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ABSTRACT

Data on health care expenditures, length of stay, utilization of health services, consumption
of unhealthy commodities, etc. aretypically characterized by: (a) nonnegative outcomes; (b) nontrivial
fractions of zero outcomes in the population (and sample); and (c) positively-skewed distributions
of the nonzero realizations. Similar data structures are encountered in labor economicsaswell. This
paper provides simulation-based evidence on the finite-sample behavior of two sets of estimators
designed to look at the effect of a set of covariates x on the expected outcome, E(y|x), under arange
of data problems encountered in every day practice: generalized linear models (GLM), a subset of
which can simply be viewed as differentially weighted nonlinear |east-squares estimators, and those
derived from |east-squares estimatorsfor theIn(y). We consider thefirst- and second-order behavior
of these candidate estimators under alternative assumptions on the data generating processes. Our
resultsindicate that the choice of estimator for models of In(E(x|y)) can have major implications for
empirical resultsif the estimator is not designed to deal with the specific data generating mechanism.
Garden-variety statistical problems - skewness, kurtosis, and heteroscedasticity - can lead to an
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I. Introduction

Health economists need little convincing that many of the outcomes with which they are
concerned are awkward to analyze empirically; see Jones (1999} for an excellent overview. The
circumstances that concemn us in this analysis are those involving data like those typically
encountered on health care expenditures, length of stay, utilization of health care services,
consumption of unhealthy commodities, and others. Such data are typically characterized by: (a)
nonnegative measurements of the outcomes; (b) a nontrivial fraction of zero outcomes in the
population (and sample); and (c) a positively-skewed empirical distribution of the nonzero
realizations. Econometric strategies for the analysis of such data have been discussed
extensively (Duan, Manning, et al, 1983; Jones, 1999; Manning, 1998; Mullahy, 1998).

This paper provides some simulation-based evidence on the finite-sample behavior of
two sets of estimators designed to look at the effect of a set of covariates x on the expected
outcome, E(y), under a range of data problems encountered in every day practice. We work
largely within the two classes of estimators: generalized linear models (GLM), and those derived
from least-squares estimators for the In(y), a subset of which can simply be viewed as
differentially weighted nonlinear least-squares estimators. We consider the first- and second-
order behavior of these candidate estimators under alternative assumptions on the data generating
processes.

We are also investigating the performance of two variants of the traditional OLS model
for the In(y). Although technically, models for In(y) get at the expectation of the log, rather than
at the log of the expectation, they are interesting for two reasons. First, OLS for In(y) is by far
the most prevalently used (and most prevalently mis-used) model for looking at such data.
Second, it is possible to go from the E(In(y)) to the In(E(y)) by retransformation (Duan, 1983;
Manning, 1998). While these two classes of models — the GLLM and OLS-based — overlap for
some data structures, neither is a proper subset of the other.

The results indicate that there are important tradeoffs in terms of precision and bias. The
OLS based methods can be biased in the face of heteroscedasticity if not appropriately
retransformed. The GLM models can yield very imprecise estimates if the error term 1s heavy
tailed on the log scale. Even if the estimators considered are consistent, there can be major gains

in precision from selecting a more appropriate estimator. We develop a method for determining



which estimation method to choose for any application, using tests that are relatively easy to
tmplement. We illustrate the approach with data on doctor visits from the National Health
Interview Survey.

The plan for the paper is as follows. Section II describes the general modeling
approaches that we consider. Section III presents our simulation framework. Section IV
summarizes the results of the simulations as well as of an empirical example that focuses on the

outcome of annual physician visits. Section V concludes.

II. Modeling Framework

In what follows, we adopt the perspective that the purpose of the analysis is to say
something about how the expected outcome, E(y), responds to shifts in a set of covariates x.'*
Whether E(y) will always be the most interesting feature of the joint distribution ¢(y,x) to
analyze 1s, of course, a situation-specific issue, but the dominance of conditional-mean modeling
in health econometrics renders what we suggest below of central practical importance. While
many aspects of the following discussion apply for the more general case of nonnegative vy, the
discussion here is confined to the strictly-positive-y case to streamline the analysis. As a result,
issues related to truncation/censoring or the “zeros” aspects of data (or "part one of a two-part
model") are 1gnored here, but will be addressed in future work.

Our modeling framework includes two classes of estimators: Generalized Linear Models
(GLM) with a logarithmic link function, and least squares for models with logged dependent
variables. These specific GLM models estimate the In(E(y[x)) directly, while the least squares
estimates E(In(y[x)), which can at least in principle be converted to E(y[x) by a suitable
retransformation. As we have stressed elsewhere (Manning, 1998; and Mullahy, 1998), it is

essential to distinguish these related but distinct models.

We use the E(.) and var(.) notation as shorthand for E(.|x) and var(.ix) throughout. Essentially
all moments considered here are conditional-on-x moments.

* This rules out situations where the analyst is interested in some latent variable construct.



A. GLM Modeling
In the version of the generalized linear model (GLM) framework (McCullagh and Nelder,
1989) used here, the central structure of the model is an exponential conditional mean (ECM) or

log-link relationship:

In(E(y)) = xp (1a)

or

E(y) = exp(xp) = n(x;p). (1b)

In GLM modeling, one specifies a mean and variance function for the observed raw scale
variable y, conditional on x. Three stochastic families are studied here, the key attributes of
which involve their respective conditional mean-variance relationships. These relationships can

be described using the general structure
Var (y) = 62 v(x). (2)

Rather than write Var (y(x)), we will use v(x) directly. The first case is the homoscedastic or
"classical” nonlinear regression model with v{(x)=1; that is, the variance of y {conditional on x) is

unrelated to x. The second case has a Poisson-like structure with v(x)= K ((x), where k, > 0;

|

that is the variance is proportional to the mean, which is itself a function of x. The third has a

gamma structure with v(x)=1<2 (;,L(x)2 }, where Ky > 0; that 1s, the standard deviation is

proportional to the mean. Within this class of power-proportional variance functions, it is useful

to think more generally of the variance function v(x) being:

v(x) = K (p(xp)* (3)

where A must be finite and non-negative. In the case A = 0, we get the usual nonlinear least-
squares estimator. In the case A = 1, we get the Poisson-like class. In the case A = 2, we get the

gamma, the homoscedastic log normal, the Weibull, and the chi square, with the suitable



specification of a distribution.” In the case A = 3, we get the inverse Gaussian (or Wald)
distribution. Throughout this paper, we are assuming a log link for the expectation of y given x,
= exp(xp).

Estimation of the conditional mean parameters § given such structural assumptions
proceeds using what economists think of as GMM estimation but what is more generally spoken
of by statisticians as GLM modeling using quasi-likelihoods or generalized estimating equations
(GEE). Regardless of how interpreted, the key features of such estimation approaches are the

moment or quasi-score equations

op(x:;P) _
0= Zil—g[;——w(xi) l><(yi—|u(x1»;[3)), (4)

whose solutions f’) are the estimators of interest. The v(x) are assumed to be functions of p =

exp(x B ), not of individual covariates in x more generally.

B. OLS-Based Models
By far the more prevalent modeling approach is to use ordinary least-squares or a variant

with In(y) as the dependent variable. In this case, the assumed regression model is

’ Note that the "gamma-class”" (A=2) models are in some respects a natural "baseline”
specification. That is, if the model is taken to be

y=exp(xp) x u

and if u 1s taken to be homoskedastic, then it is indeed natural to suggest that Var[y|x] is
proportional to E[y|x]-squared. Thus, just as the homoskedastic linear model

y=xpB+u

generates a "natural" constant-variance perspective in the linear context, the exponential mean
model generates a "natural” "gamma-class-variance” perspective in the log-linear context.



In(y)=xb+¢ (5)

where it is assumed that E(x'e) = 0. The error term need not be i.i.d. If the error term is

normally distributed N(O,cz), then E(y) = exp(x&+ 0.50'2). If € is not normally distributed,
but it is homoscedastic, then E(y)= sxexp(x08), where s = E(exp(s)).4 In either case, the

expectation of y is proportional to the exponential of the log scale prediction from the OLS or
LS-based estimator.
However, if the error term is heteroscedastic in x — i.e. E(exp( €)) 1s some function f(x) -

then E(y) = f(x)xexp (x0), or, equivalently,

In(E(y)) = x6 + In(f(x)) (6)

and in the log normal case,

IN(E(Y)) = X8 + 0.562(x) (7

where the last variance term is the error variance on the log scale.
In general, the presence of heteroscedasticity on the log scale for an 1.S-based models
implies that the exponentiated log scale prediction [s(exp(x))] provides a biased estimate of

the E(y|x), and is biased in a way that depends on x; the s here is the (homoscedastic) smearing



factor. This bias can be eliminated by including an estimate of the variance function, v(x), if the

error is log normal, or more generally, of E(exp(g)|x).

III. Methods

To evaluate the performance of the two alternative classes of estimators for log models,
we rely on a Monte Carlo simulation of how each estimator behaves under a range of data
circumstances that are common in health economics and health services research studies. There
are five data situations that we consider: (1 ) skewness in the dependent variable; (2) heavy-
tailed distributions (even after use of log transformations to reduce skewness); (3) pdf’s that are
monotonically declining rather than bell-shaped; (4) data with nonlinear responses but additive
errors;and, (5) log error terms that are heteroscedastic. We do not deal with either truncation or
censoring.

We also provide a set of tests for determining which estimator is appropriate for a given
data set, using easy to implement tests. We illustrate the approach using data on doctor visits

from the National Health Interview Survey.

A. Alternative Data Generating Structures

As we noted earlier, one of the major motivations for using a logarithmic transformation
of the dependent variable is a concern over the severe skewness in health care utilization and
expenditures. By transforming the dependent variable, the goal is to be able to use ordinary least
squares estimators without having to worry about the sensitivity of the results to skewness.

Some applications have more skewed dependent variables than others. For example, the
inpatient days are more skewed than the number of inpatient stays, among those with any
hospitalizations. Inpatient expenditures tend to be more skewed (and kurtotic) than inpatient

days.

* Duan (1983) shows that one can substitute the estimated residual for € to get a consistent

estimate of the smearing factor s.



To determine the effect of the level of skewness on the estimated outcome, we examine
two classes of data generating mechanisms: (1) log normal distributions with increasing log scale
error variances; and (2) gamma distributions with decreasing shape functions. In the case of the
log normal, the raw scale mean, variance, skewness, and kurtosis are all increasing functions of
the variance on the log scale. If the log scale error € is normally distributed with mean 0 and

variance v, then the raw scale skewness (S) for this data generating mechanism 1s:
Spagw=(w + 2} ((w- 1) 0'5) (8)

where w = exp (v). Using a N(0,v) deviate, we let the log scale variance range from 0.5 to 2.0 in
steps of 0.5. Thus, the skewness of exp (¢€) varied from 2.94 to 23.7, compared to zero for a
normal deviate.

Specifically, we assume that the true model is:
In(y) = S, + fix +¢ 9

where x 1s uniform (0,1), € is N(O,v) with variance v= 0.5, 1.0, 1.5, 0r 2.0, and E (x'€) = 0. 8,
equals 1.0. The value for the intercept f3, is selected so that E (y) = 1.

Note that for this data generating mechanism, the expectation of y is:

E(y)ze(ﬂo+ﬁ]x+0.5w (10)

The slope of E(y) with respect to x equals B exp( S, + f,x +0.5v).

Some studies deal with dependent measures and error terms that are heavier tailed (on the
log scale) than even the log normal. For example, the residual for Edward Norton et al.’s study
of (log) length of stay for Medicaid psychiatric inpatient care has a log scale kurtosis of 3.5,
compared to a value of 3 for a normal (or in that case log normal). David Meltzer’s hospitalist
study has a kurtosis of 3 for log length of stay, but over 6 for log costs.

We gencrate two alternative data generating mechanisms with ¢ being heavy-tailed

(kurtosis > 3). In the first, € is drawn from a mixture of normals, each with mean zero. p percent



of the population have a log scale variance of 1, and (1-p) have a higher variance. In the first
case, the higher variance is 3.3, yielding a log scale error term with a kurtosis of 4.0. In the
second case, the higher variance is 4.6, giving a log scale error term with a kurtosis of 5.0. For
the normal distribution, the kurtosis is 3.0.

We also consitder models based on the gamma distribution. The gamma has a pdf that
can be either monotonically declining throughout the range or bell-shaped, but skewed right.

The pdf for the gamma variable y is:

[exp(=y /)]

_ (e
f(y) = (y/b) B0

(1)

where b is the scale parameter and c s the shape parameter; some parameterizations use a = 1/b.

The scale parameter b equals exp ( S, + 5, x), where f#, =1, and S, is selected so that the E(y) =

1. The shape parameter c is 0.5, 1.0, or 4.0. The first and second values of the shape parameter
yield monotonically declining pdf’s, conditional on x, while the last is bell shaped but skewed
right. The first is a chi square with one degree of freedom if b equals 1. The second is an
exponential variate. As the shape ¢ increases to infinity, the distribution approaches a normal.

Thus the skewness S on the raw scale is a declining function of ¢, S = 2 ¢ *

if we ignore the
covariates.
The next class of data generating mechanisms is the one with an additive error term that

corresponds to the nonlinear least-squares model:
y=eP 4 ¢ (12)

where € is a normal deviate with mean zero and standard deviation 0.3. In principle, the NLS
estimator should be ideal for this data generating mechanism.

Finally, it is not uncommon to encounter heteroscedasticity in the error term of a linear
specification for In(y). In this case, estimates based on OLS on the log scale can provide a
biased assessment of the impact of the covariate x on E(y); see Manning (1998) for a discussion.
In this case, the constant variance v in Equation 3, is replaced by some log scale variance

function v(x). The expectation of y on the raw scale becomes:
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E(y)=e(ﬂ0 + fx+0.5v(x)) (13)

if the underlying error term € is N(0, v(x)). The slope of the expectation of y is now:

CE(Y) _ V()
ax y (i +05 ox

) (14)

To construct the heteroscedastic log normal data, the error term € is the product of a
N(0,1) variable and either (1 + x) or its square root. The latter has error variance that is linear in
x (v = (1+x)), while the former is quadratic in x (v =1+ 2x + x* ). Again, B,=1, and S, 1s
selected so that E(y) = 1.

Table 1 summarizes the data generating mechanisms that we consider.

B. Alternative Estimators

We employ five different estimators for each of these data generating processes. The
first two are from the least squares class. The first relies on ordinary least-squares (OLS)
regression of In(y) on x and an intercept, and uses a homoscedastic smearing factor to
retransform the results to obtain E(y|x) . The second also relies on ordinary least-squares
regression of In(y) on x and an intercept, but uses a heteroscedastic retransformation; see below,
The other three models are variants of generalized linear models (GLM) for y with a log-link
function (McCullagh and Nelder, 1989). In the first GLM case, the error term 1s additive on the
raw scale and has a variance that does not depend on E(y) or x. This is basically the nonlinear
least-squares estimator proposed by Mullahy (1998). The second GLM estimator assumes that
the raw scale variance is proportional to the E(y), which is a Poisson-like assumption without the
discrete nature of the dependent measure. The third GLM approach assumes has a raw scale
standard deviation is proportional to E(y), which is a gamma-like assumption similar to Blough

et al. (1999). In all three GLM models,

E(y) = e Bo + %) (15)
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Because the OLS estimates are for the E(In(y)), we retransform the log scale estimates to
obtain raw scale estimates of E(y). For all of the OLS-based estimators (except for the
heteroscedastic retransformation cases), we use Duan’s (1983) smearing estimator to obtain an
estimate of E(y). The smearing estimator is the average of the exponentiated residuals from the
In(y) regression.5 If the log scale errors are not heteroscedastic in some function of x or of E(y),
then the smearing estimate provides a consistent estimate of E[exp(g)]. If the error € is truly
normal, then the smearing estimate is less precise than using exp(0.5v), where v is a consistent
estimate of the log scale residual variance.

We also generate predictions based on heteroscedastic retransformation

v=E(E) =&, + S,x + J,x° (16)

if the variance is (1+x), then we omitted the x squared term from a regression of squared
residuals on x and x squared. For all of the GLM generated data, we assume that the variance
function is linear in X.

All of the equations are estimated in STATA 5.0, using either the standard regression

command (“reg”) or the appropriate GLM command:

glm y x, family(xxx) link(log)
where xxx is either Gaussian, Poisson, or g,amm.a.6
C. Design and Evaluation.

Each model is evaluated on 1000 random samples, with each having a sample size of

10,000. Except for the two heteroscedastic cases, all models are evaluated in each replicate of a

> We did not use the normal theory retransformation from equation 7 because it would be

inconsistent for several of our data generating mechanisms. Except for the heteroscedastic log
normal cases, the smearing estimate should provide a consistent retransformation.

In practice, we recommend the use of Stata's "xtgee" or “rglm” command instead of "glm,"
because the first two accommodate robust covariance matrix estimation while the last does not.
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data generating mechanism. This allows us to reduce the Monte Carlo simulation variance, by
holding the specific draws of the underlying random numbers constant when comparing

alternative estimators. The primary estimates of interest are:

(1) The mean, standard error, and 95 percent confidence interval of the estimate of the
slope B, of In(E(y)) with respect to x. The mean provides evidence on the

consistency of the estimator, while the standard error and 95 percent confidence
interval indicate the precision of the estimate.

{2) The mean squared error (MSE) of the model on the original estimation sample. The
MSE indicates how well the estimate minimized the original residual error on the
raw scale.

(3) The absolute prediction error (APE) of the estimate of B,, where the APE is the
absolute value of the estimate of £, minus its true value.” A more precise estimator

should be closer to the true value.

If a model has low MSE and high APE, then there is strong evidence that that estimator
has overfitted the estimation sample. The 95 percent confidence intervals are based on the 0.025
and 0.975th percentiles of the estimates, rather than using the normal theory estimate. Not all of
the estimated values of the #’s are normally distributed, or whose distribution 1s well
approximated by a normal. Estimators are compared on APE and MSE by comparing the
number of times that estimator A had a lower APE (or lower MSE) than estimator B.  With n
replicates with random draws, the proportion p where A is lower than B should be 0.5 under the

null that the two estimators are equally good, and the variance of p is p(1-p)/ (n).

D. Diagnostics for Variance Functions (Park Tests)

The results below will provide a compelling demonstration of the importance in terms of

" For this study, we know the true values of the parameters. But in most applications, the

analyst does not know the true population parameters to use in constructing the APE. Another
alternative is to use a split-sample, cross-validation approach. If overfitting occurs, the estimator
will perform better on the estimation sample than on the validation sample. See Duan et al.
(1983) for an example comparing alternative estimators for health expenditures.
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precision of specifying a (conditional) variance function that captures the true conditional
variance in the data. In this section, we propose a simple strategy for selecting such a
specification, one that should be of considerable use in practice.

As above, we focus on the GLM class of variance functions where:

var(y) = a[E(y)]?”. (17)

because this specification captures most of the alternative estimators that we are interested in. In
a generalized method-of-moments environment, this variance function specification would imply

a set of moment conditions proportional to
m(y;.x;8.0.4) = [ (¥; - exp(x;B))? - cexp(hx;B) ] (18)

such that E[m(.)]=0 under the assumption of correct specification of the conditional mean and
conditional variance (e.g. Wooldridge, 1991).

This moment structure (with a consistent initial estimate of () is similar to one of the
carly tests for heteroscedasticity. In the Park test (Park, 1966), the log of the estimated residual
squared (on the scale of the analysis) is regressed on some factor z thought to cause
heteroscedasticity in the error on the scale of the analysis. Here, we propose to use the residuals
and predictions on the raw (untransformed) scale for y to estimate and test a very specific form
of heteroscedasticity — one where the raw scale variance is a power function of the raw scale

mean function. The OLS version of equation 17 is:
In((y, = 9)") = A, + A, In(F) + v (19)

where S’i -—-exp(xiB) in the GLM specifications, and exp( xiB+O.502(x)) in the log normal

specifications. The coefficient A, on the log of the raw scale prediction will tell us which GEM
model to employ if the GLM option is chosen.
While the purpose of the Park's original approach was to test for heteroscedasticity for a

specific variable, we choose instead to exploit and interpret this approach as a guide to
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specifying the A parameter for purposes of weighted NLS or GLM estimation. Specifically, to
the extent that the Park test estimate of A captures the true variance function, we can be build a
downstream GLM regression strategy for the choice of particular GLM models (NLS, Poisson,

Gamma, etc.) whose variance (inverse weighting) function is specified to be [exp( xif})]) "

One concern with this approach is that we are focusing on the raw scale behavior of
conditional means and variances in applications where skewness in the dependent measure y
often leads to log transformation to obtain more robust results. Under these circumstances, how
informative are these particular Park tests? To assess the utility of such a strategy, we return to
the simulation designs described above and estimate the A parameter for a subset of the data
structures where vy is skewed to the right: log normal, with log scale variance = 1; gamma, with
shape=1; the 90/10 mixture of log normals with the kurtosis of 5 for the log error term g; and
heteroscedastic log normal, with log scale standard deviation = 1+x. Note that in the first two
data generating specifications, the conditional variance is proportional to the square of the
conditional mean (A=2). In the third specification (the heavy tailed distribution from a mixture
of log normals), the proportionality assumption is valid but it operates across different variance
structures in the data. In the last data specification (heteroscedastic log normal), the

proportionality specification is no longer strictly appropriate.

IV. Results: Simulations and Empirical Example
Table 2 provides some sample statistics for the dependent measure y on the raw scale
across the various data generating mechanisms. As indicated earlier, the intercepts have been set

so that the E(y) 1s 1.

A. Skewness.

Given that the severe skewness in health utilization is often a major rationale for using a log
approach, we begin with skewness. The skewness in y on the raw scale increases in the variance
v for the log normal models. Table 3 provides the results on the consistency and precision in the

estimates 3, , the slope of In(E(y)) with respect to x, for each of the alternative estimators for the

log normal data generating processes. In the absence of heteroscedasticity in x in the error €, the



