Introduction

In medical cost-effectiveness analysis (CEA), an incremental cost-effectiveness (C/E) ratio

comparing a new treatment (T,) to some alternative intervention (T,) is typically defined as:

R = (l’LCl _P'co)/(uﬁl —“’EO) (1)

where pi, and pg represent the mean cost and mean health effect, respectively, of treatment
T.” The numerator and denominator of this ratio are the incremental cost and incremental
effectiveness, respectively, of the new intervention relative to its comparator. The ratio can be
interpreted as the additional investment of resources needed for each additional unit of health
improvement expected to result from investing in T, rather than T,

Because the true (population) means are not known, R is estimated using the “analogy”

estimator':
R =(C,-GC,)/(E, -E,) )

where C, and E, represent sample means for the cost and effect of intervention T,. Due to
uncertainty in these estimates, an important component of any CEA is an analysis of the
uncertainty surrounding a C/E ratio estimate. While univariate sensitivity analysis and simple
types of multivariate sensitivity analysis (such as best-case and worst-case scenarios) are now
commonplace in the health economics literature, these methods suffer from a number of
limitations.” Ideally, a sensitivity analysis should convey information regarding both the range
-of possible results and the probability of each possible outcome being realized. These estimates

would need to incorporate information about the joint probability distribution of the key

Some analysts make a distinction between cost-effectiveness analysis (CEA), in which
outcomes are measured in “natural” units such as years of life saved, and cost-utility analysis
(CUA), in which adjustments are made to reflect patient or community preferences over health



variables in an analysis — information that is absent from univariate and simple multivariate
sensitivity analyses. To address this issue, analysts have recently begun to investigate new
approaches to the analysis of uncertainty in CEA.

Most research in this area has focused on methods of analysis for studies in which the
analyst has patient-level data on the costs and health effects of alternative interventions. The
data may be gathered in either randomized controlled trials or observational studies, and CEAs
based on this type of data are sometimes referred to as “stochastic CEAs.” The wealth of data
available to analysts in stochastic CEA presents the opportunity for more sophisticated methods
of sensitivity analysis than are feasible in evaluations that rely on gross, population-level

estimates of costs and effects. To date, discussions of methods for sensitivity analysis in

stochastic CEA have focused primarily on the estimation of confidence intervals (CIs) around R.
As we will show, however, this approach suffers from important theoretical limitations; of
particular concern is the fact that inherent ambiguities in the probability distribution of a C/E

ratio estimator render any inference based on that distribution (including the construction of CIs)

suspect.

As an alternative to the estimation of Cls around R, we present a new framework for the
analysis of uncertainty in economic evaluation. This method of analysis, which we term the “net
health benefits” approach, offers several practical and theoretical advantages over the use of Cls
for C/E ratios, is straightforward to apply, requires no more data than does C/E ratio analysis,

and highlights some important principles in the theoretical underpinnings of CEA.

Estimating Confidence Intervals for C/E Ratios

Several methods have been presented for estimating Cls around R, given sampled data on

the costs and effects of an intervention and its comparator. The first method proposed for this

purpose (the “delta method™) estimates the variance of R using a second-order Taylor series

approximation. A two-tailed (1-a) CI can then be constructed as:

states. In the present paper, the term CEA is used to encompass both of these analytic
frameworks.



R 2,,6% 3)

where z is the test statistic of the standard normal distribution and 6% is the estimated variance

of the ratio; for a detailed description, see O’Brien et al.’ However, the Taylor series

approximation of variance does not generally work well for ratios,* and the assumption of a well-
behaved parametric distribution for R is questionable. For example, if incremental costs and

effects are distributed independent unit normal then R follows a Cauchy distribution (a t-
distribution with one degree of freedom), which has no mean and infinite variance.’ °

Recently, analysts have begun to focus on alternative approaches, including non-parametric
bootstrapping and the use of Fieller’s Theorem, for constructing Cls. For an overview of these
methods, which avoid some of the delta method’s pitfalls, readers are referred to Chaudhary and
Stearns.” However, while some progress has been made regarding the practical issue of sow to
construct CIs for C/E ratios, little attention has been devoted to questions of why (or if) these Cls
are desirable and how they should be interpreted and used by decision makers. In the following
section it is shown that the fundamental concept of using a CI to convey information about
uncertainty around a C/E ratio suffers from important theoretical limitations — regardless of the

estimation procedure employed.

Theoretical Problems in the Use of Confidence Intervals for C/E

Ratios
THE DECISION RULES OF CEA

To illustrate the problems associated with constructing and interpreting Cls for R, we must
first briefly review the decision rules of CEA. Consider the AE-AC plane (Figure 1), in which
the horizontal axis measures the incremental effectiveness and the vertical axis measures the

incremental cost of T, compared to T,. For each quadrant of the plane (note the quadrant



numbering convention we use), the theory of cost-effective resource allocation prescribes a

choice between T, and T, as follows:

{INSERT FIGURE 1 HERE]

Quadrant = Decision Rule
I T, > T,if and only if AC/AE <A
I T, > T,
I T, > T, if and only if AC/AE > A
10% T, > T,

where > is the preference relation (read “is preferred to”) and A is the threshold C/E ratio,
indicated in Figure 1 by the slope of the dashed line. Thus, T, > T, for all points below the
dashed line and T, > T, for all points above the line. The threshold ratio (1) can be interpreted
as the maximum amount that society would be willing to pay for an incremental gain in health
or, equivalently, the minimum amount that society would be willing to accept in exchange for
forgoing an incremental gain in health." When considering the problem of allocating resources at
the societal level, A can be assumed to be exogenous to the evaluation of any individual

intervention [this point will be addressed in detail in a later section of this paper]. With these

decision rules in mind, let us now turn our attention to R and its probability distribution.

" Contingent valuation studies often find that the amount an individual would be willing to pay
for a given reduction in risk to his or her health is less than the compensation that the same
individual would require in order to willingly experience a risk increase of equal magnitude.
However, it is not clear whether this disparity between willingness to pay and willingness to sell
persists at the level of social choice.



AMBIGUITY BETWEEN AE-AC QUADRANTS IN THE DISTRIBUTION OF A C/E
RATIO ESTIMATOR

Note that R is positive in quadrants [ and III and negative in quadrants I and IV of the AE-
AC plane. If a negative ratio corresponds to quadrant II then T, > T,, but if it corresponds to

quadrant IV then T, > T,. Similarly, a positive ratio less than A is favorable for T, in quadrant I

but unfavorable for T, in quadrant III. Thus, R has no meaningful interpretation unless it is

presented in the context of the quadrant of the AC-AE plane to which it corresponds. Because the

probability distribution of R conveys no such contextual information even when there is non-
negligible probability of the joint distribution of costs and effects extending to more than one
quadrant of the AE-AC plane, this distribution and any inference based on it — including the

construction of CIs — is ambiguous.
PROBLEMS WITH NEGATIVE C/E RATIOS

In some evaluations, the sign of either AE or (more likely) AC may be determined with high
probability; when this is the case, the ambiguity discussed above is not an issue. Even in these
situations, however, fundamental problems in the interpretation of negative C/E ratios present

important complications for the construction and interpretation of Cls based on the distribution

of R. For example, suppose it is known with certainty that AC < 0, so that the analysis is limited

to quadrants II and III of the AE-AC plane; further suppose that there is non-negligible
uncertainty with respect to the sign of AE, so that the distribution of R includes both positive

and negative values. For the negative portion of R ’s distribution (corresponding to quadrant II),
the new treatment is estimated to be both less costly and more effective than its comparator; thus,

in this quadrant, a large magnitude is desirable in both the numerator and the denominator of the

C/E ratio. However, these two desirable features drive R in opposite directions: large
incremental health gains in the denominator drive the ratio closer to zero, but large incremental

cost savings in the numerator drive the ratio toward negative infinity. The result is that the



negative portion of the probability distribution of R does not lend itself to meaningful
interpretation. Therefore, unless the joint distribution of incremental costs and incremental

health effects is limited to either quadrant I or quadrant III — which would in general seem

tenuous to maintain a priori — any inference based on the distribution of R is problematic.

It should be noted that, despite the important conceptual problems with reporting negative
C/E ratios, it is not uncommon for them to be reported in the health economics literature. For
example, in a study published in the recent report of the Panel on Cost-Effectiveness in Health
and Medicine as an example of an analysis performed in accordance with the Panel’s
recommendations,’ a cost-effectiveness ratio of —$13,000 per quality-adjusted life year (QALY)
gained was reported for a strategy to fortify grain products with folic acid to prevent neural tube
defects.® Interpreting this negative ratio, the authors of the study noted that the strategy “resulted
in cost savings of about $13,000 accompanying every QALY gained.” While this may be an
accurate statement of the study’s results, it is unclear what the reader is expected to conclude
from the magnitude of the reported estimate. Is it better to save $13,000 per QALY gained than
to save, say, $6,500 per QALY gained? The answer is, “it depends.” If the former ratio has a
larger magnitude due to greater cost savings in the numerator, then the answer is “yes,” but if it
has a larger magnitude due to lower incremental effectiveness in the denominator, then the
answer is “no.” From the magnitude of the ratio alone, absent information about the respective
magnitudes of the numerator and denominator, one can draw no meaningful conclusions. Recent
analyses have also reported negative values for the lower limits of CIs for C/E ratios (see, for

example, Obenchain et al.”).

* The Panel of Cost-Effectiveness in Health and Medicine was appointed by the U.S. Public
Health Service to make recommendations for standardizing the methods employed in CEA.
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Net Health Benefits

DEFINITION AND INTERPRETATION

In response to the problems associated with inference based on the distribution of a C/E
ratio (including both the conceptual problems discussed above and further problems related to
inference discussed in the following sections) we propose a new approach for the analysis of
uncertainty in the economic evaluation of health interventions. We begin by defining the

average net health benefit (NHB) of intervention T; as:

Mg = bei /A (4)

and the incremental NHB of T, compared to T as:

(HEx _ﬂm/)‘)‘(“x-:o "/lco/x)= (PE] “HEO)‘(HC] _pco)/}' (%)

where all variables are as previously defined.

The first part of expression (4) is simply the health effect associated with intervention T..
The second part of the expression represents the health gain that could have been attained by
instead investing the resources consumed by T, in a marginally cost-effective program (R=A).
Thus, the average NHB of an intervention is interpreted as the net benefit (measured in units of
health) of investing resources in T, rather than investing those resources in a marginally cost-
effective program. The interpretation of the incremental NHB of T, compared to T, — which is
calculated as the difference between the average NHB of T, and the average NHB of T, — is
similar. The first part of this expression on the right-hand side of equation (5) measures the
incremental health effectiveness of new intervention T, relative to comparator T,. The second
part of the expression represents the health gain that could be attained by investing AC resources
in a marginally cost-effective program (R=A). Thus, this expression can be interpreted as the net

benefit (measured in units of health) of investing resources in T, rather than implementing T, and



investing the “left over” AC resources in a marginally cost-effective program. For NHB>0, T, is
deemed cost-effective and should be selected for implementation. For NHB<O0, more health
improvement could be attained by forgoing the intervention in question and investing resources
elsewhere; T, is therefore deemed cost-ineffective and should not be selected for implementation.

The threshold ratio A can also be interpreted as society’s willingness to pay for an
incremental gain in health. Following this interpretation, an intervention’s average NHB
compares the effectiveness of that intervention (u;) to the minimum health effect that society
would demand in return for its investment of L, which is equal to u/A. The incremental NHB
of T, relative to T, compares the difference in the two programs’ health effects (ug; - pg,) to the
minimum difference in health effects society would demand in order to justify the additional
expenditure required to implement T, rather than T,; for an incremental cost of (¢, - Heo), the
minimum acceptable health gain is equal to (¢, - Heo)/A.

In the remainder of this paper, we will assume that an incremental analysis comparing two
or more interventions is being performed, so that all NHBs are understood to be incremental

rather than average, unless otherwise stated.
CONFIDENCE INTERVALS FOR NET HEALTH BENEFITS
The most straightforward estimator of NHB is the "analogy"” estimator:
NHB- E,- E,~(C,-Cy/x (6)

A parametric CI for NHB can be readily constructed. The variance of NHB is estimated as:

ZIQ

Zl:(sEz +5& A =2nsgsg /’/)")/ni 7
i=0

where E, and C, are random variables representing the costs and effects of intervention T;; s;; and

s¢; represent the sample variance of E; and C, respectively; r; is the sample correlation



coefficient for E; and C;; n, is the number of observations for T;; and & is the threshold C/E ratio.
Note that because interventions T, and T, are generally observed in different (independent)
samples, it is reasonable to assume no correlation between E, and E, and between C, and C,, but

it is necessary to allow for nonzero correlations between the costs and effects of an individual

intervention.

By the Central Limit Theorem, NHB is asymptotically normal, and a two-tailed
(1-ct) CI can be constructed as:

NHB + z_,+/6%m (8)

where z is the test statistic for the standard normal distribution. As a rule of thumb, the normal
approximation is generally considered reasonable for sample sizes > 30. If the joint probability

distribution of costs and effects is multivariate normal, then — because NHB is linear in its
arguments — NHB has an exact normal distribution even in finite samples.

Alternatively, a nonparametric CI for NHB can be constructed using bootstrapping
techniques, based on the empirical joint distribution of costs and effects for an intervention and
its comparator. The method, based on Efron and Tibshirani'® and Davidson and MacKinnon'' is
as follows:

1. From the original sample of n, observations for T, and n, observations for T, use
equation (6) to estimate the incremental NHB of T, relative to T,

2. Repeat the following steps (a-c) a large number of times; although there is no precise
guide as to how many replicates are sufficient, a few thousand are often satisfactory. Each
replicate is referred to as a “bootstrap” replicate, and each of these yields a bootstrap NHB
estimate, which we will denote NI:IBb (for b= 1 to B, where B represents the number of
replicates).

a. From the observations for T,, draw a random sample of size n, with replacement.
Calculate the average cost and effectiveness for this bootstrap sample; these values will be

denoted C} and E;.



b. From the observations for T,, draw a random sample of size n, with replacement.
Calculate the average cost and effectiveness for this bootstrap sample; these values will be
denoted C; and E;.

c. For each bootstrap replicate, calculate an estimate of the incremental NHB of T, relative

to T:
NHB, =(E! - E})-(C} - Coyn (9)

3. Eliminate the B*(o/2) lowest values and the B*(a/2) highest values of NHB,, where (1-
a) is the desired confidence level. The lowest remaining value and the highest remaining value
for NHB, are the lower and upper bounds, respectively, of a nonparametric CI for NHB. (More
complex methods that account for complications such as finite-sample asymmetries in the
sampling distribution have been discussed by Efron and Tibshirani'; the simple approach
presented here should be viewed as a starting point if inference is a central concern in the
analysis.)

Note that NHB as described above represents the net health benefit per patient, or, more
generally, per unit of observation. Alternatively, a decision maker may wish to consider the total
net health benefit associated with a particular program: NHB,, = N*NHB, where N is the size
of the target population. A (1-a) CI for NHB,,, is simply N times the (1-o.) CI for NHB.

Net Health Benefits versus C/E Ratios

INTERPRETABILITY

As discussed earlier, the interpretation of a C/E ratio estimate is ambiguous without

information regarding the quadrant of the AE-AC plane to which the estimate corresponds, and

the probability distribution of R conveys no such contextual information. Moreover, because

the magnitude of a negative C/E ratio conveys no useful information, inference that is dependent

on the negative portion of R ’s probability distribution is problematic. In contrast, NHB suffers
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from no such ambiguities. A positive (negative) value for NHB is unambiguously favorable
(unfavorable) for the new intervention being evaluated, and values of NHB become continuously
more favorable as one moves upward from negative infinity. That is, for a rational decision
maker whose objective is to allocate scarce health care resources efficiently, preferences are
monotonic in net health benefits but not in cost-effectiveness ratios.

To make this distinction clear, note that a program’s attractiveness is a monotonically
decreasing function of incremental cost (holding effectiveness constant) and a monotonically
increasing function of incremental effectiveness (holding costs constant). These characteristics
of preferences are clearly reflected in NHB, which is a linearly increasing function of
effectiveness ((NHB/OAE = 1) and a linearly decreasing function of costs (ONHB/GAC = —1/A).
In contrast, the direction of the change in cost-effectiveness ratio R associated with a change in
AC depends on the sign of AE (8R/8AC = 1/AE), and the direction of the change in R associated
with a change in AE depends inversely on the sign of AC (8R/OAE = —AC/(AEY’).

IMPLICATIONS FOR STATISTICAL INFERENCE

Largely because NHB is linear in costs and effects, statistical inference is far more

straightforward when using NHB than when using C/E ratios.” For example, while the

assumption of a well-behaved parametric distribution for R is questionable, NHB is
asymptotically normal under quite general assumptions even if the joint distribution of costs and

effects is non-normal. Similarly, while the Taylor series approximation of variance does not

sufficiently capture the nonlinearity of R, the sample estimate of the variance of NHB is
straightforward to calculate and can be estimated without bias.

Moreover, note that because the sample mean is an unbiased estimate of the population
mean, the sample ("analogy") estimate NHBis an unbiased estimate of the true NHB. In
contrast, the sample estimate R is a biased estimate of the true C/E ratio R; that is, E(f{) #R."

Because the bias approaches zero as the sample size tends toward infinity, R is a consistent
estimator of R; thus, the bias may be negligible in studies with large sample sizes but is

potentially important when sample sizes are small. An unbiased estimate of the C/E ratio can be
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obtained using a bootstrap adjustment to R, but caution is urged when considering this approach
because the bootstrap estimate of bias is subject to sampling variability, so that adjusting for bias
1013

may increase the mean square error of the estimate.

Another attractive feature of NHB resulting from its linearity in costs and effects is the fact

that the mean of a distribution of NHB estimates is equal to the value of NHB evaluated at the
mean estimates of effects and costs. In contrast, the mean of a distribution of C/E ratio estimates
is not generally equal to the ratio of the mean estimate of incremental effectiveness to the mean
estimate of incremental cost, and analysts have reached different conclusions regarding which of
these estimates (the mean ratio or the ratio of means) should be used to estimate a C/E ratio

under conditions of uncertainty."* ' '* 7

Note also that a bootstrap estimate of the variance of NHB would be expected to converge
more quickly than similar estimates for C/E ratios. Cost-effectiveness ratios take on values
approaching infinity (or negative infinity) when incremental effectiveness is close to zero, and

the possibility of C/E ratio estimates of near-infinite magnitude can cause significant problems

for the convergence of bootstrap estimates of the mean and variance of the distribution of R.
Additional advantages of NHB over C/E ratios with regard to statistical inference are

discussed in the following section, in the context of economic evaluations with multiple

comparators.

Stochastic Analysis with Multiple Comparators

While several papers have discussed stochastic methods for analyzing uncertainty in CEA,
these discussions have been limited to situations in which two interventions are being compared
to each other. Because multiple mutually exclusive interventions are often available for
consideration, it is important to consider methods for analyzing uncertainty in an economic
evaluation with multiple comparators.

For the estimation of incremental C/E ratios, the presence of multiple comparators
introduces significant complexity. In CEA, incremental C/E ratios are calculated after all

dominated programs have been removed from consideration and the remaining programs have
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been ranked in order of increasing cost. A program is dominated if it is both more costly and less
effective than at least one of its comparators (“strong dominance”), or if it is both more costly
and less effective than a convex combination of two of its comparators (“weak dominance,” or
“extended dominance,” which only becomes a possibility when there are more than two
programs being compared).'®

When multiple comparators are being analyzed, the ranking of programs (including both the
identification of dominated programs and the ranking of the undominated programs) may be
uncertain. Thus, for a single intervention (call it T,), stochastic analysis — performed, for
example, using bootstrapping techniques — may indicate that the intervention has non-zero
probabilities of being strongly dominated, of being weakly dominated, of dominating all of its
comparators, and of being ranked between each possible pair of its comparators. In those
bootstrap replications where the program is estimated either to be dominated or to dominate all
of its comparators, no C/E ratio is calculated for that intervention. For those replications where
the program is not dominated and does not dominate all other alternatives, the incremental C/E
ratio of that intervention may be calculated relative to one program (T,) in some cases and
relative to another program (T, T, ...) in other cases.

Additional complications are also introduced. In analyses with only two mutually exclusive
interventions, one may estimate the probability that the more costly intervention would be
deemed cost-effective, conditional on some value of A, as one indication of a program’s
attractiveness.”® With multiple comparators, interpretation is less straightforward. For example,
one might estimate the probability, conditional on a value of A, that program T, either is
dominant over all other alternatives or has an incremental C/E ratio more favorable than A.
However, using this probability as an indication of the program’s attractiveness would not take
into account the fact that one or more of T,’s comparators might also have a C/E ratio less than A;
if one of the T,’s comparators (call it T,) has a C/E ratio less than A and is also more effective
‘than T,, then the theory of efficient resource allocation indicates that T, should be selected for
implementation rather than T,. The analyst considering such a situation would need to
simultaneously consider information about the probability of being (strongly or weakly)
dominated, the ranking of the program (if not dominated) relative to the other undominated

alternatives, the estimated cost-effectiveness of the intervention relative to the appropriate
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comparator (which may vary as the ranking of programs by cost varies), and the cost-
effectiveness of other, more effective comparators.

The NHB approach, however, can be readily extended to the stochastic evaluation of
multiple comparators. Suppose that there are k programs being evaluated (T,, i=1 to k). After B
bootstrap replications have been performed for each intervention, the probability that
intervention T, is the most attractive option is simply calculated as the percentage of those
replicates for which T, is estimated to have the highest average NHB as defined in expression (4).
Analysts may find this to be considerably simpler than what would be required to calculate the
same probability using methods based on incremental C/E ratios. Using NHB methodology, one
could also easily construct a CI for the difference between the average NHB for program T, and
the average NHB for the most attractive program from each bootstrap replication, to give an
indication of how much program T, tends to underperform compared to the optimal choice (the
identity of which may vary across replicates); it is not clear how a similar measure could be
constructed when basing an analysis on incremental C/E ratios.

The advantage of NHBs over C/E ratios in multiple-comparator analyses is attributable in
large part to the fact that NHBs are separable while incremental C/E ratios are not separable.
That is, the incremental NHB of T, compared to T, is simply the difference between the average
NHBs of the two interventions, so that these average NHB values play a meaningful role in
incremental analyses making comparisons across interventions. In contrast, an incremental C/E
ratio is not a separable function of average C/E ratios (po/ug;), and calculating interventions’
average C/E ratios is not generally helpﬁll when making comparisons across mutually exclusive
alternatives; because of their limited usefulness and because they can be easily misinterpreted,
the Panel on Cost-Effectiveness in Health and Medicine cautions against reporting average cost-

effectiveness ratios.”!

STOCHASTIC DOMINANCE

Another result of the separability of incremental NHBs vis-a-vis the inseparability of
incremental C/E ratios is that the concept of stochastic dominance® * ** is relevant in the analysis

of NHBs but not in the analysis of C/E ratios. Stochastic dominance (which should not be
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confused with the concepts of strong dominance and extended dominance discussed earlier in
this paper) is a concept that is useful for making comparisons across mutually exclusive choices
under conditions of uncertainty. In the context of NHBs, intervention T, dominates intervention

T, through first-order stochastic dominance if and only if the following condition applies:
F(NHB) < G(NHB) for all values of NHB (10)

where F(NHB) is the cumulative distribution function of average NHB for treatment T, and
G(NHB) is the cumulative distribution function of average NHB for treatment T,, and where the
weak inequality (<) must be a strict inequality (<) for at least one value of NHB. Graphically,
this means that the cumulative distribution function for T, must never lie above the cumulative
distribution function for T,, and must lie below it for at least one value of NHB; an example of
first-order stochastic dominance of T, over T, is shown in Figure 2. It can be shown that if T,
dominates T, through first-order stochastic dominance, any utility-maximizing decision maker
whose utility is monotonically increasing in NHB (8U/6NHB > 0) should prefer T, to T,.** This

result holds regardless of the decision maker’s risk posture.
[INSERT FIGURE 2 HERE]

When first-order stochastic dominance is not present, an analyst may also check for second-

order stochastic dominance of T, over T,, which is defined as the following condition:
NHB NHB
IF(x)dx < IG(x)dx for all values of NHB (11)

where all variables are as previously defined, and where the weak inequality (<) must be a strict
inequality (<) for at least one value of NHB. Graphically, this means that the cumulative
distribution function for T, might (or might not) lie above the cumulative distribution function
for T, at some point, but the area under the cumulative distribution function for T, evaluated up

to any NHB value is never greater than (and is at least sometimes less than) the area under the
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cumulative distribution function for T, evaluated up to that same value of NHB. In the example
shown in Figure 3, T, dominates T, if and only if the area between the two curves where F (solid
line) lies below G (dotted line) is greater than the area between the two curves where F lies above
G. It has been shown that if T, dominates T, through second-order stochastic dominance, any
utility-maximizing decision maker whose utility is monotonically increasing in NHB and who is

risk averse over NHB (8U/NHB > 0 and &*U/ONHB?<0) should prefer T, to T,. >

[INSERT FIGURE 3 HERE]

Stochastic dominance is a powerful analytic tool because it allows one to identify cases in
which a decision maker should unambiguously prefer one alternative over another despite the
presence of uncertainty, with only very general assumptions required regarding the decision
maker’s utility function. This type of analysis can be readily performed in the NHB framework
because preferences are monotonically increasing in NHB and because incremental NHBs are
separable, so that it is meaningful to compare average NHBs across interventions. In contrast,
the concept of stochastic dominance cannot be applied in analyses based on incremental C/E

ratios, because preferences are not monotonic in R and monotonicity is a necessary condition for

stochastic dominance.

Net Health Benefits and the Threshold C/E Ratio

REPORTING NET HEALTH BENEFITS AS A FUNCTION OF &

One issue of concern in the use of NHBs is the fact that the societal threshold C/E ratio (A)
is not known.”” Indeed, one might argue that uncertainty around A limits the usefulness of the

NHB approach. The prudent approach to addressing this issue is also a quite simple one, to wit:

Carry out the analysis for a range of values for A and report NHB as a function of A. Indeed,
because the threshold ratio plays such a prominent role in this type of analysis, we suggest that

all empirical NHB estimates be reported using the notation NHB, to indicate the value of A
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corresponding to the estimate. A useful tool for presenting the results of NHB analyses and the
sensitivity of these results to A would be to plot both point NHB estimates and their CIs as a

function of A; an example of such a plot is shown in Figure 4.

[INSERT FIGURE 4 HERE]

Analysts may also make inferences regarding the probability that an intervention is
estimated to be cost-effective relative to its comparator (NI:IB ,>0). For nonparametric

estimation, the probability that NI:IBL is positive is calculated as the percentage of bootstrap
replicate estimates that are positive, conditional on a given value of A. This probability can then

be plotted as a function of A, producing a graph identical to the C/E acceptability curve presented

by van Hout et al.*® In addition, under the assumption that NHB is normal, one can use standard
parametric techniques to perform the following one-sided hypothesis test of cost-effectiveness
for any value of A: Hy: NHB =0, versus H,: NHB 0.

Note that the problem of uncertainty with respect to A is not limited to the NHB approach; it
is an equally important concern when using C/E ratios. One cannot generally assess whether or
not a particular program is cost-effective without making some assumption regarding the value
of .. NHB analysis simply makes explicit that which C/E ratio analyses leave implicit. We
would contend that the fact that NHB analysis forces explicit consideration of A, and, hence, its

unknown character, should be considered an advantage — rot a drawback — of this approach.
THE THRESHOLD C/E RATIO AND OPPORTUNITY COSTS

Another attractive property of the NHB approach and its explicit consideration of A is that it
forces decision makers to confront the issue of opportunity costs. In CEA, a program with a C/E
ratio above the threshold value (R>A) may be recognized as being inefficient, or in some sense
“expensive” relative to the benefit it offers, but the consequences associated with investing in
such a program might not be clear to decision makers. It is important to bear in mind that, due to

resource constraints, not all programs offering some potential for health improvement can be
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implemented; therefore, investing in one program reduces the volume of resources available to
invest in others. If 1/A is interpreted as the shadow price of relaxing the health care budget
constraint, this implies that there are investment opportunities offering C/E ratios of R=A that are
currently being forgone.”” That is, on the margin, a dollar invested in a program with R>A could
instead be diverted to a program with R=A, thereby yielding more health improvement without
any additional net resource consumption. By quantifying these opportunity costs, the NHB
approach confronts the decision maker with the fact that investing in a cost-ineffective program
is not simply an unwise use of money in some vague sense — it is a forgone opportunity to
achieve greater gains in people’s health. When decision makers choose to invest in programs
believed to .have R>A, explicitly reminding them of the human costs associated with these
resource allocation decisions may motivate them to give further consideration to the fact that
such investments implicitly assign a greater value to the health of some individuals (those
targeted by the cost-ineffective program) than to the health of others (those who would benefit
from marginally cost-effective programs currently being forgone).”® While this information is
implicit in the use of C/E ratios, NHBs offer the advantage of making the opportunity costs

explicit.

TREATING A AS A RANDOM VARIABLE

In this paper, we have suggested that NHB estimates should be calculated conditional on a

value of A, with sensitivity analyses performed to report NHB as a function of A. However,
when considering how to reflect uncertainty around X, one’s first instinct might be to suggest
estimating a probability distribution for A and incorporating this distribution directly into the
NHB analysis. When evaluating the merits of such an approach, it is important to consider the
nature of the uncertainty around A, and indeed the nature of A itself.

Note that, in contrast to the “micro-level” clinical variables corresponding to individual
interventions’ respective costs and effects, A is a “macro-level” public policy variable. Whereas
fairly well-accepted methods have been developed for using the realized values of a random

variable (such as costs or health effects) observed in a sample to make inferences regarding that
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variable’s distribution, it is not clear how one would obtain a sample of realized values for the
public policy variable A.

One approach might be to observe decisions about which health interventions are
implemented and which are not, and to draw inferences about A based on the relationship
between programs’ estimated C/E ratios and the levels at which those programs are implemented.
It is this general approach that has led some researchers to conclude that the value of A might be
somewhere in the range of about $20,000 to $100,000 per quality-adjusted life year (QALY)
gained. However, the usefulness of such an approach is limited by the fact that the concept of a
threshold C/E ratio is generally cited for its normative appeal, and not for its descriptive
accuracy. That is, while arguments based on welfare economics or optimization theory may
suggest that a threshold value A should play a meaningful role in attempts by a rational decision
maker to allocate health care resources efficiently, it is well-known that human decisions often
diverge greatly from the decisions suggested by these formal frameworks.® Thus, the degree to
which one can make inferences about A on the basis of observing actual resource allocation
decisions is unclear.

Other possible approaches to estimating a probability distribution for A would be to elicit the
“expert judgments” of various individuals believed to have some information about A in order to
formulate some “prior” distribution on A, or to undertake contingent valuation studies to estimate
people’s willingness to pay per unit of improved health. However, these approaches are
complicated by a number of issues, such as the question of how to identify “experts” on this
issue and the appropriate choice of methods for eliciting experts’ judgments and individuals’
willingness to pay values. While such complications certainly do not imply that these
approaches have no value, they do suggest that substantial work may be required for developing
and implementing these methods. This raises the question of whether analysts should wait until
this issue has been resolved to perform NHB analyses, or whether it may be more reasonable for
them to proceed by performing NHB analyses conditional on A (as we have suggested in this
paper) at least until some consensus emerges regarding a distribution for A.

In assessing the merits of performing NHB analyses conditional on A, one issue to consider
is whether or not it is reasonable to treat A as being statistically independent of the costs and

effects observed in a particular study. Formally, if A is statistically independent of AC and AE,
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the joint distribution of (AC,AE,A) can be characterized as the product of two independent
distributions:  $(AC,AE,A)=6,(AC,AE)x¢,(A). If it is indeed reasonable to treat X as being
statistically independent of AC and AE from a particular study — i.e., if it is reasonable to view A
as being decision maker-specific rather than intervention-specific — this implies that it is
reasonable to estimate net health benefits conditional on A, rather than directly incorporating into
the analysis an estimate of ¢,(A). Moreover, if ¢,(A) is not dependent on ¢,(AC,AE), this
indicates that estimates of ¢,(AC,AE) should not vary across studies. In this case, comparability
across studies would be hindered if different analysts made different assumptions about ¢,(2).

If evidence were to emerge suggesting that the assumption of independence is unreasonable
— if, for the sake of argument, individuals indicated that their willingness to pay for incremental
gains in health debended on the results of a particular ongoing clinical trial in such a way that the
estimated distribution of society’s willingness to pay for improved health would depend in a non-
negligible manner on the results of the trial in question — one might reasonably question the
degree to which such a result is consistent with a normative framework on which one might wish
an economic evaluation to be based. For example, if A is viewed (as it is in the constrained
optimization view of CEA) as the reciprocal of the shadow price of relaxing the constraint on
society’s overall volume of health care resources, then A should not be sensitive to the
characteristics of any individual health care program unless that single program accounts for a
large portion of society’s health care resource consumption.'®

On the basis of the above considerations, we conclude that conducting NHB analysis
conditional on A is preferable to the alternative of directly incorporating an estimated or

postulated distribution for A. If one does wish to estimate or postulate a distribution for A and
incorporate this into an estimate of the distribution of an intervention’s NHB, this should be

done in a supplementary analysis, where the primary analysis reports NHB as a function of A,

as described earlier in this section.
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Net Health Benefits and Cost-Benefit Analysis

The NHB framework for evaluation presents cost-effectiveness data in a format similar to
that associated with cost-benefit analysis (CBA); in CBA, all costs and benefits are measured in
monetary units, and programs with positive net benefits are prescribed for implementation. The
NHB is analogous to the net benefit used in CBA, except that NHB is measured in units of health
rather than money. Indeed, a measure identical to NHB was cited by Phelps and Mushlin as one
piece of evidence for “the (near) equivalence of cost-effectiveness and cost-benefit analysis” (but
was not suggested by them for practical application in economic evaluation).”

One particularly important distinction stands out between the NHB approach and CBA. To
many analysts and decision makers, the most troubling feature of CBA is that it values changes
in health based on people’s willingness to pay for those changes, the result being that CBA-based
allocations of health care resources are unlikely to be independent of the distribution of wealth.
The ethical implications of such an approach to resource allocation are troubling to many (though
certainly not all) people, and this is one of the principal reasons (in addition to the practical issue
of how to estimate willingness-to-pay values) that most economic evaluations of health
interventions are currently conducted in the framework of CEA rather than CBA. By retaining
from CEA the principle (or assumption) that all QALYs are valued equally from the societal
perspective, the NHB approach is less likely than CBA to meet with resistance on ethical
grounds. In addition, by expressing results in units of health rather than money, the NHB
approach may appeal to people’s sense that the emphasis in discussions of health care resource
allocation should be on human life and health rather than on money; to some, this simple
difference in framing (though mathematically irrelevant) may signal information regarding the
priorities of those involved in health policy research.

The above points notwithstanding, a strong case can still be made for using CBA. Whereas
the theoretical foundations of CEA are still being debated,” *' CBA is firmly grounded in the
theory of welfare economics.’> Moreover, while some are disturbed by what they regard as
inherent ethical problems in the use of willingness-to-pay information for valuing health benefits,
others have raised questions about the reasoning behind these concerns.”> The NHB approach

does not attempt to resolve this issue, which is beyond the scope of the present paper. Although
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NHB is in some ways analogous to the outcome measure employed in CBA, the underlying

assumptions of NHB analysis are, for better or for worse, those of CEA.

Discussion

The result of any economic evaluation could be expressed as a net health benefit rather than
a C/E ratio. However, because C/E ratios are so commonly reported and widely accepted as an
analytic tool for informing resource allocation decisions, we have focused here on the use of
NHBs for those situations in which the analysis of C/E ratios is problematic. In particular, the
NHB approach may be most helpful when analyzing the uncertainty around a C/E ratio estimate
for which the joint distribution of incremental costs and incremental health effects extends
significantly into more than one quadrant of the AE-AC plane, or when multiple comparators are
being evaluated simultaneously. The use of NHBs in these situations permits one to obtain
unambiguous, unbiased estimates of the distribution of possible consequences (measured in units
of health) of the decision to invest or not invest in a particular program. Moreover, this
information can be reasonably approximated using simple parametric statistical techniques (as
long as the sample size is not forbiddingly small), and the results convey valuable information

about the opportunity costs associated with health resource allocation decisions.
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