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ABSTRACT

We devel op regression-based tests of hypotheses about out of sanple
prediction errors. Representative tests include ones for zero nean and zero
correlation between a prediction error and a vector of predictors. The
rel evant environnents are ones in which predictions depend on esti mated
paraneters. W show that standard regression statistics generally fail to
account for error introduced by estimation of these paraneters. We propose
conmput ationally convenient test statistics that properly account for such
error. Si mul ations indicate that the procedures can work well in sanples of
size typically available, although there sonetines are substantial size

di stortions.
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1. Introduction

In this paper, we develop and sinulate regression tests for properties of
out of sanple prediction errors. Exanpl es of such properties are: zero nmean,
zero serial correlation (if the prediction is one-step ahead), zero correlation
with the prediction, and zero correlation with the prediction from another,
non-nested nodel . Enpirical papers that exam ne these or related properties

include Mncer and Zarnowitz (1969}, Nelson (1572), Howey et al. (1974),
Berger and Krane (1985), Meese and Rogoff (1983, 1988), Akgiray (1989), Diebold
and Nason (1990}, Fair and Shiller (19%0), Pagan and Schwert (19%0), West and
Cho (1995) and some of the participants in the Makridakis (1982) conpetition.

If the predictions do not depend on estinmated paraneters, it follows from
Diebold and Mariano (1996) that under mild conditions standard regression
statistics may be used. For zeroserial correlation in one step ahead
prediction errors, for exanple, one can sinply regress the period t+1
prediction error on the period t prediction error, and use a standard t-test to
test the null that the coefficient is zero.

But if the predictions do depend on estimated paraneters, the results of
Diebold and Mariano (1996) need not apply. The usual tests do account for
uncertainty that would be present if (counterfactually) the underlying
parameter vector were known rather than estinmated, but ignore uncertainty
resulting from error in estimation of that paraneter vector. Using a
conventional set of assunptions, we establish conditions under which this
second type of uncertainty is asynptotically negligible, thereby validating the
Diebold and Mariano (1996) procedure. Mre inportantly, we show that such
uncertainty sonmetinmes is asynptotically non-negligible, and then suggest
conmput ational ly convenient ways to obtain test statistics that account for both
types of uncertainty. Simul ations indicate that failure to account for the
second type of uncertainty sometimes results in poorly sized hypothesis tests,
while our own adjusted tests usually but not always yield nore accurately sized
tests.

A vast literature has considered predictive accuracy. A distinguishing
el ement of our work is explicit consideration of the role of estimation of

paraneters needed for prediction. We focus on test statistics produced by
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regression packages. These have appeared in a nunber of applied papers (e.g.,
Fair and Shiller (1990}), Pagan and Schwert (1990)), and, we hope, may appear
in still nore papers upon devel opment of techniques such as those proposed
here.* W build on earlier work (especially Wst (1996)) not only by

devel oping conputationally convenient procedures, but also by allowng
additional sanpling schemes (additional ways of dividing available data into
estimation and prediction conponents), relaxing certain technical conditions
that inplicitly ruled out certain inmportant tests (including zero correlation
between a prediction error and a prediction), and supplying new simulation

evi dence.

Section 2 of the paper describes the environnent. Sections 3 and 4
present technical assunptions and basic asynptotic results. Section 5 presents
our conputationally convenient adjustnents to standard regression statistics.
Sections 6 and 7 specialize sections 3-5 to consider somecompn tests, when
the underlying nodels are linear and exactly identified. Section 8 presents
simul ation evidence. Section 9 concludes. The Appendi x presents proofs. An
additional appendix available on request from the authors presents details of

proofs and simulation results omtted from the paper to save space.

2. Description of Environment

Let 721be the prediction horizon of interest. There are P Predictions
inall, which rely on estimates of a (kxl1) unknown paraneter vector g*. To
avoid certain singularities we assume k>0 and nerely note that our results
specialize in the obvious way when regressi on estimatesarenot required to
make predictions.

The first prediction uses data from period R or earlier to predict a
period R+7 event, the second from period R+1 or earlier to predict a period
R+1l+7 event, . . . . the last from period R+P-1=T or earlier to predict a period

T+7 event. The total sanple size iS R+P-1+7 = T+7:

\ !
- 1 T - 1

oservation: 1 R R+T R+P-1=T T+7
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In estimating B*, three different schemes to use available data are
prominent in the forecasting literature. W consider the three explicitly
because results vary for the three. The first schene, which we call _recursive,
was used by, for exanple, Fair and Shiller (1990). This schene uses all
available data, estimating 8" first with data from1l to R next with data from
l1toR+1,. . ., and finally with data from 1l to T. The second schene, which we
call rolling, was used by, for exanple, Akgiray (1989). This schene fixes the
sanple size, say at R and drops distant observations as recent ones are added.
Thus, B" is estimated first with data from 1l to R next with data from 2 to
R+¢1,. .., and finally with data from P to T. The third and final scheng,
which we call fixed, was used by, for exanple, Pagan and Schwert (1990). Thi s
schene estimates B" just once, say on data from1l to R and uses the estimate
in formng all P predictions; data realized subsequent to R are, however, used
in formng predictions, as described in the previous paragraph and bel ow

For t=R ..., T, let ﬁt be the regression vector used for prediction when
data from period t and earlier are used. In the least squares nodel
y.=X.'B°+u., for exanple, ﬁt is estinmated using

(2.1) data from 1l to t in the recursive scheng, §t= (Texex s ) Pt XeYes

. . A
data from t-R+1 to t in the rolling scheme, B.=(Zf . XXe') 'Zi, i Xe¥s,

data from1l to R in the fixed schene, 3t=(E‘;,lxsxs')’lzﬁxlxsys.

Note that for the fixed schene, 'Et is the sane for all t, and depends only on R
and not t, while in the recursive and fixed schenme a different regression
estimate is used for each t. As well, for the rolling and fixed schenes, }ét
shoul d properly be subscripted ﬁm; t he dependence on R is suppressed for
notational sinplicity. The asynptotic approximtion assunmes that both P and R
are large (formally, P,R - o}, with 7 fixed.

One is interested in the relationship between a scalar prediction error
and a vector of variables--say, whether the prediction error is correlated with
the vector of variables. As illustrated in exanple 2 below, we can linit the
formal discussion to prediction errors and still vyield results applicable to

inference about predictions as well; given the linearity of the procedures we
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analyze, results for predictions ( = observed data point - prediction error)
follow imediately. W limt the formal analysis to a scalar dependent
variable to econonmize on notation; we conment occasionally on vector
general i zations of our results.

Let V.., (8%) =v.,, be the scalar prediction error of interest, with vt,,(ﬁt) =
Cw, (f}m = Qt,m)the correspondi ng random vari abl e eval uated at ﬁt. As the
dating suggests, wv.,, typically relies on data realized in period t+7. One is
interested in the linear relationship between wv,, and a vector function of
period t data. Let g, (8")=g.., denote this (f£x1) vector function, wth gm(ﬁt)
= am the sanple counterpart evaluated at ﬁt. In nost applications ¢ is
small, say f=1 or ¢=2. Here, g.,,(8") depends on data observed in period t and
earlier; the dating convention is used because g, often depends on the
predeternmined variables available at time t+1. See the exanples below.

The aimis to use a l|least squares regression to test the null hypothesis
that Ev..,0..:0. The obvious regression is one of ’Gw, on ?Jm for
t=R . .. . R+P-1, obtaining
a

A A A A A A A
n

-~ A ’ T ~ A ' leT A
-— —_— = — I
(2'2) Vt.ttr - 9(’.«1 teT /! o = (Et:Rgtolgt#l ) Ec:th»lvt,t+11 nc+r = vt,tq»r_gr,¢1 o .

+

A . . . .
One then uses the estimateof o and a suitable variance-covari ance matrix to

test the null.
To illustrate, here are four exanples, illustrated with the sinple zero
mean AR(1) nodel y.=8'y.i+u., |8 |<1.

1. Mean prediction error. Here, g.,=1 is a scalar. If v, is a 7 step ahead

forecast error in the AR(1) nodel, then Ct,t,,=yt,,-’5;yt.

2. Efficiency. Here, one regresses y., on the period t prediction (=AB;yt, in
the AR(1) nodel) and perhaps a constant and ot her possible predictors as well.
The null is that the coefficient on the prediction is unity, on any other
included variables is zero. To analyze this regression using our framework,
which presumes that the dependent variable is a prediction error, note that if
one uses the prediction error (=yw-'5gyt in the AR(l) nodel) as the dependent
variable the regression results are algebraically identical to those with vy..,

on the left hand side, except that the estimted coefficient on the prediction
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will be smaller by unity. Hence, for say 7=1, if ém is (2x1) and includes a
constant term as well as ﬁtyt, Hy is a={(0,0)". Note the dating convention: S
is dated t+1, but depends on y,, the regressor available for prediction at tine
t+1.

3. Enconvassing. Here, wv., is a one step ahead forecast error froma
putatively enconpassing nodel. The right hand side variable am is the scal ar
prediction from a putatively enconpassed nodel, and the null is a=0. More
generally, the right hand side mght include a constant in which case am and
a are (2x1) and the null is a=(0,0)".

4. Serial correlation. If v.,, is the 1 step ahead forecast error in a nodel

presunmed to have serially uncorrelated errors (=ug, in the AR(1) nodel), then
g,..=v, 1S the previous period s forecast error. So a is a scalar, %z an
estimateof the first order serial correlation coefficient, and H, is a=0.?

One of our majoraimsis to develop conputationally convenient
procedures, which in our regression context means using standard errors
produced by standard conputer programs, or perhaps sinple adjustnments to those
standard errors. As we shall see, conventional test statistics are not always
asynptotically valid, even when 7=1 and v.,=v..{8") is a zero nean iid vari able
that is independent of g..=9..(8") . The reason is that in some applications,
two sources of uncertainty affect asynptotic inference about «. The first is
uncertainty that would be present even if (counterfactually) g* were known and
one could regress vg,, On g..,. The second results from use of ?t rat her than
the unknown gB*. According to our asynptotic approxi mation, standard regression
statistics properly account for the first source of wuncertainty but not
necessarily the second. W show below that in some inportant exanples,
properly accounting for both sorts of uncertainty requires merelyrescaling the
| east squares variance-covariance matrix by a certain function of P/R

When such a sinple adjustnment does not suffice, one can sometimesobtain
asynptotically valid test statistics by augnenting the regression (2.2) with a
judiciously chosen set of variables QM. In this case, one runs the

regression
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A A A . -3 ~ .
(2.3) Viter = Gear'a@ + gae,'a, + di sturbance = g.,,’a + di sturbance,
where 3 2t 1S @ (rxl1) set of extra variables included so that conventionally
conputed hypothesis tests on o« are correctly sized accordingly to our

. A A A . ~ .
asynptotic theory, g = (g..',Gaa’)’ 1S (+41)x1l; Gy = G (B7) =

(Ges (B) " 1 G3eny(B) 7 ) = (Geny’ +192en’) ' and a are also (£+r) xl.

3. Assunptions

This section presents assunptions relevant for the basic regression
(2.2); section 5 will present an extension for analysis of the augnented
regression (2.3). Qur assunptions are "high level" ones. We use relatively
abstract assunptions for two reasons. First, they allow us or others to verify
that our results apply to tests and nobdels other the ones we consider in detail
in sections 6 and 7 bel ow Second, they can be presented conpactly. In the
interest of concision and clarity, we also do not attenpt to state each theorem
using a mninal set of assunptions. For exanple, a weaker version of
assunption 3 applies in applications with paranetric covariance natrix
estimtors.

Some notation: for any differentiable function n,:R"™ - R® and for x in the
domai n of nt,a—nt denotes the (sxm) natrix of partial derivatives of n,; for any

x
function n, whose domain is in R*, n, = g—gt(ﬁ'); for any matrix A = [a;], let
Al = maxi'jilaij'i; summat i ons of variables indexed by t or t+7 run fromt=R to
t=T=R+P-1: for any variable x, Ix(t) = rl.x(t), Ix., = Il X,,,; sunmmtions of
vari abl es indexed by s run from(a)i1 to t, for the recursive schene, (b)t-R+1
tot, for the rolling schene, (c)1to R for the fixed scheme: for any variable
X, (a)Ix, = Zf_x, (recursive), (b)rIx, = £ ..x, (rolling), (co)f.x, = Z& X,

(fixed). Finally, et

of .7 .
aBt (B ) ’ F = Eft*r,ﬂ'

(3.1) ft‘.r(ﬁ') = gt;l(B')vt.y(B‘) ) ft+T,B =

Here, f..,:R* » RY; the (fxk) matrix F is not subscripted by t in accordance with

a stationarity assunption about to be made.

Assunption 1: (a)In some nei ghborhood N around g°, and with probability I, v, (8)
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and g.(B8) are nmeasurable and twi ce continuously differentiable; (b)Ev.,g., = 0;
(c)Evevyy = 0; (A)Ev.,,Gis = 0; (e)Eg.g.’ is of rank ¢.

Assunption 2: The estimte ﬁt satisfies 'EC—B' = B(t)H(t), where B(t) is (kxq)

and H(t) is (gxl), with (a)B(t) > B, B a matrix of rank k; (b)H(t)=t"L,h,(8")
(recursive) or H(t)=R!L,h (B8") (rolling or fixed) for a (gxl) orthogonality
condition h,(8%); (c)Eh,(B")=0; (d)in the neighborhood N of assunmption 1, h, is
measurable and continuously differentiable.

Assunption 3: In the neighborhood N of Assunption 1, there is a constant D<w
such that for all t, sup s |9v (B)/8B83B' | < m. for a neasurable m, for which
Em{<D. The sane holds when v, is replaced by an arbitrary el enment of g..

Assunption 4: let w, = (v’ ,vec(gy) Ve, g’ . h') " . (a) For some d>1,

sup . Elw.[®%<o, where || . | denotes Euclidean norm (b)w, is strong mxing, wth
m xi ng coefficients of size -3d4/(d-1). (c)w, is fourth order stationary.

(d)Let Tee(3)=Ef £, 5, See=L5. e (3) - Then S, is p.d..

Assunption 5: R P » o as T»w, and lim ., g =7, (a)0s7wsee foOr recursive (m=ew

<==> |im . % = 0), (b)osw<w for rolling and fixed.

Note that from assunptions |(b) and |(d),

Ef,=0, F:Egt,l(g‘ét").

In allowi ng not only for recursive but also rolling and fixed sanpling

schemes, assunptions 2-5 generalize simlar assunptions in Wst (1996), where
some discussion of the assunptions may be found. To illustrate briefly here:
The monent conditions in assunptions 3 and 4 rule out unit autoregressive
roots, but otherwise do not seem restrictive. Assunption 2 allows standard
estimation techniques, including GW and maxi mum Iikelihood. In the AR(1)
nodel of section 2, for example, B=(Ey?,)?, h,=y,.,u,. Assunption 5 says that
both P and R are large; in particular, they are large relative to the forecast
hori zon 7.

Throughout, we naintain assunptions |-5.

4. Basic Asynptotic Results

Let
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(4.1) Tew(j) = Efehey’, Spn=E5...Ten(3), r, (j) = Ehchey’, Sp=Zj...Tmm(j), Vg = BSyB’.

. . . . . A .
V., is the asynptotic variance-covariance matrix of TY?(g8.-8").

Define Ag, Ay @and A = 1-27,+),, all of which are scalar functions of =

lim ... g, as follows:

(4.2) Sanpling schene Aen Abn A
recursive 1-7'n(1+n) 2 [1-7m'1n(1+m) ! 1
rolling, ms1 u 7,_?2 1_5712
rolling, w>1 1- 2l1r 1- 3l7r 3%{
fixed 0 T 1+7

A A
Lemma 4.1: (a) PY’2g,.,V r.,= P L., V.., * FBIPY?CH(t)] + o, ()
(b) p*1/2zgt+1vt*1 ~aA N(Ol Sff) .

(C)E[PTH(L)ZH(L) '] » AwSn, E[PEg,. V., SH(t) ‘1 - AgSp-

The results for the recursive schene follow from Wst (1996), and are repeated

here for conpleteness. The results for the rolling and fixed schenmes are new
A A . .

Lemma 4.2: PY’rZg,, vV, ¢, ~» N(0,Q), where Q@ is the (£xf) matrix

(4.3) Q@ = Sg + A (FBSy,' + SipB/F/) + Ay FVF/ .

A A
Lemma 4.3 P'EZg.,; ..’ -, Eg,g.’ .
A .
Theorem 4.1: Let « be the least squares estimator of o (=0) . Then PY?q ~

N(0,V), V = (Eg,g.”) 'Q(Eg.g.’) .

For inference, an estimate of V is required. To discuss this, we
A A

. . A A
introduce some nore notation. Let 7., = V. .,-9.. @ be the |least squares
. . A .
regression residual, ¢ the usual scalar estinmate of the standard error of the

regression disturbance, and ?ff(j) the (£xf) j'th sanple autocovariance of

A A
Qa1 Mesrt

A A A A A
(4 4) UZ = (P_e)~lzni’1 = (P_e)vlz(vt,t+r—gt¢1'a)zl

]

. et A A A A . .
ee {3 p Et.nq’[ (G Mess) (gtol-jntu»r-j) 1 for J=0,

> H>

ee(3) = ,Eff(‘j)' for j<o.
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A
Theorem 4.2: (a) 0% », 6 = Ev?, 02 (P EG w1 Gen’) ™ > 02(EQege’)
A , ) QoA A aA quA A a1
(B) Tee(3) = 1, (i), (P'ZQeaTGea’) "Tee (0)(PPEGeaGen’) %
(Egegy’ ) 'Tee (0) (EgQege’) .
(c)Let K(x) be a kernel such that for all x, JK(x) | s 1, K(x)=K(-x), K(0)=1,
K(x) is continuous for all x, and S |K(x) |dx<w. For sone bandw dth mand some
constant a, 0O<a<l/2, suppose I,\—'Ipfo and, if 7=, %Aa-’o- Then égf =
- ) - . qoA A oA qeA A Dy
5 e K(3/M) T (3) > See, ANd (P2 enGea’ ) "8 (PG Gen' ) 7 5

(E9e9:’) 'S¢ (Egeg.’ )t

Not e that Theorem 4.2 assunes that the |east squares residual %w is used in
estimting 57 and i?,,(j). Since =0 the asynptotic results are unchanged if one
repl aces ’T;m with the |eft hand side variable Gt'm; our formal analysis and
our simulation results bel ow both use %m because that is what will be used by
standard conputer prograns.

Part (a) of Theorem 4.2 considers the textbook estimator of the |[east
squares covariance matrix, part (b) a heteroskedasticity consistent estimator
that is sometimes referred to as the Wite (1980) covariance natrix estimator.
In part (c), a nonparanetric estimator is described, under conditions simlar
to those in Andrews (1991) or Newey and West (1994). So one can use kernels
such as the Bartlett, in which §,, = ’fff(onz';d[(l--}d) [T () +T ()T With Mo o
at a suitable rate, or the Quadratic Spectral. From part (b), if T¢((j)=0 for
jz7, as will typically be the case, another estimator that is consistent for s,
is the truncated estinator; here, §ff = fff(o)n:;;{[?ff(j)+}fﬁ(j)'].

Theorem 4.2 says that sonme sanple nonents are consistent for the

anal ogous popul ati on nonents. But inspection of Theorem 4.1 indicates that use

of these estimators nmay not produce a consistent estimte of V. To illustrate,
consider a sinple setup in which r=1and v,,, is i.i.d. and independent of
current and past g,,,. ThenE(v,,,!9..:,V., 9, Ve1,. . . ) =0, E(v2 . 9,,19c1")

Evi, EQi.1G9c..’ = Se. The least squares estimator of the regression covariance

matrix is GZ(P’IEQMQM’ y"t. From Theorem 4.2, this estimtor converges in
probability to ¢°(Eg.g,’)* = Evi(Eg.g,’)*. From Lemm 4.1(b) and the proof of

Lenma 4.3, this is the covariance matrix that is applicable in the
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counterfactual case in which 8 is known, and one regresses v.,{(B8") on g.,(8%).
But since g8 is not known, we see from Theorem 4.2 that the asynptotic variance
of P25 is not Ev? (Eg.g.’) * but (Eg,g,’) *Q(Eg.g,’ ) * =

Evi (Eg.g,’) ' + { (Eg.g.’) 1 {Ay (FBS,, +S4B F') + AuFV,F’]1(Eg.g.’) "*} . The additional
terns in braces are ones that result from uncertainty about B8°. In this
exanple and nore generally, use of the usual regression forrmulas may result in
asynptotically invalid tests.

If these formulas are instead to result in asynptotically valid tests, we
must have S, = @. This condition inplies that the asynptotic distribution of
2 does not depend on uncertainty about g°: the distribution of P2y is
identical to that of the estimator obtained by regressing v.,(8) on g.,(8) in

the hypothetical case in which g8 is known. Two sinple conditions are

of,
B
is essentially a condition that there is block diagonality in the asynptotic

sufficient to inply S,=0. One is F = edfe(g) = E[gt,l(ﬁ')%%t*f(ﬁ')] = 0. This
variance-covariance matrix for the estimators of g* and Ef,,,=Eg..;V..,- This
conditions occasionally applies in practice, for exanple in testing for first
order serial correlation with strictly exogenous predictors. But since such
exanpl es are unconmon, we do not further discuss this condition.'

A second condition sufficient for Q=S., is w=lim .. g = 0, because this
inplies Ap=A,=0. When 7=0, the linmting ratio of the size of the prediction
sanple to that of the regression sanple is zero. As noted informally by Chong
and Hendry (1986) in the context of enconpassing tests, one can then act as if
B is known. The practical inplication is that if PPRis small, it maybe safe
to use the usual regression statistics. How smallP/R nmust be depends on the
data and the tests; in our sinple Mnte Carlo experinent, the |owest value of
PIR was . 25, and that was not sufficiently small toalwaysmake it harmless to
ignore error in estimation of g.

The next section discusses ways to obtain asynptotically valid test

statistics, even when S.=#Q.

5. Obtaining Asynptotically Valid Test statistics

Throughout this section, we assune that we have an estimator of S, that
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satisfies §“ -, S,,. Theorem 4.2 describes how to obtain such an estinmator.

In addition, for A=A(w) defined in (4.2), define

A A A
A = A(7w), w=P/R

P

A
For the recursive schene, Ax=1 for all =, for the fixed schene />:=1+§, and so

A
on. Cearly, x> A

Corollary 5.1: Suppose that

(5.1) S¢e = ——%—(Fasﬂ,' + SgB'F’) = FV,F' .

A A A A A A A
Then A (P-lzgtolgtoll)_lsff(P—lzgtolgtfll) e - V = A (Eg.g.’) 'S¢ (Eg,g.’ ) 1, Where PY2q

NAN(OIV) .

Condition (5.1) inplies that Q@ (defined in (4.3)) is equal to AS,,, and
Corollary 5.1 then follows directly from Theorem 4.1. Condition (5.1) m ght
seem unlikely. But in fact, as detailed below, in certain linear nodels it
hol ds for tests for: (1)mean prediction error and for efficiency, under general
conditions, and (2)tests for enconpassing and zero first order serial
correlation when the sanpling scheme is recursive and the forecast error is
conditionally homoskedastic.

Upon conparing Corollary 5.1 and Lenma 4.1(b), we see that when the
conditions of Corollary 5.1 hold, wuncertainty about B° sinply introduces a
factor of A into the asynptotic variance of PY2G3. For the recursive sanpl i ng
scheme, X =1, so error in estimation of 8" is asynptotically irrelevant: the
variance of such estimation error (=A,FVsF’) is exactly offset by
-“Aen (FBS;, " +5,,B’F’), which is the covariance between (1)such error, and (2)error
that would be present even if (counterfactually) B were known. For the fixed
scheme, A>1, so failure to adjust will result asynptotically in t- and

chi-squared statistics that are too snmall and thus in too nany rejections at

any specified significance |evel. For the rolling schenme, x<1, so failure to
adjust will result asynptotically in too few rejections at any specified

. A
significance |evel. Further, in any finite sanple, the adjustment by X by

construction increases t- and chi-squared statistics for the fixed schene,
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decreases them for the rolling schene.
Wien condition (5.1) does not hold, uncertainty about B8* usually results
in greater conplications. To handle these, we propose the augnented regression

(2.3), which we repeat here for convenience:
A A A . A .
{2.3) Vi = 9’0 + gy, ', + disturbance = g,’'«, + disturbance,

Theorem 5.1: Let §m(ﬁ‘) = (Qeer' 1 Gaea ) for a (rxl) vector g,.,, defined as

either (a)g,.,, = th*f(B') {==>r=k) or (b)g,.,=2Z,,, for a vector of variables z.,,

ag
that satisfies g‘é“(ﬁ') = G, (B"VZ.,,, G,(B8") a (kxr) nonstochastic matri x. Def i ne
Ewsamvc,,_ Suppose that for one of the definitions of g,.,,, assunptions 1,

2 and 4 are satisfied when £,,, and §m replace £,,, and g,,;- Continue to
maintain assunptions 3 and 5 as well. Let s; and s; be defined as in

equation (4.1), F as in equation (3.2), with £, replacing £.,,. Let Q@ = s +

~ A

~ ~ A P-3 A A
Aen (FBS ' + S;B'F’') + Ny FVgF’ . Let « (£9¢.19¢te1’ ) " (EG¢,1 Ve ra,) be the result

. A A . A . A A
of a regression of wv.,., on g.,, Wwith o the first ¢ elements of «. Then PY?¢

~» N{O,V), V the (£xf) matrix in the upper left hand corner of

(Eg.g.’) EISE’E(Eat’étI )t

For in-sanple tests, simlar augnentation is proposed by Pagan and Hall (1983),
Davi dson and MacKinnon (1984, 1989), and Wpoldridge (1990, 1991).

Theorem 5.1 states that conventional regression output can be used. From
Theorem 4.2, conventional regression programs consistently estimate Si. So,
for example, if r7=1and v, is a textbook error--conditionally honoskedastic
and serially uncorrelated--for inference one can use the #£xf matrixin the
upper left hand corner of 32(9‘128“13“1')“, ﬁthe usual |east squares estimate
of the standard error of the regression disturbance that is defined in Theorem
4.2(a). More generally, if 7>10r there is conditional heteroskedasticity,
het eroskedasticity and autocorrelation consistent covariance matriXx estimators
may be used.

It should be noted that one of the assunptions of the theorem that
Eg.g,’ is of full rank (this is assunption |(e)) is not always innocuous. Wth

tests of nean prediction error or of efficiency in linear nodels, for exanple,
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the rank condition will fail for either definition of g.. For these tests, the
conputationally convenient test that we propose is the one described in
Corollary 5.1.

On the other hand, the condition typically is satisfied in tests for zero
serial correlation of one step ahead prediction errors and for enconpassing
tests. For wunivariate ARMA nodels, one will augment with dv.,,/88 eval uated at
ﬁt, for linear simultaneous equations nodels with the vector of predeterm ned
vari abl es.

To prevent confusion, we enphasize that Theorem 5.1 does not say that one
can use the usual regression output for inference about «,, the coefficients on
Jaer- It is true that 32 converges in probability to zero. But in general the
usual regression output wll not consistently estimate the asynptotic

vari ance-covariance matrix, as discussed in section 4.

6. Four common tests

In this section and the next, we consider the four comon tests Listed in
section 2: nean prediction error, efficiency, first order serial correlation,
and enconpassi ng. For conciseness and clarity, we linit our formal statenents
to one step ahead prediction errors (r=1)in a nodel estimted by | east
squares. W comment in section 7 on generalizations to predictions fromthe
reduced form of Ilinear sinultaneous equations nodels or from univariate ARMA
models, and to nultiperiod predictions. This section lays out the setup. The
next section presents results.

The nodel is
(6.1) y. = %8 + v,

where y, and v, are scalars, x. and 8" are (kx1). The sanple counterpart of v,

is conmputed as
A A
(6.2) v = Yeor ~Xenr " Be-

For the enconpassing test, we need to describe as well the enconpassed

model. This will require redefining 8. Mdel "1" is the enconpassing nodel,
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"2" the enconpassed nodel. Let g*=(B;’,B85') ., where B is (k;x1l), k=k,+k,, With
the nodel i prediction dependent only on B;. Let x, be the vector of
predetermined variables in nodel 2, y.=xX,'B5+v,.. The null is that v, is

uncorrelated with =x,.,,”8;, the forecast from nodel 2.

Along with Assunption 5 (i.e., P-no, R-»), we assume

Assunption (*): (a)x, includes a constant.

(D)E(v X, Xe.yr o=+ Veas Ve, ---.)=0 (for the enconpassing test,

E(v X, Xors Xeorr Ko 1se o - e Ve1sVarors Veear Vagge -- ) =0)

(c)For g, and g, defined in Table 1, Eg?>0 and Eg,g.’ is of full rank.

(d)Let h (B") = x,v, (for the enconpassing test, h, =(x,'vg, X5’ Vy) ') . The
estimate B, satisfies B,-8° = B(£)H(t), where B(t) is (kxk) and H(t) is (kx1),

with B(t) and H(t) defined as follows. (i)B(t) = (t'gxx,’) "t (recursive) ,

B(t)=(R'Cxx.") ! (rolling or fixed) . For the enconpassing test, B(t) is block
diagonal wth analogously defined B;(t) on the diagonals. (1i)H(t) =t 'L, (B")
(recursive) or H(t)=R7'c h_ (8) (rolling or fixed). (iii)Evi>0, and Ex.x.’ and

Ex,x.'vZ are positive definite (for the enconpassing test, the same holds for
model 2).

(e) (i)Let w, = (x.',v.)’. For some dsl, sup . E[|w/*¥<w. (ii)w, i s strong m xing,
with mxing coefficients of size -3d/(d-1). (iii)w, is fourth order

stationary. For the enconpassing test, the same holds for we= (X', Ve, X', V)’

The "low level" assunption (*) may be shown to inply the "high |evel"
assunptions 1-4, as well as the validity of the null hypotheses of zero mean
prediction error, zero serial correlation, etc. As well, part (c) of
assunption (*) follows fromthe other parts for nean prediction error and
serial correlation; as long as g'=#0 part (c) follows as well for efficiency.
For enconpassing tests, part (c) follows fromthe mld additional condition
that the prediction from the enconpassed nodel not lie in the linear span of

the regressors from the enconpassing model.*

7. otaining Regression-Based Test Statistics for the Four Common Tests

Colum (2) of Table 1 lists the scalar right hand side variable in the
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sinplest version of these tests.

Theorem 7.1: (a)For g, defined as in one of the rows of Table 1, |et o=

A LA A
(Egt.l)' (LG Vi),

(i)For nmean prediction error or efficiency, Py ~» N{0,V), V=X (Eg}) *Evigi.
(ii)Let the sanpling scheme be recursive, and suppose that the underlying

di sturbance v, is conditionally honmoskedastic, E(vi|{x.) = EvZ (for enconpassing,
assume E(vZ|x.,x,)=Evl and E (v} |x., %) =Ev3,) . Then for any one of the four tests
in the table, P2 ~x» N(0,V), V = ¢*(Eg]) "', o*=Ev}.

(b} For enconpassing or first order serial correlation, augnment the regression
as indicated in Table 1, and regress cm on ’g\u1 and azm. Let 3 be the first
element of the resulting coefficient vector. Then p2G ~, N(O,V), V the (1,1)

element in (Eg.g.’ ) 'Evig.g.’ (Egig.’ ) .

Table 2 summarizes when and how to adjust.

Comment s:
1. In part a(i), asynptotically valid test statistics require scaling the usual
covariance matri x by N (whi ch neans no adjustment for the recursive schene,
for which ’)tzl). In parts a(ii) and b, no special adjustrment is needed.
2. For the recursive scheme, the difference between the assunptions in a(i) and
a(ii) is that a(i) allows conditional heteroskedasticity of the prediction
error, a(ii) does not. The covariance matrix in part (i) reduces to that in
part (ii) if there is no conditional heteroskedasticity. If there is
condi ti onal het eroskedasticity, tests for enconpassing and first order seri al
correlation will be mis-sized if the inference is based on the covariance
matrix given in part a(i).
3. Wile not stated formally, the results in part (a) continue to apply when a
constant is included in the regression. Valid t- and chi-squared tests require
nerely rescaling the usual covariance matrix.
4, For mean prediction error, the formula for Vin part (a)(i) sinmplifies to
AEvZ. For enconpassing and serial correlation, under conditional
honoskedasticity the formula for V in part(b) reduces to Evﬁ(Eatat’)‘l.

5. Zero mean prediction error seens to be the only one of these tests that is
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often done for multistep horizons (e.g., Meese and Rogoff (1983)). For a
reduced form which is a first order VAR we have established that the results
in part (a) still apply, with Azl Evcv.; replacing AEvi as the asynptotic
variance covariance matrix.

6. A vector of sanple nean prediction errors is also asynptotically normal wth
the variance-covariance matrix being the usual one, multiplied by A.

7. Suppose that B8* is estimated from the structural equations of a Ilinear

si mul taneous equations nodel, with the reduced formused for predictions and
prediction errors. Under sone additional conditions, the results in Theorem
7.1 still obtain.

8. Suppose predictions are made from a univariate ARMA nodel that is estimted
by non-linear least squares or an asynptotically equivalent technique. Then
condition (5.1) (which underlies Theorem 7.1(a)) continues to hold for nean
prediction error. So under suitable conditions the result in Theorem 7.1 (a)

will continue to hold as well.®

8. Mnte Carlo Evidence

Here we present a sinple Mnte Carlo experiment. Qur aimis to get a feel
for whether our proposed adjustnents to the usual |east squares statistics are
likely to be useful in practice, and, nore generally, whether our asynptotic
approximation mght yield well-sized test statistics. It turns out that while
our approximation does usually work well, the rolling sanpling schene does
sonetimes require unusually large sanples sizes to generate accurate test
statistics.

The experinent we present involved 5000 repetitions. Each repetition
required generating 201 data points (200 excluding an initial condition).
(Some additional experinents reported briefly in Table 6 and in detail in the
addi tional appendix involved 1000 repetitions of sanples of size 1601.) Each
of these 5000 artificial sanples of size 200 and were split into 15 different
regression (R) and prediction (P) sanples. The values of P and R were: R=25,
P=25,50,100,150,175; R=50,P=25,50,100,150; R=100,P=25,50,100; R=150, P=25,50;

R=175, P=25--15 conbinations in all. This range for PR (from1/7 to 7), as
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well as the values of T=P+R-1, seem broad enough to include nost relevant
enpirical work. For a given (P,R) pair, the (Pxl) vector of prediction errors
used on the left hand side of the regression tests was {'v't,/_l\}, t=R . . ..R+P-1.

For each pair of R and P, the first R+P observations of each sanmple of
size 200 were used. So R=50/P=100 and R=100/P=50, for exanple, used the sane
150 observations, but began the out of sanple exercise at different points.
This means, for exanple, that for the recursive schene the 50 prediction errors
used in R=100/P=50 sanple were identical to the last 50 in the R=50/P=100
sanpl e.

A recent literature has enphasized the inaccuracy of conventional
asynptotic approximations in some time series environments. Exanmpl es from our
own work include Newey and West (1994) and West and WIcox (1996) . W  suspect
that our out of sanple procedures will also work poorly in such environnents.
To give as clear as possible a sense for whether our procedures m ght work
well, we consider a data generating process and regression that to our
know edge has in sanple behavior that is reasonably well approximted by
conventional asynptotic theory. This process is a zero-nean AR(1) with i.i.d.
normal disturbances and an autoregressive parameter that is not close to the

unit circle,
(8.1) y. = B'Yen + v, 8=0.5, v, ~ N(0,1) |

In each of the 5000 sanples, y, was drawn fromits unconditional N(0,(1-87%) ")
distribution, and vy;,...,Y20 Were generated recursively using (8.1) and
pseudo-random draws of v,.

In each sanple, and for each P and R four hypothesis tests were
conducted for one step ahead (7=1) predictions: nean prediction error,
efficiency, zero serial correlation, and enconpassing. For the last test the
alternative nodel was y. = By.. + Vvo. This was estimated by | east squares, so
B=(Ey: ,) *Ey..y.- The introduction of the second |lag neant that sone regression
sanples were 1 observation snaller than the "R" reported in the table.

W report tests of nominal size .05. Tests of nominal size .01 and .10

worked equally well, and tests with larger sanple sizes worked better; see the
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addi ti onal appendix. Al regression tests included a constant term since
these typically would be included in practice. Apart from adjustnent by a
factor of X in regressions in which our theory calls for such an adjustnent,
the usual |east squares covariance matrix was used--that is, we did not use a
het eroskedasticity consistent covariance matrix estinator.

Table 3A presents results for nean prediction error. Tests for the
recursive schene work quite well, with nonminal .05 tests having actual sizes
between .046 and .057. Qur approximation does not work as well for the rolling
and fixed schenes, although performance is perhaps tolerable for P/Rsl, and is
quite good for P/Rs.S.

Table 3B presents results when the least squares t-statistic is used,
without dividing as we suggest by V. Recall that by construction: (1)the
rolling scheme must have |ower actual size and the fixed scheme higher actual
size when our adjustnment for error in estimation of 8*is ignored; (2)the
adjustment is smaller the snaller is P/IR Panel s A3 and B2 indicate that for
the fixed schene, our adjustment inproves the size for all PR The difference
is perhaps not large for small P/R (e.g., for P=25, R=100, our test statistic
yields a size of . 058, the unadjusted a size of .081), but it is dramatic for
large P/R (for P=175, R=25, our test statistic has a size of .099 vs. .523 for
the unadjusted test statistic).

For the rolling scheme, the conparison is not as clear-cut, since our
test statistic typically rejects too infrequently (actual size > .05) while the
unadj usted typically rejects too often (actual size < .05). Wile we do not
have a precise loss function for under- versus over-rejection, our own gut
feeling is that we would rather have a nonminal . 05 test have a probability of
rejecting of say 7.4 percent (P=50, R=25, our test statistic) than of .3
percent (unadjusted test statistic), all other things equal. In this sense,
our test statistics perform better for the rolling scheme as well. But we
recogni ze that other researchers may have different loss functions, at least in
some applications.

Table 4 has the results for the efficiency test. For the recursive and

fixed schenes, our procedure seens to be a little nore accurately sized than it
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was for nean prediction error. But for these two schenes the remarks nmade in
connection with Table 3 generally apply here as well.

The rolling schene, however, performs quite poorly for P/R>1. |In fact,
for P/R>1, the over-rejection is so extrene that failure to adjust generally
inproves the test statistic. For exanple, for P=50, R=25, panel A2 indicates
that our procedure had an actual size of 43%, while panel Bl indicates that use
of the usual least squares test statistic yielded a size of 7.2%

Tables 5 and 6 indicate that for the enconpassing test and the test for
zero first order serial correlation, the Table 4 results apply qualitatitively:
For the recursive and the fixed schemes, our test statistics work adequately,
and domi nate the unadjusted test statistic. But for the rolling schene our
test statistic works poorly.

In Tables 4-6, the rolling scheme worked quite poorly for P/R>1. To see
how large a sanple is required for tolerable accuracy of the asynptotic
approxi mati on, we generated 1000 sanpl es of size 1601; we report here certain
results with sanples of size up to 1201 (full details are in the additional
appendi x) . We controlled the seed to the random nunber generator so that the
first 201 observations in each sanple were the sane as in Tables 3-6. W then
conducted the efficiency test for some larger sanple sizes, holding P/R fixed
at 2 and at 4. The results are in Table 7. As nay be seen, by the tine the
sanple size hits 1200, the result for P/R=2 is reasonably accurate (actual size
of .069), at least by the standards of Tables 3-6 and nuch other work on
hypot hesis testing in tine series nodels. For P/IR = 4, however, substanti al
ms-sizing still remains.

We concl ude that our asynptotic approximtion usually works reasonably
well, but that for the rolling sanmpling schene relatively large sanple size

sonetinmes are required.
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Foot not es

1. W hope our work will be useful even for the interpretation of conpleted
papers. Wth the exception of one paper that cameto our attention after this
paper was witten (Hoffrman and Pagan (1989) ), to our know edge all such papers
have used standard regression statistics, wthout adjusting for dependence of
predictions on estinmated paraneters. W establish conditions for the
asynptotic validity of such statistics, and in somecases we are able to
propose adjustments for such dependence that can be nmade even w thout access to
the data. See sections 4, 5 and 7.

2. This test is mostnaturally run by regressing Ym-ﬁtyt on y.- é\t‘lym.
Strictly speaking, our notation inplies that ym—ﬁt_lyt rat her than Yt+1_§tYr. is
on the left: we assune that both left- and right-hand side variables are
constructed from the sameestimate of p*, and a rank condition presented bel ow
rules out sinply defining parameters so that the population paraneter of
interest is 2x1 with a 2x1 period testimate of (ﬁt,}ﬁkm)'. But this rank
condition is easily relaxed, and results maybe generalized to allow the
natural version of this test. To econom ze on notation, we do not explicitly
do so in this paper.

3. See West (1996) and MCracken (1997) for further discussion of the
conditions under which F=0.

4. Note that this last condition rules out tests of nested (rather than
non-nested) nodels. Such tests are in Ashley et al. (1980) and dark (1997).
An insightful referee has pointed out that someof our results do extend to
non-nested nodels; to conserve space, we do not consider such npbdels here.

5. It is, however, possible to construct exanples in which the results of
Theorem 7.1 fail. Let €, and u, be independent standard nornels, v,=€elu,
x.=(Ex. ) +€, With Ex=#0, where all variables are scalars. Let a regression nodel
be y.=x.8+v., with estimation by QLS. Then S.=Ev? (=Ee{Eu?) , S;,=Ex Vi=Ex.EV,
Sh=Ex}vi, F=Ex,. This violates Theorem7.1's assunption that there is a
constant term in the equation. Consider nean prediction error. Theorem 4.1

i ndi cates that pY?q = P 2L (y,.,-X..,B,) is asynptotically normal with asynptotic
variance [Ev? - 2A,Ex, (Ex?) Ex,Ev? + A, (Ex.) *(Ex?v?) (Ex?) ?] . This does not reduce

to AEvi=AS, sSince Ex#0 and Ex?v? # Ex/Ev].
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Appendi x

Not at i on: "sup," MBANS "supg.."; "var", "cov" denote variance and
covariance; all limts are taken as the sanple size T goes to infinity; the
summetion *T" means "“Ii_.": For notational sinplicity, we consider throughout

the case in which k=1 and ¢=1, so that B8*, g.,, and £.,, are scalars, and we |et

“f oy sa (Et)" nmean "g;f;w (231) . To save space, proofs of Lemmas Al to A4 and

parts of other proofs are put in an Additional Appendix available on request

from the authors.

Lemma Al: Suppose w<w. For Osac.5: (a)sup.|P*H(t) | =, O; (b)supt{Pa(ﬁt-B*) I =, 0.

Lemma A2:(a) P'T|f,,,|*> = O, (1), (b) PCif,,, 4% = O,(1), (c)For B, satisfying

~ R ~

1Bc-f* s | B.-B*} for t=R ..., T, P T{f,, 5(B)* = 0O (1).
° R A A A A

7Lem AS Let rff(]) = P-lzzﬂhj [ (gt‘lvt,tor) (gtvl-jvt~j,t+rvj)1'=‘

A A o
P resEer (B Eeury (Beoy). Then T'¢e (3) =, Tee(3) -
Lemma A4: Under the assunptions of Theorem 4.2, and with In“ff(j) defined as in
Lemma A3, S¢ = Z01,, K(3/M) Tee (j) ~p See-

Proof of Lemma 4.1: (a)For the recursive scheme, this follows from Lenma 4.1 of

West  (1996). The relatively sinple argument for the fixed schenme is in the
Addi ti onal Appendi x. For the rolling schene, expand ft,,(/ﬁt) around f£f,,.(8°) for

t=R, . . ..R+P-1. and sum the results, vyielding
(m2) Pt (B, = PMLE, + PVEE., B (1)H(L) + P VTu,,

for w.,, defined as in (Al). W have | P'cw,,| =
.S(P”"supt}/B\t—ﬁ*})2(P’12|ft,,,55(5t) {) >, 0 by Lemmas Al and A2. The second termin
(A2) can be witten

P Y2FBIH(t) + P Y{F[B(t)-BJH(t)} + PY2CL[(f,,,,,~F)BH(t)] +

P 2L {(f,., ,-F)[B(t) -Bl1H (t)}

and hence we need show that the last three terms in the above expression are
o,(I) . W will show the result for P?*2r [ (f,, ,-F)BH(t)]; the others follow from
arguments simlar to those for the recursive schene (West (1996)).

For notational sinplicity, let x, = (f.,,,-F), redefine Bh, as h,, and let

Y; = Ex,h ;. For P s R (the P> R case is sinmlar) we have |EPExH(t) | =
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(PY2/R) | Yo+ . -+¥gals (PIR) Y?RM2L3 lv,1 » 0 since m<w and I3,|v;i<=. Then since
it can be shown that assunption 4 bounds the fourth nonents of (x.,h,}’ in such
a way that lim var[pPY¥2Zx H(t)] = 0, the result follows from Chebyshev's
i nequal ity.
(b)Follows from Theorem 3.1 of Woldridge and Wite (1989).
{(c)For the recursive schene the results are in Wst (1996). For the fixed
scheme, EP'TH(R)LH(R) = (P/R)E[(R?£? h) (R¥L® h.)’] » wS,. To show that i, =

s=1

o, let y; = Ef,,;h. 4. Then |ER'ZE,, (2% h,) | =

PR (Yt - +Ye) oo o+ (Yoot . - +Ye) 1l < RPES 13 1]v;) » 0 since assunption 4
i'mplies 5, .13 |]v; | <o (Andrews (1991)).

For the rolling schenme, we will sketch the result that E[P!ZH(t)ZH(t) ‘1-
AnShy = (7r—§2)shh for w<1. The proofs for w=1, and for E [P !Zg.,V..,ZH{t) '] >
AenSen. are conceptually sinilar.

Wth P<rR, ZH(t) may be witten as the sum of three terns,

LH(t) = A + A, + A, A = R'[h+2h,+...+(P-1)h,,], A = PR'[hy+...+h;],

A =R (P-1) hgy+.. -+2hgp,+he 1. It is easy to see that |imwvar(p ) =1lim
P(R-P+1)RL)j, npEhh, ;* + 0(1) -» (7-7?)S,,. We will sketch the argunent that
shows |im var(p%?n,) = 312sm,. That |im var(p'?n,) = gzshh follows from a nearly
identical argument. Since, finally, it can be shown that I|im cov(p/?a;,P"?a))
= 0 for izj, the result will follow

For sinplicity, assune g=1. Redefine y; as y;=Ehh,,, and for |j {sP-2
define d, = £f:1-431 [4(i+]3 1)1 . Then

var (A)) = R7?L2,,d;v; = R?dEy; - RPC(d,-4;) 7y,
W have P*R?d, ~ [P?/(3PR?)] - Bf, and the result will follow if P'R?EZ(d,-d;)v; -
0. This result may be established using &, s [ix?dx, d; = [5;1(x-3)xdx ==>
{do-d;! s |Jex?ax-J%;1 (x-j )xdx|, solving the integrals and manipulating the result
to obtain PP'R?|E(d,-d;)v4] = (1/3P)E{F| |v;] + o(1) » O.

Proof of lLemma 4.2: Let X(T) = Zlg.,,v..,+FBH(t)]. From Lenmma 4.1, P‘l”zgm@‘m

= PYX(T) + o,(l), with limwvar[PV?X(T)] = Q. Asynptotic normality then
follows from Theorem 3.1 of Woldridge and Wite (1989). Details are in the
Addi tional  Appendi x.

Proof of Lemma 4.3: Follows from a nean value expansion of gm(ﬁt) around
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g1 (B7). Details are in the Additional Appendix.

Proof of Theorem 4.1: Follows immediately from Lemmas 4.1, 4.2 and 4.3.

A
Proof of Theorem 4.2: {a)That P'fg}, -, Egi,, follows from Lemma 4.3. Hence we

A A A 5
need only show that (P-1) 'Z(vV. . ,-Gea@)® =, Evi,, W have

t+r

A A A A A
(P-1) (Ve -Gena)? = (P-1) E92, + [(P-1) £g2,10*-2QL(P-1) "G Ve, el

t,t+r

A
That (P-1) "2:3’;"“, -, Evi,, follows from Lemma A3. By Theorem 4.1, « = o,(l); by
Lemmas 4.2 and 4.3, (P—l)‘lEai,l = 0,(1), (P—l)":@t,ﬁt,t,, = 0,(1) . The desired
result now follows.

(b) That P’l):ai1 >, Eg,, follows fromLenmma 4.3. Hence we need only show that

A , T A A A A . .

Tee (3) = P lirey 9earTee1-3 Tear Neer-j 2p BGeaaTeer-iVeerVeer-j = Tee (F) for all j. For

T¢(j) defined in Lemma A3, we have ?Ef(j) = T (j) +

- A A A A A A i

PEl fi5Tei1Teer-5 (Mewr Mear3~ Ve,eer Vegeer) . Lemma A3 shows that the first term

converges in probability to T (j); the Additional Appendix shows that the

second term converges in probability to zero.

(c) That P’lzggd -, Egi,, follows fromLema 4.3. Hence we need only show that
A o A o

gff = Ii,,K(3/M) T () = See.  For Se defined in Lemma A4, we have Sg = Sg +

A °

T K(3/M) [Tee(3) -Tee (3)1.  Lemma A4 shows that the first term converges in

probability to Si; the Additional Appendix shows that the second term converges

in probability to zero.

Proof of Corollary 5.1: Follows inmediately from Theorem 4.1.

Proof of Theorem 5.1: By definition, the (£+r)xk matrix F = Eat.le,si if

~

~

Goter = Viar,gs then, F = (EQy.19cr’ rBE92ee1T2ear’ ) , while if a1 = Zearr F =
(E9zc019c1” B9y Tacar ') Gy’ From Lemmas 4.1 and 4.3 and Theorem 4.1,
S VN A A
P2 = (P'Egi1Gen’ ) _I(P_I/Ztholvt,tn)

~ o~ A A
(EGe1 Ty’ ) (P Y2Lg 1 Ve ea,) + 0, (1)

(EG1Tet’ )t (PY2EG . Ves,) + (EQeiGe.,’ ) 'FB (PY2ZH(E) ) + o, (1)

Upon partitioning Egmgm' conformably with g, and g, ., and using the formla
for the inverse of a partitioned matrix, we find that the first £ rows of the
(f+r)xk matrix (E,..9.,') 'F are identically zero. Since a consists of the
first ¢ conponents of S, p?% equals the first ¢ rows of

(EQ.1Ge.: ') M{PY2Zg, ,v,.,) + 0, (1), and the proof is conplete.

Proof of Theorem 7.1: (a) (i)From Corollary 5.1, condition (5.1) is sufficient




Ad
to guarantee the result. From assunption (*), we have B=(Exx.’)™* and
Spn=Evix X’ For mean prediction error, recall that x, contains a constant.

Wthout |oss of generality define x, = (1,;')' where x, is a vector of
nonconstant regressors. Then F=-(1, Ex_) which inplies FB=-(1 0 . . . 0); the
result follows since the (1,1) el ements of both Sq and S, are Sgi=EVZ. For
efficiency, note that F=-g"'B! and hence FB=-8"'. The result then follows
since S;=B""Sy;,B8" and SgH=8"'Su,-

(a) (ii)For nean prediction error or efficiency, the conditional
hormoskedasticity assunption inplies Evig? = Ev’Eg? and the result follows from
part (i) . For the other two tests, recall that for the recursive schene
Mn=2Aq and thus Q = S, + A (FBS,' + SBF') + 2A,FV,F'. Hence it suffices to
show -FBSg,’ = FV F’ . For serial correlation, this follows since F=-Ev,,x. ',
B=(Ex,X,’ ) %, Sm=Ev?B?, and S.=-EvIF. For enconpassing this follows since

F= (-85 Ex,; %' ,0°), B=diag [ (Ex.x.") !, (EXyX,.') '], the (k,xk,) block in the upper
left hand corner of S, is EvEx.x. ', and Sg,=8;" (EVIEX,X,' BV v, EX; %, " ) .

(b) Follows from Theorem 5. 1.
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Addi ti onal Appendi x

This not-for-publication additional appendix contains materialonitted
from the body of the paper to save space:

. Additional sinmulation results:

A Plots of Actual versus Nomnal Sizes of Hypothesis Tests:
Mean Prediction Error

Recursive Figure am1

Rol I'i ng Figure AA2

Fi xed Figure AA3
Efficiency

Recur si ve Figure AAd

Rol I'i ng Figure AA5

Fi xed Figure AA6
Enconpassi ng

Recur si ve Figure AA7

Rol I'i ng Figure AA8

Fi xed Figure AA9
First Oder Serial Correlation

Recursi ve Figure AA10

Rol I'i ng Figure AAll

Fi xed Fi gure AA12

B. Efficiency Test with large sanple sizes .
Rolling: PIR = 2 Figure AAl3-a
Rolling: PIR = 4 Figure AA13-b

C. Tables for large sanple sizes
Mean Prediction Error

R+Ps800 Table aanl-A

R+P<1600 Tabl e ARA1-B
Efficiency

R+P<800 Tabl e an2-A

R+Ps<1600 Tabl e aa2-B
Enconpassi ng

R+P<800 Tabl e AA3-A

R+P<1600 Tabl e AA3-B
First Oder Serial Correlation

R+Ps<800 Tabl e an4-A

R+P=<1600 Table aR4-B

I, Proof s:

Lemmas Al -A4

Lerma 4.1 (for fixed schene)

Lerma 4.2 (additional detail)

Lemma 4.3

Theorem 4.2(b), (c) (additional detail)
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Tabl e AAl
Si ze of Nominal .05 Tests, Mean Prediction Error
A. Accounting for Error in Estimtion of Bg*, R+P<800

Sanpl i ng R emrmsemmmmmooooo oo Bro oo T

Schene 100 200 400 600 700
1.Recursive 100 .054 .055 .059 .050 .051
200 .055 .050 .048 . 055

400 .053 .053 .048

2.Rolling 100 . 055 .071 .079 .070 .072
200 .050 .050 .054 . 055
400 .052 .041 .046

3.Fixed 100 .067 .072 .068 .070 .070
200 .062 .057 .060 .054
400 .054 .051 . 048

B. Accounting for Error in Estination of g*, R+P<1600

Sanpl i ng S e Pommmmm s -
Scheme 200 400 800 1200 1400
1.Recursive 200 .050 .048 .050 .049 .046
400 .053 .048 .057 .053
800 . 047 .055 .054
2.Rolling 200 . 050 .054 .054 .056 .053
400 . 041 . 046 .055 .049
800 . 049 .056 .042
3.Fixed 200 .072 .068 .062 .056 .060
400 .057 .060 .066 .062
800 .055 .058 .053
Notes: The DGP is a, univariate AR(1); see text for details. For the indicated
values of P and R v, (the one step ahead prediction error) was regressed on
a constant for t=R...,R+P-1. Panels Al -A3 report the fraction of 1000

sinulations in which the conventionally conputed t-statistic, divided by the
square root of X, was greater than 1.96 in absolute value. Panels Bl-B3
report the sanme, but for larger values of P and R
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Tabl e AA2
Si ze of Nomi nal .05 Tests, Efficiency Test

A. Accounting for Error in Estimation of B8*, R+P<800

Sanpl i ng R e o et
Schene 100 200 400 600 700
1.Recursive 100 .039 .035 .040 .049 . 046
200 . 050 .042 .040Q . 045
400 .040 .049 . 044
2.Rolling 100 .049 .108 .409 .705 .869
200 .042 . 051 .091 .145
400 .051 .046 . 046
3.Fixed 100 .032 . 042 .031 .038 .037
200 . 045 . 044 .043 . 041
400 .042 .050 .047

B. Accounting for Error in Estimation of B*, R+Ps1600

Sanpl i ng e R e
Scherme 200 400 800 1200 1400
1.Recursive 200 .042 .040 .045 .047 .051
400 .049 .044 .061 .061
800 .048 .038 . 047
2.Rolling 200 .051 .091 .229 .424 .566
400 .046 .046 . 069 .111
800 .048 .038 .053
3.Fixed 200 .044 .043 .037 .041 .038
400 .050 .047 .058 . 079
800 .053 .041 .046
Notes: The DGP is a univariate AR(1); see text for details. For the indicated

values of P and,R, v, (the one step ahead prediction) was regressed on a
constant and y.B8. (the one step ahead prediction) for t=R,...,R+P-1. Panels
Al -A3 report the fraction of 1000 simulations,in which the conventionally
computed t-statistic on the coefficient on y.,8., divided by the square root of
A, was greater than 1.96 in absolute val ue. Panels Bl -B3 report the sane,
but for larger values of P and R.
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Tabl e AA3

Size of Nom nal .05 Tests, Enconpassing Test

A. Accounting for Error in Estimation of 8*, R+P<800

Sanpl i ng R s-mmeemmmmmmmmmmm e Pr---mommmmmmm o mm e m e
Schene 100 200 400 600 700
1.Recursive 100 .070 .088 .090 .088 .078
200 .052 .060Q .072 .073
400 .040 .059 .052
2.Rolling 100 .185 .271 .398 .538 .618
200 .083 .115 .167 .206
400 .060 .074 .078
3.Fixed 100 .050 .054 .050 .048 .042
200 .054 . 044 .060 . 055
400 .047 .061 .052

B. Accounting for Error in Estimation of B*, R+Ps<1600

Sampl i ng R cc e P e e m e e m e emmmm e mm— e
Schene 200 400 800 1200 1400
1.Recursive 200 .060 .072 .068 .073 .072
400 .059 .052 .067 .064
800 .052 .039 .063
2.Rolling 200 .115 .167 .257 .359 .395
400 .074 .078 .113 .142
800 .061 .054 .082
3.Fixed 200 .044 .060 .043 . 049 .042
400 .061 .052 .065 .052
800 .052 .050 .049

A
Notes: The DGP is a univariate AR(l); see text for details. Let B, denote
the | east squares estimgte of a regression of y, on y,, using the game sanple
as that used to obtain B8.. For the indicated values of P and R,.V.. (the one
step ahead prediction error) was regressed on a constant and y...8, for
t=R, ..., R+P-1. Panel A reports the fraction of 1000 simulatjons in which the
conventionally conputed t-statistic on the coefficient on y.,8, that was
greater than 1.96 in absolute val ue. Panels A2 and A3 report the sane, when
Y. was included as a third regressor. Panel s Bl -B3 report the sane, but for
larger values of P and R
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Table AA4
Size of Nominal .05 Tests, Test for Zero First Oder Serial Correlation

A. Accounting for Error in Estimation of B*, R+Ps800

Sanpl i ng = T Po-ommmmmmmmmmmmmmmmmmmmm oo
Schene 100 200 400 600 700
i.Recursive 100 .049 .053 .047 .052 .049
200 .05Q .038 .056 .051
400 .055 .054 .044
2.Rolling 100 .071 .096 .137 .178 .209
200 .059 .051 .075 .082
400 .048 .063 .052
3.Fixed 100 . 050 .054 .050 .048 .042
200 .054 . 044 .047 .055
400 .047 .061 .052

B. Accounting for Error in Estimtion of g%, R+Ps<1600

Sanpl i ng R s - P---wmmmmmommmmm s m e e
Schene 200 400 800 1200 1400
1.Recursive 200 .038 .056 .056 .051 .048
400 .054 .044 .059 .058
800 . 050 .049 .052
2.Rolling 200 .051 .075 .096 .122 .136
400 .063 .052 . 069 .069
800 .054 .048 .059
3.Fixed 200 , 044 . 047 .043 .049 .042
400 .061 .052 . 065 .052
800 .0S2 . 050 .049
A
Notes: The DGP is a univariate AR(1); see text for details. In panel A Ve,
was regressed on a constant and v, for t=R,...,R+P-1, for the indicated
values of P and R . Panel Al reports the fraction of 1000 sinulations in

which the conventionally conputed t-statistic on the coefficient on v, was
greater than 1.96 in absolute val ue. Panels A2 and A3 report the sanme, when
Y. Wwas included as a third regressor. Panel s Bl -B3 report the sanme, but for
larger values of P and R



[I. Proofs
,Proof of Lenma Al: The results for the recursive and fixed schenes foll ow
from Lemma A3 of West (1996). For the rolling scheme, we show (a) (given (a),

the proof of (b) is simlar to that of LemmaA3(b) of West (1996)) : we have

P*H(t) = P*R!(hy g, +...+h) = P/R(P/t)*[t**(h+...+h)] - P/RIP* (hi+...+hg)]

sup, | P*H(t) | < sup.| (P/R (P/t)*'[t> (h+...+h)] | +

1}
1l
\Y

(PIR) sup,|P*!(hy+...+h o) |
s (PIR) *sup,[t*!(h+...+h) | + (P/R) sup (P> (h+...+h ).

Since m< o, it suffices to show sup.|t**(h;+...+h) | =, 0,

SUP; .-y | PP 1 (hy+. . . +hg) | =, 0. The first follows from Lenma A3(a) in West
(1996). The second: Let g=1 for notational sinplicity. From Hall and Heyde
(1980, p20) and the proof of Lemma A3(a) in West (1996), h, is a m xingale
satisfying El[sup;.:(h+...+h)%] = cP for a certain constant c. So
Elsupjege.1 | P2 (hy+.. .+h,)?)] < ¢P?*! 5 0 and the result follows from Markov's

i nequal ity.

Proof of Lemma A2: For (a) , we have P'rLf2,_ = Plzv? g?, = (PlEvi )2 (Pzgi,))'?

ter

= 0,(1) by assunption 4 and Markov's inequality.

(b) By definition, f£.,,; = V¢ Jra,s + JeaVe.rs- Hence by assunption 4 and

Markov's inequality,

P-lzfg+r,ﬂ = P-lzvi+rgi+1,ﬁ + P—lzgiﬂ.vz‘r,ﬂ + Zp-lzivtﬁfgttl,ﬂ | ggt0lvt+1.5 |
s (PZVE, ) YAPILGL,, 5) VP + (PTEVE,, o) Y2 (PTIZgl,,) M +

2 (PPZVE,) V4 (BB, o) M4 (BB, ) V4 (PEGR,) M0 = 0, (1) .

(c) I'n this proof and this proof only, for any function n, |et n(Bt)EE.

~
~

By definition, f£.,, 5 - VeyGeasss  2VeergTeerg+ TJearVeer,gs- NOW since v, and

~

de, are twice continuously differentiable, £, , can be witten as

~ ~ ~ ~ ~ ~
{Vtorgcq,ﬁﬁ + gtu,ﬂﬂvtn,a(ﬁt‘ﬁ*] + -59u1,3ﬂvt+r,ea(5c'ﬁ*)2} + {thn,ﬂgta,s +
o ~ 3 ~ ~ ~ o
2Vi,; 59ce1. 08 {Be=B*) + 2Gc. gVie, 55 (Be-B%) + 2(B.-B*) zgt'l,ﬁﬁvtor.ﬂﬂ} +

~ ~ ~ ~ 3 ~ 5
{gt.xvcn,ﬁﬂ + Vs 69ce1,8(Bc-B8B%) + .5Vi1 5sGeer.p8 (B~ B*) }
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= Wi o+ Wy + Wy,

~
where for notational sinplicity we are assuming that we have the sane B. on
the |ine between Et and B* for each expansion. To show t hat p~1zf§”’”(§t) =
O,(1) it suffices to show that P?rwi, = O,(1) for each i. W wll show this

for w,, the others follow from simlar argunents. Squari ng out w, we have

Sl Clgne,2 2 Slye2 2 = 2 Slgr2 ~ 2
P"Zw;, = P 'Iv{,,9¢u1.88 + P IZG¢01, 86 VEer, 5 (Be-B*) 7 P Eg:q,gg"i”,se(ﬂc'ﬁ*)‘*
1 ( =2 2 S1e2 ad = 2
2p Z' vtfrllvt¢1,B| gt+1,ﬂﬁ| Bt_ﬁ*{ + 2P Eglnl,BBIvtrrthtor,ﬁBll (61:-3*) +
~
vV,

1y | I 1R 3
2PTEGL, g1 Veer, gl ter, 861 Eﬁ:‘ﬁ*%

= (PIVE, )M (PREGL,, 4p) V2 + (AAL)
(SuPcIEc“ﬁ* D)2 (P, )2 (P—lzgéfl,ﬂﬂ) Y+

(Suptl Bc“B* I )¢ (P’lﬁg‘é”,es) /2 (P_lzagtéu,sﬁ) 12 4

2(sup, | Be-B* |) (BPLVE, ) M4 (BUEGL, 40) V2 (PIEVE,, ,) Ve +

(sup, | Be-B* )2 (BIEVE, | 45) Y (PIEGL, g6) V7 (PTEVE,) V4 +

k3 ~
2Asup, | B.-B* )2 (PZVE,, 40) Y (PIEGL,, 45) Y2 (PIEVE,, ) V2.

The first termon the rhs of (aa1) is o,(1) by assunptions 3 and 4, and
Markov's inequality; the remaining terms on the rhs of (Aa1l) are O,(1) by

Lemma Al, assunptions 3 and 4, and Markov's inequality.

pirf? (ﬁt); other autocovariances may be

ter

Proof of Lemma A3: Consider f‘ff(o)

i

handled simlarly. A nean val ue expansion of ft,,(ﬁt) around £, (B*)=f,.,

A
yields ft»r (Bt) = ft_¢f + rt+rl rtor = {ft+1,8(}ﬁ\t_ﬁ*) 1 + wl’.+'rl
We,, = 5f ., 5 (EC) (ﬁc—,e*)’, Ec on the |ine between ?t and 8. Hence
Tee (0) = PUEEE, + 2P (£, ,x,,, 1+ P L2, . (AR2)
The first termon the rhs of (AA2) converges in probability to I',,(O by Wite

(1984, Corollary 3.48). For the second term the triangle and Cauchy-Schwarz

inequalities yield

A
,PVIZ (f torrt+r) I = : Pslz [fC¢1ft41,E (ﬁt-ﬁ*) 1 + P‘lz‘ftorwtor |I
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A
s (sup,| 8.-8*]) (P'Zf?,,

) 1/2 (P—l):fi#r,ﬂ) /2 4

A ~
.5 (sup,} B.-B*}) *(p g2, )12 [P'lzfin,pg(ﬁc) ]1/2_)p0

by Lermas Al and A2. For the third term it is straightforward to show that

P Er? is less than or equal to

A A ~
(sup,} B.-B*} ) (PICEL,, ) + (sup.| Be-B* | )3 (PICEL,, ) Y3 (PIEEL,, 4 (B )M +

A
(Supt{Bt_ﬁ*{)4(P lzfi,1 Bﬁ(Bt))'
Si nce supt!’ﬁt—[s‘*} = o,(l) by Lenma A, the result follows from Lemma A2.

Proof of Lemma A4: Let Ky = K(j/M, suppressing for sinplicity the dependence

of X, on Mand thus P. Furthernore, define r., and w.,, as in (AA2). An

expansion such as in the proof of Lemma A3 then yields

°
E:li);}Pz,lK'jrff(j) - EP—-dej (P 1ET-R.]ft¢rft+r J) + E;";]ﬁpu}% (P IEE-Rch»rrt»r-j) +

1T P 1
- P+1KJ (P E::Rq cn-jrcn) + I s p+1KJ (P~ Ec.gqrcnrcn ]) -

It follows from Andrews (1991) that Z§i1,,K; (PEigfei frary) = E5aTee(3) , so it
suffices to show that the other three double summations converge in
probability to zero. We will show this for the second doubl e sunmation; the

arguments for the third and fourth double summations are sinilar. Note that

!P-lz€=R+jft¢1ft+f~j.ﬁlls (P-lET fZ¢7)1/2 (P IEI =R+j t¢1 ﬁ) 12 S(P IEfz

C+T

raRes ) 1/2 (P»l}:fzn 5)1/2

lP 12: R')ftorw

wrs| s o S(sup | Be-Br]) T(RILEL )M (BIEEL, 4, (B)) 2
Let "a" be defined as in the statement of the theorem 0<a<.5. Then for 7m<w

Ep:-PwIKj (P lzt Ro]ftﬂ'rtc»r ]) I =
(M/P%) (ME5:8,,, 1K, 1) { (P*sup, | Bo-B* 1) (BPLEL, )2 (PIEEL, ) V% +

5 (P3sup, | Be-pr )7 (BVDEL) /% (ROEEL, 4y (B 1M,

By Lemma Al, Pasupt}ﬁt—ﬁ*{ >, 0 and by Lemma A2 each of the summations inside
the braces is 0,(1). Since assunption (M/P*) = (1) and M'Zil,,{K| -
flK(x) {dx < » the desired result follows. For m=w, the logic is the sane

except that R® replaces P°.
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Additional detail on proof of Lemma 4.1:

For the fixed schene, for which ﬁt = ﬁa and Ht) = HR, a sinple nean

) A A A B .
val ue expansion of P2gg,,, (B Ve.,(Be) = PY?Cf,,, ('Bs) around P’CE.,(B*) yields
P'l/z):ft¢f ( ﬁR) = P-l/zzftrr + Pl/z (P_lzft+f,ﬁ) B ( R) |-K R) + P-llzzwt¢1l

for w,,, defined in (AA2). Fromassunption 2, B(t) -, B; from assunption 4.

Plf,., s », F (White (1984, Corollary 3.48)), and P*?H(R) = Oy(1) . So the

P

result follows if P*'?cZw.,, -, 0. W have
| PR s (B/R)VE (RS B B* ) BT Ky s (B )
Since n =1imP/R < » and RY*H(R) », 0, the result follows from Lemma A2(c) .

Additional detail on proof of Lemma 4.2:

Note: W will show the result for the recursive schene. The ot her sanpling
schenes follow from a simlar argunent. In particular, the only change occurs

in the definition of by ..
Gven Lemma 4.1 (a), it suffices to show that PY?C(g..,V.., + FBH(t)) ~a

N{(0,Q). Let by, = (I/R+ . ..+ 1/T). Then
FBZH(t) = by FBh, +...+ by FBhy + bg, FBhg,; +...+ by FBh;.

Now define Z;, = PV?(bgFBh,) for 1 st s Rand Z;, = P*? (g,,V., + b FBh) for
R+1 st = T. Using assunption 4 and Lenma 4. 1 we know that © is p.d.. Hence
for large enough T, Q. = Var(Z{.,Z,;.) is invertible. If we define X; . =

Q;1/2Z. ., then Theorem 3.1 of Woldridge and Wite (1989) inplies that
Q'}l/zpfl/ZE (gtolvti»r + FB'—Kt) ) = ZXT,t ~n N(O,I[) .
Then since @ is p.d., we know that Pp*2r(g,,,v.,, + FBH(t)) ~, N(0,9).

Additional detail on proof of Lemm 4.3:

Since g.,,(B)is twice continuously differentiable, it admts a nean val ue

expansi on

2

A

Ger (B) = Gen gt+1,ﬁ(ét_5*) + . 591 88 (B:) (B.-B%*)
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and hence

p-l):gid(zgt) = P"“L‘g;1 + P'lz{gi,l'ﬁ(ét—ﬁ*)z + .2595.1,55(50 (Bc'ﬁ*)4 ¥
2gc«19:.1,5(éc'6*) * Gee19¢41, 88 (Ec) (Bt‘ﬁ*) 2 4 2Qca1,49ce1,88 (Be) (Be-B*) *)

= PIgi, * PIwW.,.

Now since g, is fourth order stationary and has 8d mnonents, Chebyshev's
inequality inplies that P?*rgi, -, Egi,-

To show that P'ftw.,, = 0,(l) we use the triangle and Cauchy-Schwarz

inequalities to obtain

| PEwWen |'s (sup,|Be-B* 1 )2 (PIg, ,)
(sup, | Be-B* ) * (PEG., 45 (B)) +

2 (sup, | Bo-B* ) (PEGE, ) M2 (PEgl,, ,) /2,
(supe| Be-B* 1) 2 (BIEG2,) M2 (B Ik, s (Be)) /2,

2(sup, | Be-B*1) P (PIZG, 5) Y2 (PIEGL.,, g (Be)) ?

Si nce suptiét-ﬁ*} = o,(l) by Lenma A, and P“Zgid,aﬂ('ét) = 0,(1) by assunption
3, and the remaining terms are O,(1) by assunption 4 and Mrkov's inequality,

the result is established.

Additional detail on proof of Theorem 4.2(b)

Expandi ng %t,, we have

A A A A A
g ¢ ] ) =
P iR Tea1Teer-y {Meer Mearsy Ve eer Veeerg) (AA3)
et A AL A A AA, A A A, ALAL }
P’ Zc:}uj{_gtol-jgtolvt—j,rnr-ja - G- Ve wr® + Fra® G

= P_IELijul-j
Via the triangle and Cauchy-Schwarz inequalities we have

A A AA
- T -1sT 2 1/2 -1yT 2 44 1/2
I P lztxkojwtol—jll S (P Zt.mj gtol-j Vi-j ) (P Et.mj o gt.l) +

A A A A A A
- -1 T 244 1/2 1T 4 .4 1/2 -1y T 4 y1/2
(P IZI=R4jgiolvi,to1) 12 (P Zt:!uja t»l—j) + (P Er_xkoj a gt,]_) (P Er_:R‘jgt*l_])

A A A A
|G 1PEEL.TE L) (IR M s

A. A A A A LA
L(Prg?, Vi )YH(PILgL,) Y + a?(PLgl,) Y (PPEgL,)
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The last inequality follows by adding non-negative ternms, and pulling the 3
terms out of the summations. By Theorem 4.1, '3 = o0,(1), hence we need to
show that the remaining ternms are Q(l). That p-lz’g‘g‘ﬁg,m = 0,{(1) follows
from Lemma A3.

Since g..,{B)is twice continuously differentiable, it adnmts a nean val ue

expansi on such that, P*Egi,,(B8.) = P'rgi, + P'rr,,, where

o1 = [gt.l +gt‘115(§t'6*)1‘+ ['Sgtol,ﬁﬂ (Ec)(ét-ﬁ*)zl‘ + (AR4)
41{ge., + Gre1,8 (ét_B*) 1% -5G¢e.1.88 (B:) (éc_B*) 1 4
12{ge1 +Geiag (Ec‘ﬁ*) 1%[. 591,58 (Be) (Et”ﬁ*) 174

4 [gul + gt+1,g(at_ﬁ*) 1 [-Sgul,ﬂﬂ (Et) (Et_ﬁ*)zl 3'

Now since g.,, has 8d nonents, Markov's inequality inplies that P'zgi,, =
0, (1), It then suffices to show that Prr.,, is o,(l). To do so we will show
that the absolute value of the fifth termon the rhs of (AR4) is o,(1), the

other ternms follow from simlar arguments. Using the triangle and Hol der

inequalities it follows that

| P14 (g, + 91,8 (ét‘ﬁ*) | [. 591,88 (Et) (ét_ﬁ*)z]z |
(sup, | ?t-ﬁ'{ ) (P gl ) YA (P G, 4 (Ec) )4

(sup, : %c‘ﬁ'{ )7 (P-l}:gzu,a) 1/ (P"Eg:d'” (B.) )

From Lemma Al, supt}ﬁt—ﬁ*} = o,(l) and by assunption 4 and Markov's
inequality, P'Lgi, = 0O,(1) and P'Zgi,; ; = O,(1) . Since by assunption 3 and

Markov's inequality, PIgi. g (s;ét) = 0,(1), the result is established.

Additional detail on the proof of Theorem 4.2(c):

Expandi ng Ir;w as in part (b) of this proof, we have gff - S¢ =
51, K(3/M) {PEL oisWeuay) fOr we,, y defined in (AA3) . Since the kernel is

nonnegative, we can use the sanme inequalities as in part (b) to obtain

A A A A
281, K(5/M) {PET o ywen 5 s ZRL L IKRG/M)Y | (1o | (PEgd,, v )Y (Pgi) VP 4

t . t+T

A A A A A A A
| @ (PG, Ve ) (PPEGE) Y + @3 (PUE gL, Y (R0, )

The bracketed termon the RHS of the previous inequality does not depend upon
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j and so it is unaffected by the outer sunmand. The RHS of the inequality is

then less than or equal to

A A A A
(M/P*) (ME8:1,, [ K(3/M) ) {{P*a | (PPEGE, Vi .., ) V2 (PTG, Y7 +

A A, R A A A LA
(P | (PEG2, V2, ) Y2 (PEGL) Y2 + (P2 a) 2 (PPEgl,) YA (PTG P

where "a" is defined as in the statement of the theorem 0<a<.5. By
assunption (M/P*) = O(1) and (MEj%,,,|K(3/M) {) » foIK(x) |dx < ». Notice also
that by Theorem 4.1, Pa = o,(I). That the RHS is o,(l) then follows from the

sanme argunent used in (b).
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Table 1

Regressors for Four Common Tests, Linear Model

(1) 2) (3) @)
Test Jea Dt Gia1
(1)Mean Prediction Error 1 n.a. n.a.
(2) Effici ency %o Be n.a. n.a.
. A A
(3) Enconpassi ng Xarer” Bae Xesa (Xzee1’ Baer Xear' )
(4)First Order Serial Qrt Kooy (Qrt,xm' )’

Correl ation

The nodel

IS Viu=Xeo' B +V,,, Where y,,, and v,.,, are scalars, x.,1s a vector,

and 8° is the unknown paraneter vector. In the AR(1) exanpl e of section 2,
this specializes to yt,1=ycﬁ‘+vc.1 The |l eft hand side variable is a one step

ahead predi
sections 6
regressor;
the vector

ction error, vm'Ym Xm Bc The sinpl er regression analyzed in
and 7 is one in which gm_gm(ﬁ ) (colum (2))is the sol e

the nmore conplicated regression is one in which g (colum (4}) is
of regressors. See sections 6 and 7 of the paper for nore detail.



Table 2

Adjustnments for Four Common Tests, Linear

Correction
Needed?

Sanpl i ng
Schene
A. Zero Mean Prediction Error

1.Recursive No

Model

n.a.
2.Rolling Yes Divide t-statistic
3.Fixed Yes Divide t-statistic
B. Efficiency
1.Recursive noO n.a.
2.Rolling ves Divide t-statistic
3.Fixed yes Divide t-statistic
C.  Enconpassing
1.Recursive no: v, conditionally honoskedasti c n.a.
yes : v,, conditionally heteroskedastic augnent ed regression
2.Rolling yes augnment ed regression
3.Fixed yes augnent ed regression

D. Zero First Order Serial Correlation

1.Recursive no: v, conditionally honoskedasti c n.a.

ves : v,, conditionally heteroskedastic augnent ed
2.Rolling ves augnent ed
3.Fixed yes augnent ed
Not es:
1. The nmodel s Y.,=x%X. ' B*+ve,, With v, serially uncorrel ated.

predi ction horizon is one period (r=1).
on the left hand side, as described
when to adjust the usual
uncertainty about g*.

in Table 1.

2. The table assumes w>0.
nunber of predictions,
m=0, no adj ustnent

the snallest
any of the tests

R the size of
is needed, for

3. In panels C and D, *"v.,, conditionally honbskedastic"
Ev:, EXc1Xe” 5 "Ve.. conditional het er oskedasti c"
Evg+1xt+1xt+1, = EVﬁ.lExmxm' .

4. Panel D allows Ev %x=#0,
appl i cati ons. I f Ev,,,x.=0,
and whether or not v, is

no correction
conditionally

is needed, for
het er oskedasti c.

any of

regression
regression
regression

The

A

The regression run is one with v,
This table describes how and
| east squares standard errors to account for

mis the limting value of PIR, where P is the
regression sanple.
in the table.

When

means Evi, XeaXen' =
allows the possibility that

as is typically the case in tinme series
the schenes,

by

How to Correct the t-statistic

%

YL

N

N



Table 3
Size of Nomi nal .05 Tests, Mean Prediction Error

A. Accounting for Error in Estimation of g*

Sampl i ng e P---mmmmmmmm s s s oo mm o m oo
Schene 25 50 100 150 175
1.Recursive 25 .054 .052 .053 .056 .056
50 .053 .057 .051 .057
100 .046 .049 .054
150 .056 .056
175 .052
2.Rolling 25 .063 .074 .105 133 .145
50 .053 .063 .063 .072
100 .048 .051 .058
150 .054 .055
175 .053
3.Fixed 25 .091 .090 .096 .097 .099
50 .069 .074 .075 .077
100 .058 .060 .064
150 .062 .050
175 .058

B. Ignoring Error in Estimation of @*

Sampl i ng S e P---mmmmm e
Schene 25 50 100 150 175
1.Rolling 25 . 025 .003 .000 000 .000
50 .043 .021 .002 1000
100 .046 .044 .021
150 .054 .052
175 .052
2.Fixed 25 .22Q .297 .421 .498 .523
50 .129 .195 .293 .354
100 .081 .121 , 186
150 .078 .106
175 .073

Notes: The DGP is a,univariate AR(1); see text for details. For the indicated
values of P and R v, (the one step ahead prediction error) was regressed on
a constant for t=R...,R+P-1. Panel s B1 and B2 report the fraction of the
5000 simulations in which the conventionally conputed t-statistic on the
coefficient on the constant term was greater than 1.96 in absolute val ue.
Panels Al-A3 report the same, when the conventionally conputed t-statistic is
divided by the square root of Ax.



Table 4
Si ze of Nominal .05 Tests, Efficiency Test

A. Accounting for Error in Estination of g*

Sanpl i ng e Uy S
Schene 25 50 100 150 175
1.Recursive 25 .052 .051 . 055 .055 .053
50 .038 .043 .043 .046
100 .038 .040 .045
150 .041 .047
175 .042
2.Rolling 25 .124 .430 .939 .997 .999
50 . 045 .070 .232 .468
100 .036 .043 .059
150 .042 .045
175 .041
3.Fixed 25 .058 .055 .056 .055 .053
50 .040 .038 .035 .031
100 .039 .041 .042
150 .041 .036
175 .042

B. Ignoring Error in Estimation of @g*

Sanpl i ng e et Prmmmmm s o m e m e
Schene 25 50 100 150 175
1.Rolling 25 .059 .072 .152 .331 .450

50 .037 .030 .016 .013

100 .034 .034 .021

150 .042 .041

175 .040
2.Fixed 25 .158 .234 .355 .434 .456

50 .087 .135 .220 .286

100 .063 .097 .152

150 .060 .083

175 .057
Notes: The DGP is a, univariate AR(1l); see text for details. For the indicated
val ues of P and,R, v, (the one step ahead prediction) was regressed on a
constant and y.B. (the one step ahead prediction) for t=R . . ..R+P-1. Panels

Bl and B2 report the fraction of the 5000 sinmulations in whigh the
conventionally conputed t-statistic on the coefficient on y.8. that was
greater than 1.96 in absolute val ue. Panel s Al -A3 report the sane, when the

conventional ly conputed t-statistic is divided by the square root of A



Table 5
Si ze of Nomi nal .05 Tests, Enconpassing Test

A. Accounting for Error in Estimation of B*

Sanplin 2 S e I e St
Scﬂgne : 25 50 100 150 175
1.Recursive 25 .113 .148 .185 .201 .196
50 .077 .100 .125 .135
100 cee- .084
150 .048 .055
175 .046
2.Rolling 25 .244 .388 .634 .796 .861
50 .151 .232 .346 .450
100 .090 .122 171
150 .075 .088
175 .071
3.Fixed 25 .044 .050 .049 .048 .050
50 .049 .049 .053 .049
100 .044 . 098 .048
150
175 .054

B. Ignoring Error in Estimation of g*

Sampl i ng e R Po--mmmmmmmmm - mmm oo momm e
Scheme 25 50 100 150 175
1.Rolling 25 .130 .250 .508 .713 .790
50 .084 .122 .211 .312
100 .059 .078 .108
150 . 044 .057
175 .047
2.Fixed 25 .191 .270 0399 .486 .508
50 - oo .240 .300
100 . 0608 . 098 .133
150 .055 .068
175 .052

A
Notes: The DGP is a univariate AR{1l); see text for details. Let (B, denote
the least squares estimate of a regression of y, on y,, using the game sanple
as that used to obtain B8.. For the indicated values of P and R, V... (the one
step ahead prediction error) was regressed on a constant and y..8: for
t=R ..., R+tP-1. Panels A, Bl and B2 report the fraction of the 5000
sinulations in whigh the conventionally conputed t-statistic on the
coefficient on y.,B,; that was greater than 1.96 in absolute value. Panel s A2
and A3 report the sane, when y. was included as a third regressor.



Table 6
Size of Nomnal .05 Tests, Test for Zero First Order Serial Correlation

A. Accounting for Error in Estination of B*

Sanpl i ng e P-----mmmmm oo s oo
Schene 25 50 100 150 175
1.Recursive 25 .059 .060 .061 .061 .061
50 .043 .052 . 057 .053
100 .040 .048 .051
150 . 045 .054
175 .045
2.Rolling 25 .119 .209 .405 .584 .663
50 .069 .094 . 143 .183
100 .058 .066 .071
150 . 054 .058
175 .057
3.Fixed 25 .044 .050 .049 .048 .050
50 .049 . 049 .053 .0459
100 . 049 .048 .048
150 .049 .051
175 .053

B. lgnoring Error in Estimation of @g*

1.Rolling 25 .034 .022 .027 .052 .067

50 . 040 .029 .014 .013

100 .039 .044 .026

150 .045 .048

175 .045
2.Fixed 25 .214 .319 .447 .512 .546

50 111 177 .269 .335

100 .066 .105 .156

150 .062 .086

175 .058

A

Notes: The DGP is a univariate AR(1); see text for details. In panel B, V.
was regressed on a constant and v, for t=R ..., R+tP-1, for the indicated
values of P and R . Panels A, Bl and B2 report the fraction of the 5000

simulations in which the conventionally conputed t-statistic on the
coefficient on v, that were greater than 1.96 in absolute value. Panel s A2
and A3 report the sane, when y, was included as a third regressor



Table 7

Si ze of Nominal .05 Tests, Efficiency Test, Larger Sanple Sizes

A (PIR =2
P=50,R=25  P=100,R=50 P=200,R=100 P=400,R=200 P=800,R=400
.430 .232 .108 .091 .069
B. (P/R)=4

P=100,R=25 P=400,R=100 P=800,R=200
.939 .409 .229

Notes: See notes to Table 4. The tests account for error in estimtion of
The figures for P+R<200 are repeated from Table 4.

B*.



