there is no clear ranking of their estimators; under some conditions
the estimator based on adjustment for all covariates is superior to the estimator based on
adjustment for the propensity score, and under other conditions the second estimator is to

be preferred. Lack of knowledge of the propensity score does not alter this conclusion.

Rosenbaum (1987) and Rubin and Thomas (1997) investigate the differences between
using the estimated and the true propensity score when the propensity score belongs to a
parametric family. They conclude that there can be efficiency gains from using the estimated
propensity score. Rosenbaum (1987) interprets this as a bias conditional on an ancillary
statistic that is removed by using the estimated propensity score. Lancaster (1990) makes a

similar point in the context of choice-based sampling.

Robins and Rotnitzky (1995) and Robins, Rotnitzky and Zhao (1995) and Rotnitzky and
Robins (1995) study inference for parameters in a regression model with missing data, using
essentially the missing at random (MAR, Rubin, 1976; Little and Rubin, 1987) assumption.
They calculate the efficiency bound and note that conditioning on the true selection probabil-
ity, or weighting by its inverse, does not lead to an efficient estimator. Rotnitzky and Robins
(1995) show that when the selection probability model has a parametric form, weighting
by the inverse of the estimated selection probability is more efficient than weighting by the
inverse of the true selection probability, and suggest it may be possible to achieve efficiency
by allowing the dimension of the model for the selection probability to grow with the sample
size. For this case Robins and Rotnitzky (1995) propose an estimator that achieves the
efficiency bound. Their estimator, like Hahn’s estimator in a different context, requires an

initial estimate of the conditional expectation of the outcome given pre-treatment variables,



pi(z) = E[Y|T =1, X = z]. Unlike Hahn, who uses this conditional expectation to impute
the missing outcomes, Robins and Rotnitzky use it to formulate a parametric model for the
selection probabilities and estimate the parameters by a weighted regression with the weights

equal to the inverse of the estimated selection probabilities.

3. A SiMPLE EXAMPLE WITH BINARY COVARIATES

To develop some intuition for the formal results that will be presented in Section 4, we
consider the simpler problem of estimating the population average of a variable Y, 5y = E[Y],
given a random sample of size N of the triple (7}, X;, T; - ;). In other words, T; and X; are
observed for all units in the sample, but Y; is only observed if T; = 1. We provide a heuristic

argument for efficiency of estimated weights, deferring a formal result to Section 4.

The analog to the unconfoundedness assumption here is the assumption that the Y; are

missing at random, or
T, L Y| X
The role of the propensity score is played here by the selection probability:
p(z) = E[T|X = z| = Pr(T = 1|X). (4)

First, we restrict our attention in this section to the case with a single binary covariate. Let
Ny, denote the number of observations with ¢; = ¢ and z; = z, for t,z € {0,1}, and let
N.,, = Ny, + Ny, be the number of observations with z; = . Furthermore, suppose the true
selection probability is constant, equal to po(x) = 1/2 for all x € {0,1}.> The normalized

variance bound for (3; is
Voouna =2+ E[V(Y|X)] + V (E[Y]X]),

which can be calculated from results in Robins and Rotnitzky (1995) or Hahn (1998).

3Thus the missing data are missing completely at random (MCAR, Rubin, 1976; Little and Rubin, 1987).
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We shall consider four estimators. First, consider estimating the population average by

the sample average for complete observations:

N
ﬁcomp Z Yi - /; tj' (5)

Simple calculations show that under the MCAR assumptions, and with 50% of the observa-

tions missing on average, this estimator has normalized variance
Veomp =2 - E[V(Y|X)]+2-V(E[Y|X]) =2V (Y),

strictly larger than the variance bound Vjuuna-

The second, “true weights” estimator weights the observed outcomes by the inverse of

the true selection probability:

. 1 N ; t
ﬁthﬁg = Z 1/2 (6)

Its large sample normalized variance is
Viw = 2- EV(Y|X)] + V(E[Y|X]) + E [E[Y|X]?| = 2V(Y) + E(Y?),

even larger than the variance for Beom,.

The third estimator weights the observed outcomes by the inverse of a nonparametric
estimate of the selection probability. This estimator is the main focus of the paper, and it
will be discussed in Section 4 in more general settings. In the current context, the estimated
selection probability is simply the proportion of observed outcomes for a given value of the
covariate. For units with x; = 0, the proportion of observed outcomes is Nyo/N.y, and for
units with x; = 1, the proportion of observed outcomes is Ny;/N.;. Thus the estimated
selection probability is

~ . NIO/NO leL'ZO,



Then the proposed “estimated weights” estimator is:

3>

5 1 Xyt
ew — X7 . 7
o N; (i) @)

The normalized variance of this estimator is equal to the variance bound:
Vew =2 E[V(Y|X)] + V(E[Y|X]).

So in this simple case, not only does the weighting estimator with nonparametrically esti-
mated weights have a lower variance than the estimator using the “true” weights, but it is
fully efficient in the sense of achieving the variance bound. In the remainder of this section
we shall provide some intuition for this result that suggests why this efficiency property may
carry over to case with the continuous and vector-valued covariates, as well as with general

dependence of the selection probability or propensity score on the covariates.

To help understand why the estimated weights approach is efficient, it is useful to consider

a fourth estimator. Let

i(z) = > yztz/ >t

t|zi=x t|lzi=x

for x € {0, 1} be the non-parametric estimator for the conditional regression function
p(x) =EY|T =1,X =z

Now consider the following, “regression-on-covariates” estimator:
. N
Brc = N Zﬂ(ml)

Substituting for the estimator fi(z;) it can be shown that this estimator is numerically
identical to an estimator based on averaging the observed and imputed outcomes:

1

ﬁrc:N

|M2

ti-yi+ (1 —1;) - ().
i=



This estimator averages over all the observations, using observed values when they are avail-
able, and imputing estimated values when they are not. Hahn (1998) proposed using im-
putation estimators similar to this to estimate treatment effects, and showed that they are

efficient in the cases he studies.*

In the current setting, with a single binary covariate, we can rewrite the regression-on-

covariates estimator as

N 1 . .
Bre = < [(Noo = Nio) - 4(0) + (Noy + N - (1)
1 oty i, =1 LY
= N { (Noo + Nyg) - ZMN:S = 4 (Not + Nip) - ZmNj - }
_ Lyt
N 7w
where

7

. N]o/N.o if xT; = 0
o N]]/N.] if xTr; = 1,

4An alternative to the Hahn estimator and the estimator proposed in the current paper is an estimator
proposed by Robins and Rotnitzky (1995). First one estimates the conditional expectation of the outcome
given pre-treatment variables, fi(x). In the second step a logistic regression model involving a single unknown
parameter 4 is estimated by maximum likelihood:

Pr(T 11X — ) — B0 () = 3)

L+ exp(d - (iz) — B))’

for a preliminary estimate of the parameter of interest [5’ (At & = 0 this model reduces to the true selection
probability, equal to 1/2 in this case.) The inverse of the weight is then constructed as

o (i)~ B)
1+ exp(0 - (ji(x;) — 5))
and finally, the population mean is estimated by

lNyt
5 1 it b
e o

Although numerically different from the estimator with nonparametric weights in this single binary regressor
case, the Robins-Rotnitzky estimator also reaches the variance bound.
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These weights are identical to p(z;), and thus the two estimators BTC and Bew are identical.
This numerical equivalence between the nonparametric regression estimator and the esti-
mator with the nonparametric weights can be shown to hold for any sample with discrete
pre-treatment variables. This implies that the nonparametric weights estimator is fully effi-
cient in the discrete pre-treatment variable case, and since the formulation of the bound does
not rely on discreteness, one might expect using the same reasoning as Chamberlain (1987)
in the context of GMM estimation, that the estimator is also efficient when the pre-treatment

variables are continuous.

A second interpretation of the estimator that is directly suggestive of its efficiency prop-
erties is based on a generalized method of moments (GMM) representation (Hansen, 1982).
Under the assumption that the selection probability is p(xz) = 1/2, we can estimate (3, using

the single moment restriction E[¢(Y, X, T, )] = 0, with

y-t

Uiyt @, B) =y-t/plx) — B = Yol

The GMM estimator based on this single moment restriction, given knowledge of the se-
lection probability, is the “true-weights” estimator Btw. However, thise estimator is not
necessarily efficient, because it ignores the additional information that is available in the

form of knowledge of the selection probability:
ET|X =z] =p(z) =1/2.

We can write this additional information in moment restriction form as
ET—-1/2|X]=0.

With a binary covariate this conditional moment restriction corresponds to two marginal

moment restrictions, E[y(Y, T, X, By)] = 0, with:

B z-(t—1/2)
valy, 1, 0) = ( (1—2)-(t—1/2) >

11



Estimating 3y in a generalized method of moments framework using the moments ¢ (-) and
Uo(+) leads to a fully efficient estimator.> We can implement the GMM estimator in different
ways. The standard GMM approach of Hansen (1982) estimates an optimal weight matrix
and then minimizes a quadratic form involving the average moments. Here it is of particular
interest to consider an alternative, the empirical likelihood estimator (e.g., Qin and Lawless,
1994; Imbens, 1997; Imbens, Spady and Johnson, 1998). The empirical likelihood estimator
is based on maximization, both over a nuisance parameter m = (m,...,7x) and over the

parameter of interest (3, of the logarithm of the empirical likelihood function

L(m) = ;111 i, (8)

subject to three sets of restrictions:
(1), the adding-up restriction SN, m; = 1;
(17), the restriction for the identifying moment v (-),

o (550) o

i=1
and
(#ii), the two restrictions from knowledge of the selection probability, the additional moments
Ua(-):
N
domiem- (i —1/2) =0, (10)
i=1
and
N

i=1

®Although »(-) does not depend on the parameter of interest, 1,(-) is generally correlated with v (-).
Thus there can be efficiency gains from using both sets of moment conditions. See, e.g., Hellerstein and
Tmbens (1999), and Qian and Schmidt (1999).
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;From the restriction (11), we can concentrate out . by noting that a solution (7, fy) will

satisfy

N N

N
5elzzﬁi'yi'(2ti)/zﬁi= 27 yi - .
= 1

i=1 i=

Solving for 7; by maximizing (8) subject to the adding-up restriction and (12), we find

o Ny /Ny —1/2 Nio/Ng—1/2 -

Substituting this into the solution for 3 gives

N
ﬁel - ZQﬁz Yl = ﬁew'
i=1

This interpretation suggests moving from the “true-weights” estimator to the “estimated-
weights” estimator increases efficiency in the same way that adding moment restrictions in
a generalized method of moments framework improves efficiency. A similar finding appears
in Crepon, Kramarz, and Trognon (1998). They consider GMM estimation where some of
the parameters can be designated as nuisance parameters. They show that GMM estima-
tion using a reduced set of moment conditions, in which nuisance parameters are replaced
by solutions to the sample analogs of the remaining moment conditions, is asymptotically
equivalent to using the full set of moment conditions. Their results also imply that using

the true values of the nuisance parameters may lead to efficiency losses in some contexts.

A third interpretation of the efficiency gain from weighting by the inverse of the estimated
rather than the true propensity score builds on connections to the literature on weighting
in stratified sampling. Translated to our setting, the results by Lancaster (1990) suggest
studying the distribution of the various estimators conditional on the ancillary statistics 3 ¢;,
> x; and Y t; - x;. Conditional on those three statistics the true-weights estimator is biased,
while the estimated-weights estimator remains unbiased. Rosenbaum (1987) discusses this

issue specifically in the context of estimated versus true propensity scores. Wooldridge (1999)

13



finds similar results in general variable probability and stratified sampling settings, in which
observations are first drawn randomly from the population, and then retained or discarded
with some probability that depends on its stratum. Wooldridge shows that weighted versions
of standard M-estimators, where the weighting is by the inverse of the sampling probabilities,
will lead to appropriate estimators. In addition, he shows that efficiency gains are possible
by using estimated rather than population versions of the weights.

4. EFFICIENT ESTIMATION USING ESTIMATED WEIGHTS

In this section we present the main results of the paper. We discuss four separate cases.
First, we extend the example of the previous section to allow for continuous covariates and a
missing data mechanism that depends on the covariates. Second, we consider the problem of
estimating the population average treatment effect under the unconfoundedness assumption.
Third, we consider estimation of weighted average treatment effects, a generalization of the
population average treatment effect case. Finally, we consider estimation of the effect of the
treatment on the treated, which in our setup will follow directly from the general weighted
average treatment effect problem. This will shed additional light on Hahn’s (1998) result

that for this parameter knowledge of the propensity score affects the efficiency bound.
4.1 ESTIMATING POPULATION AVERAGES WITH OUTCOMES MISSING AT RANDOM

The first case we consider is a general version of the example in Section 3. We are in-
terested in estimating a population mean, when the variable of interest is missing for some
units and the missing data mechanism satisfies the MAR assumption. For each unit, in a
random sample of size N from the population of interest, there is a triple (Y, T, X), with T
binary. We observe (T, X, T -Y). The first assumption is

Assumption 1 (Missing At Random)

T 1LY |X

14



Let po(x) be the selection probability, that is, the probability of observing Y given X = z:
po(z) = E[T|X =z] = Pr(T =1|X = x).

We use the framework of Newey (1994) for deriving the variance of the semiparametric
estimator for ) based on an initial nonparametric estimator for po(x). We can characterize

Bp through the moment equation:

Ep(Y,T, X, Bo,po(X))] =0,

where

Oy, t,x, B,p(x) = L= — 3.

We are interested in estimators for 3y based on nonparametric estimators for the selection

probability po(-). We estimate po(-) with a series estimator. For K =1,2,..., let

rK(x) = (rg(@),rox(x) ..., rrx(z))

be a K—vector of functions. Let

K — ((TK(ml), cee TK(ﬁND, ;

denote the matrix obtained by evaluating ¥ (-) at the observed values of X, and let

be the vector of observed values of T. Then

i = (rK/rK)f K’t

=)

r

15



where A~ is a generalized inverse of A, is the vector of least squares estimates in a regression

of t on ¥, and

p(z) =r"(z)7
More specifically we consider power series. Let A = (A,...,\;)’ be an r-dimensional vector
of nonnegative integers (multi-indices), with norm |A| = ¥7_; A;. Let 2* = [T}, a:;\” Let

(A(k))r—, be asequence that includes all distinct multi-indices and satisfies |A(k)| < [A(k+1)].

For such a sequence A(k) we consider the series

rrrc(z) = 2,
Given the estimate p(x) for the selection probability po(z), we estimate the population
mean [y = E(Y) by setting the average moment evaluated at the estimated selection prob-

ability equal to zero as a function of (:
N

i=1

Given the form of the moment condition, this leads to the estimator

s 1 &yt
b= .

3>

In addition to the missing at random assumption, Assumption 1, the following assump-

tions are used to derive the properties of the estimator. First, we restrict the distribution of

X and Y:

Assumption 2 (Distribution of X)
(i) the support X of the r-dimensional covariate X is a Cartesian product of compact inter-

vals, X =TT} [, Tu;],

16



(1), the density of X is bounded from 0 on X.

Assumption 3 (Distribution of Y)
(i) B(Y?) < o0,
(i1), p(x) = E(Y|X = z) is continuously differentiable for all z € X.

The next assumption requires sufficient smoothness of the selection probability.

Assumption 4 (Selection Probability)
The true selection probability po(x) satisfies the following conditions: For all x € X

(1) po(x) is continuously differentiable of order s > 3 -r with r the dimension of X ,

(i), po(x) > p > 0.

Finally, we restrict the rate at which additional terms are added to the series approxi-

mation to po(z), depending on the dimension of X and the number of derivatives of py(x).

Assumption 5 (Series Estimator)
The series estimator of po(x) is a power series estimator with K = NV for some 1/(2- «) <
v <1/6 with a = s/r.

Under these conditions we can state the first result.

Theorem 1 Suppose Assumptions 1-5 hold. Then:

(i)

BL)Bm

17



(1),
VN(B — fio) == N0, V(E[Y X)) + E[V(Y|X) /po(X)]),
and (iii), B reaches the semiparametric efficiency bound.

Proof: see Appendix.
Remark: In Section 3, this result was shown for binary X. Theorem 1 establishes the result

for continuous X. If X has both continuous and discrete components, this can be easily dealt

with, at additional notational expense.

18



4.2 ESTIMATING AVERAGE TREATMENT EFFECTS

In this section we focus on efficient estimation of the average treatment effect. We
postulate for each unit the existence of a pair of potential outcomes (Y (0),Y (1)) and are

interested in the average treatment effect, 7o = E[Y (1) — Y (0)].

We modify Assumption 1 to require conditional independence of the pair of potential

outcomes and treatment assignment:

Assumption 1’ (Unconfounded Treatment Assignment)
T 1 (Y(0),Y(1) | X.

Assumption 3 is modified to reflect the presence of two potential outcomes:

Assumption 3’ (Distribution of Y(0),Y (1))
(i) E(Y(0)?) < oo and E(Y (1)?) < oo,
(i1), E(Y(0)|X =x) and E(Y(1)|X = ) are continuously differentiable for all x € X.

Finally, Assumption 4 is modified to require the propensity score to be bounded away
from both zero and one:
Assumption 4’ (Propensity Score)
The true propensity score eg(x) = Pr(T = 1|X = x) satisfies the following conditions: For
allz e X

(1) eo(x) is continuously differentiable of order s > 3 -1 with r the dimension of X,

(17), 0 <e<ey(r)<e<l.

We estimate 7y by first estimating the propensity score the same way the selection prob-
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ability was estimated before through series estimation. Then 7 is the solution to

N

S (i, ti, i, 7, é(2)) = 0,

~ 1 N Yi z Yi (1 - tz)
T=— — .
N ewm) 1 em
The formal result is:

Theorem 2 Suppose Assumptions 1°, 2, 8°, 4, and 5 hold. Then:

(i)
(i),
VN(# = 79) =5 N(0,V),
with
V =V(EY (1) = Y(0)|X]) + E[V(Y(1)|X)/ea(X)] + E[V(Y(0)|X)/(1 - eo(X))]),
and (iii), # reaches the semiparametric efficiency bound.

Proof: see Appendix.
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4.3 ESTIMATING THE AVERAGE TREATMENT EFFECT FOR SUBPOPULATIONS

We generalize the previous result to 7,, the weighted average treatment effect for a known
weighting function g(x). One motivation for considering this estimand is that by choosing
g(x) appropriately, one can define treatment effects for subpopulations defined by X. In
addition, by choosing g(z) appropriately, one can recover the average effect of the treatment

on the treated, as will be discussed below.

A semiparametric efficiency bound for 7, has not been previously calculated in the liter-

ature. The next result shows that our estimator is efficient.

Theorem 3 The semiparametric efficiency bound for estimation of 7, is

5 l 9(X)? 9(X)?
(11g)2e0(X) (11g)*(1 — eo(X))

+EFQmeymu3—MY@uv—uﬂ,

Vi) | Vo))

(119)?

where

pg = E(g(X)).

Proof: See Appendix.

To estimate 7,, we use the following moment function:

ot el = gto) - (25 - 20 ) (12)

This leads to the estimator

o

é

Similar reasoning to the previous results gives the following results, which establishes that

this estimator is efficient:
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Theorem 4 Suppose Assumptions 1°, 2, 8°, 4°, and 5 hold, that g(z) is bounded from above
and that p, = E(g(X)) > 0. Then

(1),

(ii),

VN(7, = 1,) =5 N(0,V),

with
_ ple g
+E lg%) (E(Y(1)]X) - B(Y(0)|X) - Tg)ﬂ _

Proof: See Appendix.

Remark: We could weaken Assumption 4’(ii), the assumption that the propensity score is
bounded away from 0 and 1, by the assumption that g(z)/ep(x) and g(x)/(1 — eg(x)) are
bounded from above. Thus, if there is insufficient overlap in the distributions of the treated
and untreated units, one may wish to choose g(+) to restrict attention to a subpopulation for

which there is sufficiently large probability of observing both treated and untreated units.

4.4 ESTIMATING THE AVERAGE TREATMENT EFFECT FOR THE TREATED

The average treatment effect for the treated (Rubin, 1977; Heckman and Robb, 1985)
is a special case of the weighted average treatment effect, corresponding to the weighting

function g(z) = eg(x) = Pr(T = 1|X = x). Thus we can use the moment equation:

00,2 T () = olo) - (25 = T = ). (13
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Notice that we assume that eg(x) is a known function. However, the inverse weights
will still be estimated nonparametrically in our aproach. The next result, which follows
from Theorem 4, shows that this estimator achieves the efficiency bound calculated by Hahn
(1998) for estimation of the effect of treatment on the treated, assuming that the propensity

score is known.

Corollary 5 Suppose that Assumptions 1°, 2, 3°, 4°, and 5 hold. Then

(1),

A p

Tereated — Ttreated,
(i),

\/N(%treated - Ttreated) $ N<Oa V)a

with
B eo(X) eo(X)?
v = B[ SRvow) g o)
B H)Q (B(Y(1)X) - E(Y(0)X) — >]
where

pe = E(eo(X)).
and (i), Tyreated achicves the semiparametric efficiency bound.
Proof: See Appendix.
Thus, using the estimated propensity score again leads to a fully efficient estimator.

If the propensity score is not known, then Hahn (1998) shows that this affects the effi-
ciency bound for the effect of treatment on the treated. Our previous estimator cannot be

used since it makes use of eg(z). However, we can modify the moment function to be

w(y7 ta T, Ttreated, 6(33)) = 6(13) ’ <g(1:; - ylfleza:;) - Ttreated) .
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Thus our modifed estimator will use the estimated propensity score in place of eg(z) in
the weighting of observations. Call this estimator 7. The next theorem shows that this

estimator is efficient if the propensity is not known.

Theorem 6 Suppose that Assumptions 1°, 2, 3’, 4’, and 5 hold. Then

(1),

~ p

Tte — Ttreated,
(i),

\/N(%te - Ttreated) $ N(Oa V)7

with
V = F le(’g)wyunxﬂ +E L@(fo_(—%WY(O)!X)]
B [eolg ) (BY (1)]x) = BV (0)|X) - memdﬂ
where

pe = Eleo(X)).

and (iii), Ti. achieves the semiparametric efficiency bound for estimation of Tireateq when the

propensity score is not known.

Proof: See Appendix.

5. CONCLUSION

In this paper we have studied efficient estimation of various average treatment effects
under an unconfounded treatment assignment assumption. Although weighting observations
by the inverse of the true propensity score does not lead to efficient estimators, weighting

each observation by the inverse of a nonparametric estimate of the propensity score does lead
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to efficient estimators. We provide intuition for this result through connections to estimators
based on adjustment for covariates, empirical likelihood estimators, and estimators from the

literature on variable probability sampling.

Unlike previously proposed estimators the estimators proposed in this paper do not re-
quire nonparametric estimation of the regression function of the outcome on the covariates.
They do, however, require nonparametric estimation of the propensity probability. The re-
sults underline the important role played by the propensity score in estimation of average

causal effects.
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APPENDIX

Proof of Theorem 1:

Throughout we use the sup norm for functions ||g(-)|| = sup,cr |g(x)| with |.| the usual
Euclidean norm. We indicate that ¥ (y, t,z, 3,p(+)) is a functional, i.e. a real valued function
of the function p, by denoting the argument as p(-) instead of p(z). The sup norm of
is ||Y(y, t,z, B, p(-))|| = supsex [¥(y,t,x,5,p(Z))|. To simplify the notation, we use C' to

denote a generic constant in a bound.

The result follows from Theorem 6.1 in Newey (1994). We first check the following
conditions, corresponding to Assumptions 5.4-5.6 and 6.1-6.6 in Newey (1994).

Condition 1 There aree > 0, and b(y, t,z),b(y,t,x) > 0, with E(b(Y, T, X)), E(b(Y,T,X)) <
00, and a compact subset B of | with By € B such that for all 5 € B

(1) Y(y,t,z, B,po(-)) is continuous in [ with probability one,

(ii), [y, t, 2, B,po ()| < b(y.t,2),

(i), [y, t, 2, 8,p(-) = (y, t, 2, 5,po(-))]| < bly,t,2) - ||p(-) = po(-)]I*.

Because fJy is finite by Assumption 3(i), we can choose for B any bounded and closed
set that contains y. The first part of Condition 1 is trivially satisfied, because the moment

function is linear in (. For the second part, note that

y-t
o, £, B, pol-) | < ||—H 15
po(*)
<|yl/p+sup |3,
BEB
where p = inf,cx p(z) > 0 by Assumption 4(ii). Take b(y,t,z) = |y|/p + SUDgep |3 which

has finite expectation by Assumption 3(i) and the fact that B is bounded. For the third
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part, note that

160, 5:009) = 60 = [ (ot = 501) |

=

<

“lpo(-) = pO)II-

I’Bw|

Take l;(y, t,x) = |y|/p*, which is positive and has a finite expectation by Assumptions 3(i)
and 4(ii), and take ¢ = 1.

Condition 2 E[Y(Y,T, X, 3,po(-))] = 0 has a unique solution in B.

We have E(YT|X) = E(Y|T = 1,X)Pr(T = 1|1X) = E(Y|X) Pr(T = 1|X) where the
last equality follows from Assumption 1. Because py(z) = Pr(T = 1|X = z) is bounded
away from zero on X by Assumption 4(ii),

. (pZE)Tf)> e l%]

= E(Y) = fo.

Comment: Conditions 1 and 2 imply that B is weakly consistent if the nonparametric

estimator p converges in probability to py in the sup norm.

Condition 3 (i) 5y is an interior point of the compact set B,
(ii), There is a neighborhood N of By and e > 0 such that for all € N and ||p(-)—po(+)|| < &,
U(y,t,x, B,p(+)) is differentiable with respect to 3 and the expected value of this derivative is

nonzero at 3 = Lo, p(-) = po(+),

(111), Condition 1 is satisfied for the derivative of the moment function with respect to 3,

(w), E(|Y(y,t, 2, Bo, po(+))|]?) < .
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Part (i) is satisfied by an appropriate choice of 5. Because the derivative is equal to —1,
part (ii) is trivially satisfied for all 8 € B and ¢ > 0. Part (iii) is trivially satisfied for the
same reason. For part (iv) note that

SEO) S EOY DI
p

Bl X)) < 2 | (4 )

and this is finite by assumption 3.
Condition 4 E((T — po(X))?| X = x) is bounded.

Since T is binary and po(z) is the conditional expectation of T" given X = z, E((T —
po(X))?|X = ) is the conditional variance of T', which equals po(x)(1 — po(z)) < 1 for all z.

Condition 5 For each K there is a nonsingular K x K matriz Ax such that for R¥(z) =
Apr®(x):

(i) the smallest eigenvalue of E[R¥ (X)RX(X)'] is bounded away from zero uniformly in K,
(ii), R¥(x) is a subvector of R (x) for all K,

(iii), for each K there is a nonzero K vector v such that v/ R¥ () is a nonzero constant for

r e X.

We use the fact that the series is a power series. Together with the Assumption 2 this
implies the conditions for Lemma A.15 in Newey (1995) are satisfied. This lemma implies for
each K there is a nonsingular matrix Ax such that (i), for R¥(z) = Agr®(x), the smallest
eigenvalue of E[R¥(X)RX(X)'] bounded away from zero uniformly in K, and (ii) R¥(z) is
a subvector of RE*!(x) for all K. Hence for this modified series Conditions 5() and (1)
are satisfied. Condition 5(7ii) is also satisfied since rix(z) = 1 for all K, and thus for any
K vector 4 with a first component that is not equal to 0, ¥r¥(x) = 5, # 0 for all x € X.

Because Ag is nonsingular (iii) holds if we set v = (Ag')'7.
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Comment: Note that the linear transformation from the series r%(z) to R¥(z) = Agr¥(x)
does not affect the estimate for 3, so we can consider estimation based on the transformed

series R™(+), as we shall do in the sequel.

Comment: We do not consider the case where K is estimated (but K does depend on the
number of observations N). This simplifies the rate conditions (K = K in Condition 6.2 of

Newey (1994)).

Condition 6 There are constants C' and o« = s/r with s as in Assumption 4 and r the

dimension of x such that for all K there is a K vector mx such that

llpo(-) = R*(-)'mre|| < CK .

Condition 6 implies that Assumption 6.3 of Newey (1994) holds with d = 0. This
condition holds by Lemma A.12 of Newey (1995) (again set d = 0).

Condition 7 There is a function D(y,t,z,p(-); 3,D(+)), linear in p(-), and b(y,t,z) such
that, if ||p(-) — po(+)|| and |5 — Bo| are sufficiently small, then

< by, t,2) - ||p(-) = pO)II%,
with Eb(Y, T, X)) finite.

For Condition 7 choose

D((y,t.,p(): B,5()) = — o - pl(a).

pla)?
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Note that D (y,t,x,p(-) — p(-); B,p(+)) is the linear term in the Taylor series expansion of
¥ (y,t,2,0,p(-)) around p. Then

6 t2,5,00)) = (01,25, 5)) = D ,p0) = 50); 8,50)|

- | -5+ 500 -0
=1l |z 00— )
< B Jper-s0]

because ||g(.)?]| < [|g(.)]|*>. By Assumption 3 b(Y, T, X) = |Y|/p® has a finite expected value,
and thus Condition 7 is satisfied. This is part (i) of Assumption 6.4 of Newey (1994).

Condition 8 For the a = s/r as in Condition 6,
G(K) - ((K/N)'2 4+ K=*) — 0,

and
VN - Go(K)? - (K/N + K~*) — 0,

where (o(K) = ||[RE()]].

This is the second part of Newey’s Assumption 6.4. By Lemma A.15 in Newey (1995)
(o(K) < CK. Hence, to satisfy Condition 8, we first show that

(KB/N>1/2 —0
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and
(KG/N)1/2 —50

The second limit implies the first, and the second limit holds if K increases at a rate less

than 1/6 as in Assumption 5. In addition,
K'™—0

and
NV2F2=22 __

The first limit holds because Assumption 4 implies o > 3. The second holds if K increases
at a rate greater than 1/(4a —4). Assumption 5 implies that the rate exceeds 1/2a, which,
as long as a > 2 (which holds by Assumption 4), implies that the rate exceeds 1/(4a — 4).

Condition 9 There is a b(y,t,x), with E[b(Y,T,X)? finite, such that for the function
D(y,t,x,p(-); B,p(+)) in Condition 7,

1D (y, £, 2, p(); Bo, ()| < 0(y, £, ) - [[p()]]-
Although this is a stronger statement than Assumption 6.5 in Newey (1994) where d > 0,

it follows from our assumptions. Set b(y,t,z) = |y|/(2p)?| so that E[b(Y,T,X)?] < oo by
Assumption 3. Then

ool

HD y,t,2,p(-); Bo, po(-) H—H
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Condition 10 For the o = s/r as in Condition 6

K 1/2
(S IRrIF) - (/w7 57) — 0

This is a weaker statement than the second part of Assumption 6.5 in Newey (1994) where
d > 0. However, Conditions 9 and 10 are sufficient for (A.4) on p. 1376 of Newey (1994).
Using Lemma A.15 in Newey (1995) we have for k =1,..., K

[ R ()] = Co(K) < CK.

Hence,

1/2

and thus
1/2 A\ 1/2
(K/N)'?<C <W> —0,

u 2
(St
k=1
because K increases at a rate slower than 1/4, by Assumption 5. Also,
K 1/2
<Z ||RkK(')||2> K" <CK* ™ —0,
k=1

for a > 3/2, which holds by Assumption 4. Conditions 9 and 10 imply Assumption 6.5 of
Newey (1994).

Condition 11 There is a function §(x) with E(6(X)?) < oo such that for the function
D(y,t,x,p(-); B,p(+)) in Condition 7,

E[D(Y,T, X, p(X); Bo,po(X))] = E[6(X) - p(X)],

for all p(-).

32



Let 6(X) be the conditional expectation of D(-) given X:

30 = E[D OV X.p(0). b (X)) [X] = £ |2 p(0)]
=

Then by the law of iterated expectations
E[D (Y, T, X, p(X); 60, po(X))] = E[E [D (Y, T, X, p(X); Bo, po(X)) | X]]
= E[5(X) - p(X)].

Moreover

B(E(Y|X)") _ E(Y?)
p? = ]_32

E(6(X)") <

which is bounded by Assumption 3(i).

Condition 12 For K =1,2,..., there are K—wvectors mx and {x such that:
(i), N - E[[3(X) = &RE(X)]?] - E [[po(X) — 7 RF (X)[?] — 0,

(ii), KGo(K)' /N — 0,

(i), Go(K)? - E ||po(X) — mic R (X)?]| — 0,

(iv) E [|6(X) = &RE(X)[?] — 0.

By Lemma A.12 in Newey (1995) (see also Lorentz (1986), chapter 8, Theorem 8) there

is a K —vector mg such that for « = s/r as in Condition 6
Ipo() = T RE()]| < CK™2,
Because the norm is the supremum over the support of X
E [|lpo(X) = 7 R¥(X)[1P] < [lpo(-) — mi RE (][> < CK ™.
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Another application of Lemma A.12 gives that there is a K —vector £x such that
E[[16(X) ~ &eRM(X)|] < OK*

with @ > 0 because J(-) is continuously differentiable by Assumption 3 (E(Y|X = z) is

continuously differentiable by this assumption) and hence & > 1/r > 0. Thus,
N-E [||5<X) - flf(RK(X)HQ] - K [Hp(X) — W’;(RK(X)HQ} < ONK 202
< CONK™ — 0.

This holds if K increases at a rate greater than 1/(2«) and this is guaranteed by Assumption
5. This establishes (i). For part (ii) we invoke Lemma A.15 of Newey (1995). If K increases
at a rate less than 1/5 the limit holds and this is true by Assumption 5. For part (iii), we
combine the bound used in the verification of part (i), and the bound on (4(K), to show
that the limit is 0 if @ > 1 which holds by Assumption 4. The limit in part (iv) is 0 if & > 0

and this already has been established.

Given that Conditions 1-12 are satisfied, it follows that Theorem 6.1 in Newey (1994)

applies. Hence 3 is consistent for fy, and
VN(B — o) == N0, V),
for

V = Var(v(Y, T, X, By, po(X)) + 8(X) - (T = po(X))

— Var (1% = 5o> + Var (‘;(())?) (T - po(X>>
v2-Cov (Ll 20 (1)),
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Define 0%(X) = V(Y| X). Let

(L]
- (1% - ﬁ()) 'po(.X)]

:E:E :<£—B0> : Y'T’T:LX] -Pr(T:1|X)]

Vi=Fk

po(X) po(X)
TyR.T Y.T
=B B | o M‘T: 1,X] Pr(T = 1|X)]

. :(MX)Q HoHX) o p(X) ) .pO(X)]

XP o(X)
B R
o)
Also let
= 5| (g - w0025 1]
_F E l ;)(é)) (T po(X))> . ;)(g()) - T‘T .Y X] Pr(T = 1|X)]
_ N es) -m(X)]
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po(X>'
| YT (X))
T

Then

V=Vi+V+2 Vi

S I L Y N 11 S B
‘E[po<x>_+E[po<X>] ﬁ“E[po(X)] Blu(X)’
_M(X>2 2
—2-E_p0(X)1+2-E[M(X)]
- Bl - 55+ 5| 28]

= V(E[Y|X]) + E[V(Y|X)/po(X)].

Since this variance is also the semiparametric efficiency bound (see Robins and Rotnitzky
(1995) and Hahn (1998)), the estimator is efficient.
O
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Proof of Theorem 2:

The proof follows the same argument as the previous proof, so we sketch the modifications

required. The key step involves choosing

z,e(-),7,e(+)) = — y-t y'<1_t)>-ex
Dlytethmil) = - (2 + i) et
and
p () fio()
o) = eo(z) 1 —ep(x)

The normalized variance of the estimator is then:
V=Vi+Vy+2 Vpy,

where

YT Y (1-T)

Vi = E[p(Y.T, X, 70, e0(-)?] = E

[

80(X> 80(X>
VOO VO], [EYOIXE
‘E[ o0(X) ]*E_l—eom] °+E[ 20X
Vo= E[(0(X) - (T - a(X))"] = E (( ) )

and

Vig = E[p(Y, T, X, 70, €0(-)) - (0(X) - (T — €o(X))]

-2
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Y-T Y- (1-17)
60(X) 60(X)

Ho ()
1 — ep(z)

()
eo(z)

M

EY(0)|X]?
1— 60<X)

)]

|

Y (WIX]],

) (r=ax))]



——EF

E[Y(WIX]?- (1 —eo(X))] g [E[Y(OHX]Q -eo(X)
60<X) 1— 60<X)

—2- E[E[Y(1)|X] - E[Y(0)[X]].
This adds up to
V=V(E[Y(1) - Y(0)|X]) + E[V(Y(1)[X)/eo(X)] + E[V(Y(0)|X)/(1 — eo(X))]),

which is equal to the semiparametric efficiency bound for estimation of 7.

O

Proof of Theorem 3: The derivation of the efficiency bound follows the proof in Hahn
(1998). The density of (Y (0),Y (1),7, X) with respect to some o—finite measure is

q9(y(0),y(1),t,2) = f(y(0),y(D|z)e(2)" (1 — e(x))' " f(2).
The density of the observed data (y, t,x), using the unconfoundedness assumption, is
a(y.t, ) = [filylr)e(@)] [folyle) (1 - e(@)] " f (=),

where fi(-[z) = [ f(y(0),[2)dy(0), and fo(-|z) = [ f(-,y(1)|z)dy(1). Consider a regular

parametric submodel indexed by 6, with density

a(y, t.210) = [fi(yle, O)e()]' [folylz, 0)(1 — e(2))]' " f(x,6),

which equals ¢(y, t, z) for = 6. Note that 6 does not enter into the term e(x), because we

are assuming that the propensity score is known. The score is given by

d
@logq(y,t,:ﬂ@) = S(y,t,$|9) =t 31(y|x,9) + (1 - t) ' SO(y|$a0> + Sx(xvg)v
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where

d

si(ylz,0) = @logfl(ylx,f)),
d

so(ylz,0) = @logfo(ylx,f)),
d

Sw(xa9> = @logf(:zr,ﬁ)

The tangent space of the model is the set of functions
S={t-si(y,x) + (1 —=1) - s0(y,x) + s2(2)}

for sy, s, and s, satisfying

[ sit.2) 11 wle)dy = 0,va
[ so(, @) folyle)dy = 0, ¥
/sz(a:)f(a:)da: = 0.

We are interested in estimating

_ = LS 9@yh(yl2) f(z)dydz — | [ 9(2)yfolyle) f(2)dyde
o [ 9(x)f(z)dz

So for the parametric submodel indexed by @,

_ [T 9@y fi(ylz, 0)f (@, 0)dydx — [ | g(x)yfolylz, ) f (x, O)dydx

7 (0) [ 9(0)] (@, 0)da

We need to find a function F,(y,t,x) such that for all regular parametric submodels,

aTg(QQO) =E [FT(}/J T7 X)S(Y7 T7 X|€0)]
First we calculate 075_50)_ Let py = [ g(z) f(x)dz. Then
aTg(eo) _
a0
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Mig[/ [ 9@yysi(lz.00) i ke, 00) (2, 0)dydz — [ [ glahysolylz, o) oyl 00) (. 00)dyda

1
o [ 9@ BN (1) = YO)X = a] = 1} sul, 00) (2, 60) ).

The following choice for F satisfies the condition:

(1-7)-9(X)
pg - (1= e(X))

=92 vy _E[Y(1)|X]) - (Y = E[Y(0)|X])

Y By () - v ©)x] - 7).

Hence 7, is pathwise differentiable. By Theorem 2, in section 3.3 of Bickel, Klaassen, Ritov,
and Wellner (1993), the variance bound is the expected square of the projection of (Y, T, X)

on §. Since F; € §, the variance bound is

E[F,(Y,T,X)] = E 9<X) ] [ T _)GO(X))V(Y(ONX)]
g(X)?

h s >|X>—E<Y<0>|X>—rg>2]

O
Proof of Theorem 4:

We choose

D(yat7$ae('>’7g’é(')) = _g(:l:) lg(x)g + (1 — é(a:))Q . 6($)7

and

5(z) = —g(x) [Wu po () ]

eo(z) 1 —ep(x)
The normalized variance of the estimator is
V=M'QM"
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where

EM(Y, T, X, Tg, 60)
0T,

M=E = —E(9(X)) = —py,

Q= Var (Y, T, X, 7y, e0) + 5(X)(T — eo(X))] .
We can write

Q=+ Qy + 200,
where

Q= E [Y(Y, T, X,75,¢e0)]

Q = B [(6(X)(T — eo(X)))?] .
and

Qg = E (Y, T, X, 7, €0)8(X)(T — eg(X))].

Straightforward calculations show that

9(X)? 9(X)?
eo(X) 1— eo(X)

+72E [9(X)?] = 2+ 7, B [g(X)? (. (X) = pio

9(X)? ) 9(X)?
()" ] o [1 e X)

0 = E[ V[Y(1)|X]]+E[ V[Y(O)]X]]

v

X = e (X)) [g(X)eaX ol X)?
QQ‘E[ o) ]*E[

a0 X )m0?] a0 l(X)?
iz = E[ o (X) ] E[



Combining these results gives

B 9(X)? 9(X)?
v = B v+ [ oo
v | R (B 1) - B O1X) -]

O

Proof of Corollary 5: Apply Theorem 4 with g(z) = eo(z), and compare to the variance
bound calculated in Hahn (1998).
O

Proof of Theorem 6:

We choose

y-(1-1)

W—Tl ~e(x),

D(y.t,z,e(),7,é(-) = l_

and

5(:@:{ M—T]

1 —eo()

The normalized variance of the estimator is
V=M"'QM"

where

aw (Y7 T7 X7 T, 60)
or

M=E[ ]Z—EMXD:ﬂ%
Q=Var[p(Y,T,X,1,e0) + 0(X)(T — eo(X))] -

We can write

Q=0 +Q + 2000,
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where

O =B [Y(Y, T, X,7 ),

Q = E [(5(X)(T — eo(X)))?] .
and

Qo = E[p(Y, T, X, 7,e0)0(X)(T — eo(X))] -
Straightforward calculations show that

0 - E[eo<x>V[Y<1>rxn+E[ﬂvmonxﬂ

1-— €0<X)
7B [e0(X)7] = 2-7E [e0(X)° (1 (X) = po(X))]
+FE {eo(X>2M1(X>2} +E L 6_0(8)0(())(>“0(X>2] '

eo(X)
1— eo(X)

QQ =F [ ,uo(X>2‘| +2- TE [Go(X),uo(X)] + 7'2E [(1 - 80(X>)60(X)] .

iy = —Efeo(X)po(X)p (X)] = 7E [eo(X) (1 — eo(X)) 1 (X)]

. [ 60(X>2

1_ GO(X)MO(X>2] —7E [eo(X)QpJo(X)} .

Combining these results gives the variance, which we compare to the efficiency bound in
Hahn (1994).
O
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