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ABSTRACT

We develop regression-based tests of hypotheses about out of sample

prediction errors. Representative tests include ones for zero mean and zero

correlation between a prediction error and a vector of predictors. The

relevant environments are ones in which predictions depend on estimated

parameters. We show that standard regression statistics generally fail to

account for error introduced by estimation of these parameters. We propose

computationally convenient test statistics that properly account for such

error. Simulations indicate that the procedures can work well in samples of

size typically available, although there sometimes are substantial size

distortions.
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1. Introduction

In this paper, we develop and simulate regression tests for properties of

out of sample prediction errors. Examples of such properties are: zero mean,

zero serial correlation (if the prediction is one-step ahead), zero correlation

with the prediction, and zero correlation with the prediction from another,

non-nested model. Empirical papers that examine these or related properties

include Mincer and Zarnowitz (1969),  Nelson (19721,  Howrey et al. (19741,

Berger and Krane (1985),  Meese and Rogoff (1983, 19881, Akgiray (19891, Diebold

and Nason (1990), Fair and Shiller (1990), Pagan and Schwert (1990), West and

Cho (1995) and some of the participants in the Makridakis (1982) competition.

If the predictions do not depend on estimated parameters, it follows from

Diebold  and Mariano  (1996) that under mild conditions standard regression

statistics may be used. For zero  serial correlation in one step ahead

prediction errors, for example, one can simply regress the period t+l

prediction error on the period t prediction error, and use a standard t-test to

test the null that the coefficient is zero.

But if the predictions do depend on estimated parameters, the results of

Diebold  and Mariano  (1996) need not apply. The usual tests do account for

uncertainty that would be present if (counterfactually) the underlying

parameter vector were known rather than estimated, but ignore uncertainty

resulting from error in estimation of that parameter vector. Using a

conventional set of assumptions, we establish conditions under which this

second type of uncertainty is asymptotically negligible, thereby validating the

Diebold  and Mariano  (1996) procedure. More importantly, we show that such

uncertainty sometimes is asymptotically non-negligible, and then suggest

computationally convenient ways to obtain test statistics that account for both

types of uncertainty. Simulations indicate that failure to account for the

second type of uncertainty sometimes results in poorly sized hypothesis tests,

while our own adjusted tests usually but not always yield more accurately sized

tests.

A vast literature has considered predictive accuracy. A distinguishing

element of our work is explicit consideration of the role of estimation of

parameters needed for prediction. We focus on test statistics produced by
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regression packages. These have appeared in a number of applied papers (e.g.,

Fair and Shiller (1990))‘ Pagan and Schwert (1990)), and, we hope, may appear

in still more papers upon development of techniques such as those proposed

here.l We build on earlier work (especially West (1996)) not only by

developing computationally convenient procedures, but also by allowing

additional sampling schemes (additional ways of dividing available data into

estimation and prediction components), relaxing certain technical conditions

that implicitly ruled out certain important tests (including zero correlation

between a prediction error and a prediction), and supplying new simulation

evidence.

Section 2 of the paper describes the environment. Sections 3 and 4

present technical assumptions and basic asymptotic results. Section 5 presents

our computationally convenient adjustments to standard regression statistics.

Sections 6 and 7 specialize sections 3-5 to consider some common tests, when

the underlying models are linear and exactly identified. Section 8 presents

simulation evidence. Section 9 concludes. The Appendix presents proofs. An

additional appendix available on request from the authors presents details of

proofs and simulation results omitted from the paper to save space.

2. Description of Environment

Let 721 be the prediction horizon of interest. There are P Eredictions

in all, which rely on estimates  of a (kxl) unknown parameter vector /3'. To

avoid certain singularities we assume ks0 and merely note that our results

specialize in the obvious way when regression estimates  are not required to

make predictions.

The first prediction uses data from period R or earlier to predict a

period R+T event, the second from period R+l or earlier to predict a period

R+l+r  event, . . . . the last from period R+P-l=T  or earlier to predict a period

T+T event. The total sample size is R+P-l+r  = T+T:

I

Observation: 1

I - I II - I

R R+T R+P-l=T  T+r
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In estimating fl', three different schemes to use available data are

prominent in the forecasting literature. We consider the three explicitly

because results vary for the three. The first scheme, which we call recursive,

was used by, for example, Fair and Shiller (1990). This scheme uses all

available data, estimating ~3' first with data from 1 to R, next with data from

1 to R+l,  . . . , and finally with data from 1 to T. The second scheme, which we

call rollinq, was used by, for example, Akgiray (1989). This scheme fixes the

sample size, say at R, and drops distant observations as recent ones are added.

Thus, p' is estimated first with data from 1 to R, next with data from 2 to

R+l,  . . . , and finally with data from P to T. The third and final scheme,

which we call fixed, was used by, for example, Pagan and Schwert (1990). This

scheme estimates /3' just once, say on data from 1 to R, and uses the estimate

in forming all P predictions; data realized subsequent to R are, however, used

in forming predictions, as described in the previous paragraph and below.

For t=R,... ,T, let 2, be the regression vector used for prediction when

data from period t and earlier are used. In the least squares model

yt=X,' P'+u, 8 for example, 2, is estimated using

(2.1) data from 1 to t in the recursive scheme, &= (Et x x ' ) -?c~.lx,y,,S-1 8 s

data from t-R+1  to t in the rolling scheme, k= (~LR+lXs%'  ) ‘lc&R+lXsYsr

data from 1 to R in the fixed scheme, &= e:&x,'  1 -l~:,,x,y,~

Note that for the fixed scheme, 2, is the same for all t, and depends only on R

and not t, while in the recursive and fixed scheme a different regression

estimate is used for each t. As well, for the rolling and fixed schemes, IL

should properly be subscripted >t,R; the dependence on R is suppressed for

notational simplicity. The asymptotic approximation assumes that both P and R

are large (formally, P,R --, w), with T fixed.

One is interested in the relationship between a scalar prediction error

and a vector of variables--say, whether the prediction error is correlated with

the vector of variables. As illustrated in example 2 below, we can limit the

formal discussion to prediction errors and still yield results applicable to

inference about predictions as well; given the linearity of the procedures we
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analyze, results for predictions ( = observed data point - prediction error)

follow immediately. We limit the formal analysis to a scalar dependent

variable to economize on notation; we comment occasionally on vector

generalizations of our results.

Let vt+, (0') sttr be the scalar prediction error of interest, with v,,,($,)  3
A A A
V t.t+r (v t+1  = vt,t+l)the  corresponding random variable evaluated at 2,. As the

dating suggests, v~+~ typically relies on data realized in period t+T. One is

interested in the linear relationship between vt+, and a vector function of

period t data. Let 4t+l (P') =g,+, denote this (Pxl) vector function, with g,+,(;,)

= &+1 the sample counterpart evaluated at 2,. In most applications P is

small, say P=l or P=2. Here, g,+, (8') depends on data observed in period t and

earlier; the dating convention is used because g,+, often depends on the

predetermined variables available at time t+I. See the examples below.

The aim is to use a least squares regression to test the null hypothesis

that Ev g -0.t+r t+1- The obvious regression is one of hVt,t+, on Gt+l for

t=R, . . . . R+P-1, obtaining

(2.2) R.t+r = Gt+,# 2 + “;,+,t 2. = (&t+l$t+l# 1 -l&t+l:t,t+T,  ;,+, = hVt.t+r-;;t+lt  2.

One then uses the estimate  of 2 and a suitable variance-covariance matrix to

test the null.

To illustrate, here are four examples, illustrated with the simple zero

mean AR(l) model Y~=/~'Y~.~+u~, lfl'\<l.

1. Mean prediction error. Here, g,+,=l is a scalar. If Vt+r is a T step ahead

forecast error in the AR(l) model, then St,t+7=yt+, -kYt.

2. Efficiency. Here, one regresses yt+r on the period t prediction (=z;y,, in

the AR(l) model) and perhaps a constant and other possible predictors as well.

The null is that the coefficient on the prediction is unity, on any other

included variables is zero. To analyze this regression using our framework,

which presumes that the dependent variable is a prediction error, note that if

one uses the prediction error (=yt+,- &Yt in the AR(l) model) as the dependent

variable the regression results are algebraically identical to those with yt+7

on the left hand side, except that the estimated coefficient on the prediction
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will be smaller by unity. Hence, for say T=l, if g,,, is (2x1) and includes a

constant term as well as ijtyt,
A

H, is rr=(O,O)'. Note the dating convention: g

is dated t+l, but depends on yt, the regressor available for prediction at time

t+1.

3. Encomoassinq. Here, v~+~ is a one step ahead forecast error from a

putatively encompassing model. The right hand side variable Gt+L is the scalar

prediction from a putatively encompassed model, and the null is cr=O. More

generally, the right hand side might include a constant in which case $t+l and

CY are (2x1) and the null is cy=(O,O)'.

4. Serial correlation. If Vt+1 is the 1 step ahead forecast error in a model

presumed to have serially uncorrelated errors (=u~+~  in the AR(l) model), then
A

9t+1=vt is the previous period's forecast error. So Q is a scalar, o an

estimate  of the first order serial correlation coefficient, and H, is CY=O.~

One of our major  aims  is to develop computationally convenient

procedures, which in our regression context means using standard errors

produced by standard computer programs, or perhaps simple adjustments to those

standard errors. As we shall see, conventional test statistics are not always

asymptotically valid, even when ~=l and v~+~=~~+~(P')  is a zero mean iid variable

that is independent of gt+l=gt+l(P*)  . The reason is that in some applications,

two sources of uncertainty affect asymptotic inference about (Y. The first is

uncertainty that would be present even if (counterfactually) p* were known and

one could regress vttr on g,+,. The second results from use of $, rather than

the unknown p'. According to our asymptotic approximation, standard regression

statistics properly account for the first source of uncertainty but not

necessarily the second. We show below that in some important examples,

properly accounting for both sorts of uncertainty requires merely resealing the

least squares variance-covariance matrix by a certain function of P/R.

When such a simple adjustment does not suffice, one can sometimes  obtain

asymptotically valid test statistics by auqmentinq the regression (2.2) with a

judiciously chosen set of variables $2t+l. In this case, one runs the

regression
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(2.3) ^v,,,+,  = $t+I'~  + $It+l'~, + disturbance = $t+ltz + disturbance,

where  $ 2t+l is a (rxl) set of extra variables included so that conventionally

computed hypothesis tests on cy are correctly sized accordingly to our

asymptotic theory; $ = (&+IJr$2t+lT is (P+r)xl; g,+, = &+,(p*)  =

(9,+, (0') ' t92,+,  (P') ‘ 1 ' = (9t+1' ,92t+1’ )' and G are also (Q+r) xl.

3. Assumptions

This section presents assumptions relevant for the basic regression

( 2 . 2 ) ; section 5 will present an extension for analysis of the augmented

regression (2.3). Our assumptions are "high level"  ones. We use relatively

abstract assumptions for two reasons. First, they allow us or others to verify

that our results apply to tests and models other the ones we consider in detail

in sections 6 and 7 below. Second, they can be presented compactly. In the

interest of concision and clarity, we also do not attempt to state each theorem

using a minimal set of assumptions. For example, a weaker version of

assumption 3 applies in applications with parametric covariance matrix

estimators.

Some notation: for any differentiable function n,:R" + R" and for x in the

domain of n,, axtit denotes the (sxm) matrix of partial derivatives of n,; for any

function n, whose domain is in Rk, ntB 3 at(p*);
afi

for any matrix A = [aijl, let

I Al I I= maxi,jIaij,; summations of variables indexed by t or t+T run from t=R to

t=T=R+P-1: for any variable x, Xx(t) = xT*Rx(t),  &+r = CT xt-R t+r; summations of

variables indexed by s run from (a)1 to t, for the recursive scheme, (b)t-R+l

to t, for the rolling scheme, (c)l to R, for the fixed scheme: for any variable

x, (a)Ex,  = XiX1x,  (recursive), (b)Cx, = E:=t.R+l~s (rolling), (c)X,x,  = CR xs-1 B

(fixed). Finally, let

(3.1) f,+,(P')  = g,+,(P')v,+,(P*) , ft+,,o = =*,(P*) I
w

F = Ef,,,,,.

Here, ft+,:Rk  -P R'; the (exk) matrix F is not subscripted by t in accordance with

a stationarity assumption about to be made.

Assumption 1: (a)In some neighborhood N around p', and with probability I, v,(p)
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and St(p) are measurable and twice continuously differentiable; (b)Ev,+,g,+, = 0;

(c)Ev,vtB  = 0; (d)Evt+rgt+l,B  = 0; (e)Egtgt'  is of rank !.

Assumption 2: The estimate 3, satisfies 2,-p*  = B(t)H(t),  where B(t) is (kxq)

and H(t) is (qxl), with (a)B(t) "2' B, B a matrix of rank k; (b)H(t)=t-lE,h,(p')

(recursive) or H(t)=R-lE,h,(p')  (rolling or fixed) for a (qxl) orthogonality

condition h,(P');  (c)Eh,(P')=O; (d)in the neighborhood N of assumption 1, h, is

measurable and continuously differentiable.

Assumption 3: In the neighborhood N of Assumption 1, there is a constant DCCO

such that for all t, sup BtN /av,(p)/apap'  1 < m, for a measurable m, for which

E$<D. The same holds when v, is replaced by an arbitrary element of g,.

Assumption 4: Let wt = (vtB' ,vec(gtB)  ' ,v,,g,' ,h,') ' . (a)For some d>l,

sup t Ell~,II'~<rn,  where 11 . II denotes Euclidean norm. (b)w, is strong mixing, with

mixing coefficients of size -3d/(d-1). (c)w, is fourth order stationary.

(d)Let Pff(j)=Eftf,.j',  S,,=C~J',,(j)  . Then S,, is p.d..

Assumption 5: R,P + a, as T+zo, and lim T- E = K, (a)Os7rrm  for recursive (~T=CO

<==> lim T- f = 0), (b)Orrcm  for rolling and fixed.

Note that from assumptions l(b) and l(d),

Ef,=O, F=Eg,+,  (+) .

In allowing not only for recursive but also rolling and fixed sampling

schemes, assumptions 2-5 generalize similar assumptions in West (1996), where

some discussion of the assumptions may be found. To illustrate briefly here:

The moment conditions in assumptions 3 and 4 rule out unit autoregressive

roots, but otherwise do not seem restrictive. Assumption 2 allows standard

estimation techniques, including GMM and maximum likelihood. In the AR(l)

model of section 2, for example, B=(Ey:.,)-l,  hs=ya.lus. Assumption 5 says that

both P and R are large; in particular, they are large relative to the forecast

horizon T.

Throughout, we maintain assumptions l-5.

4. Basic Asymptotic Results

Let
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(4.1) P,,(j) = Ef,&_,',  S,,=Z:jlJ,,(j),  r,(j) = Eh,h,-,', Shh=Cj).Jhh(j),  V, = BS,B'.

V, is the asymptotic variance-covariance matrix of T'/2(2T-fi*).

Define A,,, A, and X = 1-2&,+X,, all of which are scalar functions of TI =

lim Ta E, as follows:

(4.2) Sampling scheme x fh Lh x

recursive l-r-lln(l+a) 2 [l-n-lln(l+a) 1 1

rolling, 7151 ?r 712
2 =-2-

l-f2

rolling, as1 l- 1 2
2r

l- 1
371 3lr

fixed 0 71 l+?r

A
Lemma 4.1: (a) P-1/2E$t+lvt  t+r= p-1'2x9t+lvt+, + FB[P-"2CH(t)]  + o,(l) .

(b) Pm1'2Xgt+lvt+r  -A N(O,S,,)  .

(c)E[P-lEH(t)EH(t) '1 + X,S,, EIP-lEgt+lvt+,CH(t)  'I --, h,,S,,.

The results for the recursive scheme follow from West (1996), and are repeated

here for completeness. The results for the rolling and fixed schemes are new.

h
Lemma 4.2: P-'/'E$,+,v,  t+r -A N(O,Q), where R is the (k'x!) matrix

(4.3) R = S,, + X,,(FBS,,' + S,,B'F')  + X,FVBF'.

Lemma 4.3: P~'E$~,,,~,+,'  +p Eg,g,'.

Theorem 4.1: Let 2 be the least squares estimator of ff (=0) . Then P1j2$ -A

N(O,W, V = (Eg,g,') %(Eg,g,')  -l.

For inference, an estimate of V is required. To discuss this, we

introduce some more notation.
A A

Let ;t+r = vt,t+,-9t+l'
A
a be the least squares

regression residual,
h
u the usual scalar estimate of the standard error of the

regression disturbance, and c,,(j) the (PxP) j'th sample autocovariance of
h A
9 tr111 tt, :

(4.4) G2 = (P-c)-lE;:+,  = (P-P)-'~(~,,,,.-~,,,'$2,
A
ret (j 1 E p-'~:*,+j [ (;t+~Gt+~)  ($t+l.jGt+T-j)  ‘ 1  f o r  j20,

G,,(j) = ?,,(-j)' for j<O.
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Theorem 4.2: (a):2 *p o2 = Ev:, ~2(~-1~~,+,$,+,')-1  3 a2(Egtg,')-l,

(b) ?,,(j)  +p r,,(j), (P-lGt+l~t+l~ I-+,, (0) (P-lE&+l&rl~  ) -l jp

(Eg,g, ' ) -'rff  ( 0 ) ( Eg,g,  ' 1 -' .

(c)Let K(x) be a kernel such that for all x, [K(x) / s 1, K(x)=K(-x),  K(O)=l,

K(x) is continuous for all x, and k,IK(x)  Idxcm. For some bandwidth M and some

constant a, Ocac1/2,  suppose M+O and, M
Pa

if ~=m,
R"
-0. Then S,, =

E~;!p+lK(j/M)?ff(j)  jp S,,, and (PmlC$t+l~t+lr  ) -'~,,  (P~'C~t,l~,+l' 1 -' -Q

(Eg,g,’ ) -%,, (Eg,g,' 1 -'.

Note that Theorem 4.2 assumes that the least squares residual qt+, is used in

estimating 22 and i?,,(j). Since cr=O the asymptotic results are unchanged if one

replaces qt+, with the left hand side variable <t,t+r; our formal analysis and

our simulation results below both use G,+, because that is what will be used by

standard computer programs.

Part (a) of Theorem 4.2 considers the textbook estimator of the least

squares covariance matrix, part (b) a heteroskedasticity consistent estimator

that is sometimes referred to as the White (1980) covariance matrix estimator.

In part (c), a nonparametric estimator is described, under conditions similar

to those in Andrews (1991) or Newey and West (1994). So one can use kernels

such as the Bartlett, in which c,, = ?,,(O)+E~=,[(l-A)  [?,,(j)+?,,(j)']  with M + CO

at a suitable rate, or the Quadratic Spectral. From part (b), if r,,(j)=0 for

j>J, as will typically be the case, another estimator that is consistent for S,,

is the truncated estimator; here, 2 ff = ~rr(0)+~J;:[~,,(j)+~,,(j)'l.

Theorem 4.2 says that some sample moments are consistent for the

analogous population moments. But inspection of Theorem 4.1 indicates that use

of these estimators may not produce a consistent estimate of V. To illustrate,

consider a simple setup in which ~=l and v~+~ is i.i.d. and independent of

current and past g,+,. Then E (vt+l 1 gt+llvt,gt, v,.,, . . . ) =O, E (v:+lgt+lgt+l'  1 =

Ev:+,Egt+,gt+,'  = St,. The least squares estimator of the regression covariance

matrix is ~2(P~1E~t+l~t+l'  )-l. From Theorem 4.2, this estimator converges in

probability to a'(Eg,g,')-1  = Ev:(Eg,g,')-'. From Lemma 4.1(b) and the proof of

Lemma 4.3, this is the covariance matrix that is applicable in the
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counterfactual case in which /3' is known, and one regresses v,,,(p')  on gt+l(J3').

But since p' is not known, we see from Theorem 4.2 that the asymptotic variance

of P"'$ is not Ev: (Eg,g,') -' but (Eg,g,') -%(Eg,g,  1 -' =

Ev:(Eg,g,')  -' + { (Eg,g,') -l[X,h(FBS,,' +S,,B'F')  + X,FV,F'] (Eg,g,') -'} . The additional

terms in braces are ones that result from uncertainty about p'. In this

example and more generally, use of the usual regression formulas may result in

asymptotically invalid tests.

If these formulas are instead to result in asymptotically valid tests, we

must have S,, = R. This condition implies that the asymptotic distribution of
h
cy does not depend on uncertainty about 8': the distribution of P112G is

identical to that of the estimator obtained by regressing v,+,(p')  on g,+,(p')  in

the hypothetical case in which /3' is known. Two simple conditions are

sufficient to imply S,,=R. One is F = E$$(P*) = E[g,+,(@')$~+~(p*)]  = 0. This

is essentially a condition that there is block diagonality in the asymptotic

variance-covariance matrix for the estimators of /3' and Eft+r=Egt+lvt+r. This

conditions occasionally applies in practice, for example in testing for first

order serial correlation with strictly exogenous predictors. But since such

examples are uncommon, we do not further discuss this condition.'

A second condition sufficient for R=S,, is n=lim  =- E = 0, because this

implies X,,=X,,=O. When K=O, the limiting ratio of the size of the prediction

sample to that of the regression sample is zero. As noted informally by Chong

and Hendry (1986) in the context of encompassing tests, one can then act as if

P' is known. The practical implication is that if P/R is small, it may be safe

to use the usual regression statistics. How small  P/R must be depends on the

data and the tests; in our simple Monte Carlo experiment, the lowest value of

P/R was . 25, and that was not sufficiently small to always  make it harmless to

ignore error in estimation of 0'.

The next section discusses ways to obtain asymptotically valid test

statistics, even when S,,&.

5. Obtaininq Asymptotically Valid Test Statistics

Throughout this section, we assume that we have an estimator of S,, that
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satisfies $,, +p S,,. Theorem 4.2 describes how to obtain such an estimator.

In addition, for X=X(r) defined in (4.2),  define

? = A(;),  &P/R

A
For the recursive scheme, X=1 for all K, for the fixed scheme ?=l+i, and so

on. Clearly, t -B A.

Corollary 5.1: Suppose that

(5.1) s,, = -$(FBS,,' + S,,B'F')  = FVBF' .

Then ? (P-lZ$t+l$t+l' ) -l-&fWZ:$t+l&+l~  ) -I' +p V = X(Egtg,')-'S,,(Eg,gt')-l,  where P1j2G

-,A N(O,V) .

Condition (5.1) implies that R (defined in (4.3)) is equal to AS,,, and

Corollary 5.1 then follows directly from Theorem 4.1. Condition (5.1) might

seem unlikely. But in fact, as detailed below, in certain linear models it

holds for tests for: (1)mean  prediction error and for efficiency, under general

conditions, and (2)tests  for encompassing and zero first order serial

correlation when the sampling scheme is recursive and the forecast error is

conditionally homoskedastic.

Upon comparing Corollary 5.1 and Lemma 4.1(b), we see that when the

conditions of Corollary 5.1 hold, uncertainty about p' simply introduces a

factor of A into the asymptotic variance of P1j2G. For the recursive sampling

scheme, A E 1, so error in estimation of fi' is asymptotically irrelevant: the

variance of such estimation error (=X,FVBF') is exactly offset by

-h,,(FBS,,'+S,,B'F'), which is the covariance between (1)such  error, and (2)error

that would be present even if (counterfactually) /3' were known. For the fixed

scheme, A>l, so failure to adjust will result asymptotically in t- and

chi-squared statistics that are too small and thus in too many rejections at

any specified significance level. For the rolling scheme, Acl, so failure to

adjust will result asymptotically in too few rejections at any specified

significance level. Further, in any finite sample, the adjustment by ? by

construction increases t- and chi-squared statistics for the fixed scheme,
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decreases them for the rolling scheme.

When condition (5.1) does not hold, uncertainty about /3* usually results

in greater complications. To handle these, we propose the augmented regression

(2.X), which we repeat here for convenience:

(2 .3) ^vt,t+T  = ;,+,’ (Y + $,,+,'cy,  + disturbance = et' CY, + disturbance,

Theorem 5.1: Let i,+,(p')  = (gt+lf 8 92,+1’ )' for a (rxl) vector g2t+l defined as

either (a)g,,+,  = ~t+rCp*l  (==>r=k) or (b)g,,,,=Z,+, for a vector of variables Z,,,

that satisfies tit+,ap (8') = G2(P*)Zt+1, G,(P') a (kxr) nonstochastic matrix. Define

ft+, = &+1vt+, . Suppose that for one of the definitions of g2t+l, assumptions 1,

2 and 4 are satisfied when f,,, and Gt+l replace f,,, and g,+,. Continue to

maintain assumptions 3 and 5 as well. Let S;; and Syh be defined as in

equation (4.1), F as in equation (3.2), with f,,, replacing ft+,. Let R = S;; +

&(FBS$
- u

+ S;,B'F')  + X,FVBF' . Let $ = (C$t,l$t+l~ 1 -l&+lhv t,t+r) be the result

of a regression of Z,,,,,  on $t+l, with 2 the first P elements of 2. Then P'/'$

-,, N(O,V), V the (PxP) matrix in the upper left hand corner of

(E:,&')  -'S-;;(E;,;,')  -l.

For in-sample tests, similar augmentation is proposed by Pagan and Hall (1983),

Davidson and MacKinnon  (1984, 1989), and Wooldridge (1990, 1991).

Theorem 5.1 states that conventional regression output can be used. From

Theorem 4.2, conventional regression programs consistently estimate SE. So,

for example, if ~=l and v~+~ is a textbook error--conditionally homoskedastic

and serially uncorrelated--for inference one can use the k’xk’ matrix in the

upper left hand corner of $2(P-1Z$t+l$t+ll)-1,
A
u the usual least squares estimate

of the standard error of the regression disturbance that is defined in Theorem

4.2(a). More generally, if T>1 or there is conditional heteroskedasticity,

heteroskedasticity and autocorrelation consistent covariance matrix estimators

may be used.

It should be noted that one of the assumptions of the theorem, that

E&s, ' is of full rank (this is assumption l(e)) is not always innocuous. With

tests of mean prediction error or of efficiency in linear models, for example,
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the rank condition will fail for either definition of 9,. For these tests, the

computationally convenient test that we propose is the one described in

Corollary 5.1.

On the other hand, the condition typically is satisfied in tests for zero

serial correlation of one step ahead prediction errors and for encompassing

tests. For univariate ARMA models, one will augment with av,,,/a@  evaluated at

2tt for linear simultaneous equations models with the vector of predetermined

variables.

To prevent confusion, we emphasize that Theorem 5.1 does not say that one

can use the usual regression output for inference about (Y,, the coefficients on

92t+1 f It is true that 2 2 converges in probability to zero. But in general the

usual regression output will not consistently estimate the asymptotic

variance-covariance matrix, as discussed in section 4.

6. Four common tests

In this section and the next, we consider the four common tests listed

section 2: mean prediction error, efficiency, first order serial correlation,

in

and encompassing. For conciseness and clarity, we limit our formal statements

to one step ahead prediction errors (~=l) in a model estimated by least

squares. We comment in section 7 on generalizations to predictions from the

reduced form of linear simultaneous equations models or from univariate ARMA

models, and to multiperiod predictions. This section lays out the setup. The

next section presents results.

The model is

(6.1) yt = x,'p' + vt,

where yr and v, are scalars, x, and /3' are (kxl). The sample counterpart of v~+~

is computed as

(6.2)  ^v,+, = Yt+1 -xt+1 Gt.

For the encompassing test, we need to describe as well the encompassed

model. This will require redefining p'. Model "1" is the encompassing model,
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s2U the encompassed model. Let p'= (&',P;') ', where /3f is (k,xl),  k=k,+k,,  with

the model i prediction dependent only on /!I:. Let x2t be the vector of

predetermined variables in model 2, Y~=x~~'P;+v~~. The null is that vt+l is

uncorrelated with x~~+~'&, the forecast from model 2.

Along with Assumption 5 (i.e., P-no, R-xo),  we assume

Assumption (*): (a)x, includes a constant.

(b)E(vt;xt,xt.lr..  .rvt.lrvt.,,  . . . )=O (for the encompassing test,

E(vt~xt,~2tr~t.lr~2t.l,  . . .rvt.lrv~t-1,~,.,,~2t-2..  .)=O)  .

(c)For g, and 9, defined in Table 1, Eg:>O and E&&' is of full rank.

(d)Let h,(P') = x,v, (for the encompassing test, h, =(x~'v~,x~~'v~~)  ') . The

estimate pt satisfies 2,-p' = B(t)H(t), where B(t) is (kxk) and H(t) is (kxl),

with B(t) and H(t) defined as follows. (i)B(t) = (t-lEsx,x,')-l (recursive) ,

B(~)=(R-'E,x,x,')~~  (rolling or fixed) . For the encompassing test, B(t) is block

diagonal with analogously defined Bi(t) on the diagonals. (ii)H(t) =t-'E,h,(P')

(recursive) or H(t)=R-'E,h,(p')  (rolling or fixed). (iii)EvEsO, and Ex,x,' and

Ex,x,'v:  are positive definite (for the encompassing test, the same holds for

model 2).

(e) (i)Let w, = (xtV,vt)'.  For some dsl, sup t E~~w,(I~~<oJ.  (ii)w, is strong mixing,

with mixing coefficients of size -3d/(d-1). (iii)w,  is fourth order

stationary. For the encompassing test, the same holds for ~~=(x~',v~,x~~',v~~)'.

The rTlow  level" assumption (*) may be shown to imply the "high level"

assumptions l-4, as well as the validity of the null hypotheses of zero mean

prediction error, zero serial correlation, etc. As well, part (c) of

assumption (*) follows from the other parts for mean prediction error and

serial correlation; as long as p'#O part (c) follows as well for efficiency.

For encompassing tests, part (c) follows from the mild additional condition

that the prediction from the encompassed model not lie in the linear span of

the regressors from the encompassing mode1.4

7. Obtaininq Reqression-Based Test Statistics for the Four Common Tests

Column (2) of Table 1 lists the scalar right hand side variable in the
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simplest version of these tests.

Theorem 7.1: (a)For g, defined as in one of the rows of Table 1, let 2 =

(x$:+,)  -l(Gt+lCt+l)  .

(i)For mean prediction error or efficiency, P1j2$ -A N(O,V),  V=A(Eg:)-2Ev~g~.

(ii)Let the sampling scheme be recursive, and suppose that the underlying

disturbance vt is conditionally homoskedastic, E(v:ix,)  = EVE (for encompassing,

assume E(v:Ixt,xZt)=Ev:  and E(v&Ix,,x,,)=Evz,) . Then for any one of the four tests

in the table, P112$ Ifi N(O,V),  V = a'(Eg:)-', &Ev;.

(b)For encompassing or first order serial correlation, augment the regression

as indicated in Table 1, and regress G,,, on $t+l and $2t+1. Let 2 be the first

element of the resulting coefficient vector. Then P1l2$ -A N(O,V),  V the (1,l)
-..d

element in (Ei,:,'  )-lEv&gt'  (Eg,g,' ) -I.

Table 2 summarizes when and how to adjust.

Comments:

1. In part a(i), asymptotically valid test statistics require scaling the usual

covariance matrix by 2 (which means no adjustment for the recursive scheme,

for which ?=l). In parts a(ii) and b, no special adjustment is needed.

2. For the recursive scheme, the difference between the assumptions in a(i) and

a(ii)  is that a(i) allows conditional heteroskedasticity of the prediction

error, a(ii) does not. The covariance matrix in part (i) reduces to that in

part (ii) if there is no conditional heteroskedasticity. If there is

conditional heteroskedasticity, tests for encompassing and first order serial

correlation will be mis-sized if the inference is based on the covariance

matrix given in part a(i).

3. While not stated formally, the results in part (a) continue to apply when a

constant is included in the regression. Valid t- and chi-squared tests require

merely resealing  the usual covariance matrix.

4. For mean prediction error, the formula for V in part (a)(i) simplifies to

AEv:. For encompassing and serial correlation, under conditional

homoskedasticity the formula for V in part(b) reduces to EvE(EG,~,')-~.

5. Zero mean prediction error seems to be the only one of these tests that is



16

often done for multistep horizons (e.g., Meese and Rogoff (1983)). For a

reduced form which is a first order VAR, we have established that the results

in part (a) still apply, with XC~;~r+lE~t~t-j  replacing XEv: as the asymptotic

variance covariance matrix.

6. A vector of sample mean prediction errors is also asymptotically normal with

the variance-covariance matrix being the usual one, multiplied by X.

7. Suppose that p' is estimated from the structural equations of a linear

simultaneous equations model, with the reduced form used for predictions and

prediction errors. Under some additional conditions, the results in Theorem

7.1 still obtain.

8. Suppose predictions are made from a univariate ARMA model that is estimated

by non-linear least squares or an asymptotically equivalent technique. Then

condition (5.1) (which underlies Theorem 7.1(a)) continues to hold for mean

prediction error. So under suitable conditions the result in Theorem 7.1(a)

will continue to hold as we11.5

8. Monte Carlo Evidence

Here we present a simple Monte Carlo experiment. Our aim is to get a feel

for whether our proposed adjustments to the usual least squares statistics are

likely to be useful in practice, and, more generally, whether our asymptotic

approximation might yield well-sized test statistics. It turns out that while

our approximation does usually work well, the rolling sampling scheme does

sometimes require unusually large samples sizes to generate accurate test

statistics.

The experiment we present involved 5000 repetitions. Each repetition

required generating 201 data points (200 excluding an initial condition).

(Some additional experiments reported briefly in Table 6 and in detail in the

additional appendix involved 1000 repetitions of samples of size 1601.) Each

of these 5000 artificial samples of size 200 and were split into 15 different

regression (R) and prediction (P) samples. The values of P and R were: R=25,

P=25,50,100,150,175; R=50,P=25,50,100,150;  R=lOO,P=25,50,100;  R=150,  P=25,50;

R=175, P=25--15  combinations in all. This range for P/R (from l/7 to 7), as
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well as the values of T=P+R-1, seem broad enough to include most relevant

empirical work. For a given (P,R)  pair, the (Pxl) vector of prediction errors

used on the left hand side of the regression tests was {v~+~}, t=R, . . ..R+P-1.
A

For each pair of R and P, the first R+P observations of each sample of

size 200 were used. So R=SO/P=lOO  and R=lOO/P=SO,  for example, used the same

150 observations, but began the out of sample exercise at different points.

This means, for example, that for the recursive scheme the 50 prediction errors

used in R=lOO/P=50  sample were identical to the last 50 in the R=50/P=lOO

sample.

A recent literature has emphasized the inaccuracy of conventional

asymptotic approximations in some time series environments. Examples from our

own work include Newey and West (1994) and West and Wilcox (1996) . We suspect

that our out of sample procedures will also work poorly in such environments.

To give as clear as possible a sense for whether our procedures might work

well, we consider a data generating process and regression that to our

knowledge has in sample behavior that is reasonably well approximated by

conventional asymptotic theory. This process is a zero-mean AR(l) with i.i.d.

normal disturbances and an autoregressive parameter that is not close to the

unit circle,

(8.1) yt = /.?'y,.,  + vt, /3'=0.5,  vt - N(O,l)  .

In each of the 5000 samples, y0 was drawn from its unconditional N(0,(l-p'2)-1)

distribution, and yl,...,y200 were generated recursively using (8.1) and

pseudo-random draws of v,.

In each sample, and for each P and R, four hypothesis tests were

conducted for one step ahead (~=l)  predictions: mean prediction error,

efficiency, zero serial correlation, and encompassing. For the last test the

alternative model was yt = &.2 + Vet. This was estimated by least squares, so

fi~(Ey:~,)-~Ey,.,y,.  The introduction of the second lag meant that some regression

samples were 1 observation smaller than the "R" reported in the table.

We report tests of nominal size .05. Tests of nominal size .Ol and .lO

worked equally well, and tests with larger sample sizes worked better; see the
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additional appendix. All regression tests included a constant term, since

these typically would be included in practice. Apart from adjustment by a

factor of 1 in regressions in which our theory calls for such an adjustment,

the usual least squares covariance matrix was used--that is, we did not use a

heteroskedasticity consistent covariance matrix estimator.

Table 3A presents results for mean prediction error. Tests for the

recursive scheme work quite well, with nominal . 05 tests having actual sizes

between .046 and .057. Our approximation does not work as well for the rolling

and fixed schemes, although performance is perhaps tolerable for P/Rsl, and is

quite good for P/Rs.5.

Table 3B presents results when the least squares t-statistic is used,

without dividing as we suggest by &. Recall that by construction: (lIthe

rolling scheme must have lower actual size and the fixed scheme higher actual

size when our adjustment for error in estimation of p' is ignored; (2)the

adjustment is smaller the smaller is P/R. Panels A3 and B2 indicate that for

the fixed scheme, our adjustment improves the size for all P/R. The difference

is perhaps not large for small P/R (e.g., for P=25, R=lOO, our test statistic

yields a size of . 058, the unadjusted a size of .081),  but it is dramatic for

large P/R (for P=175, R=25, our test statistic has a size of .OPP vs. -523 for

the unadjusted test statistic).

For the rolling scheme, the comparison is not as clear-cut, since our

test statistic typically rejects too infrequently (actual size > .05) while the

unadjusted typically rejects too often (actual size < .05). While we do not

have a precise loss function for under- versus over-rejection, our own gut

feeling is that we would rather have a nominal . 05 test have a probability of

rejecting of say 7.4 percent (P=SO,  R=25, our test statistic) than of -3

percent (unadjusted test statistic), all other things equal. In this sense,

our test statistics perform better for the rolling scheme as well. But we

recognize that other researchers may have different loss functions, at least in

some applications.

Table 4 has the results for the efficiency test. For the recursive and

fixed schemes, our procedure seems to be a little more accurately sized than it
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was for mean prediction error. But for these two schemes the remarks made in

connection with Table 3 generally apply here as well.

The rolling scheme, however, performs quite poorly for P/R>l. In fact,

for P/R>l, the over-rejection is so extreme that failure to adjust generally

improves the test statistic. For example, for P=50, R=25, panel A2 indicates

that our procedure had an actual size of 43%, while panel Bl indicates that use

of the usual least squares test statistic yielded a size of 7.2%.

Tables 5 and 6 indicate that for the encompassing test and the test for

zero first order serial correlation, the Table 4 results apply qualitatitively:

For the recursive and the fixed schemes, our test statistics work adequately,

and dominate the unadjusted test statistic. But for the rolling scheme our

test statistic works poorly.

In Tables 4-6, the rolling scheme worked quite poorly for P/R>l. To see

how large a sample is required for tolerable accuracy of the asymptotic

approximation, we generated 1000 samples of size 1601; we report here certain

results with samples of size up to 1201 (full details are in the additional

appendix). We controlled the seed to the random number generator so that the

first 201 observations in each sample were the same as in Tables 3-6. We then

conducted the efficiency test for some larger sample sizes, holding P/R fixed

at 2 and at 4. The results are in Table 7. As may be seen, by the time the

sample size hits 1200, the result for P/R=2 is reasonably accurate (actual size

of .069), at least by the standards of Tables 3-6 and much other work on

hypothesis testing in time series models. For P/R = 4, however, substantial

mis-sizing still remains.

We conclude that our asymptotic approximation usually works reasonably

well, but that for the rolling sampling scheme relatively large sample size

sometimes are required.
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Footnotes

1. We hope our work will be useful even for the interpretation of completed

papers. With the exception of one paper that came  to our attention after this

paper was written (Hoffman and Pagan (1989) ), to our knowledge all such papers

have used standard regression statistics, without adjusting for dependence of

predictions on estimated parameters. We establish conditions for the

asymptotic validity of such statistics, and in some cases we are able to

propose adjustments for such dependence that can be made even without access to

the data. See sections 4, 5 and 7.

2. This test is most naturally run by regressing Y~+~- 2tYt
h

on yt- B t-lYt-1 -

Strictly speaking, our notation implies that Y~+~- 2 t-1Yt rather than Y~+~- Ztyt is

on the left: we assume that both left- and right-hand side variables are

constructed from the same estimate of p', and a rank condition presented below

rules out simply defining parameters so that the population parameter of

interest is 2x1 with a 2x1 period t estimate of ($,,z,.,)'. But this rank

condition is easily relaxed, and results may be generalized to allow the

natural version of this test. To economize on notation, we do not explicitly

do so in this paper.

3. See West (1996) and McCracken (1997) for further discussion of the

conditions under which F=O.

4. Note that this last condition rules out tests of nested (rather than

non-nested) models. Such tests are in Ashley et al. (1980) and Clark (1997).

An insightful referee has pointed out that some of our results do extend to

non-nested models; to conserve space, we do not consider such models here.

5. It is, however, possible to construct examples in which the results of

Theorem 7.1 fail. Let E, and u, be independent standard normals, v,=E$,,

x,=(Eq)+~,  with Ex,#O, where all variables are scalars. Let a regression model

be yr=x&+v,, with estimation by OLS. Then S,,=Ev: (=EE:Eu:)  , S,,=Ex,v:=Ex,Ev:,

S =Ex2v2hh t t, F=Ex,. This violates Theorem 7.1's assumption that there is a

constant term in the equation. Consider mean prediction error. Theorem 4.1

indicates that Pl/'$ E P-1'2C(yt+l-~t+l$t) is asymptotically normal with asymptotic

variance [Ev: - ~X,,E~,(EX:)-~EX,EV:  + X,,(Ex,)'(E$v:)  (EXE)  -21 . This does not reduce

to AEv;&S,~ since Ex,#O  and Egv: f ExzEv:.
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Appendix

Notation: 'lsupt" means ~~~~~~~~~~~~~ "var",  "cov" denote variance and

covariance; all limits are taken as the sample size T goes to infinity; the

summation "E" means 1tCT=R8'; For notational simplicity, we consider throughout

the case in which k=l and f=l, so that P*, g,+, and ft+,  are scalars, and we let

" f t*r,,w  (it) I' mean 81$++T(FC)  'I. To save space, proofs of Lemmas Al to A4 and

parts of other proofs are put in an Additional Appendix available on request

from the authors.

Lemma Al: Suppose 71~03.  For Osac.5: (a)sup,lPaH(t)  1 -Q 0; (b)sup,lP"(2,-fi*)  1 +p 0.

Lemma A2:(a) P-'L:{f,,,12  = O,(l),  (b) P-1CIf,+,,B!2  = O,(l), (c)For p, satisfying

Iik* I s [2,-p*l for t=R,...,T, P-'EIf,+,,8B(&)- 12 = O,(l).

Lemma A3: Let F,,(j) E PmlE:=,+j [ ($,+~^Vt,t+~)  ($t+l.jGt.j,t+r-j)  1 z

P~lZTt=n+,f,,,  C$,) ft+r.j  ($t.j)  . Then F,, Cj) -y, r,,(j).

Lemma A4: Under the assumptions of Theorem 4.2, and with cLf(j) defined as in

Lemma A3, 6,, = C~:!,+,K(j/M) F,f (j) -+,p  S,,.

Proof of Lemma 4.1: MFor the recursive scheme, this follows from Lemma 4.1 of

West (1996). The relatively simple argument for the fixed scheme is in the

Additional Appendix. For the rolling scheme, expand ft+,($t) around f,+,(p')  for

t=R, . . ..R+P-1. and sum the results, yielding

(AZ) P-1'2Eft+r(;t) = P-1'2Ef,+,  + P-1'2Ef,+,,,B  (t)H(t) + Pm1'2Ewt+,r

for wthr defined as in (Al). We have I P-1'2Ew,+,i  s

.5(P"4sUp,I~t-P*1)2(P~1~:fft+r,/ll(Pt)  I) +p 0 by Lemmas Al and A2. The second term in

(A2) can be written

Pm1'2FBEH  (t) + P-1'2E{F[B(t)-B]H(t)}  + P-1'2E[(f,+,,,-F)BH(t)]  +

P-1'2E{  (ft+r,8-F)  [B (t) -Bl H (t) }

and hence we need show that the last three terms in the above expression are

o,(l) f We will show the result for P-1'2C  [ (ft+r,8- F)BH(t)]; the others follow from

arguments similar to those for the recursive scheme (West (1996)).

For notational simplicity, let x, = (f,+,,B-F),  redefine Bh, as h,, and let

yj = Ex,h,.,. For P L R (the P > R case is similar) we have [EP-"'Ex,H(t)  i =
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(P"2/R)  1 yO+. . .+Y~.~  1 s (P/R) 1'2R-1'2C;10 1 yj 1 + o since r<oo and Ey_,,I~~)cm. Then since

it can be shown that assumption 4 bounds the fourth moments of (x,,ht)'  in such

a way that lim var[P- "2ExH(t)] = 0, the result follows from Chebyshev'st

inequality.

mFollows  from Theorem 3.1 of Wooldridge and White (1989).

mFor the recursive scheme the results are in West (1996). For the fixed

scheme, EP-lEH(R)EH(R)  = (P/R)E[(R-1/2Ei_,h,)  (R-1/2E~Ilhs)f]  + ?rS,,. To show that A,, =

0, let yj = Ef,+,h,.j'  . Then iER-lCf,+,(Ez-,h,')  [ =

/Rm'[  (yR.l+.  . .+Y,,)  +...+(Y~+~.~+.  . .+')',.,)I  1 5 Rm'E;x.mlj  1 lyjl + 0 since assumption 4

. .
implies Ei..-lj  1 Iyj i coo (Andrews  (1991)).

For the rolling scheme, we will sketch the result that EIP-lCH(t)BH(t)  ‘1 --)

A shh hh = (T-t")S,,  for 7~~1. The proofs for 7~~1, and for E [P~'Eg,+,v,+,EH(t) ' ] --,

&lSfh  I are conceptually similar.

With PcR, EH(t) may be written as the sum of three terms,

ZH(t) = A, + A2 + A,, A, = R-'[h,+2h,+...+(P-l)h,.,],  A, = PR-'[h,+...+h,],

A, = R-l [ (P-l) h,+,+.  . .+2h,+,.,+h,+,~,]  . It is easy to see that lim var(P-1/2A2)  = lim

P(R-P+1)R-2CIjirR.P+1Ehtht.j' + o(l) --, (r-r2)Shh. We will sketch the argument that

shows lim var(P-1'2A,)  = T2S,. That lim var(P-1'2A,)  = f2S, follows from a nearly

identical argument. Since, finally, it can be shown that lim COV(P-~'~A~,P-~'~PL~)

= 0 for i*j, the result will follow.

For simplicity, assume q=l. Redefine yj as yj=Eh,h,.j, and for lj IsP-2

define d, = cT;:mljl  [i(i+[j [)] . Then

var(A,)  = R-2Ey:?,+2djYj  = Re2d,Eyj - R-'E(d,-dj)yj,

We have P-lR-"d,  - [P3/(3PR2)]  + f2, and the result will follow if Pm'Rm2E(do-d,)-yj  +

0. This result may be established using d, L IEx2dx, dj t Iy;$(x-j)xdx ==>

jd,-d,;  5 1 J:x2dx-JT;:  (x-j ) xdx 1 , solving the integrals and manipulating the result

to obtain P-1R-2[E(dO-dj)Yj[  5 (1/3P)Clj/ lyjl + o(1) -+ 0.

PrOOf of Lemma 4.2: Let X(T) = E[g,+,v,+,+FBH(t)]. From Lemma 4.1, P-1'2CGt+lvt,t+r
h

= P-1'2X(T)  + o,(l), with lim var[P-"'X(T)]  = R. Asymptotic normality then

follows from Theorem 3.1 of Wooldridge and White (1989). Details are in the

Additional Appendix.

Proof of Lemma 4.3: Follows from a mean value expansion of g,+,(2,) around
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g,+, (P') . Details are in the Additional Appendix.

Proof of Theorem 4.1: Follows immediately from Lemmas 4.1, 4.2 and 4.3.

Proof of Theorem 4.2: MThat P-'C$:+, -jp Eg:+, follows from Lemma 4.3. Hence we
h A

need only show that (P-l)~1C(~,,,+,-g,+l~)2 jp Ev:+r  . We have

(P-l) -'Z (;t,t+i-;trlG)2  = (P-l) -%&+, + [(P-l) -1$:+11  3 - 2.2 t (P-1) -lT;t+l~t,t+,l  .

That (P-l) -iEG:,t+r
A

-y, Ev:+, follows from Lemma A3. By Theorem 4.1, cy = o,(l); by

Lemmas 4.2 and 4.3, (P-l)-lC$:+, = O,(l), (P-l)-lZ$,+l$,,,,,  = O,(l) . The desired

result now follows.

m That P-lE$:,l +p Eg:+, follows from Lemma 4.3. Hence we need only show that

cff (j) E P~'E~~~+j~t+l~t+l-j~t+r~t+r-j +p Egt+lgt+l-jVt*,Vt+,-j  E F,,(j) for all j. For

i,,(j) defined in Lemma A3, we have G,,(j) = Fet(j) +

P-lx=t.R+jGC+lCt+l-j  (~t+,~t+i-j-Gt,t+r~t-j,t+~-j)  . Lemma A3 shows that the first term

converges in probability to l?,,(j); the Additional Appendix shows that the

second term converges in probability to zero.

@J-That  P-'C$:+, +p Eg:+, follows from Lemma 4.3. Hence we need only show that

2 ff = XT:ip,lK(j/M) p,,(j) +p S,,. For g,, defined in Lemma A4, we have $,f = 8,, +

ET;i,+,K(j/M) [?,,(j)-;,,(j)]. Lemma A4 shows that the first term converges in

probability to Sff; the Additional Appendix shows that the second term converges

in probability to zero.

Proof of Corollary 5.1: Follows immediately from Theorem 4.1.

Proof of Theorem 5.1: By definition, the (4+r)xk matrix F E E&+l~,,,,B; if

g2,+1 = vt+,,ot then, F = (Eg,,+,g,+,'  rEg2t+1g2t+l'  1 , while if g,,+, = Z,+l, FE

(Eg2tr1 t+1' fg E%t+,%t+,'  ) 'G2' . From Lemmas 4.1 and 4.3 and Theorem 4.1,

pl/2~ = (P-l&+,&+,~  1 -W~‘&+,~,,,+,)

= (E;;,,&+/  1 -1(P-'12&,+l~,,,+,)  + o,(l)

= (E;;,+,&+/ ) -' (P-1'2C&+l~t+r)  + (E;;,,&+,'  1 -l:B (Pm"2ZH(t)  ) + op (1) ,

Upon partitioning E&+lGt+lf conformably with g,+, and g,,,,,  and using the formula

for the inverse of a partitioned matrix, we find that the first Q rows of the
- ..s

(P+r)xk matrix (Eg,+lg,+l ')-lF are identically zero. Since G consists of the

first I components of g, P1/2$ equals the first ! rows of

(E&+1&+/ 1 -1(P-1'2Z&+lVt+,)  + op (1) , and the proof is complete.

Proof of Theorem 7.1: M(i)From  Corollary 5.1, condition (5.1) is sufficient
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to guarantee the result. From assumption (*I, we have B=(Ex&'Iml and

Shh=Ev:xtxt' . For mean prediction error, recall that x, contains a constant.
- -

Without loss of generality define x,= (1,~~')'  where xt is a vector of
-

nonconstant regressors. Then F=-(1, Ex,'), which implies FB=-(1 0 . . . 0); the

result follows since the (1,l) elements of both S,, and S, are S,,=Ev:. For

efficiency, note that F=-p"B-'  and hence FB=-P". The result then follows

since Sfr=P"S&'  and S,,=p"Shh.

(a)(ii)For  mean prediction error or efficiency, the conditional

homoskedasticity assumption implies Ev:g: = Ev:Eg:  and the result follows from

part (i) . For the other two tests, recall that for the recursive scheme

h,=2& and thus R = S,, + h,,(FBS,,' + S,,B'F')  + 2X,,F'VBF'. Hence it suffices to

show -FBS,,' = FV,F' . For serial correlation, this follows since F=-Ev~.~x~',

B=(Ex,x,'  ) -', S,=EV:B-~,  and S,,=-Ev:F. For encompassing this follows since

F= (-/~;'Ex~~x~',O‘),  B=diag[  (Ex,x,')-', (Ex,,x,,' )-'I, the (k,xk,)  block in the upper

left hand corner of S,, is Ev:Ex,x,',  and Sfh=@;'  (Ev~Ex,,x,'  ,Ev,v,,Ex,,x,,' ) .

~Follows  from Theorem 5.1.



AA-1

Regression Based Tests of Predictive Ability

Kenneth D. West
Michael W. McCracken

May, 1997
Last revised January 1998

Additional Appendix

This not-for-publication additional appendix contains material  omitted
from the body of the paper to save space:

I. Additional simulation results:

A. Plots of Actual versus Nominal Sizes of Hypothesis Tests:
Mean Prediction Error

Recursive
Rolling
Fixed

Efficiency
Recursive
Rolling
Fixed

Encompassing
Recursive
Rolling
Fixed

First Order Serial Correlation
Recursive
Rolling
Fixed

B. Efficiency Test with large sample sizes
Rolling: P/R = 2
Rolling: P/R = 4

C. Tables for large sample sizes
Mean Prediction Error

R+Ps800
R+Ps1600

Efficiency
R+PZZ800
R+Ps1600

Encompassing
R+Ps800
R+Pr1600

First Order Serial Correlation
R+Ps800
R+Ps1600

II. Proofs:

Lemmas Al-A4
Lemma 4.1 (for fixed scheme)
Lemma 4.2 (additional detail)
Lemma 4.3
Theorem 4.2(b), (c) (additional detail)

Figure AA1
Figure AA2
Figure AA3

Figure AA4
Figure AA5
Figure AA6

Figure AA7
Figure AA8
Figure AA9

Figure AA10
Figure AA11
Figure AA12

Figure AA13-a
Figure AA13-b

Table AAl-A
Table AAl-B

Table AA2-A
Table AA2-B

Table AA3-A
Table AA3-B

Table AA4-A
Table AA4-B
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Table AA1

Size of Nominal -05 Tests, Mean Prediction Error

A. Accounting for Error in Estimation of o*, R+Ps800

Sampling R ------------------------p---------------------
Scheme 100 200 400 600

l-Recursive 100 -054 -055 .059 -050

2.Rolling

3.Fixed

200 .055 -050 -048 -055
400 .053 -053 -048

100 .055 -071 .079 .070
200 -050 .050 -054 -055
400 -052 .041 -046

100 .067 -072 .068 -070
200 -062 -057 -060 .054
400 .054 -051 -048

B. Accounting for Error in Estimation of P*, R+Ps1600

Sampling R ------------------------p---------------------
Scheme 200 400 800 1200

l-Recursive  200 -050 -048 .050 -049
400 .053 -048 .057 -053
800 -047 -055 -054

2.Rolling 200 . OS0 .054 -054 -056
400 .041 .046 -055 -049
800 * 049 -056 -042

3.Fixed 200 -072 -068 .062 -056
400 -057 -060 .066 -062
800 .055 -058 -053

------

------

-----
700

-051

.072

-070

_----
1400

.046

.053

-060

Notes: The DGP is a&r&variate  AR(l);  see text for details. For the indicated
values of P and R, v,,, (the one step ahead prediction error) was regressed on
a constant for t=R,...,R+P-1. Panels Al-A3 report the fraction of 1000
simulations in xhich the conventionally computed t-statistic, divided by the
square root of X, was greater than 1.96 in absolute value. Panels Bl-B3
report the same, but for larger values of P and R.
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Table AA2

Size of Nominal -05 Tests, Efficiency Test

A. Accounting for Error in Estimation of p*, R+Ps800

Sampling R ------------------------- p---------------------.
Scheme 100 200 400 600

l-Recursive 100 -039 -035 -040 .049
200 _ 050 042 040 .045
400 -040 :049 :044

2.Rolling 100 -049 -108 -409 -705
200 .042 051 -091 -145
400 .051 :046 .046

3.Fixed 100 -032 042 031 -038
200 045 :044 :043 .041
400 :042 .050 -047

B. Accounting for Error in Estimation of @*, R+Pr1600

Sampling R ------------------------p------------------------
Scheme 200 400 800 1200

l.Recursive 200 .042 -040 .045 -047
400 -049 -044 -061 -061
800 -048 -038 -047

Z-Rolling 200 -051 091 .229 -424
400 -046 :046 069
800 -048 -038 :os3

-111

3.Fixed 200 -044 .043 .037 .041
400 .oso .047 .058 _ 079
800 -053 -041 .046

-_. - - - - - -
700

-046

.869

-037

__------
1400

.051

.566

.038

Notes: The DGP is a,univariate  AR(l);  see text for details. For the indicated
values of P and,R, vCel (the one step ahead prediction) was regressed on a
constant and y,Pt (the one step ahead prediction) for t=R,...,R+P-1.  Panels
Al-A3 report the fraction of 1000 simulations,in which the conventionally
somputed  t-statistic on the coefficient on y,@,, divided by the square root of
X, was greater than 1.96 in absolute value. Panels Bl-B3 report the same,
but for larger values of P and R.
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Table AA3

Size of Nominal .OS Tests, Encompassing Test

A. Accounting for Error in Estimation of P*, R+Ps800

Sampling R ___________--_____-___ ---p-----------------------------
Scheme 100 200 400 600 700

l-Recursive 100 -070 -088 .090 .088 .078
200 -052 060 .072 .073
400 -040 :oss -052

2.Rolling 100 -185 -271 -398 -538 -618
200 -083 -115 -167 -206
400 -060 -074 -078

3.Fixed 100 .050 054 -050 -048 .042
200 .054 :044 .060 -055
400 -047 -061 -052

B. Accounting for Error in Estimation of p*, R+Ps1600

Sampling R ------------------------p--------------------------------
Scheme 200 400 800 1200 1400

l-Recursive 200 -060 -072 .068 -073 -072
400 -059 -052 .067 .064
800 -052 -039 .063

2.Rolling 200 .115 167 -257 -359 -395
400 .074 :078 -113 -142
800 -061 -054 -082

3.Fixed 200 -044 .060 043 _ 049 -042
400 -061 -052 :065 -052
800 -052 -050 -049

Notes: The DGP is a univariate AR(l); see text for details. Let ii,, denote
the least squares estimate  of a regression of y. on yed2 using the game sample
as that used to obtain 0,. For the indicated values of P and R,Avv,,I (the one
step ahead prediction error) was regressed on a constant and yte2Pzt for
t=R,...,R+P-1. Panel Al reports the fraction of 1000 simulat&ons  in which the
conventionally computed t-statistic on the coefficient on yCW2Pzt that was
greater than 1.96 in absolute value. Panels A2 and A3 report the same, when
yr was included as a third regressor. Panels Bl-B3 report the same, but for
larger values of P and R.
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Table AA4

Size of Nominal .05 Tests, Test for Zero First Order Serial Correlation

A. Accounting for Error in Estimation of P*, R+Pr800

Sampling R -------------------------p-------------------------------
Scheme 100 200 400 600 700

l-Recursive 100 -049 .053 .047 .052 -049
200 050 -038 .056 -051
400 :055 .054 -044

2.Rolling 100 -071 -096 .137 -178 -209
200 -059 051 .075 -082
400 -048 :063 -052

3.Fixed 100 _ 050 .054 -050 -048
200 054 -044 -047 .055
400 :047 -061 -052

-042

B. Accounting for Error in Estimation of P*, R+Ps1600

Sampling R ------------------------p--------------------------------
Scheme 200 400 800 1200 1400

l-Recursive 200 -038 .056 .056 .051 -048
400 -054 -044 -059 -058
800 _ 050 -049 -052

2.Rolling 200 051
:063

075
:052

.096 -122 -136
400 _ 069 -069
800 .054 .048 -059

3.Fixed 200 ,044 047 -043 -049 .042
400 -061 :052 065

:049
-052

800 -052 - 050
A

Notes: The DGP is a univariate q(l); see text for details. In panel A, v.,,
was regressed on a constant and v, for t=R,...,R+P-1,  for the indicated
values of P and R,. Panel Al reports the fraction of 1000 simulations in
which the conventionally computed t-statistic on the coefficient on v, was
greater than 1.96 in absolute value. Panels A2 and A3 report the same, when
yt was included as a third regressor. Panels Bl-B3 report the same, but for
larger values of P and R.
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II. Proofs

,Proof of Lemma Al: The results for the recursive and fixed schemes follow

from Lemma A3 of West (1996). For the rolling scheme, we show (a) (given (a),

the proof of (b) is similar to that of Lemma A3(b) of West (1996)) : we have

PaH(t) 5 P"R-l(ht-R+l+...+h,)  = P/R(P/t)=-'It"-'(h,+...+h,)]  - P/RIPa-'(hl+-..+ht-~)]

==> sup,;P=H(t)  1 < sup,: (P/R) (P/t)=-'[t"-'(hl+...+h,)]  1 +

(P/R) suptIP=-'(hl+...+ht.J  [

s (P/R) =~up~~t-~(h~+...+h~) 1 + (P/R) s~p~~p~-~(h~+-. -+&-,I i.

Since 51 < 03, it suffices to show supt[ta-l(hl+...+h,)  1 +p 0,

suplrsrP.lj  Pa-'(hl+. . .+h,)  ; jp 0. The first follows from Lemma A3(a) in West

(1996). The second: Let q=l for notational simplicity. From Hall and Heyde

(1980, ~20) and the proof of Lemma A3(a) in West (1996), h, is a mixingale

satisfying E[~up~~~+~(h~+...+h~)~] s CP for a certain constant c. SO

E tsuplrSrPml;  P2a-2  (h,+.  . .+h,)  2 i I s cPZael  + 0 and the result follows from Markov's

inequality.

Proof of Lemma A2: For (a) , we have P-'If:+,  E P-lCv:,,g:+,  s (Pm1C~:+,)1'2  (P-1Cgz+l)1'2

= O,(l) by assumption 4 and Markov's inequality.

(b) BY definition,  ft+r,b  = vt+rgt+l.B  f gt+lvt+r,8- Hence by assumption 4 and

Markov's inequality,

P-lCf2t+r,fl 5 p-l~v:+,g:+l,,  + p-'n3z,+lv:+,,,  + 2P1Z Ivt+r%*1.B  I Igt+lvt+,,LT  I

s (P-=cv:+,)1'2(P-'cg4 t+1.a )li2 + (P-?Yv4t+r,8)  1'2 (P-leg:,,)  1'2 +

2 (P-lEv;+,)  II4 (P‘lcg:+l,,)  lf4 (P-?Ev;+,,8)1/4  (P-?Eg:+l)'/4  = O,(l)  .

(c) In this proof and this proof only, for any function n, let n(&) = G.

By definition, Etr.88 =  K+&+l,B8  +  G+,,&+1,B +  ~t+l~t+,,BB- Now since vt+, and

g,,, are twice continuously differentiable, ft+,.&7 can be written as
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= W1t + W2t + W3t,

where for notational simplicity we are assuming that we have the same F, on

the line between ,& and /3* for each expansion. To show that P-lXf:+,,BB(zt)  =

O,(l) it suffices to show that P-'Cw&  = O,(l) for each i. We will show this

for wltr the others follow from similar arguments. Squaring out wit we have

P-lrw;t S P-'/3? -2t+r%+l.BB  + p-la ,&J:+,,fi  G,-P*)  2 +  p-‘Eg:.,,,,~:+,.,,(il,-P*)  4 +

2p-‘E I vt+r I IV,+,,@  I g:,,,,, I L-P* I + 2-g:+,,,,1 Vt+rl I' '%,,,J G,-P*P +

2P~'cg:+,  88; vttr.ol  I~t+r,~.BI  li3,-P*I'

I; (P-Tv4,+,)1'2 (P-lCa+l,BB)l'a +

(SUP,&-P*  I) 2 (P-1~v:+,,B)1'2(P-1c;;:+1,BB)1'2 +

(sup,; 6,-P* I ) 4 wC~t+r,BB)1'2 (P-1z~t+l,$J1'2 +

2 (suP,l;,-P* I ) (P-lm;+,) 1'4 (P-1c~t+1,BB)1'2(P-1cv:+,,8)1'4  +

(sup,lP,-p* 1 I2 (P-1~~:+r,88)1'4(P-1C~t+l,&qJ 1'2 (P-lcv:,,)  1'4 +

2 (sup, I B,-P* 1) 3 G-L~7t+,,88)1'4 (P-1r;;4t+l,BB)1'2  (P-1cv~+,,,J1'4.

(Z-1)

The first term on the rhs of (AAl) is O,(l)  by assumptions 3 and 4, and

Markov's inequality; the remaining terms on the rhs of (AAl)  are O,(l)  by

Lemma Al, assumptions 3 and 4, and Markov's inequality.

Proof of Lemma A3: Consider i,,(O) = Pm'Ef:+,($,)  ; other autocovariances may be

handled similarly. A mean value expansion of ft+,($t) around ft+,(P*)=ft,,

yields ft+, (2,) =  f,+, +  rt+,, q+, = [ft+,,e(??t-P*)  1  + wt+,,

Wt+r  = . 5ft+r,B8 Gd (zt-P*)2, ;t on the line between 3, and 0'. Hence

f-f, (0) = P-Yf:,, + 2Pm1C [ft+,rt+,l  + P-'Er:,,  . (AA2)

The first term on the rhs of (AA2) converges in probability to I',,(O) by White

(1984, Corollary 3.48). For the second term, the triangle and Cauchy-Schwarz

inequalities yield

1 p-1.Z (f t+rrt+r ) I = I p-‘c rft+,ft+T,p  tP,-/3*, 1 + p-%+,wt+, I
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s (sup,! 2,-p* 1 ) (P-'~f:+,)"2(P'l~f:+,,B)"2  +

.5 (sup,1 2,-p*  1 ) 2 (P-?Ef:+,)1'2  [P-'Cf:+,,88(Bt)  11’2 +p 0

by Lemmas Al and A2. For the third term, it is straightforward to show that

p-l/2zr2
trr is less than or equal to

(sup,\ 2,-p*; )2(P-'cf:+,,,)  + (sup,] 3,-p*  1 )'(P-l~f:+~,B)1/2(P-1Zf:+,,BB(jjt)  )1'2 +
A

(SUPt  I P,-p* f ) 4 (P-‘Cf:+,,,,  (P,) 1 .

Since supt/Pt-P*\ = o,(l) by Lemma Al, the result follows from Lemma A2.

Proof of Lemma A4: Let Kj E K(j/M), suppressing for simplicity the dependence

of Kj on M and thus P. Furthermore, define rt+, and wt+, as in (AA2). An

expansion such as in the proof of Lemma A3 then yields

~$i,+lKj~ff  Cj ) = cTi!,+,Kj  (P-lCT_R+jft+Tft+r-j)  +  Cp;l-p+,Kj  (P-lCT-,+jf,+,r,+,.j)  +

cpi’,+IKj (P-l~TI,+jft+,.jrt+r)  + Cp;T,+,Kj (P-lCT,R+jTt+rTf+r.j)  -

It follows from Andrews (1991) that CP;!,+,q  (P-l~~=~+jft+rft+r.j)  +p E;=.,I',,(j)  , so it

suffices to show that the other three double summations converge in

probability to zero. We will show this for the second double summation; the

arguments for the third and fourth double summations are similar. Note that

1 P-lZ*t.R+jft+rft+r.j,Bl  s (P-1CT=,+jf:+r)1'2  (P-'CT=,+jf:+,,fl)  l/2 S (P-'Cf:,,)  1'2 (P-1Cf:+,,,)"2,

IP-'ETt=R*jft+rWt+r-j  I s .5 (sup,! $,-p* 1 ) 2(P-1Zf:+,)1'2  (P-lCf:,,,,,  (Z,) )l'2.

Let "al' be defined as in the statement of the theorem, Ocac.5. Then for ~crn

1 E~ilp+lKj  (P-lET=,+jft+,rt+,~j)  1 S

(M/Pa)  @J-'E&+~  1 q 1 ) { (P"sup,l pt-p*  1 ) (P-1Cf:+,)1'2  (P-lEf:+,,,Y2  +

.5(P"'%up,I  2,-p*  1 )2(P-%f:+,)1'2  WEf:+,,,,G,)  11’2} .

By Lemma Al, Pasupt~~,-fl*\ +p 0 and by Lemma A2 each of the summations inside

the braces is O,(l). Since assumption (M/Pa) = O(1) and M~lZ~:i,+l~K\ --,

k,\K(x)  /dx < co the desired result follows. For r=m, the logic is the same

except that Ra replaces Pa.
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Additional detail on proof of Lemma 4.1:

For the fixed scheme, for which pt = 3, and H(t) E H(R), a simple mean

A
value expansion of P-1~2~g,+l(~,)v~+,(~,)  = P-1'2Cf,+,(  PR) around P-"2Cf,+,(P*)  yields

p-"2cf,+,($R)  = P-1'2Cf,+,  + P1'2(P-1Cft+r,B)  B (R)H(R) + P-1'2Zwt+r,

for w,,, defined in (AA2). From assumption 2, B(t) -Q B; from assumption 4,

P-?zf,+,  fl --,p F (White (1984, Corollary 3.48)),  and P1'2H(R) = G,(l) - So the

result follows if P-l"Zw,,, jp 0. We have

1 P-"%W,,,/  s (P/R)1'2(R1'41 &+ 1 )2(P-1Clft+,,ss(iR)  I) .

Since 77 E lim P/R < cn and Rw4H(R) -Q 0, the result follows from Lemma A2(c) .

Additional detail on proof of Lemma 4.2:

Note: We will show the result for the recursive scheme. The other sampling

schemes follow from a similar argument. In particular, the only change occurs

in the definition of bj,=,

Given Lemma 4.1 (a), it suffices to show that P-1'2E(gt+lvt+r  + FBH(t)) -R

N(O,Q). Let b,., = (l/R + . ..+ l/T). Then

FBEH(t) = b,,,FBh, +...+ b,,,FBh,  + b,+,,,FBh,+,  +...+  b,,,FBh,.

Now define Z,,, = P-1/2(bR,T FBh,) for 1 s t s R and Z,,, = P-II2  (g,+lv,+,  + b,,.FBh,) for

R+l s t B T. Using assumption 4 and Lemma 4. 1 we know that R is p.d.. Hence

for large enough T, Q, z Var(ZzWIZT,t)  is invertible. If we define XT,, =

R,l/2Z Tt, then Theorem 3.1 of Wooldridge and White (1989) implies that

R,1W1'2E(gt+lvt+i  + FBH(t) ) = XX,,,  -& N(O,I,) .

Then since R is p-d., we know that P-"2E(gt+lvt+, + FBH(t)) -& N(O,R).

Additional detail on proof of Lemma 4.3:

Since g,+,(p)  is twice continuously differentiable, it admits a mean value

expansion

g,*,&) = %+1

Y *

+ gt+l,B ($,-/?*I  + . %+1.68 (Pt) (pt-p*) 2
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and hence

p-lxg:+,(;,)  = p-1cg:+,  + P-'/T{g:+,,8(j&3*)2  + .25d+1,88(&) (h*)' +

2gt+~~t+l.~(ii-P*) + gt+lgt+l,8fl (;,I t&-P*) 2 + 2%*1.89t+1.88 (i?t) @t-p*) '1

c p-1xg:+,  + P-lZwt+l.

Now since g,+I is fourth order stationary and has 8d moments, Chebyshev's

inequality implies that P“Eg:+,  +p Eg:+,.

To show that Pm'Cw,,,  = o,(l) we use the triangle and Cauchy-Schwarz

inequalities to obtain

I P-YEW,,,  ; s (sup,l&-P*  I )2(p-1%J:+l,s) +

(sup,~~,-P*l)'[p'~g:+,,B,(P,))  +

2(sup,&p*;)  (P-11Zg:+,)1'2  w1~LI:+l,y2  +

(sup,1 j&3* 1 ) 2 (P-'cg:+,)1'2  wcg:+,,B,(Bt) )1'2 +

2 (sup, 1 it-p*  I ) 3 (P-‘~g:+,,,) 1’2 wQ3:+,,,, (Pt) ) 1’2

Since sup,I;,-p*1 = o,(l) by Lemma Al, and P-'Xg:,,,,, ('ii,) = O,(l)  by assumption

3, and the remaining terms are O,(l)  by assumption 4 and Markov's inequality,

the result is established.

Additional detail on proof of Theorem 4.2(b) :

Expanding qt+, we have

A A
A A h A

p-lxT
tSR+jgt*lgt+l-j  (17t+,rlt+~-j  - Vt-j.t+rVt.t+r-j) =

P~l~T-~+j{-Agt+l.jAg:+l~t.j,L+r-j~  - $t+lG:+l.j$t,t+r'  + ~~+l~'~~+l-j~

E p-lx:T
t.R+jWt+l-j

(AA3)

Via the triangle and Cauchy-Schwarz inequalities we have

I P-T ’td+jwt+l-j  I S (P-‘~T-,+j~:+1.j~:.j,t+~.j)  1’2 tPw’ETm,+jG2h9:+l)  1’2 +

(P~'CT~,+j~~+1AV~,t+r)1'2(P~1C~;R+j~2Ag~+l-j)1'2  +

A A A4
(P-lXT,,+j cY4g:+l)  1'2 (PelEF=R+j  gt+l-j) 1'2

A
s Ia I (P~lC;:+l&+,)1'2 (P-l&+,)  1'2 +

I o!, (P-'c;;:+,v:,,*,)'/2(P-lz~:+l)1'2*I A + ~2(P-'c~4,+,) U2 (P-&+J1'2
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The last inequality follows by adding non-negative terms, and pulling the 2
A

terms out of the summations. By Theorem 4.1, Q = o,(l),  hence we need to
A

show that the remaining terms are O,(l). That Pm'EG:+,v:,,+, = O,(l) follows

from Lemma A3.

Since g,+,(p)  is twice continuously differentiable, it admits a mean value

expansion such that, P‘lCg:+l($,) = P-lCgz+,  + P-lBrt,l,  where

r t+1 = [%+I + gt+l,B t&-P*) 1 4 + 1 - %I,+,,,,  GJ (ii-P*) “I 4 +

4 [%+1 + gt+l,fl (6,-P*,  1 3 1 -CL+,,,,  Gt) (k-P*) ‘1 +

12 [%+l + gt+l,8  ($,-p*, 1 2 [. %t+,,,,  (Pt) k-P*)  2l 2 +

4 [gt+1 + gt+l,s(~t-P*)  1 L5gt+1,B,(SJ &-@*)"I  3.

mA4)

Now since g,+I has Ed moments, Markov's inequality implies that P-lBg:+l  =

O,(l) . It then suffices to show that P-lCrt+l  is o,(l). To do so we will show

that the absolute value of the fifth term on the rhs of (AA41 is o,(l), the

other terms follow from similar arguments. Using the triangle and Holder

inequalities it follows that

I P‘lE4 [g,+, + c&+1,@ (5,-P*)  I r . sg,,,.,,  k k-P*)  2l 3 I s

(sup,; &-P'l  1 6(P-1~g:+l)1'Q(P-1~g:+1,~~  (;?,I 1 3'4 +

(sup,1 ;,-p*;  l'(P-1cg:+J'4  (P-'Eg:+,,,,(Pt)  ) "*

From Lemma Al, SUP~~$~-/?*! = o,(l) and by assumption 4 and Markov's

inequality, P-'Eg~+,  = O,(l) and Pm'Cgz,,,,  = O,(l)  . Since by assumption 3 and
-

Markov's inequality, P-1Cg~+,,88(&) = O,(l), the result is established.

Additional detail on the proof of Theorem 4.2(c):

Expanding ;t+r as in part (b) of this proof, we have 2,f - 6,, =

ET;!,+,K(j/M) {P-lE~=,+jwt+l.j}  for wt+I-j  defined in (AA31  . Since the kernel is

nonnegative, we can use the same inequalities as in part (b) to obtain

\ET:!p+lK(j/M)  {P-lET=,+jw,+,.j}  1 s Ep:l,+,IK(j/M)  i { !G I (P~'~hg~+,~:,t+,)1'2(P~'C~:+,)1'2  +

1 G I (P-lE;:+,c;:,t+,)"2  (P~%;:+l)1'2 + G2(P-'c$:+,)1'2  (P-1&+l)1'2} .

The bracketed term on the EHS of the previous inequality does not depend upon
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j and so it is unaffected by the outer summand. The RHS of the inequality is

then less than or equal to

(M/Pa) (M-lXy;:,+l[K(j/M) f ) { [Pa2 1 (P-'~;;:,,~:,,+,)1'2(P-1~~:+1)1'2  +
A

iP"G 1 (P-1&+1v:,t+,)1'2  (P-'c;:+l)"2 + (P"/2~)2(P-1~;;:+1)1'2(P-l~A9:+l)1'2}

where Ita" is defined as in the statement of the theorem, Ocac.5.  BY

assumption (M/P') = O(1) and (M-~CT;~,+,IK(~/M) 1) + h,IK(X) I& < Q)- Notice also

that by Theorem 4.1, Pa2 = o,(l). That the RHS is o,(l) then follows from the

same argument used in (b).

Additional References

Hall, Peter and Christopher C. Heyde (1980): Martinqale Limit Theory and Its
Application, New York: Academic Press.

White, Halbert  (1984): Asymptotic Theory for Econometricians, New York:
Academic Press.



References

Akgiray, Vedat (1989): "Conditional Heteroskedasticity in Time Series of Stock
Returns: Evidence and Forecasts," Journal of Business, 62, 55-80.

Andrews, Donald W.K. (1991): "Heteroskedasticity  and Autocorrelation Consistent
Covariance Matrix Estimation," Econometrica, 59, 1465-1471.

Ashley, R., Granger, Clive W. J. and Richard Schmalansee (1980): "Advertising
and Aggregate Consumption: An Analysis of Causality," Econometrica 48,
1149-1167.

Berger, Allen and Spencer Krane (1985): "The Informational Efficiency of
Econometric Model Forecasts," Review of Economics and Statistics, 67, 128-134.

Chong, Yock Y. and David F. Hendry (1986): "Econometric Evaluation of Linear
Macro-Economic Models," Review of Economic Studies, 53, 671-690.

Clark, Todd (1997): "Finite-Sample Properties of Tests for Forecast
Equivalence", manuscript, Federal Reserve Bank of Kansas City.

Davidson, Russell and James G. MacKinnon (1984): "Model Specification Tests
Based on Artificial Linear Regressions," International Economic Review, 25,
485-502.

-__---_---_ (1989) : "Testing for Consistency Using Artificial Regressions,"
Econometric Theory, 5, 363-384.

Diebold,  Francis X. and Robert S. Mariano  (1996) : "Comparing Predictive
Accuracy," Journal of Business and Economic Statistics, 13, 253-263.

Diebold,  Francis X. and James Nason (1990): "Nonparametric Exchange Rate
Prediction?", Journal of International Economics, 28, 315-322.

Fair, Ray C. and Robert Shiller (1990): "Comparing Information in Forecasts
from Econometric Models," American Economic Review, 80, 375-389.

Hoffman, Dennis and Adrian Pagan (1989): "Practitioners Corner: Post-Sample
Prediction Tests for Generalized Method of Moments Estimators," Oxford Bulletin
of Economics and Statistics 51, 333-343.

Howrey, Philip E., Lawrence R. Klein and Michael D. McCarthy (1974) : "Notes on
Testing the Predictive Performance of Econometric Models,"  International
Economic Review, 15, 366-383.

Makridakis, Spiros et. al. (1982): "The Accuracy of Time Series Methods: The
Results from a Forecasting Competition," Journal of Forecasting, 1, 111-153.

McCracken, Michael W. (1996): "Data Mining and Out of Sample Inference,"
manuscript, University of Wisconsin.

Meese, Richard A. and Kenneth Rogoff (1983) : "Empirical Exchange Rate Models of
the Seventies: Do they Fit Out of Sample?", Journal of International Economics,
14, 3-24.



----------- (1988): "Was It Real? The Exchange Rate-Interest Differential

_ Relation Over the Modern Floating-Rate Period II, Journal of Finance, 43, 933-
948.

Mincer, Jacob and Victor Zarnowitz (1969): "The Evaluation of Economic
Forecasts," in J. Mincer (ed.) Economic Forecasts and Expectations, New York:
National Bureau of Economic Research.

Nelson, Charles R. (1972): "The Predictive Performance of the FRB-MIT-PENN
Model of the U.S. Economy,l'  American Economic Review, 902-917.

Newey, Whitney K. and Kenneth D. West (1994): "Automatic Lag Selection in
Covariance Matrix Estimation," Review of Economic Studies, 61, 631-654.

Pagan, Adrian R. and Anthony D. Hall (1983): "Diagnostic Tests as Residual
Analysis," Econometric Reviews, 2, 159-218.

Pagan, Adrian R. and G. William Schwert (1990) : "Alternative Models for
Conditional Stock Volatility," Journal of Econometrics, 45, 267-290.

West, Kenneth D. (1996): "Asymptotic Inference About Predictive Ability,"
Econometrica, 64, 1067-1084.

West, Kenneth D. and Dongchul Cho (1995): "The Predictive Ability of Several
Models of Exchange Rate Volatility," Journal of Econometrics, 69, 367-391.

West, Kenneth D. and David W. Wilcox (1996): "A Comparison of Alternative
Instrumental Variables Estimators of a Dynamic Linear Model," Journal of
Business and Economic Statistics, 14, 281-293.

White, Halbert  (1980): "A Heteroskedasticity-Consistent Covariance Matrix
Estimator and a Direct Test for Heteroskedasticity,"  Econometrica, 48, 817-838.

Wooldridge, Jeffrey M. (1990): "A Unified Approach to Robust, Regression-Based
Specification Tests," Econometric Theory, 6, 17-43.

----------- (1991): "On the Application of Robust, Regression-Based Diagnostics
to Models of Conditional Means and Conditional Variances," Journal of
Econometrics, 47, 5-46.

Wooldridge, Jeffrey M. and Halbert  White (1989): I'Central  Limit Theorems for
Dependent, Heterogeneous Processes with Trending Moments," manuscript, Michigan
State University.



Table 1

Regressors for Four Common Tests, Linear Model

(1) x2 ) (3) A-4)
Test g t*1 g2t+1 gt+1

(1)Mean Prediction Error 1 n.a. n.a.

(2)Efficiency n-a. n.a.

(3)Encompassing

(4)First Order Serial
Correlation

Xx+1 ' T&t xt+1 (xx+1 ' ii x,+*1 '1

A A

Vt xr+l (vtr++l ) '

The model is ~~+~=q+~'fi*+v~+~,  where yt+l and v~+~ are scalars, q+1 is a vector,

and 0' is the unknown parameter vector. In the AR(l) example of section 2,

this specializes to ~~+~=y~p'+v~+~. The left hand side variable is a one step

ahead prediction error, ~~+~=y~+~-q+~'~~. The simpler regression analyzed in

sections 6 and 7 is one in which ^g ,+,=g,+,(~,) (column (2) 1 is the sole

regressor; the more complicated regression is one in which $ (column (4)) is

the vector of regressors. See sections 6 and 7 of the paper for more detail.



Table 2

Adjustments for Four Common Tests, Linear Model

Sampling Correction How to Correct the t-statistic
Scheme Needed?

A. Zero Mean Prediction Error

l.Recursive  No
2.Rolling Yes
3.Fixed Yes

n.a.
Divide t-statistic by ?I"

"l/2Divide t-statistic by X

B. Efficiency

l.Recursive  no n.a.
2.Rolling yes Divide t-statistic by T1j2
3.Fixed yes Divide t-statistic by t112

C. Encompassing

l.Recursive  no: vtrl conditionally homoskedastic n-a.

yes : vt+l conditionally heteroskedastic augmented regression
2.Rolling yes augmented regression
3.Fixed yes augmented regression

D. Zero First Order Serial Correlation

l.Recursive  no: v~+~ conditionally homoskedastic n-a.

yes = vt+l conditionally heteroskedastic augmented regression
2.Rolling yes augmented regression
3.Fixed yes augmented regression

Notes:

1. The model is yt+1=xt+1 'P*+v~+~, with v~+~ serially uncorrelated. The
prediction horizon is one period (~=l). The regression run is one with c,+,
on the left hand side, as described in Table 1. This table describes how and
when to adjust the usual least squares standard errors to account for
uncertainty about p*.

2. The table assumes a>O. TT is the limiting value of P/R, where P is the
number of predictions, R the size of the smallest regression sample. When
PO, no adjustment is needed, for any of the tests in the table.

3. In panels C and D, "v~+~ conditionally homoskedastic" means Ev:+~x~+~++~' =

Ev:+J%+lxt+l'  ; "vt+l conditional heteroskedastic" allows the possibility that

Ev:+lxt+lxt+l'  f Ev:+,Ext+1xt+,'  .

4. Panel D allows Ev~+~x~zO, as is typically the case in time series
applications. If Ev~+~x~=O, no correction is needed, for any of the schemes,
and whether or not v~+~ is conditionally heteroskedastic.



Table 3

Size of Nominal .05 Tests, Mean Prediction Error

A. Accounting for Error in Estimation of p*

Sampling R
Scheme

l.Recursive  25

2.Rolling

3.Fixed

Sampling
Scheme

l.Rolling

2.Fixed

50
100
150
175

25
50
100
150
175

25
50
100
150
175

R

25
50
100
150
175

25
50
100
150
175

-----___--_____----- ----p------------------------------
25 50 100

-054 -052 053
.053 -057 :051
.046 .049 .054
056
:052

.056

150 175

.056 .056

.057

.063 .074 .105
053
:048

-063 063
.051 :058

.054 .055

.053

-133 .145
.072

.091 -090 .096
069
:058

074
:060

.075

.064
.062 .050
-058

097
:077

.099

B. Ignoring Error in Estimation of fl*

__-----_------ -----------p-----------
25 50 100

--

025
1043

.003 -000

.021 002
.046 .044 :021
.054 .052
.052

220
:129

.297 .421

.195 .293
.081 121 ,186
078
:073

:106

___-___-___-----
150 175

000
:ooo

-000

.498 -523
-354

Notes: The DGP is a,univariate  AR(l);  see text for details. For the indicated
values of P and R, v,,, (the one step ahead prediction error) was regressed on
a constant for t=R,...,R+P-1. Panels Bl and B2 report the fraction of the
5000 simulations in which the conventionally computed t-statistic on the
coefficient on the constant term was greater than 1.96 in absolute value.
Panels AI-A3 report the same, xhen the conventionally computed t-statistic is
divided by the square root of X.



Table 4

Size of Nominal -05 Tests, Efficiency Test

A. Accounting for Error in Estimation of fi*

Sampling R ----------____----- ------p-----------------------------
Scheme - 25 50 100

l.Recursive 25 .052 .051 .055
50 .038 .043 .043
100 .038 .040 -045
150 .041 .047
175 .042

150 175

.055 .053

.046

2.Rolling

3.Fixed

Sampling
Scheme

l.Rolling

2.Fixed

25
50
100
150
175

25 .058 .055 -056
50 .040 038

:041
.035

100 .039 .042
150 .041 .036
175 .042

R

25 .059 .072 152
50 .037 .030 :016
100 .034 034
150 :041

.021
.042

175 .040

25 .158 .234 -355
50 .087 .135 .220
100 .063 097
150 :083

-152
.060

175 .057

124
:045

-430 .939
.070 .232

.036 .043 .059
-042 .045
.041

B. Ignoring Error in Estimation of p*

-------------------------p-------------
25 50 100

.997 .999

.468

.055 -053

.031

.434 .456

.286

Notes: The DGP is a,univariate  AR(l);  see text for details. For the indicated
values of P and,R, vtrl (the one step ahead prediction) was regressed on a
constant and y,fl, (the one step ahead prediction) for t=R, . . ..R+P-1. Panels
Bl and B2 report the fraction of the 5000 simulations in whigh the
conventionally computed t-statistic on the coefficient on y,p, that was
greater than 1.96 in absolute value. Panels Al-A3 report the same, wken the
conventionally computed t-statistic is divided by the square root of A.



Sampling R
Scheme

l.Recursive  25

2.Rolling

3.Fixed

Sampling
Scheme

l.Rolling

2.Fixed

50
100
150
175

-------------------------p-------------------------------
25 50 100 150 175

.113 .148 .185 .201 .196

.077 .lOO 125 .135

:045  054 .070  .055
:084

.046

25
50
100
150
175

.244 388 .861

.151 :232
634
:346

.796

.450
.090 .122 .171
-075 .088
.071

25
50
100
150
175

.044 .050 .049 .048 .050

.049 .049 053
:049  049 :051 048 :048

-049

.054

B. Ignoring Error in Estimation of /L?*

R -------------------------p-------------------------------
25 50 100 150 175

25 -130 .250 .508 .713 .790
50 .084 .122 .211 .312
100 .059 .078 -105
150 -044 -057
175 .047

25
50
100
150
175

.191 .270 399 -486 .508

:063 103 :093  160
:240 .300
-133

.055 .068

.052

Table 5

Size of Nominal .05 Tests, Encompassing Test

A. Accounting for Error in Estimation of p*

Notes: The DGP is a univariate AR(l);  see text for details. Let 2,, denote
the least squares estimate of a regression of ys on ysm2 using the game sample
as that used to obtain pt. For the indicated values of P and R,,v,,, (the one
step ahead prediction error) was regressed on a constant and yt.2P2t for
t=R,...,R+P-1. Panels Al, Bl and B2 report the fraction of the 5000
simulations in whish the conventionally computed t-statistic on the
coefficient on yt.2P2t that was greater than 1.96 in absolute value. Panels A2
and A3 report the same, when yt was included as a third regressor.



Table 6

Size of Nominal .05 Tests, Test for Zero First Order Serial Correlation

Sampling R
Scheme

I.Recursive  25

2.Rolling

3.Fixed

l.Rolling

2.Fixed

50
100
150
175

25
50
100
150
175

25
50
100
150
175

25
50
100
150
175

25
50
100
150
175

A. Accounting for Error in Estimation of p*

-------------------------p-------------------------------
25 50 100 150 175

.059 .060 .061 061 .061
043
:040

.052 057

.048 :051
:053

.045 .054
-045

119
:069

.209 .405 .584 .663

.094 143 .183
.058 .066 :071
.054 .058
.057

044 .050 .049 048
:049

.050
:049 049

:048
053

.049 :048

.049 .051

.053

B. Ignoring Error in Estimation of p*

.034 .022 027 .052 .067
040
:039

.029 :014 .013

.044 .026
.045 .048
.045

.214 .319 .447 .512 .546
111
:066

.177 .269 .335

.105 .156
.062 .086
.058

h
Notes: The DGP is a univariate q(l); see text for details. In panel B, vt+l
was regressed on a constant and vt for t=R,...,R+P-1, for the indicated
values of P and R,. Panels Al, Bl and B2 report the fraction of the 5000
simulations in which the conventionally computed t-statistic on the
coefficient on Gt that were greater than 1.96 in absolute value. Panels A2
and A3 report the same, when yt was included as a third regressor.



Table 7

Size of Nominal .05 Tests, Efficiency Test, Larger Sample Sizes

A. (P/R)=2

P=50,R=25 P=lOO,R=50 P=200,R=lOO P=400,R=200 P=800,R=400
.430 .232 -108 .091 .069

B. (P/R)=4

P=lOO,R=25 P=400,R=lOO P=800,R=200
.939 .409 -229

Notes: See notes to Table 4. The tests account for error in estimation of p*.
The figures for P+Rc200  are repeated from Table 4.


